WorldWideScience

Sample records for wind pattern derived

  1. On the energy pattern factor in wind measurements

    Energy Technology Data Exchange (ETDEWEB)

    Buick, T R; Doherty, M A; McMullan, J.T., Morgan, R.; Murray, R B

    1977-01-01

    Measurements of energy pattern factor K/sub e/ were made using a continuous-analogue wind-power metering technique, rather than by the more usual sampling procedure. The values obtained were significantly larger than the usually accepted figure. The discrepancy is attributed partly to the method of measurement, which includes the actual power present rather than the amount that can be extracted, and partly to the use of rather more typical wind speeds. It is concluded, however, that more energy can be derived from wind schemes than was thought, even during periods of light wind. These conclusions improve the viability of wind power plants.

  2. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  3. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    Science.gov (United States)

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  4. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2006-01-01

    Full Text Available Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5 is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  5. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    Science.gov (United States)

    de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.

    2006-04-01

    Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  6. Theoretical derivation of wind power probability distribution function and applications

    International Nuclear Information System (INIS)

    Altunkaynak, Abdüsselam; Erdik, Tarkan; Dabanlı, İsmail; Şen, Zekai

    2012-01-01

    Highlights: ► Derivation of wind power stochastic characteristics are standard deviation and the dimensionless skewness. ► The perturbation is expressions for the wind power statistics from Weibull probability distribution function (PDF). ► Comparisons with the corresponding characteristics of wind speed PDF abides by the Weibull PDF. ► The wind power abides with the Weibull-PDF. -- Abstract: The instantaneous wind power contained in the air current is directly proportional with the cube of the wind speed. In practice, there is a record of wind speeds in the form of a time series. It is, therefore, necessary to develop a formulation that takes into consideration the statistical parameters of such a time series. The purpose of this paper is to derive the general wind power formulation in terms of the statistical parameters by using the perturbation theory, which leads to a general formulation of the wind power expectation and other statistical parameter expressions such as the standard deviation and the coefficient of variation. The formulation is very general and can be applied specifically for any wind speed probability distribution function. Its application to two-parameter Weibull probability distribution of wind speeds is presented in full detail. It is concluded that provided wind speed is distributed according to a Weibull distribution, the wind power could be derived based on wind speed data. It is possible to determine wind power at any desired risk level, however, in practical studies most often 5% or 10% risk levels are preferred and the necessary simple procedure is presented for this purpose in this paper.

  7. A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers

    Science.gov (United States)

    Carlson, Catherine A.; Forbes, Gregory S.

    1989-01-01

    Horizontal divergence, relative vorticity, kinematic vertical velocity, and geostrophic and ageostrophic winds are computed from Colorado profiler network data to investigate an upslope snowstorm in northeastern Colorado. Horizontal divergence and relative vorticity are computed using the Gauss and Stokes theorems, respectively. Kinematic vertical velocities are obtained from the surface to 9 km by vertically integrating the continuity equation. The geostrophic and ageostrophic winds are computed by applying a finite differencing technique to evaluate the derivatives in the horizontal equations of motion. Comparison of the synoptic-scale data with the profiler network data reveals that the two datasets are generally consistent. Also, the profiler-derived quantities exhibit coherent vertical and temporal patterns consistent with conceptual and theoretical flow fields of various meteorological phenomena. It is suggested that the profiler-derived quantities are of potential use to weather forecasters in that they enable the dynamic and kinematic interpretation of weather system structure to be made and thus have nowcasting and short-term forecasting value.

  8. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    Science.gov (United States)

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  9. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  10. A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data

    Science.gov (United States)

    Belt, Carol L.; Fuelberg, Henry E.

    1984-01-01

    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.

  11. The use of energy pattern factor (EPF) in estimating wind power ...

    African Journals Online (AJOL)

    The Energy Pattern Factor (EPF) method is a less computational method of estimating the available wind power density of an area and wind speed variation account for the energy power density throughout a given period. Using the Average daily wind speed data for an 11 year period (2004-2014) obtained from the ...

  12. Analysis of wind speed distributions: Wind distribution function derived from minimum cross entropy principles as better alternative to Weibull function

    International Nuclear Information System (INIS)

    Kantar, Yeliz Mert; Usta, Ilhan

    2008-01-01

    In this study, the minimum cross entropy (MinxEnt) principle is applied for the first time to the wind energy field. This principle allows the inclusion of previous information of a wind speed distribution and covers the maximum entropy (MaxEnt) principle, which is also discussed by Li and Li and Ramirez as special cases in their wind power study. The MinxEnt probability density function (pdf) derived from the MinxEnt principle are used to determine the diurnal, monthly, seasonal and annual wind speed distributions. A comparison between MinxEnt pdfs defined on the basis of the MinxEnt principle and the Weibull pdf on wind speed data, which are taken from different sources and measured in various regions, is conducted. The wind power densities of the considered regions obtained from Weibull and MinxEnt pdfs are also compared. The results indicate that the pdfs derived from the MinxEnt principle fit better to a variety of measured wind speed data than the conventionally applied empirical Weibull pdf. Therefore, it is shown that the MinxEnt principle can be used as an alternative method to estimate both wind distribution and wind power accurately

  13. Moisture convergence using satellite-derived wind fields - A severe local storm case study

    Science.gov (United States)

    Negri, A. J.; Vonder Haar, T. H.

    1980-01-01

    Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.

  14. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  15. Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations

    Science.gov (United States)

    Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.

    2018-06-01

    Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.

  16. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS

    International Nuclear Information System (INIS)

    PARKER, B.; ESCALLIER, J.

    2005-01-01

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper

  17. Influence of orographically steered winds on Mutsu Bay surface currents

    Science.gov (United States)

    Yamaguchi, Satoshi; Kawamura, Hiroshi

    2005-09-01

    Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.

  18. Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent

    Science.gov (United States)

    Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen

    2014-05-01

    Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  19. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  20. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  1. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  2. Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses.

    Science.gov (United States)

    Thorne, L H; Conners, M G; Hazen, E L; Bograd, S J; Antolos, M; Costa, D P; Shaffer, S A

    2016-06-01

    Changes to patterns of wind and ocean currents are tightly linked to climate change and have important implications for cost of travel and energy budgets in marine vertebrates. We evaluated how El Niño-Southern Oscillation (ENSO)-driven wind patterns affected breeding Laysan and black-footed albatross across a decade of study. Owing to latitudinal variation in wind patterns, wind speed differed between habitat used during incubation and brooding; during La Niña conditions, wind speeds were lower in incubating Laysan (though not black-footed) albatross habitat, but higher in habitats used by brooding albatrosses. Incubating Laysan albatrosses benefited from increased wind speeds during El Niño conditions, showing increased travel speeds and mass gained during foraging trips. However, brooding albatrosses did not benefit from stronger winds during La Niña conditions, instead experiencing stronger cumulative headwinds and a smaller proportion of trips in tailwinds. Increased travel costs during brooding may contribute to the lower reproductive success observed in La Niña conditions. Furthermore, benefits of stronger winds in incubating habitat may explain the higher reproductive success of Laysan albatross during El Niño conditions. Our findings highlight the importance of considering habitat accessibility and cost of travel when evaluating the impacts of climate-driven habitat change on marine predators. © 2016 The Author(s).

  3. Wind Patterns of Coastal Tanzania: Their Variability and Trends

    African Journals Online (AJOL)

    Abstract—Patterns in Tanzanian coastal winds were investigated in terms of their variability at the weather stations of Tanga, Zanzibar, Dar es Salaam and Mtwara. Three-hourly data collected over a 30-year period (1977-2006) were used for the study. Statistical analyses included regressions, correlations, spectral analysis,.

  4. Computing and Learning Year-Round Daily Patterns of Hourly Wind Speed and Direction and Their Global Associations with Meteorological Factors

    Directory of Open Access Journals (Sweden)

    Hsing-Ti Wu

    2015-08-01

    Full Text Available Daily wind patterns and their relational associations with other metocean (oceanographic and meteorological variables were algorithmically computed and extracted from a year-long wind and weather dataset, which was collected hourly from an ocean buoy located in the Penghu archipelago of Taiwan. The computational algorithm is called data cloud geometry (DCG. This DCG algorithm is a clustering-based nonparametric learning approach that was constructed and developed implicitly based on various entropy concepts. Regarding the bivariate aspect of wind speed and wind direction, the resulting multiscale clustering hierarchy revealed well-known wind characteristics of year-round pattern cycles pertaining to the particular geographic location of the buoy. A wind pattern due to a set of extreme weather days was also identified. Moreover, in terms of the relational aspect of wind and other weather variables, causal patterns were revealed through applying the DCG algorithm alternatively on the row and column axes of a data matrix by iteratively adapting distance measures to computed DCG tree structures. This adaptation technically constructed and integrated a multiscale, two-sample testing into the distance measure. These computed wind patterns and pattern-based causal relationships are useful for both general sailing and competition planning.

  5. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  6. 77 FR 7601 - Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy...

    Science.gov (United States)

    2012-02-13

    ... LVRWB10B3980] Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy... Acts, for a period of 2 years for the purpose of processing a wind energy right-of-way (ROW... filed by Pattern Energy Group for the Ocotillo Express Wind Project on the above described lands while...

  7. Wind-Induced Air-Flow Patterns in an Urban Setting: Observations and Numerical Modeling

    Science.gov (United States)

    Sattar, Ahmed M. A.; Elhakeem, Mohamed; Gerges, Bishoy N.; Gharabaghi, Bahram; Gultepe, Ismail

    2018-04-01

    City planning can have a significant effect on wind flow velocity patterns and thus natural ventilation. Buildings with different heights are roughness elements that can affect the near- and far-field wind flow velocity. This paper aims at investigating the impact of an increase in building height on the nearby velocity fields. A prototype urban setting of buildings with two different heights (25 and 62.5 cm) is built up and placed in a wind tunnel. Wind flow velocity around the buildings is mapped at different heights. Wind tunnel measurements are used to validate a 3D-numerical Reynolds averaged Naviers-Stokes model. The validated model is further used to calculate the wind flow velocity patterns for cases with different building heights. It was found that increasing the height of some buildings in an urban setting can lead to the formation of large horseshoe vortices and eddies around building corners. A separation area is formed at the leeward side of the building, and the recirculation of air behind the building leads to the formation of slow rotation vortices. The opposite effect is observed in the wake (cavity) region of the buildings, where both the cavity length and width are significantly reduced, and this resulted in a pronounced increase in the wind flow velocity. A significant increase in the wind flow velocity in the wake region of tall buildings with a value of up to 30% is observed. The spatially averaged velocities around short buildings also increased by 25% compared to those around buildings with different heights. The increase in the height of some buildings is found to have a positive effect on the wind ventilation at the pedestrian level.

  8. Prediction of Wind Environment and Indoor/Outdoor Relationships for PM2.5 in Different Building–Tree Grouping Patterns

    Directory of Open Access Journals (Sweden)

    Bo Hong

    2018-01-01

    Full Text Available Airflow behavior and indoor/outdoor PM2.5 dispersion in different building–tree grouping patterns depend significantly on the building–tree layouts and orientation towards the prevailing wind. By using a standard k-ε model and a revised generalized drift flux model, this study evaluated airflow fields and indoor/outdoor relationships for PM2.5 resulting from partly wind-induced natural ventilation in four hypothetical building–tree grouping patterns. Results showed that: (1 Patterns provide a variety of natural ventilation potential that relies on the wind influence, and buildings that deflect wind on the windward facade and separate airflow on the leeward facade have better ventilation potential; (2 Patterns where buildings and trees form a central space and a windward opening side towards the prevailing wind offer the best ventilation conditions; (3 Under the assumption that transported pollution sources are diluted through the inlet, the aerodynamics and deposition effects of trees cause the lower floors of a multi-storey building to be exposed to lower PM2.5 compared with upper floors, and lower indoor PM2.5 values were found close to the tree canopy; (4 Wind pressure differences across each flat showed a poor correlation (R2 = 0.059, with indoor PM2.5 concentrations; and (5 Patterns with the long facade of buildings and trees perpendicular to the prevailing wind have the lowest indoor PM2.5 concentrations.

  9. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the

  10. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    Science.gov (United States)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  11. On damage diagnosis for a wind turbine blade using pattern recognition

    Science.gov (United States)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  12. Wind gust models derived from field data

    Science.gov (United States)

    Gawronski, W.

    1995-01-01

    Wind data measured during a field experiment were used to verify the analytical model of wind gusts. Good coincidence was observed; the only discrepancy occurred for the azimuth error in the front and back winds, where the simulated errors were smaller than the measured ones. This happened because of the assumption of the spatial coherence of the wind gust model, which generated a symmetric antenna load and, in consequence, a low azimuth servo error. This result indicates a need for upgrading the wind gust model to a spatially incoherent one that will reflect the real gusts in a more accurate manner. In order to design a controller with wind disturbance rejection properties, the wind disturbance should be known at the input to the antenna rate loop model. The second task, therefore, consists of developing a digital filter that simulates the wind gusts at the antenna rate input. This filter matches the spectrum of the measured servo errors. In this scenario, the wind gusts are generated by introducing white noise to the filter input.

  13. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review

    Directory of Open Access Journals (Sweden)

    Candace Oviatt

    2015-10-01

    Full Text Available The purpose of this review is to describe the global scope of the multidecadal climate oscillations that go back at least, through several hundred years. Literature, historic data, satellite data and global circulation model output have been used to provide evidence for the zonal and meridional jet stream patterns. These patterns were predominantly zonal from the 1970s to 1990s and switched since the 1990s to a meridional wind phase, with weakening jet streams forming Rossby waves in the northern and southern hemispheres. A weakened northern jet stream has allowed northerly winds to flow down over the continents in the northern hemisphere during the winter period, causing some harsh winters and slowing anthropogenic climate warming regionally. Wind oscillations impact ocean gyre circulation affecting upwelling strength and pelagic fish abundance with synchronous behavior in sub Arctic gyres during phases of the oscillation and asynchronous behavior in subtropical gyres between the Atlantic and Pacific oceans.

  14. Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape

    Science.gov (United States)

    Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.

    2015-12-01

    Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.

  15. The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea

    Science.gov (United States)

    Semedo, Alvaro

    2015-04-01

    Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and

  16. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  17. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  18. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  19. Substorm-related thermospheric density and wind disturbances derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    P. Ritter

    2010-06-01

    Full Text Available The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3–4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s by substorms.

  20. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1978-01-01

    Paleocurrent maps of the fluvial lower Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium- and hydrocarbon-exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains, as in the channel-sandstone bodies deposited in Eocene time by a 40-kilometer segment of the eastward-flowing paleo-Wind River that exended westward from near the town of Powder River on the east edge of the basin. Channel-sandstone bodies with a Granite Mountains source occur south of this segment of the paleo-Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district, but the channel-sandstone bodies between the Gas Hills district and the 40-kilometer segment of the paleo-Wind River may also be mineralized. This area includes the southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel-sandstone bodies derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the paleo-Wind River in Paleocene time flowed eastward and had approximately the same location as the eastward-flowing paleo-Wind River of Eocene time. The channel-sandstone bodies of the paleo-Wind Rivers are potential hydrocarbon reservoirs, particularly where they are underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation. If leaks of sulfur-containing gas have created a reducing environment in the Eocene paleo-Wind River channel-sandstone bodies, then I speculate that the areas of overlap of the channel-sandstone bodies and natural-gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits

  1. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1975-01-01

    Paleocurrent maps of the fluvial early Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium and hydrocarbon exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains as in the channel sandstones deposited by the 25-mile segment of the Eocene Wind River extending westward from near the town of Powder River on the east edge of the basin. Channel sandstones with a Granite Mountain source occur south of this segment of the Eocene Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district but channel sandstones between the Gas Hills district and the 25-mile segment of the Eocene Wind River are potentially mineralized. This area includes the entire southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel sandstones derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the Paleocene Wind River flowed eastward and had approximately the same location as the eastward-flowing Eocene Wind River. If leaks of sulfur-containing gas have created a reducing environment in the Eocene Wind River channel sandstones, then I speculate that the areas of overlap of the channel sandstones and natural gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits. The channel sandstones of the Paleocene and Eocene Wind Rivers are potential hydrocarbon reservoirs, particularly where underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation

  2. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  3. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  4. A modelling framework to predict bat activity patterns on wind farms: An outline of possible applications on mountain ridges of North Portugal.

    Science.gov (United States)

    Silva, Carmen; Cabral, João Alexandre; Hughes, Samantha Jane; Santos, Mário

    2017-03-01

    Worldwide ecological impact assessments of wind farms have gathered relevant information on bat activity patterns. Since conventional bat study methods require intensive field work, the prediction of bat activity might prove useful by anticipating activity patterns and estimating attractiveness concomitant with the wind farm location. A novel framework was developed, based on the stochastic dynamic methodology (StDM) principles, to predict bat activity on mountain ridges with wind farms. We illustrate the framework application using regional data from North Portugal by merging information from several environmental monitoring programmes associated with diverse wind energy facilities that enable integrating the multifactorial influences of meteorological conditions, land cover and geographical variables on bat activity patterns. Output from this innovative methodology can anticipate episodes of exceptional bat activity, which, if correlated with collision probability, can be used to guide wind farm management strategy such as halting wind turbines during hazardous periods. If properly calibrated with regional gradients of environmental variables from mountain ridges with windfarms, the proposed methodology can be used as a complementary tool in environmental impact assessments and ecological monitoring, using predicted bat activity to assist decision making concerning the future location of wind farms and the implementation of effective mitigation measures. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  6. Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites

    International Nuclear Information System (INIS)

    Zhou Junyi; Erdem, Ergin; Li Gong; Shi Jing

    2010-01-01

    Accurate analysis of long term wind data is critical to the estimation of wind energy potential for a candidate location and its nearby area. Investigating the wind speed distribution is one critical task for this purpose. This paper presents a comprehensive evaluation on probability density functions for the wind speed data from five representative sites in North Dakota. Besides the popular Weibull and Rayleigh distributions, we also include other distributions such as gamma, lognormal, inverse Gaussian, and maximum entropy principle (MEP) derived probability density functions (PDFs). Six goodness-of-fit (GOF) statistics are used to determine the appropriate distributions for the wind speed data for each site. It is found that no particular distribution outperforms others for all five sites, while Rayleigh distribution performs poorly for most of the sites. Similar to other models, the performances of MEP-derived PDFs in fitting wind speed data varies from site to site. Also, the results demonstrate that MEP-derived PDFs are flexible and have the potential to capture other possible distribution patterns of wind speed data. Meanwhile, different GOF statistics may generate inconsistent ranking orders of fit performance among the candidate PDFs. In addition, one comprehensive metric that combines all individual statistics is proposed to rank the overall performance for the chosen statistical distributions.

  7. Ionosonde and optical determinations of thermospheric neutral winds over the Antarctic Peninsula

    Science.gov (United States)

    Foppiano, A. J.; Won, Y.-I.; Torres, X. A.; Flores, P. A.; Veloso, A. Daniel; Arriagada, M. A.

    2016-11-01

    Ionosonde observations have been made at Great Wall station (62.22°S; 58.97°W), King George Island, and at further south Vernadsky station (65.25°S; 64.27°W), Argentine Islands, for many years. For several days at the two locations the magnetic meridional component of the thermospheric neutral wind has also been derived using three different algorithms with ionosonde data input. At King Sejong station (62.22°S; 58.78°W), close to Great Wall, almost simultaneous thermospheric winds were measured with a Fabry-Perot Interferometer (FPI) during a few days in 1997. All days correspond to intervals of low solar and geomagnetic activity levels and for different seasons. Here, the geographic meridional FPI winds measured at the geographic south pointing location are compared with the magnetic meridional component of the wind derived from ionosonde observations at Vernadsky. Also, the magnetic meridian FPI winds measured using all four cardinal pointing locations are compared with the magnetic meridional component of the wind derived from ionosonde observations at Great Wall. The patterns of the diurnal variations of the magnetic meridional component of ionosonde derived winds using the three different techniques are similar in most cases. However, the amplitudes of these variations and some individual values can differ by more than 150 m/s depending on season, particularly during daytime. Comparison of the autumn FPI with the ionosonde winds for Vernadsky and Great Wall shows that they coincide within observation uncertainties. Results for other seasons are not so good. Some of the discrepancies are discussed in relation to the hour-to-hour variability of ionosonde based winds and the latitudinal gradients of ionospheric characteristics. Other discrepancies need to be further explained. Recently reported FPI mean winds for tens of days in different seasons for Palmer (64.77°S; 64.05°W), Anvers Island, are found to be particularly close to ionosonde derived mean

  8. Stochastic Modeling of Wind Derivatives in Energy Markets

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2018-05-01

    Full Text Available We model the logarithm of the spot price of electricity with a normal inverse Gaussian (NIG process and the wind speed and wind power production with two Ornstein–Uhlenbeck processes. In order to reproduce the correlation between the spot price and the wind power production, namely between a pure jump process and a continuous path process, respectively, we replace the small jumps of the NIG process by a Brownian term. We then apply our models to two different problems: first, to study from the stochastic point of view the income from a wind power plant, as the expected value of the product between the electricity spot price and the amount of energy produced; then, to construct and price a European put-type quanto option in the wind energy markets that allows the buyer to hedge against low prices and low wind power production in the plant. Calibration of the proposed models and related price formulas is also provided, according to specific datasets.

  9. Earth aeolian wind streaks: Comparison to wind data from model and stations

    Science.gov (United States)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  10. Mapping wind erosion hazard in Australia using MODIS-derived ground cover, soil moisture and climate data

    International Nuclear Information System (INIS)

    Yang, X; Leys, J

    2014-01-01

    This paper describes spatial modeling methods to identify wind erosion hazard (WEH) areas across Australia using the recently available time-series products of satellite-derived ground cover, soil moisture and wind speed. We implemented the approach and data sets in a geographic information system to produce WEH maps for Australia at 500 m ground resolution on a monthly basis for the recent thirteen year period (2000–2012). These maps reveal the significant wind erosion hazard areas and their dynamic tendencies at paddock and regional scales. Dust measurements from the DustWatch network were used to validate the model and interpret the dust source areas. The modeled hazard areas and changes were compared with results from a rule-set approach and the Computational Environmental Management System (CEMSYS) model. The study demonstrates that the time series products of ground cover, soil moisture and wind speed can be jointly used to identify landscape erodibility and to map seasonal changes of wind erosion hazard across Australia. The time series wind erosion hazard maps provide detailed and useful information to assist in better targeting areas for investments and continuous monitoring, evaluation and reporting that will lead to reduced wind erosion and improved soil condition

  11. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    Science.gov (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation

  12. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  13. On wind speed pattern and energy potential in Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Oyewola, O.M.

    2011-01-01

    The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. - Research Highlights: → Review of wind speed distribution and wind energy availability in Nigeria in presented. → The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. → The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified.

  14. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  15. Deriving the effect of wind speed on clean marine aerosol optical properties using the A-Train satellites

    Directory of Open Access Journals (Sweden)

    V. P. Kiliyanpilakkil

    2011-11-01

    Full Text Available The relationship between "clean marine" aerosol optical properties and ocean surface wind speed is explored using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E on board the AQUA satellite. Detailed data analyses are carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. Based on remotely sensed optical properties the CALIPSO algorithm is capable of discriminating "clean marine" aerosols from other types often present over the ocean (such as urban/industrial pollution, desert dust and biomass burning. The global mean optical depth of "clean marine" aerosol at 532 nm (AOD532 is found to be 0.052 ± 0.038 (mean plus or minus standard deviation. The mean layer integrated particulate depolarization ratio of marine aerosols is 0.02 ± 0.016. Integrated attenuated backscatter and color ratio of marine aerosols at 532 nm were found to be 0.003 ± 0.002 sr−1 and 0.530 ± 0.149, respectively. A logistic regression between AOD532 and 10-m surface wind speed (U10 revealed three distinct regimes. For U10 ≤ 4 m s−1 the mean CALIPSO-derived AOD532 is found to be 0.02 ± 0.003 with little dependency on the surface wind speed. For 4 < U10 ≤ 12 m s−1, representing the dominant fraction of all available data, marine aerosol optical depth is linearly correlated with the surface wind speed values, with a slope of 0.006 s m−1. In this intermediate wind speed region, the AOD532 vs. U10 regression slope derived here is comparable to previously reported values. At very high wind speed values (U10 > 18 m s−1, the AOD532-wind speed relationship

  16. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  17. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  18. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    Science.gov (United States)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  19. Sporadic wind wave horse-shoe patterns

    Directory of Open Access Journals (Sweden)

    S. Yu. Annenkov

    1999-01-01

    Full Text Available The work considers three-dimensional crescent-shaped patterns often seen on water surface in natural basins and observed in wave tank experiments. The most common of these 'horse-shoe-like' patterns appear to be sporadic, i.e., emerging and disappearing spontaneously even under steady wind conditions. The paper suggests a qualitative model of these structures aimed at explaining their sporadic nature, physical mechanisms of their selection and their specific asymmetric form. First, the phenomenon of sporadic horse-shoe patterns is studied numerically using the novel algorithm of water waves simulation recently developed by the authors (Annenkov and Shrira, 1999. The simulations show that a steep gravity wave embedded into widespectrum primordial noise and subjected to small nonconservative effects typically follows the simple evolution scenario: most of the time the system can be considered as consisting of a basic wave and a single pair of oblique satellites, although the choice of this pair tends to be different at different instants. Despite the effective low-dimensionality of the multimodal system dynamics at relatively sho ' rt time spans, the role of small satellites is important: in particular, they enlarge the maxima of the developed satellites. The presence of Benjamin-Feir satellites appears to be of no qualitative importance at the timescales under consideration. The selection mechanism has been linked to the quartic resonant interactions among the oblique satellites lying in the domain of five-wave (McLean's class II instability of the basic wave: the satellites tend to push each other out of the resonance zone due to the frequency shifts caused by the quartic interactions. Since the instability domain is narrow (of order of cube of the basic wave steepness, eventually in a generic situation only a single pair survives and attains considerable amplitude. The specific front asymmetry is found to result from the interplay of quartic

  20. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  1. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  2. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  3. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind

    Directory of Open Access Journals (Sweden)

    M. Liu

    2012-02-01

    Full Text Available In this paper, simulations with the Soil Water Atmosphere Plant (SWAP model are performed to quantify the spatial variability of both potential and actual evapotranspiration (ET, and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. To obtain the spatially distributed ET/SMC patterns, the field scale SWAP model is applied in a distributed way for both pointwise and catchment wide simulations. An adapted radiation model from r.sun and the physically-based meso-scale wind model METRAS PC are applied to obtain the spatial radiation and wind patterns respectively, which show significant spatial variation and correlation with aspect and elevation respectively. Such topographic dependences and spatial variations further propagate to ET/SMC. A strong spatial, seasonal-dependent, scale-relevant intra-catchment variability in daily/annual ET and less variability in SMC can be observed from the numerical experiments. The study concludes that topography has a significant effect on ET/SMC in the humid region where ET is a energy limited rather than water availability limited process. It affects the spatial runoff generation through spatial radiation and wind, therefore should be applied to inform hydrological model development. In addition, the methodology used in the study can serve as a general method for physically-based ET estimation for data sparse regions.

  4. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  5. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  6. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.

    2010-01-01

    Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheri...

  7. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    Science.gov (United States)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  8. Analytical derivation of traffic patterns in cache-coherent shared-memory systems

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Sparsø, Jens

    2011-01-01

    This paper presents an analytical method to derive the worst-case traffic pattern caused by a task graph mapped to a cache-coherent shared-memory system. Our analysis allows designers to rapidly evaluate the impact of different mappings of tasks to IP cores on the traffic pattern. The accuracy...

  9. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  10. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    Science.gov (United States)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  11. Multi-decadal Variability of the Wind Power Output

    Science.gov (United States)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  12. Análise dos padrões de vento no Estado de Alagoas Wind patterns analysis in Alagoas State

    Directory of Open Access Journals (Sweden)

    Gabriel Brito Costa

    2012-03-01

    Full Text Available Com o objetivo de identificar áreas do Estado de Alagoas com boas perspectivas de aproveitamento eólico, comparou-se dados de velocidade e direção do vento observados por torres anemométricas do projeto Atlas Eólico e Disseminação da Tecnologia Eólica no Estado de Alagoas. A série utilizada é de 12/2007 a 11/2008 e o estudo focou três regiões distintas: Litoral, Agreste e Sertão. Os padrões médios com maiores velocidades do vento ocorreram na região do Agreste (7,1 ±1,2 ms-1 mensal, seguido do Sertão (6,8 ±0,9 ms-1 mensal e Litoral ( 5,3 ±0,8 ms-1 mensal. A regularidade da velocidade e a pouca variabilidade de direção do vento torna Alagoas uma ótima opção para a instalação de aerogeradores.Aiming to evaluate areas with good prospects for harnessing wind power, the patterns of wind speed and direction measured at anemometric towers within the Atlas Eólico e Disseminação da Tecnologia Eólica no Estado de Alagoas project were compared for the period from 12/2007 to 11/2008, at Alagoas State. We analyzed three distinct regions: Coast, Agreste and Sertão. The patterns with higher average wind speeds were in the Agreste regions (7.1 ± 1.2 ms-1 monthly followed by Sertão (6.8 ± 0.9 ms- 1 monthly and by Coast (5.3 ± 0.8 ms-1 monthly. The regularity of the wind speed and the low variability of wind direction make Alagoas be a great option for the installation of wind turbines.

  13. Wind tunnel and CFD modelling of wind pressures on solar energy systems on flat roofs

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Franke, J.; Geurts, C.P.W.; Bentum, van C.A.; Grepinet, F.

    2010-01-01

    Design of solar energy mounting systems requires more knowledge on the wind patterns around these systems. To obtain more insight in the flow patterns, which cause the pressure distributions on the solar energy systems, a wind tunnel test and Computational Fluid Dynamics analysis have been

  14. Spatial and temporal patterns of global onshore wind speed distribution

    International Nuclear Information System (INIS)

    Zhou, Yuyu; Smith, Steven J

    2013-01-01

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/climate forecast system reanalysis (CFSR) data over land areas. The Weibull distribution performs well in fitting the time series wind speed data at most locations according to R 2 , root mean square error, and power density error. The wind speed frequency distribution, as represented by the Weibull k parameter, exhibits a large amount of spatial variation, a regionally varying amount of seasonal variation, and relatively low decadal variation. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in non-negligible errors. While large-scale wind speed data are often presented in the form of mean wind speeds, these results highlight the need to also provide information on the wind speed frequency distribution. (letter)

  15. Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants

    Directory of Open Access Journals (Sweden)

    Gao eHu

    2016-02-01

    Full Text Available Most insect migrants fly at considerable altitudes (hundreds of meters above the ground where they utilize fast-flowing winds to achieve rapid and comparatively long-distance transport. The nocturnal aerial migrant fauna has been well studied with entomological radars, and many studies have demonstrated that flight orientations are frequently grouped around a common direction in a range of nocturnal insect migrants. Common orientation typically occurs close to the downwind direction (thus ensuring that a large component of the insects’ self-powered speed is directed downstream, and in nocturnal insects at least, the downwind headings are seemingly maintained by direct detection of wind-related turbulent cues. Despite being far more abundant and speciose, the day-flying windborne migrant fauna has been much less studied by radar; thus the frequency of wind-related common orientation patterns and the sensory mechanisms involved in their formation remain to be established. Here we analyze a large dataset of >600,000 radar-detected ‘medium-sized’ windborne insect migrants (body mass from 10 to 70 mg, flying hundreds of meters above southern UK, during the afternoon, in the period around sunset, and in the middle of the night. We found that wind-related common orientation was almost ubiquitous during the day (present in 97% of all ‘migration events’ analyzed, and was also frequent at sunset (85% and at night (81%. Headings were systematically offset to the right of the flow at night-time (as predicted from the use of turbulence cues for flow assessment, but there was no directional bias in the offsets during the day or at sunset. Orientation ‘performance’ significantly increased with increasing flight altitude throughout the day and night. We conclude by discussing sensory mechanisms which most likely play a role in the selection and maintenance of wind-related flight headings.

  16. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, A.

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design. [Author

  17. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, Andrew; Vogstad, Klaus; Flynn, Hilary

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design

  18. Determination of the thermospheric neutral wind from incoherent scatter radar measurements

    International Nuclear Information System (INIS)

    Haeggstroem, I.; Murdin, J.; Rees, D.

    1984-11-01

    Measurements made by the EISCAT UHF incoherent scatter radar are used to derive thermospheric winds. The derived wind is compared to Fabry-Perot interferometer measurements of the neutral wind made simultaneously. The uncertainties in the radar derived wind are discussed. (author)

  19. On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm

    Directory of Open Access Journals (Sweden)

    A. Peña

    2018-04-01

    Full Text Available We investigate wake effects at the Anholt offshore wind farm in Denmark, which is a farm experiencing strong horizontal wind-speed gradients because of its size and proximity to land. Mesoscale model simulations are used to study the horizontal wind-speed gradients over the wind farm. From analysis of the mesoscale simulations and supervisory control and data acquisition (SCADA, we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly used wake models: two engineering approaches (the Park and G. C. Larsen models and a linearized Reynolds-averaged Navier–Stokes approach (Fuga. The effect of the horizontal wind-speed gradient on annual energy production estimates is not found to be critical compared to estimates from both the average undisturbed wind climate of all turbines' positions and the undisturbed wind climate of a position in the middle of the wind farm. However, annual energy production estimates can largely differ when using wind climates at positions that are strongly influenced by the horizontal wind-speed gradient. When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate the wake losses (the median relative model error is 8.75 % and the engineering wake models are as uncertain as Fuga. These results are specific for

  20. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  1. Wind farm fuzzy modelling for adequacy evaluation of power system

    Energy Technology Data Exchange (ETDEWEB)

    Moeini-Aghtaie, M.; Abbaspour, A.; Fotuhi-Firuzabad, M. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering, Center of Excellence in Power System Management and Control

    2010-07-01

    This paper presented details of a fuzzy logic-based active learning method (ALM) designed to model variations in wind speed. A pattern-based approach was used to model system behaviour. The ALM was algorithmically modelled on the information-handling processes of the human brain. Wind data were gathered and projected on different data planes. The horizontal axis of each data plane was one of the inputs, while the vertical axis was the output. An ink drop spread (IDS) processing engine was used to look for behaviour curves on each data plane. A fuzzy interpolation method was used to derive a smooth curve among the data points. Sequential Monte Carlo simulations (MCS) were used to evaluate power systems based on hourly random simulations. After the hourly wind speed was generated, wind turbine generator outputs were calculated by considering the nonlinear relationship between the estimated wind speed and the wind turbine output. The developed algorithm was validated on a 6-bus reliability test system. Results of the study can be used by power system schedulers to develop power system reliability guidelines. 14 refs., 2 tabs., 11 figs.

  2. Lidar-based reconstruction of wind fields and application for wind turbine control

    OpenAIRE

    Kapp, Stefan

    2017-01-01

    In this thesis horizontal, upwind scanning lidar systems of the focused continuous-wave type are regarded for wind turbines. The theory of wind field reconstruction is extended to a five parameter model describing the inflow in non-uniform conditions more accurately. Sensor requirements are derived. A new approach to spherically scan the inflow area is studied experimentally. Expected inaccuracies of the averaged wind direction signal in a wind farm environment are quantified and spatial inho...

  3. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Directory of Open Access Journals (Sweden)

    Judit Lecina-Diaz

    Full Text Available Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1 determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together and (2 ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires. The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn

  4. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Science.gov (United States)

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  5. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  6. Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop

    Directory of Open Access Journals (Sweden)

    Eric Simley

    2018-06-01

    Full Text Available IEA Wind Task 32 serves as an international platform for the research community and industry to identify and mitigate barriers to the use of lidars in wind energy applications. The workshop “Optimizing Lidar Design for Wind Energy Applications” was held in July 2016 to identify lidar system properties that are desirable for wind turbine control applications and help foster the widespread application of lidar-assisted control (LAC. One of the main barriers this workshop aimed to address is the multidisciplinary nature of LAC. Since lidar suppliers, wind turbine manufacturers, and researchers typically focus on their own areas of expertise, it is possible that current lidar systems are not optimal for control purposes. This paper summarizes the results of the workshop, addressing both practical and theoretical aspects, beginning with a review of the literature on lidar optimization for control applications. Next, barriers to the use of lidar for wind turbine control are identified, such as availability and reliability concerns, followed by practical suggestions for mitigating those barriers. From a theoretical perspective, the optimization of lidar scan patterns by minimizing the error between the measurements and the rotor effective wind speed of interest is discussed. Frequency domain methods for directly calculating measurement error using a stochastic wind field model are reviewed and applied to the optimization of several continuous wave and pulsed Doppler lidar scan patterns based on commercially-available systems. An overview of the design process for a lidar-assisted pitch controller for rotor speed regulation highlights design choices that can impact the usefulness of lidar measurements beyond scan pattern optimization. Finally, using measurements from an optimized scan pattern, it is shown that the rotor speed regulation achieved after optimizing the lidar-assisted control scenario via time domain simulations matches the performance

  7. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...

  8. Effects of gain-scheduling methods in a classical wind turbine controller on wind turbine aeroservoelastic modes and loads

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2014-01-01

    The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account the chan......The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account...

  9. Estimating Wind and Wave Induced Forces On a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong

    2013-01-01

    -principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....

  10. Trading wind generation from short-term probabilistic forecasts of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Chevallier, Christophe; Kariniotakis, Georges

    2007-01-01

    Due to the fluctuating nature of the wind resource, a wind power producer participating in a liberalized electricity market is subject to penalties related to regulation costs. Accurate forecasts of wind generation are therefore paramount for reducing such penalties and thus maximizing revenue......, as well as on modeling of the sensitivity a wind power producer may have to regulation costs. The benefits resulting from the application of these strategies are clearly demonstrated on the test case of the participation of a multi-MW wind farm in the Dutch electricity market over a year....... participation. Such strategies permit to further increase revenues and thus enhance competitiveness of wind generation compared to other forms of dispatchable generation. This paper formulates a general methodology for deriving optimal bidding strategies based on probabilistic forecasts of wind generation...

  11. Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin,Xinjiang,China(Ⅱ):vegetated

    Institute of Scientific and Technical Information of China (English)

    Zhizhong LI; Rong MA; ShengLi WU; Janis DALE; Lin GE; Mudan HE; Xiaofeng WANG; Jianhui JIN; Jinwei LIU; Wanjuan LI

    2008-01-01

    This paper examines the results of wind tunnel experiments on models of nabkha,based on those studied in the Hotan River basin.Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation.Artificial vegetation of simulated Tamarix spp.was put on top of each model.Parameters of the shape,including height,width,and diameter of vegetated semi-spherical and conical nabkha.were measured in the Hotan River basin.Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6-14 m/s)to study the influence of vegetation on airflow patterns.Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds,retards airflow over the sand mounds,reduces airflow energy,eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope.Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha.This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area.The existence of vegetation makes fine materials in wind-sand flow to possibly deposit,and promotes nabkha formation.The imitative flow patterns Of different morphological nabkhas have also been verified by on-site observation in the river basin.

  12. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  13. A new approach to the derivation of dynamic information from ionosonde measurements

    Directory of Open Access Journals (Sweden)

    L. Liu

    2003-11-01

    Full Text Available A new approach is developed to derive dynamic information near the peak of the ionospheric F-layer from ionosonde measurements. This approach avoids deducing equivalent winds from the displacement of the observed peak height from a no-wind equilibrium height, so it need not determine the no-wind equilibrium height which may limit the accuracy of the deduced winds, as did the traditional servo theory. This approach is preliminarily validated with comparisons of deduced equivalent winds with the measurements from the Fabry-Perot interferometer, the Millstone Hill incoherent scatter radar and with previous works. Examples of vertical components of equivalent winds (VEWs, over Wuhan (114.4° E, 30.6° N, 45.2° dip, China in December 2000 are derived from Wuhan DGS-256 Digisonde data. The deduced VEWs show large day-to-day variations during the winter, even in low magnetic activity conditions. The diurnal pattern of average VEWs is more complicated than that predicted by the empirical Horizontal Wind Model (HWM. Using an empirical electric field model based on the observations from Jicamarca radar and satellites, we investigate the contributions to VEWs from neutral winds and from electric fields at the F-layer peak. If the electric field model is reasonable for Wuhan during this period, the neutral winds contribute mostly to the VEWs, and the contribution from the E × B drifts is insignificant.Key words. Meteorology and atmospheric dynamics (thermospheric dynamics – Ionosphere (ionosphere-atmosphere interaction; instrument and techniques

  14. A new approach to the derivation of dynamic information from ionosonde measurements

    Directory of Open Access Journals (Sweden)

    L. Liu

    Full Text Available A new approach is developed to derive dynamic information near the peak of the ionospheric F-layer from ionosonde measurements. This approach avoids deducing equivalent winds from the displacement of the observed peak height from a no-wind equilibrium height, so it need not determine the no-wind equilibrium height which may limit the accuracy of the deduced winds, as did the traditional servo theory. This approach is preliminarily validated with comparisons of deduced equivalent winds with the measurements from the Fabry-Perot interferometer, the Millstone Hill incoherent scatter radar and with previous works. Examples of vertical components of equivalent winds (VEWs, over Wuhan (114.4° E, 30.6° N, 45.2° dip, China in December 2000 are derived from Wuhan DGS-256 Digisonde data. The deduced VEWs show large day-to-day variations during the winter, even in low magnetic activity conditions. The diurnal pattern of average VEWs is more complicated than that predicted by the empirical Horizontal Wind Model (HWM. Using an empirical electric field model based on the observations from Jicamarca radar and satellites, we investigate the contributions to VEWs from neutral winds and from electric fields at the F-layer peak. If the electric field model is reasonable for Wuhan during this period, the neutral winds contribute mostly to the VEWs, and the contribution from the E × B drifts is insignificant.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics – Ionosphere (ionosphere-atmosphere interaction; instrument and techniques

  15. Unraveling Climatic Wind and Wave Trends in the Red Sea Using Wave Spectra Partitioning

    KAUST Repository

    Langodan, Sabique

    2017-12-27

    The wind and wave climatology of the Red Sea is derived from a validated 30-year high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.

  16. Unraveling Climatic Wind and Wave Trends in the Red Sea Using Wave Spectra Partitioning

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Pomaro, Angela; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim

    2017-01-01

    The wind and wave climatology of the Red Sea is derived from a validated 30-year high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.

  17. Wind Speed Influences on Marine Aerosol Optical Depth

    Directory of Open Access Journals (Sweden)

    Colin O'Dowd

    2010-01-01

    Full Text Available The Mulcahy (Mulcahy et al., 2008 power-law parameterization, derived at the coastal Atlantic station Mace Head, between clean marine aerosol optical depth (AOD and wind speed is compared to open ocean MODIS-derived AOD versus wind speed. The reported AOD versus wind speed (U was a function of ∼U2. The open ocean MODIS-derived AOD at 550 nm and 860 nm wavelengths, while in good agreement with the general magnitude of the Mulcahy parameterization, follows a power-law with the exponent ranging from 0.72 to 2.47 for a wind speed range of 2–18 m s−1. For the four cases examined, some MODIS cases underestimated AOD while other cases overestimated AOD relative to the Mulcahy scheme. Overall, the results from MODIS support the general power-law relationship of Mulcahy, although some linear cases were also encountered in the MODIS dataset. Deviations also arise between MODIS and Mulcahy at higher wind speeds (>15 m s−1, where MODIS-derived AOD returns lower values as compared to Mulcahy. The results also support the suggestion than wind generated sea spray, under moderately high winds, can rival anthropogenic pollution plumes advecting out into marine environments with wind driven AOD contributing to AOD values approaching 0.3.

  18. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...... described by the standard winds derived from the REMO pressure data. The mean wind parameters include the directional wind distribution, directional and omni-directional mean values and Weibull fitting parameters, spectral analysis and interannual variability of the standard winds. It was also found that......, on average, the wind characteristics from REMO are in better agreement with observations than those derived from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis pressure data. The spatial correlation of REMO surface winds in Europe...

  19. Voltage Gain Derivation Based on Energy-Balanced Criterion for a Novel Hybrid-Input PV-Wind Power Conversion System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-01-01

    Full Text Available This paper applies energy-balanced criterion to a novel hybrid-input PV-wind power conversion system (HPWPCS for voltage gain derivation. With the energy-balanced concept, complicated mathematical problems related to voltage gain derivation can be readily resolved. Based on the derived results, it is proven that the proposed HPWPCS is able to process two different kinds of renewable energy resources simultaneously. Even though the HPWPCS includes seven capacitors and three magnetic components, its voltage gain still can be found by the mathematical analysis. In the theoretical derivation, only the energy status of output inductor is dealt with such that complicated derivation procedure is avoided. This analysis method can also be applied to other hybrid green-energy conversion systems. In this paper, a 200 W 50 kHz prototype of HPWPCS is built and examined to verify the mathematical results.

  20. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  1. Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds

    Science.gov (United States)

    O’connor, J. K.; Zheng, X.-T.; Sullivan, C.; Chuong, C.-M.; Wang, X.-L.; Li, A.; Wang, Y.; Zhang, X.-M.; Zhou, Z.-H.

    2017-01-01

    The midline pattern of sternal ossification characteristic of the Cretaceous enantiornithine birds is unique among the Ornithodira, the group containing birds, nonavian dinosaurs and pterosaurs. This has been suggested to indicate that Enantiornithes is not the sister group of Ornithuromorpha, the clade that includes living birds and their close relatives, which would imply rampant convergence in many nonsternal features between enantiornithines and ornithuromorphs. However, detailed comparisons reveal greater similarity between neornithine (i.e. crown group bird) and enantiornithine modes of sternal ossification than previously recognized. Furthermore, a new subadult enantiornithine specimen demonstrates that sternal ossification followed a more typically ornithodiran pattern in basal members of the clade. This new specimen, referable to the Pengornithidae, indicates that the unique ossification pattern observed in other juvenile enantiornithines is derived within Enantiornithes. A similar but clearly distinct pattern appears to have evolved in parallel in the ornithuromorph lineage. The atypical mode of sternal ossification in some derived enantiornithines should be regarded as an autapomorphic condition rather than an indication that enantiornithines are not close relatives of ornithuromorphs. Based on what is known about molecular mechanisms for morphogenesis and the possible selective advantages, the parallel shifts to midline ossification that took place in derived enantiornithines and living neognathous birds appear to have been related to the development of a large ventral keel, which is only present in ornithuromorphs and enantiornithines. Midline ossification can serve to medially reinforce the sternum at a relatively early ontogenetic stage, which would have been especially beneficial during the protracted development of the superprecocial Cretaceous enantiornithines. PMID:26079847

  2. Forecasting wind power production from a wind farm using the RAMS model

    DEFF Research Database (Denmark)

    Tiriolo, L.; Torcasio, R. C.; Montesanti, S.

    2015-01-01

    of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available......The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex...... and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution...

  3. Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km deduced from the WINDII observations on board UARS

    Directory of Open Access Journals (Sweden)

    V. Fauliot

    1997-09-01

    Full Text Available The WINDII interferometer placed on board the Upper Atmosphere Research Satellite measures temperature and wind from the O(1S green-line emission in the Earth's mesosphere and lower thermosphere. It is a remote-sensing instrument providing the horizontal wind components. In this study, the vertical winds are derived using the continuity equation. Mean wind annually averaged at equinoxes and solstices is shown. Ascendance and subsidence to the order of 1–2 cm s–1 present a seasonal occurrence at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated to the mean meridional and vertical circulations are evaluated. The line emission rate measured together with the horizontal wind shows structures in altitude and latitude correlated with the meridional and vertical wind patterns. The effect of wind advection is discussed.

  4. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  5. Wind Patterns of Coastal Tanzania: Their Variability and Trends ...

    African Journals Online (AJOL)

    Generally, the wind speeds were significantly correlated with the El-Niño Southern Oscillation and the Pacific Decadal Oscillation, while at Mtwara the winds were also correlated with the Indian Ocean Dipole. These correlations were higher during the SE Monsoon than during the NE Monsoon. Trends in the monthly mean ...

  6. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Akpinar, S.

    2005-01-01

    This paper presents seasonal variations of the wind characteristics and wind turbine characteristics in the regions around Elazig, namely Maden, Agin and Keban. Mean wind speed data in measured hourly time series format is statistically analyzed for the six year period 1998-2003. The probability density distributions are derived from the time series data and their distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions on a seasonal basis. The wind energy characteristics of all the regions is studied based on the Weibull and Rayleigh distributions. Energy calculations and capacity factors for the wind turbine characteristics were determined for wind machines of different sizes between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind characteristics and wind turbine characteristics

  7. Controls on wind abrasion patterns through a fractured bedrock landscape

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  8. Prediction models for wind speed at turbine locations in a wind farm

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Soltani, Mohsen

    2011-01-01

    In wind farms, individual turbines disturb the wind field by generating wakes that influence other turbines in the farm. From a control point of view, there is an interest in dynamic optimization of the balance between fatigue and production, and an understanding of the relationship between turbines...... on standard turbine measurements such as rotor speed and power produced, an effective wind speed, which represents the wind field averaged over the rotor disc, is derived. The effective wind speed estimator is based on a continuous–discrete extended Kalman filter that takes advantage of nonlinear time varying...... on the result related to effective wind speed, it is possible to predict wind speeds at neighboring turbines, with a separation of over 700 m, up to 1 min ahead reducing the error by 30% compared with a persistence method. The methodological results are demonstrated on data from an off-shore wind farm...

  9. Airfoil characteristics for wind turbines

    OpenAIRE

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.; Aagaard Madsen, Helge; Shen, W.Z.; Sørensen, Jens Nørkær

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scal...

  10. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading

    Energy Technology Data Exchange (ETDEWEB)

    Murtagh, P J; Basu, B; Broderick, B M [Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin (Ireland)

    2005-07-15

    This paper proposes an approach to investigate the along-wind forced vibration response of a wind turbine tower and rotating blades assembly subjected to rotationally sampled stationary wind loading. The wind turbine assembly consists of three rotating rotor blades connected to the top of a flexible annular tower, constituting a multi-body dynamic entity. The tower and rotating blades are each modelled as discretized multi-degree-of-freedom (MDOF) entities, allowing the free vibration characteristics of each to be obtained using a discrete parameter approach. The free vibration properties of the tower include the effect of a rigid mass at the top, representing the nacelle, and those of the blade include the effects of centrifugal stiffening due to rotation and blade gravity loadings. The blades are excited by drag force time-histories derived from discrete Fourier transform (DFT) representations of rotationally sampled wind turbulence spectra. Blade response time-histories are obtained using the mode acceleration method, which allows for the quantification of base shear forces due to flapping for the three blades to be obtained. This resultant base shear is imparted into the top of the tower. Wind drag loading on the tower is also considered, with a series of spatially correlated nodal force time-histories being derived using DFTs of wind force spectra. The tower/nacelle is then coupled with the rotating blades by combining their equations of motion and solving for the displacement at the top of the tower under compatibility conditions in the frequency domain. An inverse Fourier transform of the frequency domain response yields the response time-history of the coupled system. The response of an equivalent system that does not consider the blade/tower interaction is also investigated, and the results are compared. (Author)

  11. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  12. The Use of a Code-generating System for the Derivation of the Equations for Wind Turbine Dynamics

    Science.gov (United States)

    Ganander, Hans

    2003-10-01

    For many reasons the size of wind turbines on the rapidly growing wind energy market is increasing. Relations between aeroelastic properties of these new large turbines change. Modifications of turbine designs and control concepts are also influenced by growing size. All these trends require development of computer codes for design and certification. Moreover, there is a strong desire for design optimization procedures, which require fast codes. General codes, e.g. finite element codes, normally allow such modifications and improvements of existing wind turbine models. This is done relatively easy. However, the calculation times of such codes are unfavourably long, certainly for optimization use. The use of an automatic code generating system is an alternative for relevance of the two key issues, the code and the design optimization. This technique can be used for rapid generation of codes of particular wind turbine simulation models. These ideas have been followed in the development of new versions of the wind turbine simulation code VIDYN. The equations of the simulation model were derived according to the Lagrange equation and using Mathematica®, which was directed to output the results in Fortran code format. In this way the simulation code is automatically adapted to an actual turbine model, in terms of subroutines containing the equations of motion, definitions of parameters and degrees of freedom. Since the start in 1997, these methods, constituting a systematic way of working, have been used to develop specific efficient calculation codes. The experience with this technique has been very encouraging, inspiring the continued development of new versions of the simulation code as the need has arisen, and the interest for design optimization is growing.

  13. Solar-wind interactions with the Moon: role of oxygen ions

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1979-01-01

    The solar-wind interacts directly with the lunar surface due to tenuous atmosphere and magnetic field. The interaction results in an almost complete absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream. The solar-wind oxygen ionic species induce and undergo a complex set of reactions with the elements of the lunar minerals and the solar-wind derived trapped gases. In this paper, the long-term concentration and the role of oxygen derived from the solar-wind is discussed. (Auth.)

  14. On wake modeling, wind-farm gradients and AEP predictions at the Anholt wind farm

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hansen, Kurt Schaldemose; Ott, Søren

    2017-01-01

    of the mesoscale simulations and supervisory control and data acquisition (SCADA), we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly....... When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend...... to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate...

  15. Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km deduced from the WINDII observations on board UARS

    Directory of Open Access Journals (Sweden)

    V. Fauliot

    Full Text Available The WINDII interferometer placed on board the Upper Atmosphere Research Satellite measures temperature and wind from the O(1S green-line emission in the Earth's mesosphere and lower thermosphere. It is a remote-sensing instrument providing the horizontal wind components. In this study, the vertical winds are derived using the continuity equation. Mean wind annually averaged at equinoxes and solstices is shown. Ascendance and subsidence to the order of 1–2 cm s–1 present a seasonal occurrence at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated to the mean meridional and vertical circulations are evaluated. The line emission rate measured together with the horizontal wind shows structures in altitude and latitude correlated with the meridional and vertical wind patterns. The effect of wind advection is discussed.

  16. Patterns of migrating soaring migrants indicate attraction to marine wind farms.

    Science.gov (United States)

    Skov, Henrik; Desholm, Mark; Heinänen, Stefan; Kahlert, Johnny A; Laubek, Bjarke; Jensen, Niels Einar; Žydelis, Ramūnas; Jensen, Bo Præstegaard

    2016-12-01

    Monitoring of bird migration at marine wind farms has a short history, and unsurprisingly most studies have focused on the potential for collisions. Risk for population impacts may exist to soaring migrants such as raptors with K-strategic life-history characteristics. Soaring migrants display strong dependence on thermals and updrafts and an affinity to land areas and islands during their migration, a behaviour that creates corridors where raptors move across narrow straits and sounds and are attracted to islands. Several migration corridors for soaring birds overlap with the development regions for marine wind farms in NW Europe. However, no empirical data have yet been available on avoidance or attraction rates and behavioural reactions of soaring migrants to marine wind farms. Based on a post-construction monitoring study, we show that all raptor species displayed a significant attraction behaviour towards a wind farm. The modified migratory behaviour was also significantly different from the behaviour at nearby reference sites. The attraction was inversely related to distance to the wind farm and was primarily recorded during periods of adverse wind conditions. The attraction behaviour suggests that migrating raptor species are far more at risk of colliding with wind turbines at sea than hitherto assessed. © 2016 The Author(s).

  17. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  18. Wind energy in China. Current scenario and future perspectives

    International Nuclear Information System (INIS)

    Changliang, Xia; Zhanfeng, Song

    2009-01-01

    Wind power in China registered a record level of expansion recently, and has doubled its total capacity every year since 2004. Many experts believe that China will be central to the future of the global wind energy market. Consequently, the growth pattern of wind power in China may be crucial to the further development of the global wind market. This paper firstly presented an overview of wind energy potential in China and reviewed the national wind power development course in detail. Based on the installed wind capacity in China over the past 18 years and the technical potential of wind energy resources, the growth pattern was modeled in this study for the purpose of prospect analysis, in order to obtain projections concerning the development potential. The future perspectives of wind energy development in China are predicted and analyzed. This study provides a comprehensive overview of the current status of wind power in China and some insights into the prospects of China's wind power market, which is emerging as a new superpower in the global wind industry. (author)

  19. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  20. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  1. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  2. Contribution to the understanding of how principal component analysis-derived dietary patterns emerge from habitual data on food consumption.

    Science.gov (United States)

    Schwedhelm, Carolina; Iqbal, Khalid; Knüppel, Sven; Schwingshackl, Lukas; Boeing, Heiner

    2018-02-01

    Principal component analysis (PCA) is a widely used exploratory method in epidemiology to derive dietary patterns from habitual diet. Such dietary patterns seem to originate from intakes on multiple days and eating occasions. Therefore, analyzing food intake of study populations with different levels of food consumption can provide additional insights as to how habitual dietary patterns are formed. We analyzed the food intake data of German adults in terms of the relations among food groups from three 24-h dietary recalls (24hDRs) on the habitual, single-day, and main-meal levels, and investigated the contribution of each level to the formation of PCA-derived habitual dietary patterns. Three 24hDRs were collected in 2010-2012 from 816 adults for an European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam subcohort study. We identified PCA-derived habitual dietary patterns and compared cross-sectional food consumption data in terms of correlation (Spearman), consistency (intraclass correlation coefficient), and frequency of consumption across all days and main meals. Contribution to the formation of the dietary patterns was obtained through Spearman correlation of the dietary pattern scores. Among the meals, breakfast appeared to be the most consistent eating occasion within individuals. Dinner showed the strongest correlations with "Prudent" (Spearman correlation = 0.60), "Western" (Spearman correlation = 0.59), and "Traditional" (Spearman correlation = 0.60) dietary patterns identified on the habitual level, and lunch showed the strongest correlations with the "Cereals and legumes" (Spearman correlation = 0.60) habitual dietary pattern. Higher meal consistency was related to lower contributions to the formation of PCA-derived habitual dietary patterns. Absolute amounts of food consumption did not strongly conform to the habitual dietary patterns by meals, suggesting that these patterns are formed by complex combinations of variable food

  3. Wind energy resources assessment for Yanbo, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur

    2004-01-01

    The paper presents long term wind data analysis in terms of annual, seasonal and diurnal variations at Yanbo, which is located on the west coast of Saudi Arabia. The wind speed and wind direction hourly data for a period of 14 years between 1970 and 1983 is used in the analysis. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 5.0 m/s and more were observed during the summer months of the year and noon hours (09:00 to 16:00 h) of the day. The wind duration availability is discussed as the percent of hours during which the wind remained in certain wind speed intervals or bins. Wind energy calculations were performed using wind machines of sizes 150, 250, 600, 800, 1000, 1300, 1500, 2300 and 2500 kW rated power. Wind speed is found to remain above 3.5 m/s for 69% of the time during the year at 40, 50, 60, and 80 m above ground level. The energy production analysis showed higher production from wind machines of smaller sizes than the bigger ones for a wind farm of 30 MW installed capacity. Similarly, higher capacity factors were obtained for smaller wind machines compared to larger ones

  4. Implementation of Sample Graphic Patterns on Derived Scientific/Technologic Documentary Figures

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-bao; WANG Xiao-yu; WANG Lei

    2013-01-01

    The presenting work deals with implementation of sample graphic patterns derived from published scientific/technologic documentation figures on numeric simulation of multiphase flow and FEM analysis of thin walled mechanical structures. First, geometric plane patterns in rectangular/circular form were demonstrated in contrast to gradual change style in color and graphic configuration. Next, selected artistic/graphic sample patterns were implemented in logo conceptual design and visual innovation storming. The way in editing the above original figures is 2D symmetry, rectangular array geometrically, and converting them in inverse color in software like PS. The objective of this work is to cultivate, explore and discipline trainees’ visual ability in artistic/aesthetic appreciation, graphic communication and industrial design and application, thus laying ties closely among comprehensive university students from different majors on science, engineering, arts and humanity.

  5. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  6. Assessment of wind speed and wind power through three stations in Egypt, including air density variation and analysis results with rough set theory

    International Nuclear Information System (INIS)

    Essa, K.S.M.; Embaby, M.; Marrouf, A.A.; Koza, A.M.; Abd El-Monsef, M.E.

    2007-01-01

    It is well known that the wind energy potential is proportional to both air density and the third power of the wind speed average over a suitable time period. The wind speed and air density have random variables depending on both time and location. The main objective of this work is to derive the most general wind energy potential of the wind formulation putting into consideration the time variable in both wind speed and air density. The correction factor is derived explicitly in terms of the cross-correlation and the coefficients of variation.The application is performed for environmental and wind speed measurements at the Cairo Airport, Kosseir and Hurguada, Egypt. Comparisons are made between Weibull, Rayleigh, and actual data distributions of wind speed and wind power of one year 2005. A Weibull distribution is the best match to the actual probability distribution of wind speed data for most stations. The maximum wind energy potential was 373 W/m 2 in June at Hurguada (Red Sea coast) where the annual mean value was 207 W/m 2 . By Using Rough Set Theory, We Find That the Wind Power Depends on the Wind Speed with greater than air density

  7. Dietary patterns derived with multiple methods from food diaries and breast cancer risk in the UK Dietary Cohort Consortium

    Science.gov (United States)

    Pot, Gerda K; Stephen, Alison M; Dahm, Christina C; Key, Timothy J; Cairns, Benjamin J; Burley, Victoria J; Cade, Janet E; Greenwood, Darren C; Keogh, Ruth H; Bhaniani, Amit; McTaggart, Alison; Lentjes, Marleen AH; Mishra, Gita; Brunner, Eric J; Khaw, Kay Tee

    2015-01-01

    Background/ Objectives In spite of several studies relating dietary patterns to breast cancer risk, evidence so far remains inconsistent. This study aimed to investigate associations of dietary patterns derived with three different methods with breast cancer risk. Subjects/ Methods The Mediterranean Diet Score (MDS), principal components analyses (PCA) and reduced rank regression (RRR) were used to derive dietary patterns in a case-control study of 610 breast cancer cases and 1891 matched controls within 4 UK cohort studies. Dietary intakes were collected prospectively using 4-to 7-day food diaries and resulting food consumption data were grouped into 42 food groups. Conditional logistic regression models were used to estimate odds ratios (ORs) for associations between pattern scores and breast cancer risk adjusting for relevant covariates. A separate model was fitted for post-menopausal women only. Results The MDS was not associated with breast cancer risk (OR comparing 1st tertile with 3rd 1.20 (95% CI 0.92; 1.56)), nor the first PCA-derived dietary pattern, explaining 2.7% of variation of diet and characterized by cheese, crisps and savoury snacks, legumes, nuts and seeds (OR 1.18 (95% CI 0.91; 1.53)). The first RRR-derived pattern, a ‘high-alcohol’ pattern, was associated with a higher risk of breast cancer (OR 1.27; 95% CI 1.00; 1.62), which was most pronounced in post-menopausal women (OR 1.46 (95% CI 1.08; 1.98). Conclusions A ‘high-alcohol’ dietary pattern derived with RRR was associated with an increased breast cancer risk; no evidence of associations of other dietary patterns with breast cancer risk was observed in this study. PMID:25052230

  8. Spatial dependence in wind and optimal wind power allocation: A copula-based analysis

    International Nuclear Information System (INIS)

    Grothe, Oliver; Schnieders, Julius

    2011-01-01

    The investment decision on the placement of wind turbines is, neglecting legal formalities, mainly driven by the aim to maximize the expected annual energy production of single turbines. The result is a concentration of wind farms at locations with high average wind speed. While this strategy may be optimal for single investors maximizing their own return on investment, the resulting overall allocation of wind turbines may be unfavorable for energy suppliers and the economy because of large fluctuations in the overall wind power output. This paper investigates to what extent optimal allocation of wind farms in Germany can reduce these fluctuations. We analyze stochastic dependencies of wind speed for a large data set of German on- and offshore weather stations and find that these dependencies turn out to be highly nonlinear but constant over time. Using copula theory we determine the value at risk of energy production for given allocation sets of wind farms and derive optimal allocation plans. We find that the optimized allocation of wind farms may substantially stabilize the overall wind energy supply on daily as well as hourly frequency. - Highlights: → Spatial modeling of wind forces in Germany. → A novel way to assess nonlinear dependencies of wind forces by copulas. → Wind turbine allocation by maximizing lower quantiles of energy production. → Optimal results show major increase in reliable part of wind energy.

  9. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  10. A modified model of axial flux permanent magnet generator for wind turbine applications

    International Nuclear Information System (INIS)

    Ashraf, M.M.

    2014-01-01

    The Axial Flux Permanent Magnet Generators (AFPMGs) are gaining immense attention in the modern era. The single stage AFPMG topology consists of one stator disc which is held stationery between two revolving rotor discs attached with a common shaft. The number of poles of AFPMG depends on the winding pattern in which the coils are connected in series within stator disc. Connecting the coils in begin-to-end winding pattern, doubles the number of poles which also increases the active mass of AFPMG. The AFPMG considering begin-to-end winding pattern, can be operated at half shaft speed. This AFPMG is also having greater air gap flux density which, ultimately, improves the power density parameter of AFPMG. In this paper, a modified AFPMG has been proposed which is designed by considering begin-to-end winding pattern. A 380W single phase, single stage prototype model has been developed and tested. The test results show that power density of designed AFPMG with begin-to-end winding pattern has been improved by 32% as compared to AFPMG with begin-to-begin winding pattern. The proposed low speed and high power density AFPMG model can be actively deployed for wind turbine applications. (author)

  11. Climatological attribution of wind power ramp events in East Japan and their probabilistic forecast based on multi-model ensembles downscaled by analog ensemble using self-organizing maps

    Science.gov (United States)

    Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji

    2016-04-01

    Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.

  12. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    Directory of Open Access Journals (Sweden)

    M. Kelly

    2017-04-01

    Full Text Available In this work we relate uncertainty in background roughness length (z0 to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty arising from differing wind-observation and turbine-prediction sites; this is done for the case of roughness bias as well as for the general case. For estimation of uncertainty in annual energy production (AEP, we also develop a generalized analytical turbine power curve, from which we derive a relation between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.

  13. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects.

    Science.gov (United States)

    Corscadden, Kenneth W; Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement.

  14. Modelling the Stem Curve of a Palm in a Strong Wind

    DEFF Research Database (Denmark)

    Philipsen, Claus; Markvorsen, Steen; Kliem, Wolfhard

    1996-01-01

    Nonlinear differential equations governing the stem curve of a wind-loaded palm are derived and solved numerically.......Nonlinear differential equations governing the stem curve of a wind-loaded palm are derived and solved numerically....

  15. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    Science.gov (United States)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  16. Filament winding technique, experiment and simulation analysis on tubular structure

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  17. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Ejsing Jørgensen, Hans

    2017-01-01

    In this work we relate uncertainty in background roughness length (z0) to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry...... between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.......-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty...

  18. Pre-conceptual-schema-based patterns for deriving key performance indicators from strategic objectives

    Directory of Open Access Journals (Sweden)

    Carlos Mario Zapata Jaramillo

    2017-05-01

    Full Text Available Performance measurement is crucial for achieving business success. Moreover, such success is also related to the fulfillment of the organizational strategic objectives. Hence, an adequate determination of relevant performance indicators—or key performance indicators (KPIs—and their relationships to organizational objectives is needed. Even though several approaches for treating KPIs and objective-KPI relationships have been proposed, they exhibit some drawbacks associated with the lack of reusability and traceability. We attempt to fill this gap by proposing a set of patterns based on pre-conceptual schemas for supporting the systematic derivation of KPIs and their relationships to organizational objectives. In this way, the proposed patterns guarantee a reusable and traceable derivation process of a set of candidate KPIs from organizational strategic objectives. Lastly, we provide a lab study in order to illustrate the usefulness of this proposal.

  19. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  20. Improved diagnostic model for estimating wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  1. Computer modelling of the UK wind energy resource: UK wind speed data package and user manual

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Ravenscroft, F

    1993-12-31

    A software package has been developed for IBM-PC or true compatibles. It is designed to provide easy access to the results of a programme of work to estimate the UK wind energy resource. Mean wind speed maps and quantitative resource estimates were obtained using the NOABL mesoscale (1 km resolution) numerical model for the prediction of wind flow over complex terrain. NOABL was used in conjunction with digitised terrain data and wind data from surface meteorological stations for a ten year period (1975-1984) to provide digital UK maps of mean wind speed at 10m, 25m and 45m above ground level. Also included in the derivation of these maps was the use of the Engineering Science Data Unit (ESDU) method to model the effect on wind speed of the abrupt change in surface roughness that occurs at the coast. With the wind speed software package, the user is able to obtain a display of the modelled wind speed at 10m, 25m and 45m above ground level for any location in the UK. The required co-ordinates are simply supplied by the user, and the package displays the selected wind speed. This user manual summarises the methodology used in the generation of these UK maps and shows computer generated plots of the 25m wind speeds in 200 x 200 km regions covering the whole UK. The uncertainties inherent in the derivation of these maps are also described, and notes given on their practical usage. The present study indicated that 23% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. (18 figures, 3 tables, 6 references). (author)

  2. Wind deployment in the United States: states, resources, policy, and discourse.

    Science.gov (United States)

    Wilson, Elizabeth J; Stephens, Jennie C

    2009-12-15

    A transformation in the way the United States produces and uses energy is needed to achieve greenhouse gas reduction targets for climate change mitigation. Wind power is an important low-carbon technology and the most rapidly growing renewable energy technology in the U.S. Despite recent advances in wind deployment, significant state-by-state variation in wind power distribution cannot be explained solely by wind resource patterns nor by state policy. Other factors embedded within the state-level socio-political context also contribute to wind deployment patterns. We explore this socio-political context in four U.S. states by integrating multiple research methods. Through comparative state-level analysis of the energy system, energy policy, and public discourse as represented in the media, we examine variation in the context for wind deployment in Massachusetts, Minnesota, Montana, and Texas. Our results demonstrate that these states have different patterns of wind deployment, are engaged in different debates about wind power, and appear to frame the risks and benefits of wind power in different ways. This comparative assessment highlights the complex variation of the state-level socio-political context and contributes depth to our understanding of energy technology deployment processes, decision-making, and outcomes.

  3. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    Science.gov (United States)

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  4. Limitations of wind extraction from 4D-Var assimilation of ozone

    Directory of Open Access Journals (Sweden)

    D. R. Allen

    2013-03-01

    Full Text Available Time-dependent variational data assimilation allows the possibility of extracting wind information from observations of ozone or other trace gases. Since trace gas observations are not available at sufficient resolution for deriving feature-track winds, they must be combined with model background information to produce an analysis. If done with time-dependent variational assimilation, wind information may be extracted via the adjoint of the linearized tracer continuity equation. This paper presents idealized experiments that illustrate the mechanics of tracer–wind extraction and demonstrate some of the limitations of this procedure. We first examine tracer–wind extraction using a simple one-dimensional advection equation. The analytic solution for a single trace gas observation is discussed along with numerical solutions for multiple observations. The limitations of tracer–wind extraction are then explored using highly idealized ozone experiments performed with a development version of the Navy Global Environmental Model (NAVGEM in which globally distributed hourly stratospheric ozone profiles are assimilated in a single 6 h update cycle in January 2009. Starting with perfect background ozone conditions, but imperfect dynamical conditions, ozone errors develop over the 6 h background window. Wind increments are introduced in the analysis in order to reduce the differences between background ozone and ozone observations. For "perfect" observations (unbiased and no random error, this results in root-mean-square (RMS vector wind error reductions of up to ~4 m s−1 in the winter hemisphere and tropics. Wind extraction is more difficult in the summer hemisphere due to weak ozone gradients and smaller background wind errors. The limitations of wind extraction are also explored for observations with imposed random errors and for limited sampling patterns. As expected, the amount of wind information extracted degrades as observation errors or

  5. Small wind rising? Is the market for building-mounted wind power about to pick up?

    International Nuclear Information System (INIS)

    Slowe, J.

    2006-01-01

    The potential market for small roof-mounted wind turbines is discussed. Should the technology prove popular, the market would be enormous. Delta Energy and Environment has prepared a study called, Roof Top Wind Turbines: A Product for Mass Markets? At present, the future for roof-mounted wind turbines is unclear: predictions range from little or no market at all to mass installations with a payback period of as little as five years. Several small roof-top turbines are described. A critical factor influencing the efficiency of a roof-mounted wind turbine is the air flow pattern over the roof which may in turn be affected by neighbouring buildings. (author)

  6. Ornithological studies of the Cold Northcott Wind Farm in the spring/summer 1994

    International Nuclear Information System (INIS)

    1996-01-01

    Results of ornithological studies carried out at Cold Northcott Wind Farm in North Cornwall during 1994 are presented. Flight patterns of species using the area were studied as were breeding patterns and bird mortality due to collisions with wind turbines. No significant effect on the spring and summer bird communities was observed. Long-term influences on the birds seem, rather, to stem from large scale population changes and local agricultural practice. Wind strength was shown to affect flight patterns in some species, but turbine operation seems unrelated. Death by collision with wind turbines is shown to be very rare. (UK)

  7. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotorwith LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall...... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...

  8. Wind power deployment outcomes: How can we account for the differences?

    NARCIS (Netherlands)

    Toke, D.; Breukers, S.; Wolsink, M.

    2008-01-01

    This paper aims to understand different outcomes of implementation of wind power deployment programmes. Geographical variables such as quantity of wind resources are in themselves insufficient to explain patterns of implementation of wind power. To enhance the review of the factors affecting wind

  9. Extreme winds in the Western North Pacific

    DEFF Research Database (Denmark)

    Ott, Søren

    2006-01-01

    satellite images is discussed with emphasis on the empirical basis, which, unfortunately, is not very strong. This is stressed by the fact that Japanese and US agencies arrive at markedly different estimates. Onthe other hand, best track data records cover a long period of time and if not perfect......A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methodsused to estimate surface wind speeds from...... they are at least coherent over time in their imperfections. Applying the the Holland model to the best track data, wind profiles can be assigned along the tracks. Fromthis annual wind speed maxima at any particular point in the region can be derived. The annual maxima, in turn, are fitted to a Gumbel distribution...

  10. Tornado Damage Assessment: Reconstructing the Wind Through Debris Tracking and Treefall Pattern Analysis

    Science.gov (United States)

    Godfrey, C. M.; Peterson, C. J.; Lombardo, F.

    2017-12-01

    Efforts to enhance the resilience of communities to tornadoes requires an understanding of the interconnected nature of debris and damage propagation in both the built and natural environment. A first step toward characterizing the interconnectedness of these elements within a given community involves detailed post-event surveys of tornado damage. Such damage surveys immediately followed the 22 January 2017 EF3 tornadoes in the southern Georgia towns of Nashville and Albany. After assigning EF-scale ratings to impacted structures, the authors geotagged hundreds of pieces of debris scattered around selected residential structures and outbuildings in each neighborhood and paired each piece of debris with its source structure. Detailed information on trees in the vicinity of the structures supplements the debris data, including the species, dimensions, location, fall direction, and level of damage. High-resolution satellite imagery helps to identify the location and fall direction of hundreds of additional forest trees. These debris and treefall patterns allow an estimation of the near-surface wind field using a Rankine vortex model coupled with both a tree stability model and an infrastructure fragility model that simulates debris flight. Comparisons between the modeled damage and the actual treefall and debris field show remarkable similarities for a selected set of vortex parameters, indicating the viability of this approach for estimating enhanced Fujita scale levels, determining the near-surface wind field of a tornado during its passage through a neighborhood, and identifying how debris may contribute to the overall risk from tornadoes.

  11. Bluff body flow and vortex—its application to wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ohya, Yuji, E-mail: ohya@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, Kasuga (Japan)

    2014-12-01

    Some interesting phenomena of vortex flows we have found in past experimental research are described. For a given flow configuration, multiple flow patterns can exist and a sudden change from one flow pattern to another can occur. We observed the alternate switching of the flow patterns with irregular periods around a bluff body. The change of vortex flow pattern around a bluff body with geometrical parameters or stratification is not always continuous but often shows a sudden change in the whole flow pattern. Based on our research on vortex flows, an innovative application of the vortex flow to a shrouded wind turbine is made in which the power output of a wind turbine is remarkably enhanced. Unlike the majority of conventional aerodynamic machinery, which tends to minimize vortex shedding, the vortex formation of our ‘brimmed’ shroud plays an important role in capturing and concentrating wind energy. Furthermore, aerodynamic noise is reduced in this design. The blade tip vortex is weakened by a counter-rotating vortex generated along the inner side of the shroud as they travel downstream, making the shrouded wind turbine much quieter than conventional turbines. (paper)

  12. Bluff body flow and vortex—its application to wind turbines

    International Nuclear Information System (INIS)

    Ohya, Yuji

    2014-01-01

    Some interesting phenomena of vortex flows we have found in past experimental research are described. For a given flow configuration, multiple flow patterns can exist and a sudden change from one flow pattern to another can occur. We observed the alternate switching of the flow patterns with irregular periods around a bluff body. The change of vortex flow pattern around a bluff body with geometrical parameters or stratification is not always continuous but often shows a sudden change in the whole flow pattern. Based on our research on vortex flows, an innovative application of the vortex flow to a shrouded wind turbine is made in which the power output of a wind turbine is remarkably enhanced. Unlike the majority of conventional aerodynamic machinery, which tends to minimize vortex shedding, the vortex formation of our ‘brimmed’ shroud plays an important role in capturing and concentrating wind energy. Furthermore, aerodynamic noise is reduced in this design. The blade tip vortex is weakened by a counter-rotating vortex generated along the inner side of the shroud as they travel downstream, making the shrouded wind turbine much quieter than conventional turbines. (paper)

  13. Preliminary study of the offshore wind and temperature profiles at the North of the Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David; Ricalde-Cab, Lifter

    2011-01-01

    Highlights: → This is the first study that reports the properties of the vertical wind resources for the offshore conditions of the North coast of the Yucatan Peninsula. → A significant and detailed analysis of the thermal patterns has revealed a complex structure of the atmospheric boundary layer close to the shore. → The structure of the diurnal wind patterns was assessed to produce an important reference for the wind resource availability in the study region. → It was identified that the sea breeze blows in directions almost parallel to the shoreline of the North of the Yucatan Peninsula during the majority of the 24 h cycle. → The analysis of the offshore data revealed a persistent non-uniform surface boundary layer developed as result of the advection of a warn air over a cold sea. - Abstract: The stability conditions in the atmospheric boundary layer, the intensity of the wind speeds and consequently the energy potential available in offshore conditions are highly influenced by the distance from the coastline and the differences between the air and sea temperatures. This paper presents a preliminary research undertook to study the offshore wind and temperature vertical profiles at the North-West of the Yucatan Peninsula coast. Ten minute averages were recorded over approximately 2 years from sensors installed at two different heights on a communication tower located at 6.65 km from the coastline. The results have shown that the offshore wind is thermally driven by differential heating of land and sea producing breeze patterns which veer to blow parallel to the coast under the action of the Coriolis force. To investigate further, a dataset of hourly sea surface temperatures derived from GEOS Satellite thermal maps was combined with the onsite measured data to study its effect on the vertical temperature profile. The results suggested largely unstable conditions and the potentially development of a shallow Stable Internal Boundary Layer which occurs

  14. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  15. Performance of the CORDEX regional climate models in simulating offshore wind and wind potential

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-03-01

    This study is oriented towards quantification of the skill addition by regional climate models (RCMs) in the parent general circulation models (GCMs) while simulating wind speed and wind potential with particular reference to the Indian offshore region. To arrive at a suitable reference dataset, the performance of wind outputs from three different reanalysis datasets is evaluated. The comparison across the RCMs and their corresponding parent GCMs is done on the basis of annual/seasonal wind statistics, intermodel bias, wind climatology, and classes of wind potential. It was observed that while the RCMs could simulate spatial variability of winds, well for certain subregions, they generally failed to replicate the overall spatial pattern, especially in monsoon and winter. Various causes of biases in RCMs were determined by assessing corresponding maps of wind vectors, surface temperature, and sea-level pressure. The results highlight the necessity to carefully assess the RCM-yielded winds before using them for sensitive applications such as coastal vulnerability and hazard assessment. A supplementary outcome of this study is in form of wind potential atlas, based on spatial distribution of wind classes. This could be beneficial in suitably identifying viable subregions for developing offshore wind farms by intercomparing both the RCM and GCM outcomes. It is encouraging that most of the RCMs and GCMs indicate that around 70% of the Indian offshore locations in monsoon would experience mean wind potential greater than 200 W/m2.

  16. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  17. Analysis of Anholt offshore wind farm SCADA measurements

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Volker, Patrick; Pena Diaz, Alfredo

    SCADA measurements from the Danish Anholt offshore wind farm (ANH) for a period of 2½ years have been qualified. ANH covers 12 km × 22 km and is located between Djursland and the island Anholt in Kattegat, Denmark. This qualification encompasses identification of curtailment and idling periods......, start/stop events and a power curve control for each wind turbine in the wind farm. Data also include wind speed measurements from a nearby WindCube lidar and simulations from the WRF model for the same period as the SCADA. An equivalent wind speed (wsi) is derived from the combined power and pitch...

  18. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  19. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect

    Directory of Open Access Journals (Sweden)

    Alvaro Semedo

    2018-03-01

    Full Text Available A climatology of wind sea and swell waves along the Canary eastern boundary current area, from west Iberia to Mauritania, is presented. The study is based on the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis ERA-Interim. The wind regime along the Canary Current, along west Iberia and north-west Africa, varies significantly from winter to summer. High summer wind speeds generate high wind sea waves, particularly along the coasts of Morocco and Western Sahara. Lower winter wind speeds, along with stronger extratropical storms crossing the North Atlantic sub-basin up north lead to a predominance of swell waves in the area during from December to February. In summer, the coast parallel wind interacts with the coastal headlands, increasing the wind speed and the locally generated waves. The spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering.

  20. Spatial Distribution of Estimated Wind-Power Royalties in West Texas

    Directory of Open Access Journals (Sweden)

    Christian Brannstrom

    2015-12-01

    Full Text Available Wind-power development in the U.S. occurs primarily on private land, producing royalties for landowners through private contracts with wind-farm operators. Texas, the U.S. leader in wind-power production with well-documented support for wind power, has virtually all of its ~12 GW of wind capacity sited on private lands. Determining the spatial distribution of royalty payments from wind energy is a crucial first step to understanding how renewable power may alter land-based livelihoods of some landowners, and, as a result, possibly encourage land-use changes. We located ~1700 wind turbines (~2.7 GW on 241 landholdings in Nolan and Taylor counties, Texas, a major wind-development region. We estimated total royalties to be ~$11.5 million per year, with mean annual royalty received per landowner per year of $47,879 but with significant differences among quintiles and between two sub-regions. Unequal distribution of royalties results from land-tenure patterns established before wind-power development because of a “property advantage,” defined as the pre-existing land-tenure patterns that benefit the fraction of rural landowners who receive wind turbines. A “royalty paradox” describes the observation that royalties flow to a small fraction of landowners even though support for wind power exceeds 70 percent.

  1. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand......, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...

  2. A wind proxy based on migrating dunes at the Baltic coast: statistical analysis of the link between wind conditions and sand movement

    Science.gov (United States)

    Bierstedt, Svenja E.; Hünicke, Birgit; Zorita, Eduardo; Ludwig, Juliane

    2017-07-01

    We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2017). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. The dunes present layers with different thicknesses that can be assigned to absolute dates at interannual timescales and put in relation to seasonal wind conditions. To statistically analyse this record and calibrate it as a wind proxy, we used a gridded regional meteorological reanalysis data set (coastDat2) covering recent decades. The identified link between the dune annual layers and wind conditions was additionally supported by the co-variability between dune layers and observed sea level variations in the southern Baltic Sea. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the frequency of days with specific wind conditions in a given season and dune migration velocities derived for that season. To some extent, the dune records can be seen as analogous to tree-ring width records, and hence we use a proxy validation method usually applied in dendrochronology, cross-validation with the leave-one-out method, when the observational record is short. The revealed correlations between the wind record from the reanalysis and the wind record derived from the dune structure is in the range between 0.28 and 0.63, yielding similar statistical validation skill as dendroclimatological records.

  3. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  4. Derivation of inner magnetospheric electric field (UNH-IMEF model using Cluster data set

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2008-09-01

    Full Text Available We derive an inner magnetospheric electric field (UNH-IMEF model at L=2–10 using primarily Cluster electric field data for more than 5 years between February 2001 and October 2006. This electric field data set is divided into several ranges of the interplanetary electric field (IEF values measured by ACE. As ring current simulations which require electric field as an input parameter are often performed at L=2–6.6, we have included statistical results from ground radars and low altitude satellites inside the perigee of Cluster in our data set (L~4. Electric potential patterns are derived from the average electric fields by solving an inverse problem. The electric potential pattern for small IEF values is probably affected by the ionospheric dynamo. The magnitudes of the electric field increase around the evening local time as IEF increases, presumably due to the sub-auroral polarization stream (SAPS. Another region with enhanced electric fields during large IEF periods is located around 9 MLT at L>8, which is possibly related to solar wind-magnetosphere coupling. Our potential patterns are consistent with those derived from self-consistent simulations. As the potential patterns can be interpolated/extrapolated to any discrete IEF value within measured ranges, we thus derive an empirical electric potential model. The performance of the model is evaluated by comparing the electric field derived from the model with original one measured by Cluster and mapped to the equator. The model is open to the public through our website.

  5. Derivation of inner magnetospheric electric field (UNH-IMEF model using Cluster data set

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2008-09-01

    Full Text Available We derive an inner magnetospheric electric field (UNH-IMEF model at L=2–10 using primarily Cluster electric field data for more than 5 years between February 2001 and October 2006. This electric field data set is divided into several ranges of the interplanetary electric field (IEF values measured by ACE. As ring current simulations which require electric field as an input parameter are often performed at L=2–6.6, we have included statistical results from ground radars and low altitude satellites inside the perigee of Cluster in our data set (L~4. Electric potential patterns are derived from the average electric fields by solving an inverse problem. The electric potential pattern for small IEF values is probably affected by the ionospheric dynamo. The magnitudes of the electric field increase around the evening local time as IEF increases, presumably due to the sub-auroral polarization stream (SAPS. Another region with enhanced electric fields during large IEF periods is located around 9 MLT at L>8, which is possibly related to solar wind-magnetosphere coupling. Our potential patterns are consistent with those derived from self-consistent simulations. As the potential patterns can be interpolated/extrapolated to any discrete IEF value within measured ranges, we thus derive an empirical electric potential model. The performance of the model is evaluated by comparing the electric field derived from the model with original one measured by Cluster and mapped to the equator. The model is open to the public through our website.

  6. Estimation of Typhoon Wind Hazard Curves for Nuclear Sites

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young-Sun; Kim, Min-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The intensity of such typhoons, which can influence the Korean Peninsula, is on an increasing trend owing to a rapid change of climate of the Northwest Pacific Ocean. Therefore, nuclear facilities should be prepared against future super-typhoons. Currently, the U.S. Nuclear Regulatory Commission requires that a new NPP should be designed to endure the design-basis hurricane wind speeds corresponding to an annual exceedance frequency of 10{sup -7} (return period of 10 million years). A typical technique used to estimate typhoon wind speeds is based on a sampling of the key parameters of typhoon wind models from the distribution functions fitting statistical distributions to the observation data. Thus, the estimated wind speeds for long return periods include an unavoidable uncertainty owing to a limited observation. This study estimates the typhoon wind speeds for nuclear sites using a Monte Carlo simulation, and derives wind hazard curves using a logic-tree framework to reduce the epistemic uncertainty. Typhoon wind speeds were estimated for different return periods through a Monte-Carlo simulation using the typhoon observation data, and the wind hazard curves were derived using a logic-tree framework for three nuclear sites. The hazard curves for the simulated and probable maximum winds were obtained. The mean hazard curves for the simulated and probable maximum winds can be used for the design and risk assessment of an NPP.

  7. Wind Speed Pattern in Nigeria (A Case Study of Some Coastal and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Department of Physics and Solar Energy, Bowen University Iwo, Osun State, Nigeria ... ABSTRACT: In this study, wind speeds were analysed using the daily wind data obtained from Nigeria ..... Selected sites from Three Geopolitical Zones in.

  8. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  9. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada

    International Nuclear Information System (INIS)

    Li Meishen; Li Xianguo

    2005-01-01

    Wind energy becomes more and more attractive as one of the clean renewable energy resources. Knowledge of the wind characteristics is of great importance in the exploitation of wind energy resources for a site. It is essential in designing or selecting a wind energy conversion system for any application. This study examines the wind characteristics for the Waterloo region in Canada based on a data source measured at an elevation 10 m above the ground level over a 5-year period (1999-2003) with the emphasis on the suitability for wind energy technology applications. Characteristics such as annual, seasonal, monthly and diurnal wind speed variations and wind direction variations are examined. Wind speed data reveal that the windy months in Waterloo are from November to April, defined as the Cold Season in this study, with February being the windiest month. It is helpful that the high heating demand in the Cold Season coincides with the windy season. Analysis shows that the day time is the windy time, with 2 p.m. in the afternoon being the windiest moment. Moreover, a model derived from the maximum entropy principle (MEP) is applied to determine the diurnal, monthly, seasonal and yearly wind speed frequency distributions, and the corresponding Lagrangian parameters are determined. Based on these wind speed distributions, this study quantifies the available wind energy potential to provide practical information for the application of wind energy in this area. The yearly average wind power density is 105 W/m 2 . The day and night time wind power density in the Cold Season is 180 and 111 W/m 2 , respectively

  10. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  11. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  12. Estimation of the mid-century Etesians wind pattern from EURO-CORDEX models

    Science.gov (United States)

    Dafka, Stella; Toreti, Andrea; Luterbacher, Juerg; Zanis, Prodromos; Tyrlis, Evangelos; Xoplaki, Elena

    2017-04-01

    The Etesians are one of the major and most prominent wind system, prevailing over the Aegean Sea during summer and early autumn. Here, projections of changes in 30-year (2021-2050) wind speeds relative to 1971-2000, under the 8.5 and 4.5 Representative Concentration Pathways, have been produced for Etesians. Future changes in the number of Etesian days and the associated large scale dynamics are also considered. We analyze seven simulations from three EURO-CORDEX regional climate models at a 12 km grid resolution. Both scenarios indicate that in most RCMs daily wind speeds are projected to increase by 1-1.5m/s over the Aegean Sea, suggesting that the current estimate of wind power potential for Aegean Sea will be increased with the greenhouse gas forcing in the coming decades (2021-2050). Wind direction at 10-m as well as the number of Etesian days have shown to undergo minor changes. The projected changes in sea level pressure and geopotential height anomalies at 500 hPa have a large spread among the seven simulations with a disperse tendency of strengthening of the ridge over the Balkans.

  13. Design and Tuning of Wind Power Plant Voltage Controller with Embedded Application of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2017-01-01

    This study addresses a detailed design and tuning of a wind power plant voltage control with reactive power contribution of wind turbines and static synchronous compensators (STATCOMs). First, small-signal models of a single wind turbine and STATCOM are derived by using the state-space approach....... A complete phasor model of the entire wind power plant is constructed, being appropriate for voltage control assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage...... controller results in a guidance, proposed for this particular control architecture. It provides qualitative outcomes regarding the parametrisation of each individual control loop and how to adjust the voltage controller depending on different grid stiffnesses of the wind power plant connection...

  14. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    Directory of Open Access Journals (Sweden)

    Hyun Jung Cho

    2007-06-01

    Full Text Available Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.

  15. Regulation strategies for wind power fluctuations depending on demand in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Martinez, Sergio; Vigueras-Rodriguez, Antonio; Gomez-Lazaro, Emilio [Universidad de Castilla-La Mancha, Albacete (Spain). Energy Research Inst.; Fuentes, Juan Alvaro; Molina-Garcia, Angel [Cartagena Univ. (Spain). Dept. of Electrical Engineering

    2010-07-01

    Power systems need more flexibility as far as significant amounts of load are being covered by wind power. The variations of large wind power production impose some adverse effects on the power system. Some of these effects are the cycling losses on centralized units, discarded wind energy and increase of reserve requirements. Cycling losses derived from a non-optimal operation on great thermal and hydro power plants is an important issue produced by the stochastic wind power nature. Discarded wind energy is produced when the system can not assimilate all the wind power production. Reserve requirements are increased to keep the system balance with the secondary control. Different control functions have been developed for active power production. Some of them are balance control, delta control and power gradient limitation. Balance control consists in adjusting the production in steps to a set point constant production. The delta production constraint consists on limiting the current production to a fix delta power value below the possible production. This constraint is usually used for increasing the regulation capabilities in the wind farm. The Delta constraint can also be used jointly with the negative ramp limiting strategy, allowing then also to fix a maximum negative gradient for the cases in which the wind speed is decreasing and it is possible to limit that descend by reducing the delta value. The power gradient limiting strategy consists in a limitation of the maximum increasing gradient of the current production, i.e. it prevents the farm production from increasing too fast when the wind speed is rising or when the farm is to be started in high wind. It the wind speed is decreasing, then the constraint does not have any function. On the other hand, the negative ramp limiting strategy consists in a limitation of the maximum decreasing gradient of the current production. If the wind speed is increasing, then the constraint does not have any function. This

  16. A GEOS-Based OSSE for the "MISTiC Winds" Concept

    Science.gov (United States)

    McCarty, W.; Blaisdell, J.; Fuentes, M.; Carvalho, D.; Errico, R.; Gelaro, R.; Kouvaris, L.; Moradi, I.; Pawson, S.; Prive, N.; hide

    2018-01-01

    The Goddard Earth Observing System (GEOS) atmospheric model and data assimilation system are used to perform an Observing System Simulation Experiment (OSSE) for the proposed MISTiC Wind mission. The GEOS OSSE includes a reference simulation (the Nature Run), from which the pseudo-observations are generated. These pseuo-observations span the entire suite of in-situ and space space-based observations presently used in operational weather prediction, with the addition of the MISTiC-Wind dataset. New observation operators have been constructed for the MISTiC Wind data, including both the radiances measured in the 4-micron part of the solar spectrum and the winds derived from these radiances. The OSSE examines the impacts on global forecast skill of adding these observations to the current operational suite, showing substantial improvements in forecasts when the wind information are added. It is shown that a constellation of four MISTiC Wind satellites provides more benefit than a single platform, largely because of the increased accuracy of the feature-derived wind measurements when more platforms are used.

  17. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pahn, T. [Pahn Ingenieure, Am Seegraben 17b 03051 Cottbus Germany; Rolfes, R. [Institut f?r Statik und Dynamik, Leibniz Universit?t Hannover, Appelstra?e 9A 30167 Hannover Germany; Jonkman, J. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden Colorado 80401 USA

    2017-02-20

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine support structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.

  18. Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A novel multiband ICA technique.

    Science.gov (United States)

    Nugent, Allison C; Luber, Bruce; Carver, Frederick W; Robinson, Stephen E; Coppola, Richard; Zarate, Carlos A

    2017-02-01

    Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. An analysis of UK wind farm statistics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    An analysis of key data for 22 completed wind projects shows 134 MW of plant cost Pound 152 million, giving an average cost of Pound 1136/kW. The energy generation potential of these windfarms is around 360 GWh, derived from sites with windspeeds between 6.2 and 8.8 m/s. Relationships between wind speed, energy production and cost were examined and it was found that costs increased with wind speed, due to the difficulties of access in hilly regions. It also appears that project costs fell with time and wind energy prices have fallen much faster than electricity prices. (Author)

  20. Deriving the pattern speed using dynamical modelling of gas flows in barred galaxies .

    NARCIS (Netherlands)

    Pérez, I.; Freeman, K. C.; Fux, R.; Zurita, A.

    2011-01-01

    In this paper we analyse the methodology to derive the bar pattern speed from dynamical simulations. The results are robust to the changes in the vertical-scale height and in the mass-to-light (M/L) ratios. There is a small range of parameters for which the kinematics can be fitted. We have also

  1. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    Science.gov (United States)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  2. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  3. Spatial and temporal patterns of airflow across a foredune and beach surface under offshore winds: implications for aeolian sediment transport

    Science.gov (United States)

    Jackson, D.; Delgado-Fernandez, I.; Lynch, K.; Baas, A. C.; Cooper, J. A.; Beyers, M.

    2010-12-01

    The input of aeolian sediment into foredune systems from beaches represents a key component of sediment budget analysis along many soft sedimentary coastlines. Where there are significant offshore wind components in local wind regimes this is normally excluded from analysis. However, recent work has shown that if the topography of the foredune is favourable then this offshore component is steered or undergoes flow reversal through leeside eddying to give onshore transport events at the back beach under offshore flow conditions. At particular distances from the foredune crest flow reattaches to the surface to continue its incident offshore direction. The location of this reattachment point has important implications for aeolian transport of sand on the back beach and foredune toe locations. This study reports initial results where the positioning of the reattachment point is mobile and is driven by incident wind velocity (at the foredune crest) and the actual undulations of the foredune crest’s topography, dictating heterogeneous flow behaviour at the beach. Using detailed field measurements (25 Hz, three-dimensional sonic anemometry) and computational fluid dynamic modelling, a temporal and spatial pattern of reattachment positions are described. Implications for aeolian transport and dune evolution are also examined.

  4. Length Scales of the Neutral Wind Profile over Homogeneous Terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    The wind speed profile for the neutral boundary layer is derived for a number of mixing-length parameterizations, which account for the height of the boundary layer. The wind speed profiles show good agreement with the reanalysis of the Leipzig wind profile (950 m high) and with combined cup–soni...

  5. Statistical modeling of the power grid from a wind farm standpoint

    DEFF Research Database (Denmark)

    Farajzadehbibalan, Saber; Ramezani, Mohammad H.; Nielsen, Peter

    2017-01-01

    wind farm over several years which results in the development of a useful model for practical purposes. Secondly, the derived model is computationally inexpensive. Considering an arbitrary wind turbine generator, we show that the behavior of the power grid at the connection point can be represented......In this study, we derive a statistical model of a power grid from the wind farm's standpoint based on dynamic principal component analysis. The main advantages of our model compared to the previously developed models are twofold. Firstly, our proposed model benefits from logged data of an offshore...... by 4 out of 9 registered variables, i.e. 3-phase voltages, 3-phase currents, frequency, and generated active and reactive powers. We further prove that the dynamic nature of the system can be optimally captured by a time lag shift of two samples. To extend the derived model of a wind turbine generator...

  6. Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface

    Directory of Open Access Journals (Sweden)

    Madjid Soltani

    2018-04-01

    Full Text Available Passive cooling systems, such as wind towers, can help to reduce energy consumption in buildings and at the same time reduce greenhouse gas (GHG emissions. Wind towers can naturally ventilate buildings and also can create enhanced thermal comfort for occupants during the warm months. This study proposes a modern wind tower design with a moistened pad. The new design includes a fixed column, a rotating and movable head, an air opening with a screen, and two windows at the end of the column. The wind tower can be installed on roof-tops to take advantage of ambient airflow. The wind tower’s head can be controlled manually or automatically to capture optimum wind velocity based on desired thermal condition. To maximize its performance, a small pump was considered to circulate and spray water on an evaporative cooling pad. A computational fluid dynamics (CFD simulation of airflow around and inside the proposed wind tower is conducted to analyze the ventilation performance of this new design of wind tower. Thereby, the velocity, total pressure, and pressure coefficient distributions around and within the wind tower for different wind velocities are examined. The simulation results illustrate that the new wind tower design with a moistened pad can be a reasonable solution to improve naturally the thermal comfort of buildings in hot and dry climates.

  7. Profiling the regional wind power fluctuation in China

    International Nuclear Information System (INIS)

    Yu Dayang; Liang Jun; Han Xueshan; Zhao Jianguo

    2011-01-01

    As China starts to build 6 10-GW wind zones in 5 provinces by 2020, accommodating the wind electricity generated from these large wind zones will be a great challenge for the regional grids. Inadequate wind observing data hinders profiling the wind power fluctuations at the regional grid level. This paper proposed a method to assess the seasonal and diurnal wind power patterns based on the wind speed data from the NASA GEOS-5 DAS system, which provides data to the study of climate processes including the long-term estimates of meteorological quantities. The wind power fluctuations for the 6 largest wind zones in China are presented with both the capacity factor and the megawatt wind power output. The measured hourly wind output in a regional grid is compared to the calculating result to test the analyzing model. To investigate the offsetting effect of dispersed wind farms over large regions, the regional correlations of hourly wind power fluctuations are calculated. The result illustrates the different offsetting effects of minute and hourly fluctuations.

  8. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    68

    characteristics and variable features where the wind circulation pattern is ..... is extended to understand the quality of AMSR-2 wind speed in a constructive ...... New Disclosures (potential conflicts of interest, funding, acknowledgements):.

  9. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  10. Wind Farm Wake: The Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Rasmussen, Leif; Peña, Alfredo

    2013-01-01

    The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surf...... in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog....

  11. How wind power landscapes change

    DEFF Research Database (Denmark)

    Möller, Bernd

    2006-01-01

    Following 25 years of continuous development, Danish wind energy landscapes are going to face changes. Ceased on-shore construction, unresolved re-powering and stalled regional planning characterize the situation overshadowed by off-shore development. One of the factors inhibiting development...... in general. However, the pattern of visibility will become askew, and the present homogenous distribution of visibility will disappear. This skewness, together with changing ownership and receding local involvement, could eventually lead to lower popular acceptance of wind power....

  12. Mesoscale wind fluctuations over Danish waters

    DEFF Research Database (Denmark)

    Vincent, Claire Louise

    in generated power are a particular problem for oshore wind farms because the typically high concentration of turbines within a limited geographical area means that uctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water......Mesoscale wind uctuations aect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large uctuations in power generation that must be balanced using reserve power. Large uctuations...... that realistic hour-scale wind uctuations and open cellular convection patterns develop in WRF simulations with 2km horizontal grid spacing. The atmospheric conditions during one of the case studies are then used to initialise a simplied version of the model that has no large scale weather forcing, topography...

  13. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  14. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  15. Configuration study of large wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this thesis, layouts of various large-scale wind parks, using both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. The most interesting candidate for a DC transmission based wind park was investigated more in detail, the series DC wind park. Finally, the power quality impact in the PCC (point of common coupling) was studied. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km. Regarding the series DC wind park it was found that it is the most difficult one to control. However, a control algorithm for the series park and its turbines was derived and successfully tested. Still, several more details regarding the control of the series wind park has to be dealt with.

  16. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, B. M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCaa, J. [3TIER by VAisala, Seattle, WA (United States)

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  17. Incorporating geostrophic wind information for improved space–time short-term wind speed forecasting

    KAUST Repository

    Zhu, Xinxin

    2014-09-01

    Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric pressure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal (TDD) model. This paper proposes to incorporate the geostrophic wind as a new predictor in the TDD model. The geostrophic wind captures the physical relationship between wind and pressure through the observed approximate balance between the pressure gradient force and the Coriolis acceleration due to the Earth’s rotation. Based on our numerical experiments with data from West Texas, our new method produces more accurate forecasts than does the TDD model using air pressure and temperature for 1to 6-hour-ahead forecasts based on three different evaluation criteria. Furthermore, forecasting errors can be further reduced by using moving average hourly wind speeds to fit the diurnal pattern. For example, our new method obtains between 13.9% and 22.4% overall mean absolute error reduction relative to persistence in 2-hour-ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous space-time methods in this setting.

  18. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R. J. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical & Aerospace Engineering; Pryor, S. C. [Cornell Univ., Ithaca, NY (United States). Dept. of Earth and Atmospheric Sciences

    2017-09-18

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At the National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to

  19. Reliability of Wind Speed Data from Satellite Altimeter to Support Wind Turbine Energy

    Science.gov (United States)

    Uti, M. N.; Din, A. H. M.; Omar, A. H.

    2017-10-01

    Satellite altimeter has proven itself to be one of the important tool to provide good quality information in oceanographic study. Nowadays, most countries in the world have begun in implementation the wind energy as one of their renewable energy for electric power generation. Many wind speed studies conducted in Malaysia using conventional method and scientific technique such as anemometer and volunteer observing ships (VOS) in order to obtain the wind speed data to support the development of renewable energy. However, there are some limitations regarding to this conventional method such as less coverage for both spatial and temporal and less continuity in data sharing by VOS members. Thus, the aim of this research is to determine the reliability of wind speed data by using multi-mission satellite altimeter to support wind energy potential in Malaysia seas. Therefore, the wind speed data are derived from nine types of satellite altimeter starting from year 1993 until 2016. Then, to validate the reliability of wind speed data from satellite altimeter, a comparison of wind speed data form ground-truth buoy that located at Sabah and Sarawak is conducted. The validation is carried out in terms of the correlation, the root mean square error (RMSE) calculation and satellite track analysis. As a result, both techniques showing a good correlation with value positive 0.7976 and 0.6148 for point located at Sabah and Sarawak Sea, respectively. It can be concluded that a step towards the reliability of wind speed data by using multi-mission satellite altimeter can be achieved to support renewable energy.

  20. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....

  1. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California

    Science.gov (United States)

    Coria-Monter, Erik; Monreal-Gómez, María Adela; Salas de León, David Alberto; Durán-Campos, Elizabeth; Merino-Ibarra, Martín

    2017-09-01

    Nutrient and chlorophyll-a distributions in the Bay of La Paz, Gulf of California, Mexico were analyzed during the late spring of 2004 to assess their relations to hydrography and circulation patterns. The results show the presence of both Gulf of California Water and Subtropical Subsurface Water. Water circulation was dominated by wind stress driven cyclonic circulation along f / H contours (f is planetary vorticity and H is depth), and upwelling resulting from the divergence shows a vertical velocity of ∼0.4 m d-1. Nutrient concentrations were higher in the center of the cyclonic pattern, where a rise in the nutricline contributed nutrients to the euphotic layer as a result of Ekman pumping. The vertical section showed the presence of a chlorophyll-a maximum at the thermocline shoaling to a depth of only 12 m. Along the surface, two peaks of chlorophyll-a were observed, one at Boca Grande and another off San Juan de la Costa, associated with upwelling and mixing derived from current interactions with abrupt topographies. The chlorophyll-a maximum increased from 0.8 mg m-3 in the external part of the cyclonic pattern to 2.0 mg m-3 in its center. The vertically integrated chlorophyll-a concentrations followed a similar pattern, rising from 10 to 20 mg m-2 and reaching their highest values in the center of the cyclonic circulation pattern. A schematic model was developed to describe processes that occur in late spring: the wind stress driven cyclonic structure promotes upward nutrient flux, which in turn drives an enhancement of chlorophyll-a. Upwelling was found to be the main mechanism of fertilization responsible for the enhancement of productivity levels by means of nutrient transport into the euphotic zone during spring. Other chlorophyll enhancement areas point to the occurrence of additional fertilization processes that may derive from interactions between cyclonic circulation patterns and the topography off of San Juan de la Costa, where phosphate mining

  2. Toward an optimal inversion method for synthetic aperture radar wind retrieval

    OpenAIRE

    Portabella, M.; Stoffelen, A.; Johannessen, Johnny A.

    2002-01-01

    In recent years, particular efforts have been made to derive wind fields over the oceans from synthetic aperture radar (SAR) images. In contrast with the scatterometer, the SAR has a higher spatial resolution and therefore has the potential to provide higher resolution wind information. Since there are at least two geophysical parameters (wind speed and wind direction) modulating the single SAR backscatter measurements, the inversion of wind fields from SAR observations has an inherent proble...

  3. Comparison of high-latitude thermospheric meridional winds I: optical and radar experimental comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Mueller-Wodarg, I.C.F.; Aruliah, A.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    Thermospheric neutral winds at Kiruna, Sweden (67.4 N, 20.4 E) are compared using both direct optical fabry-perot interferometer (FPI) measurements and those derived from European incoherent scatter radar (EISCAT) measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974) and the meridional wind model (MWM) (Miller et al., 1997) application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the coupled thermosphere and ionosphere (CTIM) numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical horizontal wind model (HWM), though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. (orig.)

  4. Seasat microwave wind and rain observations in severe tropical and midlatitude marine storms

    Science.gov (United States)

    Black, P. G.; Hawkins, J. D.; Gentry, R. C.; Cardone, V. J.

    1985-01-01

    Initial results of studies concerning Seasat measurements in and around tropical and severe midlatitude cyclones over the open ocean are presented, together with an assessment of their accuracy and usefulness. Complementary measurements of surface wind speed and direction, rainfall rate, and the sea surface temperature obtained with the Seasat-A Satellite Scatterometer (SASS), the Scanning Multichannel Microwave Radiometer (SMMR), and the Seasat SAR are analyzed. The Seasat data for the Hurrricanes Fico, Ella, and Greta and the QE II storm are compared with data obtained from aircraft, buoys, and ships. It is shown that the SASS-derived wind speeds are accurate to within 10 percent, and the directions are accurate to within 20 percent. In general, the SASS estimates tend to measure light winds too high and intense winds too low. The errors of the SMMR-derived measurements of the winds in hurricanes tend to be higher than those of the SASS-derived measurements.

  5. Wind plant capacity credit variations: A comparison of results using multiyear actual and simulated wind-speed data

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  6. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  7. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Science.gov (United States)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  8. Probabilistic stability and "tall" wind profiles: theory and method for use in wind resource assessment

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Troen, Ib

    2016-01-01

    A model has been derived for calculating the aggregate effects of stability and the finite height of the planetary boundary layer upon the long-term mean wind profile. A practical implementation of this probabilistic extended similarity-theory model is made, including its incorporation within...... to the methodology. Results of the modeling are shown for a number of sites, with discussion of the models’ efficacy and the relative improvement shown by the new model, for situations where a user lacks local heat flux information, as well as performance of the new model using measured flux statistics. Further...... the European Wind Atlas (EWA) methodology for site-to-site application. Theoretical and practical implications of the EWA methodology are also derived and described, including unprecedented documentation of the theoretical framework encompassing vertical extrapolation, as well as some improvement...

  9. Short-interval SMS wind vector determinations for a severe local storms area

    Science.gov (United States)

    Peslen, C. A.

    1980-01-01

    Short-interval SMS-2 visible digital image data are used to derive wind vectors from cloud tracking on time-lapsed sequences of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on May 6, 1975 hail-producing thunderstorms occurred ahead of a well defined dry line. Cloud tracking is performed on the Goddard Space Flight Center Atmospheric and Oceanographic Information Processing System. Lower tropospheric cumulus tracers are selected with the assistance of a cloud-top height algorithm. Divergence is derived from the cloud motions using a modified Cressman (1959) objective analysis technique which is designed to organize irregularly spaced wind vectors into uniformly gridded wind fields. The results demonstrate the feasibility of using satellite-derived wind vectors and their associated divergence fields in describing the conditions preceding severe local storm development. For this case, an area of convergence appeared ahead of the dry line and coincided with the developing area of severe weather. The magnitude of the maximum convergence varied between -10 to the -5th and -10 to the -14th per sec. The number of satellite-derived wind vectors which were required to describe conditions of the low-level atmosphere was adequate before numerous cumulonimbus cells formed. This technique is limited in areas of advanced convection.

  10. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  11. Pollen, water, and wind: Chaotic mixing in a puddle of water

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig

    2016-01-01

    and nutrient distribution in puddles and small ponds.The flow patterns are generated by wind blowing across the puddle surface. This causes a shear stress at the atmospheric interface, which drives a flow in the liquid below. Chaotic mixing can occur if the wind direction changes over time. A fluid patch......This paper talks about how pine pollen grains dispersedin an approximately 1 m wide and 1 cm deep water puddle. The pollen has mixed due to wind blowing across the liquid surface, revealing a strikingly complex flow pattern. The flows revealed by nature’s tracer particles may influence circulation...

  12. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2004-11-01

    Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.

  13. Load-Direction-Derived Support Structures for Wind Turbines: A Lattice Tower Concept and Preparations for Future Certifications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Struve, Achim [University of Applied Sciences Flensburg; Faber, Torsten [University of Applied Sciences Flensburg; Ummenhofer, Thomas [Karlsruhe Institute of Technology

    2017-11-07

    The call for more cost-effective and environmentally friendly tower concepts is motivated by tower costs [1] and tower CO2-emission contributions [2], which are high relative to the whole wind turbine system. The proposed rotatable tower concept with yaw bearing at the bottom instead of the top of the tower will provide beneficial economic and environmental impacts to the turbine system. This wind alignment capability indicates a load-direction-derived tower design. By combining this approach with a lattice concept, large material and cost savings for the tower can be achieved. This paper presents a way to analyze and verify the proposed design through aero-servo-elastic simulations, which make future certifications of rotatable tower concepts viable. For this reason, the state-of-the-art, open-source lattice-tower finite-element-method (FEM) module SubDyn [10], developed by the National Renewable Energy Laboratory, has been modified to account for arbitrary member cross-sections. Required changes in the beam element stiffness and mass matrix formulation took place according to an energy method [13]. All validated adaptions will be usable within the aero-servo-elastic simulation framework FAST and are also beneficial for other nonrotatable lattice structures.

  14. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    to predict the wind loads and the flow patterns around the hip-roof building. .... various wind angle attack on the roof using CFD simulation. .... SIMPLE algorithm substitutes the flux correction equations into the discrete continuity equation to ...

  15. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  16. Wind-Induced Reconfigurations in Flexible Branched Trees

    Science.gov (United States)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  17. The dynamics of İzmir Bay under the effects of wind and thermohaline forces

    Science.gov (United States)

    Sayın, Erdem; Eronat, Canan

    2018-04-01

    The dominant circulation pattern of İzmir Bay on the Aegean Sea coast of Turkey is studied taking into consideration the influence of wind and thermohaline forces. İzmir Bay is discussed by subdividing the bay into outer, middle and inner areas. Wind is the most important driving force in the İzmir coastal area. There are also thermohaline forces due to the existence of water types of different physical properties in the bay. In contrast to the two-layer stratification during summer, a homogeneous water column exists in winter. The free surface version of the Princeton model (Killworth's 3-D general circulation model) is applied, with the input data obtained through the measurements made by the research vessel K. Piri Reis. As a result of the simulations with artificial wind, the strong consistent wind generates circulation patterns independent of the seasonal stratification in the bay. Wind-driven circulation causes cyclonic or anticyclonic movements in the middle bay where the distinct İzmir Bay Water (IBW) forms. Cyclonic movement takes place under the influence of southerly and westerly winds. On the other hand, northerly and easterly winds cause an anticyclonic movement in the middle bay. The outer and inner bay also have the wind-driven recirculation patterns expected.

  18. Changing Strategies in Global Wind Energy Shipping, Logistics, and Supply Chain Management

    DEFF Research Database (Denmark)

    Poulsen, Thomas

    2015-01-01

    Within the global wind energy market, a number of derived industries support the continued expansion of the ever larger onshore and offshore wind farms. One such derived industry is that of shipping, logistics, and supply chain management. Based on extensive case study work performed since 2009......, the paper reviews different wind energy markets globally. Subsequently, a number of supply chain set-ups serviced by the shipping, logistics, and supply chain management industry are reviewed. Finally, winning business models and strategies of current as well as emerging supply chain constituencies...

  19. Tidal analysis of Met rocket wind data

    Science.gov (United States)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.

  20. Wind speed estimation using multilayer perceptron

    International Nuclear Information System (INIS)

    Velo, Ramón; López, Paz; Maseda, Francisco

    2014-01-01

    Highlights: • We present a method for determining the average wind speed using neural networks. • We use data from that site in the short term and data from other nearby stations. • The inputs used in the ANN were wind speed and direction data from a station. • The method allows knowing the wind speed without topographical data. - Abstract: Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%

  1. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  2. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h...... were estimated from modelled data. The results show that the effect of the forest gaps with diameters smaller than 55h on wind energy captured by the assumed wind turbine and located in the centre of round low-roughness gap is practically insignificant. The high level of spatial variation of considered......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...

  3. Climatology of atmospheric circulation patterns of Arabian dust in western Iran.

    Science.gov (United States)

    Najafi, Mohammad Saeed; Sarraf, B S; Zarrin, A; Rasouli, A A

    2017-08-28

    Being in vicinity of vast deserts, the west and southwest of Iran are characterized by high levels of dust events, which have adverse consequences on human health, ecosystems, and environment. Using ground based dataset of dust events in western Iran and NCEP/NCAR reanalysis data, the atmospheric circulation patterns of dust events in the Arabian region and west of Iran are identified. The atmospheric circulation patterns which lead to dust events in the Arabian region and western Iran were classified into two main categories: the Shamal dust events that occurs in warm period of year and the frontal dust events as cold period pattern. In frontal dust events, the western trough or blocking pattern at mid-level leads to frontogenesis, instability, and air uplift at lower levels of troposphere in the southwest of Asia. Non-frontal is other pattern of dust event in the cold period and dust generation are due to the regional circulation systems at the lower level of troposphere. In Shamal wind pattern, the Saudi Arabian anticyclone, Turkmenistan anticyclone, and Zagros thermal low play the key roles in formation of this pattern. Summer and transitional patterns are two sub-categories of summer Shamal wind pattern. In summer trough pattern, the mid-tropospheric trough leads to intensify the surface thermal systems in the Middle East and causes instability and rising of wind speed in the region. In synthetic pattern of Shamal wind and summer trough, dust is created by the impact of a trough in mid-levels of troposphere as well as existing the mentioned regional systems which are contributed in formation of summer Shamal wind pattern.

  4. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector.

    Science.gov (United States)

    Burgin, Laura; Ekström, Marie; Dessai, Suraje

    2017-07-01

    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

  5. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  6. Win(d)-Win(d) Solutions for wind developers and bats

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Cris; Schirmacher, Michael; Arnett, Ed; Huso, Manuela

    2011-10-31

    Bat Conservation International initiated a multi-year, pre-construction study in mid-summer 2009 to investigate patterns of bat activity and evaluate the use of acoustic monitoring to predict mortality of bats at the proposed Resolute Wind Energy Project (RWEP) in east-central Wyoming. The primary objectives of this study were to: (1) determine levels and patterns of activity for three phonic groups of bats (high-frequency emitting bats, low-frequency emitting bats, and hoary bats) using the proposed wind facility prior to construction of turbines; (2) determine if bat activity can be predicted based on weather patterns; correlate bat activity with weather variables; and (3) combine results from this study with those from similar efforts to determine if indices of pre-construction bat activity can be used to predict post-construction bat fatalities at proposed wind facilities. We report results from two years of pre-construction data collection.

  7. Multi-spatial analysis of aeolian dune-field patterns

    Science.gov (United States)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  8. Southern Ocean carbon-wind stress feedback

    Science.gov (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  9. Benefit Evaluation of Wind Turbine Generators in Wind Farms Using Capacity-Factor Analysis and Economic-Cost Methods

    DEFF Research Database (Denmark)

    Chen, Zhe; Wang, L.; Yeh, T-H.

    2009-01-01

    Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine gen...... height for WTGs that have been installed in Taiwan. Important outcomes affecting wind cost of energy in comparison with economic results using the proposed economic-analysis methods for different WFs are also presented.......Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine...... generators (WTGs). To fully capture wind energy, different wind farms (WFs) should select adequate capacity of WTGs to effectively harvest wind energy and maximize their economic benefit. To establish selection criterion, this paper first derives the equations for capacity factor (CF) and pairing performance...

  10. Extreme winds in the Western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.

    2006-11-15

    A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methods used to estimate surface wind speeds from satellite images is discussed with emphasis on the empirical basis, which, unfortunately, is not very strong. This is stressed by the fact that Japanese and US agencies arrive at markedly different estimates. On the other hand, best track data records cover a long period of time and if not perfect they are at least coherent over time in their imperfections. Applying the the Holland model to the best track data, wind profiles can be assigned along the tracks. From this annual wind speed maxima at any particular point in the region can be derived. The annual maxima, in turn, are fitted to a Gumbel distribution using a generalization Abild's method that allows for data wind collected from multiple positions. The choice of this method is justified by a Monte Carlo simulation comparing it to two other methods. The principle output is a map showing fifty year winds in the region. The method is tested against observed winds from Philippine synoptic stations and fair agreement is found for observed and predicted 48 year maxima. However, the almost biasfree performance of the model could be fortuitous, since precise definitions of 'windspeed' in terms averaging time, height above ground and assumed surface roughness are not available, neither for best tracks nor for the synoptic data. The work has been carried out under Danish Research Agency grant 2104-04-0005 'Offshore wind power' and it also covers the findings and analysis carried out in connection with task 1.6 of the project 'Feasibility Assessment and Capacity Building for Wind Energy Development in Cambodia, The Philippines and Vietnam' during 2005-06 under contract 125-2004 with EU

  11. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Floors, Rogier Ralph; Peña, Alfredo

    2016-01-01

    Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is ex...... of the vertical profile of the shape parameter fits well with observations over land, coastal regions and over the sea. An applied model for the dependence of the reversal height on the surface roughness is in good agreement with the observations over land....

  12. Comparison of different statistical modelling approaches for deriving spatial air temperature patterns in an urban environment

    Science.gov (United States)

    Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin

    2017-04-01

    Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were

  13. Where, when and how much wind is available? A provincial-scale wind resource assessment for China

    International Nuclear Information System (INIS)

    He, Gang; Kammen, Daniel M.

    2014-01-01

    China's wind installed capacity has grown at a remarkable rate, over 80% annually average growth since 2005, reaching 91.5 GW of capacity by end of 2013, accounting for over 27% of global capacity. This rapid growth has been the result of a domestic manufacturing base and favorable national policies. Further evolution will be greatly aided with a detailed wind resource assessment that incorporates spatial and temporal variability across China. We utilized 200 representative locations for which 10 years of hourly wind speed data exist to develop provincial capacity factors from 2001 to 2010, and to build analytic wind speed profiles. From these data and analysis we find that China's annual wind generation could reach 2000 TWh to 3500 TWh. Nationally this would correspond to an average capacity factor of 0.18. The diurnal and seasonal variation shows spring and winter has better wind resources than in the summer and fall. A highly interconnected and coordinated power system is needed to effectively exploit this large but variable resource. A full economic assessment of exploitable wind resources demands a larger, systems-level analysis of China's energy options, for which this work is a core requirement. - Highlights: • We assessed China's wind resources by utilizing 10 years of hourly wind speed data of 200 sites. • We built provincial scale wind speed profiles and develop provincial capacity factors for China. • We found that China's wind generation could reach 2000 TWh to 3500 TWh annually. • We observed similar temporal variation pattern of wind availability across China

  14. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    International Nuclear Information System (INIS)

    Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Tuckfield, C.; Pendergast, M.

    2009-01-01

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper (1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions

  15. Credit Trading and Wind Power: Issues and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Rackstraw, John Palmisano

    2001-01-15

    OAK-B135 This paper focuses on credits that are derived from wind energy technology, but the same concepts apply to other renewable energy technologies as well. Credit trading can be applied to a wide variety of policies, programs and private market activities and represents a means of tapping into revenue streams that heretofore have largely excluded wind and other renewables. In addition, credit trading can help to ''create'' new revenue streams for wind and other renewables by helping to grow new markets.

  16. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    Science.gov (United States)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  17. Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe; Giebel, Gregor

    2016-01-01

    varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...

  18. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  19. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    Science.gov (United States)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The

  20. Wind Atlas for South Africa (WASA) Observational wind atlas for 10 met. stations in Northern, Western and Eastern Cape provinces

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Hansen, Jens Carsten; Kelly, Mark C.

    As part of the “Wind Atlas for South Africa” project, microscale modelling has been carried out for 10 meteorological stations in Northern, Western and Eastern Cape provinces. Wind speed and direction data from the ten 60-m masts have been analysed using the Wind Atlas Analysis and Application...... Program (WAsP 11). The wind-climatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and roughness length maps constructed from SWBD data and Google Earth satellite imagery. Summaries are given...... of the data measured at the 10 masts, mainly for a 3-year reference period from October 2010 to September 2013. The main result of the microscale modelling is observational wind atlas data sets, which can be used for verification of the mesoscale modelling. In addition, the microscale modelling itself has...

  1. Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment

    International Nuclear Information System (INIS)

    Castellani, Francesco; Astolfi, Davide; Sdringola, Paolo; Proietti, Stefania; Terzi, Ludovico

    2017-01-01

    Highlights: • The directional behavior of four turbines of an onshore wind farm is investigated. • The positions of the nacelles are discretized to highlight clusterization effects. • The recurrent alignment patterns of the cluster are individuated and analyzed. • The patterns are studied by the point of view of efficiency and power output. • Significative performance deviations arise among the most frequent configurations. - Abstract: SCADA control systems are the keystone for reliable performance optimization of wind farms. Processing into knowledge the amount of information they spread is a challenging task, involving engineering, physics, statistics and computer science skills. This work deals with SCADA data analysis methods for assessing the importance of how wind turbines align in patterns to the wind direction. In particular it deals with the most common collective phenomenon causing clusters of turbines behaving as a whole, rather than as a collection of individuality: wake effects. The approach is based on the discretization of nacelle position measurements and subsequent post-processing through simple statistical methods. A cluster, severely affected by wakes, from an onshore wind farm, is selected as test case. The dominant alignment patterns of the cluster are identified and analyzed by the point of view of power output and efficiency. It is shown that non-trivial alignments with respect to the wind direction arise and important performance deviations occur among the most frequent configurations.

  2. Spatial evolution equation of wind wave growth

    Institute of Scientific and Technical Information of China (English)

    WANG; Wei; (王; 伟); SUN; Fu; (孙; 孚); DAI; Dejun; (戴德君)

    2003-01-01

    Based on the dynamic essence of air-sea interactions, a feedback type of spatial evolution equation is suggested to match reasonably the growing process of wind waves. This simple equation involving the dominant factors of wind wave growth is able to explain the transfer of energy from high to low frequencies without introducing the concept of nonlinear wave-wave interactions, and the results agree well with observations. The rate of wave height growth derived in this dissertation is applicable to both laboratory and open sea, which solidifies the physical basis of using laboratory experiments to investigate the generation of wind waves. Thus the proposed spatial evolution equation provides a new approach for the research on dynamic mechanism of air-sea interactions and wind wave prediction.

  3. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation, and study on local wind resource prediction model; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (kyokusho fukyo yosoku shuho ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the study on local wind resource prediction model. The local wind resource prediction models developed so far apply the solutions based on the existing linear models (WASP and AVENU) for relatively flat terrain. These models are studied for their applicability limits. The study covers wind direction and speed patterns of the surface wind and upper winds at 3 sites in Hokkaido, Fukushima Pref. and Shizuoka Pref. The surface winds are found to be correlated with the upper winds both for wind direction and wind speed in almost all cases. Next, wind resources simulations are carried out for each of the classified weather patterns using the existing models, and the prediction errors are studied. The results show that the prediction accuracy of the existing linear models is highly dependent on inputs of observed data, and that the accuracy tends to decrease for the situations where the upper and surface wind conditions greatly differ from each other, as in the case of a land and sea breeze of thermal origin. It is also confirmed that prediction accuracy is lower on complex terrain than on flat terrain. (NEDO)

  4. Empirically derived dietary patterns and health-related quality of life in the SUN project.

    Science.gov (United States)

    Ruano, Cristina; Henriquez, Patricia; Martínez-González, Miguel Ángel; Bes-Rastrollo, Maira; Ruiz-Canela, Miguel; Sánchez-Villegas, Almudena

    2013-01-01

    The analysis of dietary patterns has become a valuable tool to examine diet-disease relationships but little is known about their effects on quality of life. Our aim was to ascertain the association between major dietary patterns and mental and physical quality of life after 4 years of follow-up. This analysis included 11,128 participants from the "Seguimiento Universidad de Navarra" (SUN) cohort. Dietary habits were assessed using a validated food-frequency questionnaire. Factor analysis was used to derive dietary patterns. Quality of life was measured with the validated Spanish version of the SF-36 Health Survey. Two major dietary patterns were identified, the 'Western' dietary pattern (rich in red meats, processed pastries and fast-food) and the "Mediterranean" dietary pattern (high in fruits, vegetables and olive oil). After controlling for confounders, the Western dietary pattern was associated with quality of life in all domains. The magnitude of these differences between the subjects in the highest (quintile 5) and the lowest quintile of adherence to the Western pattern ranged from -0.8 (for mental health) to -3.5 (for vitality). On the contrary, the Mediterranean dietary pattern was associated with better quality of life domains: differences ranged from +1.3 (for physical functioning) to +3.4 (for vitality) when comparing extreme quintiles of adherence. Additional sensitivity analyses did not change the reported differences. Whereas baseline adherence to a Western dietary pattern was inversely associated with self-perceived quality of life after 4 years of follow-up, baseline adherence to a Mediterranean dietary pattern was directly associated with better scores in quality of life four years later in the SUN Project.

  5. Empirically derived dietary patterns and health-related quality of life in the SUN project.

    Directory of Open Access Journals (Sweden)

    Cristina Ruano

    Full Text Available The analysis of dietary patterns has become a valuable tool to examine diet-disease relationships but little is known about their effects on quality of life. Our aim was to ascertain the association between major dietary patterns and mental and physical quality of life after 4 years of follow-up.This analysis included 11,128 participants from the "Seguimiento Universidad de Navarra" (SUN cohort. Dietary habits were assessed using a validated food-frequency questionnaire. Factor analysis was used to derive dietary patterns. Quality of life was measured with the validated Spanish version of the SF-36 Health Survey.Two major dietary patterns were identified, the 'Western' dietary pattern (rich in red meats, processed pastries and fast-food and the "Mediterranean" dietary pattern (high in fruits, vegetables and olive oil. After controlling for confounders, the Western dietary pattern was associated with quality of life in all domains. The magnitude of these differences between the subjects in the highest (quintile 5 and the lowest quintile of adherence to the Western pattern ranged from -0.8 (for mental health to -3.5 (for vitality. On the contrary, the Mediterranean dietary pattern was associated with better quality of life domains: differences ranged from +1.3 (for physical functioning to +3.4 (for vitality when comparing extreme quintiles of adherence. Additional sensitivity analyses did not change the reported differences.Whereas baseline adherence to a Western dietary pattern was inversely associated with self-perceived quality of life after 4 years of follow-up, baseline adherence to a Mediterranean dietary pattern was directly associated with better scores in quality of life four years later in the SUN Project.

  6. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.

    Science.gov (United States)

    Gibb, Rory; Shoji, Akiko; Fayet, Annette L; Perrins, Chris M; Guilford, Tim; Freeman, Robin

    2017-07-01

    Global wind patterns affect flight strategies in many birds, including pelagic seabirds, many of which use wind-powered soaring to reduce energy costs during at-sea foraging trips and migration. Such long-distance movement patterns are underpinned by local interactions between wind conditions and flight behaviour, but these fine-scale relationships are far less well understood. Here we show that remotely sensed ocean wind speed and direction are highly significant predictors of soaring behaviour in a migratory pelagic seabird, the Manx shearwater ( Puffinus puffinus ). We used high-frequency GPS tracking data (10 Hz) and statistical behaviour state classification to identify two energetic modes in at-sea flight, corresponding to flap-like and soar-like flight. We show that soaring is significantly more likely to occur in tailwinds and crosswinds above a wind speed threshold of around 8 m s -1 , suggesting that these conditions enable birds to reduce metabolic costs by preferentially soaring over flapping. Our results suggest a behavioural mechanism by which wind conditions may shape foraging and migration ecology in pelagic seabirds, and thus indicate that shifts in wind patterns driven by climate change could impact this and other species. They also emphasize the emerging potential of high-frequency GPS biologgers to provide detailed quantitative insights into fine-scale flight behaviour in free-living animals. © 2017 The Author(s).

  7. Synoptic Storms in the North Atlantic in the Atmospheric Reanalysis and Scatterometer-Based Wind Products

    Science.gov (United States)

    Dukhovskoy, D. S.; Bourassa, M. A.

    2016-12-01

    The study compares and analyses the characteristics of synoptic storms in the Subpolar North Atlantic over the time period from 2000 through 2009 derived from reanalysis data sets and scatterometer-based gridded wind products. The analysis is performed for ocean 10-m winds derived from the following wind data sets: NCEP/DOE AMIP-II reanalysis (NCEPR2), NCAR/CFSR, Arctic System Reanalysis (ASR) version 1, Cross-Calibrated Multi-Platform (CCMP) wind product versions 1.1 and recently released version 2.0 prepared by the Remote Sensing Systems, and QuikSCAT. A cyclone tracking algorithm employed in this study for storm identification is based on average vorticity fields derived from the wind data. The study discusses storm characteristics such as storm counts, trajectories, intensity, integrated kinetic energy, spatial scale. Interannal variability of these characteristics in the data sets is compared. The analyses demonstrates general agreement among the wind data products on the characteristics of the storms, their spatial distribution and trajectories. On average, the NCEPR2 storms are more energetic mostly due to large spatial scales and stronger winds. There is noticeable interannual variability in the storm characteristics, yet no obvious trend in storms is observed in the data sets.

  8. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NARCIS (Netherlands)

    Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-01-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at

  9. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    Science.gov (United States)

    2013-09-30

    TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown to be an... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation, and...applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge, this

  10. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    Science.gov (United States)

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.

    2015-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  11. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  12. Contrasting electricity demand with wind power supply: case study in Hungary

    International Nuclear Information System (INIS)

    Kiss, P.; Janosi, I. M.; Varga, L.

    2009-01-01

    We compare the demand of a large electricity consumer with supply given by wind farms installed at two distant geographic locations. Obviously such situation is rather unrealistic, however our main goal is a quantitative characterization of the intermittency of wind electricity. The consumption pattern consists of marked daily and weekly cycles interrupted by periods of holidays. In contrast, wind electricity production has neither short-time nor seasonal periodicities. We show that wind power integration over a restricted area cannot provide a stable base load supply, independently of the excess capacity. Further essential result is that the statistics are almost identical for a weekly periodic pattern of consumption and a constant load of the same average value. The length of both adequate supply and shortfall intervals exhibits a scale-free (power-law) frequency distribution, possible consequences are shortly discussed. (author)

  13. Contrasting Electricity Demand with Wind Power Supply: Case Study in Hungary

    Directory of Open Access Journals (Sweden)

    Imre M. Jánosi

    2009-09-01

    Full Text Available We compare the demand of a large electricity consumer with supply given by wind farms installed at two distant geographic locations. Obviously such situation is rather unrealistic, however our main goal is a quantitative characterization of the intermittency of wind electricity. The consumption pattern consists of marked daily and weekly cycles interrupted by periods of holidays. In contrast, wind electricity production has neither short-time nor seasonal periodicities. We show that wind power integration over a restricted area cannot provide a stable baseload supply, independently of the excess capacity. Further essential result is that the statistics are almost identical for a weekly periodic pattern of consumption and a constant load of the same average value. The length of both adequate supply and shortfall intervals exhibits a scale-free (power-law frequency distribution, possible consequences are shortly discussed.

  14. Cosmic ray acceleration by stellar wind. Simulation for heliosphere

    International Nuclear Information System (INIS)

    Petukhov, S.I.; Turpanov, A.A.; Nikolaev, V.S.

    1985-01-01

    The solar wind deceleration by the interstellar medium may result in the existence of the solar wind terminal shock. In this case a certain fraction of thermal particles after being heated at the shock would obtain enough energy to be injected to the regular acceleration process. An analytical solution for the spectrum in the frame of a simplified model that includes particle acceleration at the shock front and adiabatic cooling inside the stellar wind cavity has been derived. It is shown that the acceleration of the solar wind particles at the solar wind terminal shock is capable of providing the total flux, spectrum and radial gradients of the low-energy protons close to one observed in the interplanetary space

  15. [Playing of wind instruments is associated with an obstructive pattern in the spirometry of adolescents with a good aerobic resistance capacity].

    Science.gov (United States)

    Granell, Javier; Granell, Jose; Ruiz, Diana; Tapias, Jose A

    2011-03-01

    There is controversy in the medical literature regarding the beneficial or detrimental effects of playing wind musical instruments on the respiratory system. The aim of this study is to analyse this relationship, taking the physical condition of the subjects into consideration. Cross-sectional observational study. Public institution with coordinated medium grade musical instruction and primary and secondary education. Young performers (between 13 and 17 years). We collected basic epidemiological parameters (gender, age, weight, size, heath status), and each subject underwent a fitness test ("course navette" cardiorespiratory fitness test) and a forced spirometry. We included 90 students, 53 females and 37 males. Thirty two were wind instrument players and 58 studied other instruments. The two groups were homogeneous with respect to gender, age and body mass index. The maximum oxygen uptake showed no significant difference (P=0.255), further demonstrating an adequate level of fitness compared to the general population. FVC was normal and similar in both groups (P=0.197). The FEV(1) percentage and the FEV(1)/FVC ratio were significantly lower (Pstudy of wind instruments was associated with an obstructive spirometric pattern in young musicians with a normal level of physical fitness. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  16. Simulation of wake effects between two wind farms

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Réthoré, Pierre-Elouan; Palma, Jose

    2015-01-01

    SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit...... flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more...

  17. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya

    2017-08-14

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  18. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya; Hallgren, Willow

    2017-01-01

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  19. Asynchrony of wind and hydropower resources in Australia.

    Science.gov (United States)

    Gunturu, Udaya Bhaskar; Hallgren, Willow

    2017-08-18

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation - canonical and Modoki - on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia's energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  20. Global wind power development: Economics and policies

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  1. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    Science.gov (United States)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  2. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Directory of Open Access Journals (Sweden)

    A. Roobaert

    2018-03-01

    Full Text Available The calculation of the air–water CO2 exchange (FCO2 in the ocean not only depends on the gradient in CO2 partial pressure at the air–water interface but also on the parameterization of the gas exchange transfer velocity (k and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2. The analysis is performed at a 1°  ×  1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a for the 1991–2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ⋅ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014, where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009 as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗ for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study

  3. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Science.gov (United States)

    Roobaert, Alizée; Laruelle, Goulven G.; Landschützer, Peter; Regnier, Pierre

    2018-03-01

    The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1° × 1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a) for the 1991-2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ṡ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014), where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates

  4. Correlation of mesoscale wind speeds over the sea

    DEFF Research Database (Denmark)

    Mehrens, Anna R.; Hahmann, Andrea N.; Hahmann, Andrea N.

    2016-01-01

    A large offshore observational data set from stations across the North and Baltic Sea is used to investigate the planetary boundary layer wind characteristics and their coherence, correlation and power spectra. The data of thirteen sites, with pairs of sites at a horizontal distance of 4 to 848 km...... on measurements and the WRF-derived time series. By normalising the frequency axes with the distance and mean wind speed it can be demonstrated that even for data with a wide range of distances, the coherence is a function of the frequency, mean wind and distance, which is consistent with earlier studies....... The correlation coefficient as a function of the distance calculated from WRF is however higher than observed in the measurements. For the power spectra, wind speed and wind speed step changes distribution the results for all sites are quite similar. The land masses strongly influence the individual wind...

  5. Investigation of wind turbine effects on Evapotranspiration using surface energy balance model based on satellite-derived data

    Science.gov (United States)

    hassanpour Adeh, E.; Higgins, C. W.

    2014-12-01

    Wind turbines have been introduced as an energy source that does not require a large expenditure of water. However, recent simulation results indicate that wind turbines increase evaporation rates from the nearby land. In this research the effect of wind energy on irrigated agriculture is determined using a Surface Energy Balance Algorithm (SEBAL) on Landsat data spanning a 30 year interval. The analysis allows the characterization of evapotranspiration (ET) before and after wind turbine installations. The time history of ET from Landsat data will be presented for several major wind farms across the US. These data will be used to determine the impact on water demand due to presence of wind turbines.

  6. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-02-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.

  7. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    International Nuclear Information System (INIS)

    Airapetian, Vladimir S.; Usmanov, Arcadi V.

    2016-01-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion

  8. Accounting for variation in wind deployment between Canadian provinces

    International Nuclear Information System (INIS)

    Ferguson-Martin, Christopher J.; Hill, Stephen D.

    2011-01-01

    Wind energy deployment varies widely across regions and this variation cannot be explained by differences in natural wind resources alone. Evidence suggests that institutional factors beyond physical wind resources can influence the deployment of wind energy systems. Building on the work of , this study takes a historical institutionalist approach to examine the main factors influencing wind energy deployment across four Canadian provinces Canada: Alberta, Manitoba, Ontario and Nova Scotia. Our case studies suggest that wind energy deployment depends upon a combination of indirect causal factors-landscape values, political and social movements, government electricity policy, provincial electricity market structure and incumbent generation technologies and direct causal factors-grid architecture, ownership patterns, renewable incentive programs, planning and approvals processes and stakeholder support and opposition. - Research highlights: → Examines the reasons for variations in wind deployment between Canadian provinces. → Employs a historical institutional approach to the analysis. → Discusses social factors that affect wind deployment across Canadian jurisdictions.

  9. The Solar Wind Environment in Time

    Science.gov (United States)

    Pognan, Quentin; Garraffo, Cecilia; Cohen, Ofer; Drake, Jeremy J.

    2018-03-01

    We use magnetograms of eight solar analogs of ages 30 Myr–3.6 Gyr obtained from Zeeman Doppler Imaging and taken from the literature, together with two solar magnetograms, to drive magnetohydrodynamical wind simulations and construct an evolutionary scenario of the solar wind environment and its angular momentum loss rate. With observed magnetograms of the radial field strength as the only variant in the wind model, we find that a power-law model fitted to the derived angular momentum loss rate against time, t, results in a spin-down relation Ω ∝ t ‑0.51, for angular speed Ω, which is remarkably consistent with the well-established Skumanich law Ω ∝ t ‑0.5. We use the model wind conditions to estimate the magnetospheric standoff distances for an Earth-like test planet situated at 1 au for each of the stellar cases, and to obtain trends of minimum and maximum wind ram pressure and average ram pressure in the solar system through time. The wind ram pressure declines with time as \\overline{{P}ram}}\\propto {t}2/3, amounting to a factor of 50 or so over the present lifetime of the solar system.

  10. Utilization of excess wind power in electric vehicles

    International Nuclear Information System (INIS)

    Hennings, Wilfried; Mischinger, Stefan; Linssen, Jochen

    2013-01-01

    This article describes the assessment of future wind power utilization for charging electric vehicles (EVs) in Germany. The potential wind power production in the model years 2020 and 2030 is derived by extrapolating onshore wind power generation and offshore wind speeds measured in 2007 and 2010 to the installed onshore and offshore wind turbine capacities assumed for 2020 and 2030. The energy consumption of an assumed fleet of 1 million EVs in 2020 and 6 million in 2030 is assessed using detailed models of electric vehicles, real world driving cycles and car usage. It is shown that a substantial part of the charging demand of EVs can be met by otherwise unused wind power, depending on the amount of conventional power required for stabilizing the grid. The utilization of wind power is limited by the charging demand of the cars and the bottlenecks in the transmission grid. -- Highlights: •Wind power available for charging depends on minimum required conventional power (must-run). •With 20 GW must-run power, 50% of charging can be met by excess wind power. •Grid bottlenecks decrease charging met by wind power from 50 % to 30 %. •With zero must-run power, only very little wind power is available for charging

  11. Short-Term Wind Speed Hybrid Forecasting Model Based on Bias Correcting Study and Its Application

    OpenAIRE

    Mingfei Niu; Shaolong Sun; Jie Wu; Yuanlei Zhang

    2015-01-01

    The accuracy of wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. In particular, reliable short-term wind speed forecasting can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, due to the strong stochastic nature and dynamic uncertainty of wind speed, the forecasting of wind speed data using different patterns is difficult. This paper proposes a novel combination bias c...

  12. Wind-waves interactions in the Gulf of Eilat

    Science.gov (United States)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  13. Wind-wave modelling aspects within complicate topography

    Directory of Open Access Journals (Sweden)

    S. Christopoulos

    Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.

  14. The necessary distance between large wind farms offshore - study

    DEFF Research Database (Denmark)

    Frandsen, S.; Barthelmie, R.J.; Pryor, S.C.

    2005-01-01

    the new Storpark Analytical Model has been developed and evaluated. As it is often the need for offshore wind farms, the model handles a regular array-geometry with straight rows of wind turbines and equidistantspacing between units in each row and equidistant spacing between rows. Firstly, the case...... with the flow direction being parallel to rows in a rectangular geometry is considered by defining three flow regimes. Secondly, when the flow is not in line withthe main rows, solutions are found for the patterns of wind turbine units emerging corresponding to each wind direction. The model complex......A review of state of the art wake and boundary layer wind farms was conducted. The predictions made for wind recovery distances (that might be used to estimate optimal placing of neighbouring wind farms) range between 2 and 14 km. In order to model thelink between wakes and the boundary layer...

  15. Wind-wave amplification mechanisms: possible models for steep wave events in finite depth

    Directory of Open Access Journals (Sweden)

    P. Montalvo

    2013-11-01

    Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.

  16. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    Science.gov (United States)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  17. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  18. Assimilation of GMS-5 satellite winds using nudging method with MM5

    Science.gov (United States)

    Gao, Shanhong; Wu, Zengmao; Yang, Bo

    2006-09-01

    With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.

  19. Diet index-based and empirically derived dietary patterns are associated with colorectal cancer risk.

    Science.gov (United States)

    Miller, Paige E; Lazarus, Philip; Lesko, Samuel M; Muscat, Joshua E; Harper, Gregory; Cross, Amanda J; Sinha, Rashmi; Ryczak, Karen; Escobar, Gladys; Mauger, David T; Hartman, Terryl J

    2010-07-01

    Previous studies have derived patterns by measuring compliance with preestablished dietary guidance or empirical methods, such as principal components analysis (PCA). Our objective was to examine colorectal cancer risk associated with patterns identified by both methods. The study included 431 incident colorectal cancer cases (225 men, 206 women) and 726 healthy controls (330 men, 396 women) participating in a population-based, case-control study. PCA identified sex-specific dietary patterns and the Healthy Eating Index-2005 (HEI-05) assessed adherence to the 2005 Dietary Guidelines for Americans. A fruits and vegetables pattern and a meat, potatoes, and refined grains pattern were identified among men and women; a third pattern (alcohol and sweetened beverages) was identified in men. The fruits and vegetables pattern was inversely associated with risk among men [odds ratio (OR) = 0.38, 95% CI = 0.21-0.69 for the highest compared with the lowest quartile] and women (OR = 0.35, 95% CI = 0.19-0.65). The meat, potatoes, and refined grains pattern was positively associated with risk in women (OR = 2.20, 95% CI = 1.08-4.50) and there was a suggestion of a positive association among men (OR = 1.56, 95% CI = 0.84-2.90; P-trend = 0.070). Men and women with greater HEI-05 scores had a significantly reduced risk of colorectal cancer (OR = 0.56, 95% CI = 0.31-0.99; OR = 0.44, 95% CI = 0.24-0.77, respectively). Following the Dietary Guidelines or a dietary pattern lower in meat, potatoes, high fat, and refined foods and higher in fruits and vegetables may reduce colorectal cancer risk.

  20. Variability in the air–sea interaction patterns and timescales within the south-eastern Bay of Biscay, as observed by HF radar data

    Directory of Open Access Journals (Sweden)

    A. Fontán

    2013-04-01

    Full Text Available Two high-frequency (HF radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air–sea interaction patterns and timescales for the period 2009–2010. The analysis was conducted using the Barnett–Preisendorfer approach to canonical correlation analysis (CCA of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind–current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind–current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.

  1. Application genetic algorithms for load management in refrigerated warehouses with wind power penetration

    DEFF Research Database (Denmark)

    Zong, Yi; Cronin, Tom; Gehrke, Oliver

    2009-01-01

    Wind energy is produced at random times, whereas the energy consumption pattern shows distinct demand peaks during day-time and low levels during the night. The use of a refrigerated warehouse as a giant battery for wind energy is a new possibility that is being studied for wind energy integratio...

  2. OffWindSolver: Wind farm design tool based on actuator line/actuator disk concept in OpenFoam architecture

    Directory of Open Access Journals (Sweden)

    Panjwani Balram

    2014-01-01

    Full Text Available Wind energy is a good alternative to meet the energy requirements in some parts of the world; however the efficiency of wind farm depends on the optimized location of the wind turbines. Therefore a software tool that is capable of predicting the in-situ performance of multiple turbine installations in different operating conditions with reliable accuracy is needed. In present study wind farm layout design tool OffWindSolver is developed within the OpenFoam architecture. Unsteady PisoFoam solver is extended to account for wind turbines, where each turbine is modeled as a sink term in the momentum equation. Turbine modeling is based on actuator line concepts derived from SOWFA code, where each blade of the turbine is represented as a line. The loading on each line/blade of the turbine is estimated using the Blade Element Method (BEM. The inputs for the solver are tabulated airfoil aerodynamic data, dimension and height of the wind turbines, wind magnitude and direction. OffWindSolver is validated for a real wind farm – Lillgrund offshore facility in Sweden/Denmark operated by Vattenfall Vindkraft AB. Because of the scale of the computation, we only examine the effect of wind from one direction at one speed. In the absence of time dependent Marine Atmospheric Boundary Layer (MABL, a log wind profile with surface roughness of 0.04 is used at the inlet. The simulated power production of each turbine is compared to the field data and large-eddy simulation. The overall power of the wind farm is well predicted. The simulation shows the significant decreases of the power for those turbines that were in the wake.

  3. On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae

    Science.gov (United States)

    Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji

    2012-01-01

    Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  4. Automatic Identification of Closed-Loop Wind Turbine Dynamics via Genetic Programming

    Energy Technology Data Exchange (ETDEWEB)

    La Cava, William; Danai, Kourosh; Lackner, Matthew; Spector, Lee; Fleming, Paul; Wright, Alan

    2015-10-03

    Wind turbines are nonlinear systems that operate in turbulent environments. As such, their behavior is difficult to characterize accurately across a wide range of operating conditions by physically meaningful models. Customarily, data-based models of wind turbines are defined in 'black box' format, lacking in both conciseness and physical intelligibility. To address this deficiency, we identify models of a modern horizontal-axis wind turbine in symbolic form using a recently developed symbolic regression method. The method used relies on evolutionary multi-objective optimization to produce succinct dynamic models from operational data without 'a priori' knowledge of the system. We compare the produced models with models derived by other methods for their estimation capacity and evaluate the tradeoff between model intelligibility and accuracy. Several succinct models are found that predict wind turbine behavior as well as or better than more complex alternatives derived by other methods.

  5. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  6. On Practical tuning of Model Uncertainty in Wind Turbine Model Predictive Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    Model predictive control (MPC) has in previous works been applied on wind turbines with promising results. These results apply linear MPC, i.e., linear models linearized at different operational points depending on the wind speed. The linearized models are derived from a nonlinear first principles...... model of a wind turbine. In this paper, we investigate the impact of this approach on the performance of a wind turbine. In particular, we focus on the most non-linear operational ranges of a wind turbine. The MPC controller is designed for, tested, and evaluated at an industrial high fidelity wind...

  7. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    prediction. As a consequence, individual pitch feed-forward control action is generated by the controller, taking ”future” wind disturbance into account. Information about the estimated wind spatial distribution one blade experience can be used in the prediction model to better control the next passing blade......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  8. The Huygens Doppler Wind Experiment: Ten Years Ago

    Science.gov (United States)

    Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter

    2015-04-01

    The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.

  9. Patterns of alcohol use and consequences among empirically derived sexual minority subgroups.

    Science.gov (United States)

    Talley, Amelia E; Sher, Kenneth J; Steinley, Douglas; Wood, Phillip K; Littlefield, Andrew K

    2012-03-01

    The current study develops an empirically determined classification of sexual orientation developmental patterns based on participants' annual reports of self-identifications, sexual attractions, and sexual behaviors during the first 4 years of college. A secondary aim of the current work was to examine trajectories of alcohol involvement among identified subgroups. Data were drawn from a subsample of a longitudinal study of incoming first-time college students at a large, public university (n = 2,068). Longitudinal latent class analysis was used to classify sexual minority participants into empirically derived subgroups based on three self-reported facets of sexual orientation. Multivariate repeated-measures analyses were conducted to examine how trajectories of alcohol involvement varied by sexual orientation class membership. Four unique subclasses of sexual orientation developmental patterns were identified for males and females: one consistently exclusively heterosexual group and three sexual minority groups. Despite generally similar alcohol use patterns among subclasses, certain sexual minority subgroups reported elevated levels of alcohol-related negative consequences and maladaptive motivations for use throughout college compared with their exclusively heterosexual counterparts. Elevations in coping and conformity motivations for alcohol use were seen among those subgroups that also evidenced heightened negative alcohol-related consequences. Implications and limitations of the current work are discussed.

  10. The atmospheric transfer of pollution for a site with rapidly variable winds (low winds)

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1980-01-01

    This paper firstly describes the ICAIR 2 computer model which takes into account the variability in space and time of wind speed and direction in estimating the dispersion of a pollutant in the atmosphere. This is done by breaking down each release into a series of separate puffs which continuously respond to the meteorological conditions applying at the point in time to the positions in which they are located. The law governing the change in each of the puffs is tri-Gaussian and the standard deviations used are a function of the transfer time and the wind speed for transfer times of less than 2000 seconds and of the transfer time alone beyond this period. Finally, the concentration patterns at various points calculated using ICAIR 2 are compared with those obtained during a series of experiments in situ using tracers at low wind speeds (< 1 m/s)

  11. Wind Atlas for South Africa (WASA) Observational wind atlas for 10 met. stations in Northern, Western and Eastern Cape provinces

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Hansen, Jens Carsten; Kelly, Mark C.

    As part of the “Wind Atlas for South Africa” project, microscale modelling has been carried out for 10 meteorological stations in Northern, Western and Eastern Cape provinces. Wind speed and direction data from the ten 60-m masts have been analysed using the Wind Atlas Analysis and Application...... Program (WAsP 11). The windclimatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and rough-ness length maps constructed from SWBD data and Google Earth satellite imagery. Summaries are given...... of the data measured at the 10 masts, mainly for a 3-year reference period from October 2010 to September 2013. The main result of the microscale modelling is observational wind atlas data sets, which can be used for verification of the mesoscale modelling. In addition, the microscale modelling itself has...

  12. The necessary distance between large wind farms offshore - study

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Hoejstrup, J.; Nielsen, P.; Lybech Thoegersen, M.

    2004-08-01

    A review of state of the art wake and boundary layer wind farms was conducted. The predictions made for wind recovery distances (that might be used to estimate optimal placing of neighbouring wind farms) range between 2 and 14 km. In order to model the link between wakes and the boundary layer the new Storpark Analytical Model has been developed and evaluated. As it is often the need for offshore wind farms, the model handles a regular array-geometry with straight rows of wind turbines and equidistant spacing between units in each row and equidistant spacing between rows. Firstly, the case with the flow direction being parallel to rows in a rectangular geometry is considered by defining three flow regimes. Secondly, when the flow is not in line with the main rows, solutions are found for the patterns of wind turbine units emerging corresponding to each wind direction. The model complex will be adjusted and calibrated with measurements in the near future. (au)

  13. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Xiliang Zhang; Shuhua Gu; Wenqiang Liu; Lin Gan

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyses the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analysed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (Author)

  14. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Zhang Xiliang; Liu Wenqiang; Gu Shuhua; Gan Lin

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyzes the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analyzed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (author)

  15. Relationship between velocity gradients and magnetic turbulence in the solar wind

    International Nuclear Information System (INIS)

    Garrett, H.B.

    1974-01-01

    The correlations among the time derivative of the solar-wind velocity, the magnitude of the interplanetary magnetic field (IMF), and the IMF turbulence level are examined to test the idea that interaction between two colliding solar-wind streams can generate turbulence in the solar wind and the IMF. Data obtained by Explorer 33 on the solar wind and IMF are described, and the analysis techniques are outlined. The results indicate that the IMF turbulence level, as measured by the variance, is correlated with the existence of positive velocity gradients in the solar wind. It is noted that while the variance is an increasing function of the field magnitude, it is also independently correlated with the solar-wind velocity gradient

  16. Application of Tikhonov regularization method to wind retrieval from scatterometer data II: cyclone wind retrieval with consideration of rain

    International Nuclear Information System (INIS)

    Zhong Jian; Huang Si-Xun; Fei Jian-Fang; Du Hua-Dong; Zhang Liang

    2011-01-01

    According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called GMF+Rain). The GMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds

  18. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jialin Tang

    2017-11-01

    Full Text Available The identification of particular types of damage in wind turbine blades using acoustic emission (AE techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency−frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency−MARSE, and average frequency−peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope. The results show that these parameters are representative for the classification of the failure modes.

  19. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.

    Science.gov (United States)

    Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean

    2017-11-01

    The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.

  20. Reliability-based inspection planning of 20MW offshore wind turbine jacket

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2018-01-01

    This paper presents the application of a risk and reliability based inspection planning framework (RBI) for the InnWind 20MW reference wind turbine jacket sub-structure. A detailed fracture mechanics based fatigue crack growth model is developed and used as basis to derive optimal inspection plans...

  1. Contrasting the core beliefs regarding the effective implementation of wind power: an international study of stakeholder perspectives

    NARCIS (Netherlands)

    Wolsink, M.; Breukers, S.

    2010-01-01

    This paper analyses patterns in beliefs about the implementation of wind power as part of a geographical comparison of onshore wind power developments in the Netherlands, North-Rhine Westphalia and England. Q methodology is applied, in order to systematically compare the patterns in stakeholder

  2. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    Science.gov (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  3. On data processing required to derive mobility patterns from passively-generated mobile phone data

    Science.gov (United States)

    Wang, Feilong; Chen, Cynthia

    2018-01-01

    Passively-generated mobile phone data is emerging as a potential data source for transportation research and applications. Despite the large amount of studies based on the mobile phone data, only a few have reported the properties of such data, and documented how they have processed the data. In this paper, we describe two types of common mobile phone data: Call Details Record (CDR) data and sightings data, and propose a data processing framework and the associated algorithms to address two key issues associated with the sightings data: locational uncertainty and oscillation. We show the effectiveness of our proposed methods in addressing these two issues compared to the state of art algorithms in the field. We also demonstrate that without proper processing applied to the data, the statistical regularity of human mobility patterns—a key, significant trait identified for human mobility—is over-estimated. We hope this study will stimulate more studies in examining the properties of such data and developing methods to address them. Though not as glamorous as those directly deriving insights on mobility patterns (such as statistical regularity), understanding properties of such data and developing methods to address them is a fundamental research topic on which important insights are derived on mobility patterns. PMID:29398790

  4. Transient LES of an offshore wind turbine

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2017-12-01

    Full Text Available The estimation of the cost of energy of offshore wind farms has a high uncertainty, which is partly due to the lacking accuracy of information on wind conditions and wake losses inside of the farm. Wake models that aim to reduce the uncertainty by modeling the wake interaction of turbines for various wind conditions need to be validated with measurement data before they can be considered as a reliable estimator. In this paper a methodology that enables a direct comparison of modeled with measured flow data is evaluated. To create the simulation data, a model chain including a mesoscale model, a large-eddy-simulation (LES model and a wind turbine model is used. Different setups are compared to assess the capability of the method to reproduce the wind conditions at the hub height of current offshore wind turbines. The 2-day-long simulation of the ambient wind conditions and the wake simulation generally show good agreements with data from a met mast and lidar measurements, respectively. Wind fluctuations due to boundary layer turbulence and synoptic-scale motions are resolved with a lower representation of mesoscale fluctuations. Advanced metrics to describe the wake shape and development are derived from simulations and measurements but a quantitative comparison proves to be difficult due to the scarcity and the low sampling rate of the available measurement data. Due to the implementation of changing synoptic wind conditions in the LES, the methodology could also be beneficial for case studies of wind farm performance or wind farm control.

  5. Fatigue Load Sensitivity Based Optimal Active Power Dispatch For Wind Farms

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2017-01-01

    This paper proposes an optimal active power dispatch algorithm for wind farms based on Wind Turbine (WT) load sensitivity. The control objectives include tracking power references from the system operator and minimizing fatigue loads experienced by WTs. The sensitivity of WT fatigue loads to power...... sensitivity are derived, which significantly improves the computation efficiency of the local WT controller. The proposed algorithm can be implemented in different active power control schemes. Case studies were conducted with a wind farm under balance control for both low and high wind conditions...

  6. 75 FR 23263 - Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC...

    Science.gov (United States)

    2010-05-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-62-000] Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC; Alta Wind VI, LLC; Alta Wind VII, LLC; Alta Wind VIII, LLC; Alta Windpower Development, LLC; TGP Development Company, LLC...

  7. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Science.gov (United States)

    2012-05-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-68-000] Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC, Alta Wind XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, TGP Development Company, LLC...

  8. Soaring migratory birds avoid wind farm in the Isthmus of Tehuantepec, southern Mexico.

    Science.gov (United States)

    Villegas-Patraca, Rafael; Cabrera-Cruz, Sergio A; Herrera-Alsina, Leonel

    2014-01-01

    The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura) and Swainson's Hawks (Buteo swainsoni). We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region.

  9. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  10. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  11. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  12. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique

    2014-12-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  13. The wind sea and swell waves climate in the Nordic seas

    Science.gov (United States)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  14. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2014-01-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen's and also Ardhuin's wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  15. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  16. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2007-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...... with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non...

  17. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2008-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...... with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non...

  18. Empirically derived dietary patterns and incident type 2 diabetes mellitus: a systematic review and meta-analysis on prospective observational studies.

    Science.gov (United States)

    Maghsoudi, Zahra; Ghiasvand, Reza; Salehi-Abargouei, Amin

    2016-02-01

    To systematically review prospective cohort studies about the association between dietary patterns and type 2 diabetes mellitus (T2DM) incidence, and to quantify the effects using a meta-analysis. Databases such as PubMed, ISI Web of Science, SCOPUS and Google Scholar were searched up to 15 January 2015. Cohort studies which tried to examine the association between empirically derived dietary patterns and incident T2DM were selected. The relative risks (RR) and their 95 % confidence intervals for diabetes among participants with highest v. lowest adherence to derived dietary patterns were incorporated into meta-analysis using random-effects models. Ten studies (n 404 528) were enrolled in the systematic review and meta-analysis; our analysis revealed that adherence to the 'healthy' dietary patterns significantly reduced the risk of T2DM (RR=0·86; 95 % CI 0·82, 0·90), while the 'unhealthy' dietary patterns adversely affected diabetes risk (RR=1·30; 95 % CI 1·18, 1·43). Subgroup analysis showed that unhealthy dietary patterns in which foods with high phytochemical content were also loaded did not significantly increase T2DM risk (RR=1·06; 95 % CI 0·87, 1·30). 'Healthy' dietary patterns containing vegetables, fruits and whole grains can lower diabetes risk by 14 %. Consuming higher amounts of red and processed meats, high-fat dairy and refined grains in the context of 'unhealthy' dietary patterns will increase diabetes risk by 30 %; while including foods with high phytochemical content in these patterns can modify this effect.

  19. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    Science.gov (United States)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  20. ζ Oph and the weak-wind problem

    Science.gov (United States)

    Gvaramadze, V. V.; Langer, N.; Mackey, J.

    2012-11-01

    Mass-loss rate, ?, is one of the key parameters affecting evolution and observational manifestations of massive stars and their impact on the ambient medium. Despite its importance, there is a factor of ˜100 discrepancy between empirical and theoretical ? of late-type O dwarfs, the so-called weak-wind problem. In this Letter, we propose a simple novel method to constrain ? of runaway massive stars through observation of their bow shocks and Strömgren spheres, which might be of decisive importance for resolving the weak-wind problem. Using this method, we found that ? of the well-known runaway O9.5 V star ζ Oph is more than an order of magnitude higher than that derived from ultraviolet (UV) line fitting and is by a factor of 6-7 lower than those based on the theoretical recipe by Vink et al. and the Hα line. The discrepancy between ? derived by our method and that based on UV lines would be even more severe if the stellar wind is clumpy. At the same time, our estimate of ? agrees with that predicted by the moving reversing layer theory by Lucy.

  1. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.

    Science.gov (United States)

    Christel, Isadora; Certain, Grégoire; Cama, Albert; Vieites, David R; Ferrer, Xavier

    2013-01-15

    The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIAs) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor's power law coupled with mixed effect models, the spatio-temporal variability of species' distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Accounting for the effect of turbulence on wind turbine power curves

    DEFF Research Database (Denmark)

    Clifton, A.; Wagner, Rozenn

    2014-01-01

    in turbulence; the turbulence renormalization method cannot account for changes in shear other than by using the the equivalent wind speed, which is derived from wind speed data at multiple heights in the rotor disk. The machine learning method is best able to predict the power as conditions change, and could...

  3. Evaluation of wind flow with a nacelle-mounted continuous-wave lidar

    DEFF Research Database (Denmark)

    Medley, John; Slinger, Chris; Barker, Will

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  4. Data Mining Methods to Generate Severe Wind Gust Models

    Directory of Open Access Journals (Sweden)

    Subana Shanmuganathan

    2014-01-01

    Full Text Available Gaining knowledge on weather patterns, trends and the influence of their extremes on various crop production yields and quality continues to be a quest by scientists, agriculturists, and managers. Precise and timely information aids decision-making, which is widely accepted as intrinsically necessary for increased production and improved quality. Studies in this research domain, especially those related to data mining and interpretation are being carried out by the authors and their colleagues. Some of this work that relates to data definition, description, analysis, and modelling is described in this paper. This includes studies that have evaluated extreme dry/wet weather events against reported yield at different scales in general. They indicate the effects of weather extremes such as prolonged high temperatures, heavy rainfall, and severe wind gusts. Occurrences of these events are among the main weather extremes that impact on many crops worldwide. Wind gusts are difficult to anticipate due to their rapid manifestation and yet can have catastrophic effects on crops and buildings. This paper examines the use of data mining methods to reveal patterns in the weather conditions, such as time of the day, month of the year, wind direction, speed, and severity using a data set from a single location. Case study data is used to provide examples of how the methods used can elicit meaningful information and depict it in a fashion usable for management decision making. Historical weather data acquired between 2008 and 2012 has been used for this study from telemetry devices installed in a vineyard in the north of New Zealand. The results show that using data mining techniques and the local weather conditions, such as relative pressure, temperature, wind direction and speed recorded at irregular intervals, can produce new knowledge relating to wind gust patterns for vineyard management decision making.

  5. Economic feasibility of developing wind turbines in Aligoodarz, Iran

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Mostafaeipour, Ali

    2013-01-01

    Highlights: • Three hourly long term measured wind speed data from 2005 to 2009 for city of Aligoodarz in Iran was analyzed. • Wind power density and wind energy density of the region were estimated using Weibull distribution. • Performance of six different wind turbine models were analyzed. • Economic evaluation was performed and installing of E-3120 (50 kW) model turbine was suggested. - Abstract: This study evaluates the economic feasibility of electricity generation using wind turbines in city of Aligoodarz situated in the west part of Iran. For this purpose, the wind energy potential and its characteristics were assessed in terms of diurnal, monthly and annual analysis using five years measured wind speed data from 2005 to 2009 at 10 m height. The analysis results specified a nearly stable wind pattern in different hours and months of the year which demonstrated more suitability of the region for wind energy harnessing to meet the electricity demand in all time intervals throughout the year. According to Pacific Northwest Laboratory (PNL) wind power classification, the wind resource in Aligoodarz falls in class 3 and the location was recognized as a moderate location for wind energy development. The economic feasibility of six different wind turbines with rated powers ranging from 20 to 150 kW was evaluated. Among all turbines examined, the E-3120 wind turbine was introduced as the most attractive option for installation

  6. Layered Multi-mode Optimal Control Strategy for Multi-MW Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    KONG Yi-gang; WANG Zhi-xin

    2008-01-01

    The control strategy is one of the most important renewable technology, and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch (VS-VP) technology. The main objective of adopting a VS-VP technology is to improve the fast response speed and capture maximum energy. But the power generated by wind turbine changes rapidly because of the centinuous fluctuation of wind speed and direction. At the same time, wind energy conversion systems are of high order, time delays and strong nonlinear characteristics because of many uncertain factors. Based on analyzing the all dynamic processes of wind turbine, a kind of layered multi-mode optimal control strategy is presented which is that three control strategies: bang-bang, fuzzy and adaptive proportienai integral derivative (PID) are adopted according to different stages and expected performance of wind turbine to capture optimum wind power, compensate the nonlinearity and improve the wind turbine performance at low, rated and high wind speed.

  7. An Improved Car-Following Model Accounting for Impact of Strong Wind

    Directory of Open Access Journals (Sweden)

    Dawei Liu

    2017-01-01

    Full Text Available In order to investigate the effect of strong wind on dynamic characteristic of traffic flow, an improved car-following model based on the full velocity difference model is developed in this paper. Wind force is introduced as the influence factor of car-following behavior. Among three components of wind force, lift force and side force are taken into account. The linear stability analysis is carried out and the stability condition of the newly developed model is derived. Numerical analysis is made to explore the effect of strong wind on spatial-time evolution of a small perturbation. The results show that the strong wind can significantly affect the stability of traffic flow. Driving safety in strong wind is also studied by comparing the lateral force under different wind speeds with the side friction of vehicles. Finally, the fuel consumption of vehicle in strong wind condition is explored and the results show that the fuel consumption decreased with the increase of wind speed.

  8. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  9. Optical measurements of winds in the lower thermosphere

    International Nuclear Information System (INIS)

    Wiens, R.H.; Shepherd, G.G.; Gault, W.A.; Kosteniuk, P.R.

    1988-01-01

    WAMDII, the wide-angle Michelson Doppler imaging interferometer, was used to measure the neutral wind in the lower thermosphere by the Doppler shift of the O I 557-nm line. Observations were made at Saskatoon (60.5 degree N invariant) around the spring equinox of 1985 with WAMDII coupled to an all-sky lens. With dopplergrams averaged over 3 to 30 min, no evidence was found for persistent highly localized winds on either of the two nights studied, one viewing only aurora and one viewing only airglow. The nocturnal variation was determined for both nights using average horizontal wind for the whole all-sky image. The pattern for the auroral case shows winds parallel to the aurora orientation in the evening but substantial crosswinds near midnight. High latitude general circulation models seem to represent this case better than local auroral generation models. The airglow case showed eastward winds in the morning sector

  10. The impact of high penetration of wind energy on the vulnerability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    EL-Arroudi, K.; Joos, G.; McGillis, D. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper examined the impact of higher penetrations of wind energy installations on the vulnerability of power systems. Vulnerability was defined in terms of migration of system states based on the contingencies that might occur. It was noted that both the penetration levels and physical locations of wind energy installations in power systems have a strong influence on system vulnerability. A methodology was proposed to analyze the impacts of wind energy on power system vulnerability through the construction of a decision-tree classification model at the point of common coupling (PCC) bus. The aim of the model was to determine planning criteria for wind power interconnection and to ensure that design concepts are adequate and secure. The model was built by simulating a pre-specified range of system contingencies to generate patterns at the PCC bus. Actual measurements were then compared against known patterns, from which the stress levels of disturbances were estimated. Stress levels were defined in terms of the performance level measures delineated by National Electricity Reliability Council (NERC) planning standards. The methodology is a non-parametric learning technique able to produce classifiers about given problems in order to deduce information from new, unobserved cases. A case study consisting of a 4-machine system with a total generation of 2295 MW was presented where wind-based generation accounted for 450 MW. The decision-tree classifier was constructed by simulating 120 events generated by combinations of contingencies; seasonal wind patterns and different wind production levels per season. Results showed that with a knowledge of the total penetration level and location of wind power installations, it is possible to estimate the effect of wind energy on the vulnerability of a power system. 12 refs., 6 figs.

  11. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Moné, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joseph [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-27

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind plants in the United States. Data and results detailed here are derived from 2015 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. It is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the industry. This publication reflects the fifth installment of this annual report.

  12. Simulation of wake effects between two wind farms

    International Nuclear Information System (INIS)

    Hansen, K S; Réthoré, P-E; Peña, A; Ott, S; Van der Laan, M P; Volker, P; Palma, J; Hevia, B G; Prospathopoulos, J; Schepers, G; Palomares, A

    2015-01-01

    SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm. (paper)

  13. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  14. Energy from the wind. [For United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, P J

    1977-01-01

    An assessment is made of the amount of power/energy in the wind with emphasis on calculations for the United Kingdom. Windmills must be deployed over a given area in a pattern that takes account of the distribution of directions from which the wind can be expected. In the U.K., one such array can be provided in the Western Isles. The author recommends deploying such an array in the shallow waters of the southern North Sea. He concludes that deploying such an array in the shallow offshore region would have the potential for providing a very significant part of the total electricity requirements. He also concludes that such a wind-power system appears competitive with nuclear power systems. 8 references. (MCW)

  15. Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island

    Directory of Open Access Journals (Sweden)

    B. V. Chubarenko

    2000-06-01

    Full Text Available We study how a coastal obstruction (peninsula or coastal island affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.Key words: Oceanography: general (limnology; numerical modeling - Oceanography: physical (currents

  16. Reduction of horizontal wind speed in a boundary layer with obstacles

    DEFF Research Database (Denmark)

    Emeis, S.; Frandsen, S.

    1993-01-01

    The reduction of horizontal wind speed at hub height in an infinite cluster of wind turbines is computed from a balance between a loss of horizontal momentum due to the drag and replenishment from above by turbulent fluxes. This reduction is derived without assumptions concerning the vertical wind...... profile above or below hub height, only some basic assumptions on turbulent exchange have been made. Two applications of the result are presented, one considering wind turbines and one pressure drag on orographic obstacles in the atmospheric boundary layer. Both applications are basically governed...... by the same kind of momentum balance....

  17. Soaring migratory birds avoid wind farm in the Isthmus of Tehuantepec, southern Mexico.

    Directory of Open Access Journals (Sweden)

    Rafael Villegas-Patraca

    Full Text Available The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura and Swainson's Hawks (Buteo swainsoni. We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region.

  18. Soaring Migratory Birds Avoid Wind Farm in the Isthmus of Tehuantepec, Southern Mexico

    Science.gov (United States)

    Villegas-Patraca, Rafael; Cabrera-Cruz, Sergio A.; Herrera-Alsina, Leonel

    2014-01-01

    The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura) and Swainson's Hawks (Buteo swainsoni). We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region. PMID:24647442

  19. Tuning up mind's pattern to nature's own idea: Eddington's early twenties case for variational derivatives

    Science.gov (United States)

    Smadja, Ivahn

    This paper sets out to show how Eddington's early twenties case for variational derivatives significantly bears witness to a steady and consistent shift in focus from a resolute striving for objectivity towards "selective subjectivism" and structuralism. While framing his so-called "Hamiltonian derivatives" along the lines of previously available variational methods allowing to derive gravitational field equations from an action principle, Eddington assigned them a theoretical function of his own devising in The Mathematical Theory of Relativity (1923). I make clear that two stages should be marked out in Eddington's train of thought if the meaning of such variational derivatives is to be adequately assessed. As far as they were originally intended to embody the mind's collusion with nature by linking atomicity of matter with atomicity of action, variational derivatives were at first assigned a dual role requiring of them not only to express mind's craving for permanence but also to tune up mind's privileged pattern to "Nature's own idea". Whereas at a later stage, as affine field theory would provide a framework for world-building, such "Hamiltonian differentiation" would grow out of tune through gauge-invariance and, by disregarding how mathematical theory might precisely come into contact with actual world, would be turned into a mere heuristic device for structural knowledge.

  20. Drivers and seasonal predictability of extreme wind speeds in the ECMWF System 4 and a statistical model

    Science.gov (United States)

    Walz, M. A.; Donat, M.; Leckebusch, G. C.

    2017-12-01

    As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.

  1. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  2. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  3. Wind reduction patterns around isolated biomass for wind erosion control in a desertified area of Central Sudan

    NARCIS (Netherlands)

    Nasr Al-amin, N.K.; Stigter, C.J.; El-Tayeb Mohammed, A.

    2010-01-01

    The aim of this study was to assess the effectiveness of sparse vegetation, feature common in arid zone, to reduce wind force (velocity) and hence protect the surface and regions downwind from drifting sand and their consequences. Respectively 4 (with heights h of 4, 3.2, 2 and 1.66 m), 2 (with h of

  4. Spatial patterns of primary productivity derived from the Dynamic Habitat Indices predict patterns of species richness and distributions in the tropics

    Science.gov (United States)

    Suttidate, Naparat

    Humans are changing the Earth's ecosystems, which has profound consequences for biodiversity. To understand how species respond to these changes, biodiversity science requires accurate assessments of biodiversity. However, biodiversity assessments are still limited in tropical regions. The Dynamic Habitat Indices (DHIs), derived from satellite data, summarize dynamic patterns of annual primary productivity: (a) cumulative annual productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity. The DHIs have been successfully used in temperate regions, but not yet in the tropics. My goal was to evaluate the importance of primary productivity measured via the DHIs for assessing patterns of species richness and distributions in Thailand. First, I assessed the relationships between the DHIs and tropical bird species richness. I also evaluated the complementarity of the DHIs and topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining bird species richness. I found that among three DHIs, cumulative annual productivity was the most important factor in explaining bird species richness and that the DHIs outperformed other environmental variables. Second, I developed texture measures derive from DHI cumulative annual productivity, and compared them to habitat composition and fragmentation as predictors of tropical forest bird distributions. I found that adding texture measures to habitat composition and fragmentation models improved the prediction of tropical bird distributions, especially area- and edge-sensitive tropical forest bird species. Third, I predicted the effects of trophic interactions between primary productivity, prey, and predators in relation to habitat connectivity for Indochinese tigers (Panthera tigris). I found that including trophic interactions improved habitat suitability models for tigers. However, tiger habitat is highly fragmented with few dispersal corridors. I also identified

  5. Substitution pattern elucidation of hydroxypropyl Pinus pinaster (Ait.) bark polyflavonoid derivatives by ESI(-)-MS/MS.

    Science.gov (United States)

    García Marrero, Danny E; Glasser, Wolfgang G; Pizzi, Antonio; Paczkowski, Sebastian; Laborie, Marie-Pierre G

    2014-10-01

    The structure of condensed tannins (CTs) from Pinus pinaster bark extract and their hydroxypropylated derivatives with four degrees of substitution (DS 1, 2, 3 and 4) has been characterized for the first time using negative-ion mode electrospray ionization tandem mass spectrometry (ESI(-)-MS/MS). The results showed that P. pinaster bark CTs possess structural homogeneity in terms of monomeric units (C(15), catechin). The oligomer sizes were detected to be dimers to heptamers. The derivatives showed typical phenyl-propyl ether mass fragmentation by substituent elimination (58 amu) and inherent C(15) flavonoid fissions. The relative abundance of the product ions revealed a preferential triple, tetra-/penta- and octa- hydroxypropylation substitution pattern in the monomer, dimer and trimer derivatives, respectively. A defined order of -OH reactivity towards propylene oxide was established by means of multistage experiments (A-ring ≥ B-ring > C-ring). A high structural heterogeneity of the modified oligomers was detected. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Observational Constraints on Ephemeral Wind Gusts that MobilizeSoil Dust Aerosols

    Science.gov (United States)

    Miller, R. L.; Leung, M. F.

    2017-12-01

    Dust aerosol models resolve the planetary scale winds that disperse particles throughout the globe, but the winds raising dust are often organized on smaller scales that are below the resolution of the model. These winds, including ephemeral wind gusts associated with boundary layer mixing, are typically parameterized. For example, gusts by dry convective eddies are related to the sensible heat flux. What remains is to constrain the magnitude of the wind gusts using boundary layer measurements, so that dust emission has the correct sensitivity to these gusts, relative to the resolved wind. Here, we use a year of ARM measurements with high temporal resolution from Niamey, Niger in the Sahel to evaluate our parameterization. This evaluation is important for dust aerosol models that use 'nudging' to reproduce observed transport patterns.

  7. The assessment and rating of noise from wind farms. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    The findings of a Working Group on Wind Turbine Noise in the United Kingdom are presented. The broad topics covered are: the philosophy and practice of noise emission control; description of noise emission from wind turbines; a review of current practice and guidance; a survey of public reaction to noise from wind farms; recommendations on noise limits; noise monitoring; the planning obligation. In deriving suggested noise limits, a reasonable degree of protection to wind farm neighbours has been sought which will not place unreasonable restrictions and undue added costs and administrative burdens on wind farm developers or local authorities. Examples of practice in the control of noise emissions at wind farms in the United Kingdom and the USA are assembled in an Appendix. (29 figures; 13 tables; 32 references) (UK)

  8. Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft

    Science.gov (United States)

    Smith, Mark S.

    1999-01-01

    Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.

  9. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  10. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Winstroth, J; Ernst, B; Seume, J R; Schoen, L

    2014-01-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations

  11. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    Science.gov (United States)

    Winstroth, J.; Schoen, L.; Ernst, B.; Seume, J. R.

    2014-06-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations.

  12. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...

  13. Auctioning wind power sites when environmental quality matters

    International Nuclear Information System (INIS)

    Ciaccia, Gervasio; Doni, Nicola; Fontini, Fulvio

    2010-01-01

    In this work, we propose an index that allows a public authority to order different projects for the construction of onshore wind energy plants and that explicitly takes into account their environmental quality. Wind farm projects are defined as vectors of four attributes: the technical properties of each project, its social impact, its environmental impact, and the share of earnings that proponents offer to the collectivity in compensation for the negative externalities of the wind plant. We define an absolute index that allows the ordering of different proposals and evaluation of the acceptability of each project, providing the monetary value of each point and inducing a truthful revelation of firms' private information. Moreover, we calibrate the index on the basis of data referring to wind plants in Southern Italy and derive the corresponding iso-scoring curves. (author)

  14. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  15. Acoustic and wind speed data analysis as an environmental issue

    International Nuclear Information System (INIS)

    Whitson, R.J.; MacKinnon, A.

    1995-01-01

    This paper examines how the output from a cup anemometer, used for wind speed measurement, can be recorded on magnetic tape and analysed using instrumentation normally employed to measure acoustic data. The purpose of this being to allow true simultaneous analysis of acoustic and wind speed data. NEL's NWTC (National Wind Turbine Centre) Anemometer Calibration Facility is used to compare pulsed and analogue outputs from a typical anemometer to the data obtained from a pitot/static tube for a range of different wind speeds. The usefulness of 1/24- and 1/12-octave analysis is examined and accuracy limits are derived for the 'acoustic' approach to wind speed measurement. The allowable positions for anemometer locations are also discussed with reference to currently available standards and recommended practices. (Author)

  16. An overview of wind power forecast types and their use in large-scale integration of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov [ENFOR A/S, Horslholm (Denmark); Madsen, Henrik [Technical Univ. of Denmark, Lyngby (Denmark). Informatics and Mathematical Modelling

    2011-07-01

    Wind power forecast characteristics are described and it is shown how analyses of actual decision problems can be used to derive the forecast characteristics important in a given situation. Generally, characteristics related to resolution in space and time, together with the required maximal forecast horizon are easily identified. However, identification of forecast characteristics required for optimal decision support requires a more thorough investigation, which is illustrated by examples. Generally, quantile forecasts of the future wind power production are required, but the transformation of a quantile forecast into an actual decisions is highly dependent on the precise formulation of the decision problem. Furthermore, when consequences of neighbouring time steps interact, quantile forecasts are not sufficient. It is argued that a general solution in such cases is to base the decision on reliable scenarios of the future wind power production. (orig.)

  17. Wind energy technology development and diffusion. A case study of Inner Mongolia, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiliang; Gu Shuhua; Liu Wenqiang; Lin Gan

    1999-09-01

    This report provides an overview of the diffusion of small household wind generators and development of wind farms in Inner Mongolia, China, with the emphasis on policy and institutional perspectives. It analyses the patterns of wind technology diffusion within social, economic, and environmental contexts and relates the diffusion of wind technology to institutional framework building and international investment and technology transfer. By examining the economics of windfarm development and analysing the role of alternative policy instruments, the major constraints of wind technology development are analysed and relevant policy recommendations are given. 12 refs., 3 figs., 9 tabs.

  18. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  19. Development and validation of a new fallout transport method using variable spectral winds

    International Nuclear Information System (INIS)

    Hopkins, A.T.

    1984-01-01

    A new method was developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using spectral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud

  20. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mikkelsen, Torben; Hansen, Kasper Hjorth

    spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009....... In this report, information is given regarding the experimental setup and the lidar’s operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar’s pointing direction, the spinner axis’s vertical tilt...... and the wind turbine’s yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar’s instantaneous...

  1. Spatial mapping and attribution of Wyoming wind turbines, 2012

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2014-01-01

    These data represent locations of wind turbines found within Wyoming as of August 2012. We assigned each wind turbine to a wind farm and, in these data, provide information about each turbine’s potential megawatt output, rotor diameter, hub height, rotor height, the status of the land ownership where the turbine exists, the county each turbine is located in, wind farm power capacity, the number of units currently associated with each wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some of the attributes are estimates based on the information we found via the American Wind Energy Association and other on-line reports. The locations are derived from National Agriculture Imagery Program (2009 and 2012) true color aerial photographs and have a positional accuracy of approximately +/-5 meters. These data will provide a planning tool for wildlife- and habitat-related projects underway at the U.S. Geological Survey’s Fort Collins Science Center and other government and non-government organizations. Specifically, we will use these data to support quantifying disturbances of the landscape as related to wind energy as well as to quantify indirect disturbances to flora and fauna. This data set represents an update to a previous version by O’Donnell and Fancher (2010).

  2. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  3. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  4. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  5. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  6. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  7. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  8. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  9. Comparison of high-latitude thermospheric meridional winds II: combined FPI, radar and model climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Aruliah, A.; Mueller-Wodarg, I.C.F.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4 N, 20.4 E) has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM) (Hedin et al., 1988) and the numerical coupled thermosphere and ionosphere model (CTIM) are compared to the measured behaviour at kiruna, as a single site example. The empirical International Reference Ionosphere (IRI) model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using fabry-perot interferometers (FPI), together with 2 separate techniques applied to the European incoherent scatter radar (EISCAT) database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR) derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. (orig.)

  10. Wind noise within and across behind-the-ear and miniature behind-the-ear hearing aids.

    Science.gov (United States)

    Zakis, Justin A; Hawkins, Daniel J

    2015-10-01

    Previous studies investigated wind noise with Behind-The-Ear (BTE) hearing aids, but not the more common mini-BTE style of device, which typically has a smaller shell and microphones located more deeply behind the pinna. The current study investigated wind-noise levels across one BTE and two mini-BTE devices, and between the front and rear omni-directional microphones within devices. Levels were measured at two wind speeds (3 and 6 m/s) and 36 wind azimuths (10° increments). The pattern of wind-noise level versus azimuth was similar across mini-BTE devices, and differed for the BTE device. However, mean levels were markedly different across mini-BTE devices, and could be higher, lower, or similar to those of the BTE device. For within-device level differences, the pattern and mean across azimuth were similar across mini-BTE devices, and differed for the BTE device. Wind noise had the potential to slightly or severely reduce speech intelligibility at 3 or 6 m/s, respectively, across all devices.

  11. Neural Network Classifiers for Local Wind Prediction.

    Science.gov (United States)

    Kretzschmar, Ralf; Eckert, Pierre; Cattani, Daniel; Eggimann, Fritz

    2004-05-01

    This paper evaluates the quality of neural network classifiers for wind speed and wind gust prediction with prediction lead times between +1 and +24 h. The predictions were realized based on local time series and model data. The selection of appropriate input features was initiated by time series analysis and completed by empirical comparison of neural network classifiers trained on several choices of input features. The selected input features involved day time, yearday, features from a single wind observation device at the site of interest, and features derived from model data. The quality of the resulting classifiers was benchmarked against persistence for two different sites in Switzerland. The neural network classifiers exhibited superior quality when compared with persistence judged on a specific performance measure, hit and false-alarm rates.

  12. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  13. The WRF model forecast-derived low-level wind shear climatology over the United States great plains

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B. [Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Basu, S. [Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX (United States)

    2010-07-01

    For wind resource assessment projects, it is common practice to use a power-law relationship (U(z) {proportional_to} z{sup {alpha}}) and a fixed shear exponent ({alpha} = 1/7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1/7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model - the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer. (author)

  14. Wind erosion on Deliblato (the largest European continental sandy terrain) studied using 210Pbex and 137Cs measurements

    International Nuclear Information System (INIS)

    Krmar, M.; Hansman, J.; Todorovic, N.; Mihailovic, A.; Vucinic-Vasic, M.; Savic, R.

    2015-01-01

    The objective of this paper is to estimate the difference in wind erosion between two extreme situations: sandy soil permanently covered by grass and the nearby frequently ploughed area highly susceptible to wind erosion. The spatial pattern of soil erosion rate was investigated using 137 Cs and 210 Pb ex tracing technique. The spatial pattern of erosion rate obtained within the studied area reveal influence of topography as well as direction of prevailing winds on mobilization and transport of the soil particles. (author)

  15. Centennial eolian cyclicity in the Great Plains, USA: A dominant pattern of wind transport over the past 4000 years?

    Science.gov (United States)

    Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd

    2010-01-01

    Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link

  16. Airfoil characteristics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C; Fuglsang, P; Soerensen, N N; Aagaard Madsen, H [Risoe National Lab., Roskilde (Denmark); Shen, Wen Zhong; Noerkaer Soerensen, J [Technical Univ. of Denmark, Lyngby (Denmark)

    1999-03-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are based on four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotor with LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall at the tip is low and that it is high at the root compared to 2D airfoil characteristics. The use of these characteristics in aeroelastic calculations shows a good agreement in power and flap moments with measurements. Furthermore, a fatigue analysis shows a reduction in the loads of up to 15 % compared to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFD computations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived that can be used to calculate mean values of power and loads. The lift in stall at the tip is low and at the root it is high compared to 2D airfoil characteristics. In particular the power curves were well calculated by use of the optimised airfoil characteristics. In the quasi-3D CFD computations, the airfoil characteristics are derived directly. This Navier-Stokes model takes into account rotational and 3D effects. The model enables the study of the rotational effect of a rotor blade at computing costs similar to what is typical for 2D airfoil calculations. The depicted results show that the model is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil

  17. Estimating generation costs for wind power production in France

    International Nuclear Information System (INIS)

    Benazet, J.F.; Probert, E.J.

    1997-01-01

    Wind power is being exploited in several European countries as one of a possible number of sources of renewable energy. However, in France there is a heavy reliance on nuclear and hydro-electric power and the potential of wind power as part of the energy mix has been virtually ignored. One of the reasons advanced for the under utilisation of this technology is that it is financially unattractive. In this paper the contribution which wind power could potentially make to overall power production levels in France is examined. A cost estimate model is developed which derives electricity generation costs and determines realistic levels of production for the future. The model automatically determines the associated number of wind turbines required and the geographical areas in which they should be located. (author)

  18. 2016 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Stehly, Tyler J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-29

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind power plants in the United States. Data and results detailed here are derived from 2016 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. This report is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the country. This publication represents the sixth installment of this annual report.

  19. Characteristics for wind energy and wind turbines by considering vertical wind shear

    Institute of Scientific and Technical Information of China (English)

    郑玉巧; 赵荣珍

    2015-01-01

    The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.

  20. Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: the HELIUS study

    NARCIS (Netherlands)

    Vermeulen, E.; Stronks, K.; Visser, M.; Brouwer, I. A.; Snijder, M. B.; Mocking, R. J. T.; Derks, E. M.; Schene, A. H.; Nicolaou, M.

    2017-01-01

    BACKGROUND/OBJECTIVES: To investigate the association of dietary patterns derived by reduced rank regression (RRR) with depressive symptoms in a multi-ethnic population. SUBJECTS/METHODS: Cross-sectional data from the HELIUS study were used. In total, 4967 men and women (18-70 years) of Dutch,

  1. Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: the HELIUS study

    NARCIS (Netherlands)

    Vermeulen, E.; Stronks, K.; Visser, M.; Brouwer, I. A.; Snijder, M. B.; Mocking, R. J.T.; Derks, E. M.; Schene, A. H.; Nicolaou, M.

    BACKGROUND/OBJECTIVES: To investigate the association of dietary patterns derived by reduced rank regression (RRR) with depressive symptoms in a multi-ethnic population. SUBJECTS/METHODS: Cross-sectional data from the HELIUS study were used. In total, 4967 men and women (18-70 years) of Dutch,

  2. Taylor dispersion in wind-driven current

    Science.gov (United States)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  3. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil

    NARCIS (Netherlands)

    Martins Bento, Celia; Goossens, Dirk; Rezaei, Mahrooz; Riksen, M.J.P.M.; Mol, J.G.J.; Ritsema, C.J.; Geissen, V.

    2017-01-01

    Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural

  4. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  5. A positron emission tomography study of wind-up pain in chronic postherniotomy pain

    DEFF Research Database (Denmark)

    Kupers, Ron; Lonsdale, Markus Georg; Aasvang, Eske Kvanner

    2011-01-01

    -induced wind-up pain in neuropathic pain patients. We therefore used positron emission tomography (PET) to investigate the cerebral response pattern of mechanical wind-up pain in a homogenous group of 10 neuropathic pain patients with long-standing postherniotomy pain in the groin area. Patients were scanned...

  6. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  7. Optimum sizing of wind-battery systems incorporating resource uncertainty

    International Nuclear Information System (INIS)

    Roy, Anindita; Kedare, Shireesh B.; Bandyopadhyay, Santanu

    2010-01-01

    The inherent uncertainty of the wind is a major impediment for successful implementation of wind based power generation technology. A methodology has been proposed in this paper to incorporate wind speed uncertainty in sizing wind-battery system for isolated applications. The uncertainty associated with the wind speed is incorporated using chance constraint programming approach. For a pre-specified reliability requirement, a deterministic equivalent energy balance equation may be derived from the chance constraint that allows time series simulation of the entire system. This results in a generation of the entire set of feasible design options, satisfying different system level constraints, on a battery capacity vs. generator rating diagram, also known as the design space. The proposed methodology highlights the trade-offs between the wind turbine rating, rotor diameter and the battery size for a given reliability of power supply. The optimum configuration is chosen on the basis of the minimum cost of energy (US$/kWh). It is shown with the help of illustrative examples that the proposed methodology is generic and flexible to incorporate alternate sub-component models. (author)

  8. Wind turbine power tracking using an improved multimodel quadratic approach.

    Science.gov (United States)

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  10. Peak Wind Tool for General Forecasting

    Science.gov (United States)

    Barrett, Joe H., III

    2010-01-01

    again by six years, from October 1996 to April 2002, by interpolating 1000-ft sounding data to 100-ft increments. The Phase II developmental data set included observations for the cool season months of October 1996 to February 2007. The AMU calculated 68 candidate predictors from the XMR soundings, to include 19 stability parameters, 48 wind speed parameters and one wind shear parameter. Each day in the data set was stratified by synoptic weather pattern, low-level wind direction, precipitation and Richardson Number, for a total of 60 stratification methods. Linear regression equations, using the 68 predictors and 60 stratification methods, were created for the tool's three forecast parameters: the highest peak wind speed of the day (PWSD), 5-minute average speed at the same time (A WSD), and timing of the PWSD. For PWSD and A WSD, 30 Phase II methods were selected for evaluation in the verification data set. For timing of the PWSD, 12 Phase\\I methods were selected for evaluation. The verification data set contained observations for the cool season months of March 2007 to April 2009. The data set was used to compare the Phase I and II forecast methods to climatology, model forecast winds and wind advisories issued by the 45 WS. The model forecast winds were derived from the 0000 and 1200 UTC runs of the 12-km North American Mesoscale (MesoNAM) model. The forecast methods that performed the best in the verification data set were selected for the Phase II version of the tool. For PWSD and A WSD, linear regression equations based on MesoNAM forecasts performed significantly better than the Phase I and II methods. For timing of the PWSD, none of the methods performed significantly bener than climatology. The AMU then developed the Microsoft Excel and MIDDS GUls. The GUIs display the forecasts for PWSD, AWSD and the probability the PWSD will meet or exceed 25 kt, 35 kt and 50 kt. Since none of the prediction methods for timing of the PWSD performed significantly better

  11. Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island

    Directory of Open Access Journals (Sweden)

    B. V. Chubarenko

    Full Text Available We study how a coastal obstruction (peninsula or coastal island affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.

    Key words: Oceanography: general (limnology; numerical modeling - Oceanography: physical (currents

  12. Black Sea's wind wave parameters derived from numerical simulations driven by NCEP/NCAR and NCEP CFSR reanalyses

    Science.gov (United States)

    Gippius, Fedor; Myslenkov, Stanislav; Stoliarova, Elena; Arkhipkin, Victor

    2017-04-01

    This study is focused on typical features of spatiotemporal distribution of wind wave parameters on the Black Sea. These parameters were calculated during two experiments using the third-generation spectral wind wave model SWAN. During the first run a 5x5 km rectangular grid covering the entire Black Sea was used. Forcing parameters - wind speed and direction - were derived from the NCEP/NCAR reanalysis for the period between 1948 and 2010. During the second run high resolution wind fields form the NCEP-CFSR reanalysis were used as forcing for the period from 1979 till 2010. For the period form 2011 till 2015 the second version of this reanalysis was used. The computations were performed on an unstructured computational grid with cell size depending on the sea depth. The distance between grid points varies from 10—15 km in deep-water regions till 500 m in coastal areas. Calculated values of significant wave heights (SWH) obtained during both runs were validated against instrumental measurements data. In the first case we used satellite altimetry data from the AVISO project. It turned out that calculated SWH values are typically lower than observed ones - the deviation between them was 0.3 m on the average, its maximum was of 1.67 m. Therefore, an empirical formula was applied to correct the modeling results obtained during the first experiment. For the second experiment in situ measurements performed by a Datawell buoy installed 7 km off the city Gelendzhik were used for validation. The comparison of measured and modelled values of SWH shows a good agreement between these parameters in this case. No correction was applied to the results of the second experiment. We applied the results of the NCEP/NCAR experiment to assess various features of the wave climate of the entire Black Sea. Thus, maximal SWH are observed in winter and autumn in two areas in the southwestern and northeastern parts of the sea; SWH values in these areas exceed 9 m. To define areas with most

  13. Baseline layout and design of a 0.8 GW reference wind farm in the North Sea

    DEFF Research Database (Denmark)

    Bak, Thomas; Graham, Angus; Sapronova, Alla

    2017-01-01

    A model of a reference wind farm is presented. It considers the wind and wave climatologies for a specific site and derives two different wind farm layouts. The layouts are then examined in terms of effective wake turbulence intensity for a given climatology, and a model for the influence on capi...

  14. Spatial mapping and attribution of Wyoming wind turbines

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  15. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  16. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  17. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case...... of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  18. Distributionally robust hydro-thermal-wind economic dispatch

    International Nuclear Information System (INIS)

    Chen, Yue; Wei, Wei; Liu, Feng; Mei, Shengwei

    2016-01-01

    Highlights: • A two-stage distributionally robust hydro-thermal-wind model is proposed. • A semi-definite programing equivalent and its algorithm are developed. • Cases that demonstrate the effectiveness of the proposed model are included. - Abstract: With the penetration of wind energy increasing, uncertainty has become a major challenge in power system dispatch. Hydro power can change rapidly and is regarded as one promising complementary energy resource to mitigate wind power fluctuation. Joint scheduling of hydro, thermal, and wind energy is attracting more and more attention nowadays. This paper proposes a distributionally robust hydro-thermal-wind economic dispatch (DR-HTW-ED) method to enhance the flexibility and reliability of power system operation. In contrast to the traditional stochastic optimization (SO) and adjustable robust optimization (ARO) method, distributionally robust optimization (DRO) method describes the uncertain wind power output by all possible probability distribution functions (PDFs) with the same mean and variance recovered from the forecast data, and optimizes the expected operation cost in the worst distribution. Traditional DRO optimized the random parameter in entire space, which is sometimes contradict to the actual situation. In this paper, we restrict the wind power uncertainty in a bounded set, and derive an equivalent semi-definite programming (SDP) for the DR-HTW-ED using S-lemma. A delayed constraint generation algorithm is suggested to solve it in a tractable manner. The proposed DR-HTW-ED is compared with the existing ARO based hydro-thermal-wind economic dispatch (AR-HTW-ED). Their respective features are shown from the perspective of computational efficiency and conservativeness of dispatch strategies.

  19. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie......-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power...... are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected...

  20. Approved wind energy sites - Kern County, CA (Tehachapi Mountains)

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Rising out of the California desert near Mojave, California, are the Tehachapi Mountains - a rugged chain of wind swept hills. Up until 1981, this land was used almost exclusively by local ranchers for grazing beef cattle. But, in a raging December blizzard, a dedicated band of men and women threw the switch and fed the first wind-generated electrical power into Southern California Edison's grid. That single event drastically changed land use patterns in the Tehachapi's.

  1. An investigation of the utility scale wind energy for north‐eastern ...

    African Journals Online (AJOL)

    In the present study, the wind energy potential for Garissa (0°28S, 39°38'E) and Marsabit (2° 19N, 37° 58'E), both rural towns in north-eastern Kenya have been statistically analyzed on a 6-year measured hourly time series wind speed data. The probability distribution parameters are derived the time series data and the ...

  2. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  3. Enhanced regional forecasting considering single wind farm distribution for upscaling

    International Nuclear Information System (INIS)

    Bremen, Lueder von; Saleck, Nadja; Heinemann, Detlev

    2007-01-01

    With increasing wind power penetration the need for more accurate wind power forecasts increases to raise the market value of wind power. State-of-the-art wind power forecasting tools are considered either statistical or physical. Fundamentally new techniques are rare, thus it is tried to establish a new approach. The spatial decomposition of wind power generation in Germany can be done with principle component analysis to extract the main pattern of variability. They have a physical meaning when linked with typical weather situation. The first four eigenvectors explain about 94 % of the observed variance. The time-evolving principle components are linked with the total wind power feed-in in Germany and are used for its estimation. A new wind power forecasting model has been implemented with this approach and shows very good results that are comparable with state-of-the-art commercial wind power forecast models. The day-ahead forecast error for a common intercomparison period Jan-Jul 2006 is 4.4 %. The suggested approach offers wide ranges for future developments (e.g. several NWP models), because it is computationally very cheap to run

  4. Preliminary study of long-term wind characteristics of the Mexican Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2009-01-01

    Mexico's Yucatan Peninsula is one of the most promising areas for wind energy development within the Latin American region but no comprehensive assessment of wind resource has been previously published. This research presents a preliminary analysis of the meteorological parameters relevant to the wind resource in order to find patterns in their long-term behaviour and to establish a foundation for subsequent research into the wind power potential of the Yucatan Peninsula. Three meteorological stations with data measured for a period between 10 and 20 years were used in this study. The monthly trends of ambient temperature, atmospheric pressure and wind speed data were identified and are discussed. The directional behaviour of the winds, their frequency distributions and the related Weibull parameters are presented. Wind power densities for the study sites have been estimated and have been shown to be relatively low (wind power class 1), though a larger number of suitable sites needs to be studied before a definitive resource evaluation can be reported.

  5. Quality and Control of Water Vapor Winds

    Science.gov (United States)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  6. Studies using wind tunnel to simulate the Atmospheric Boundary Layer at the Alcântara Space Center

    Directory of Open Access Journals (Sweden)

    Luciana P. Bassi Marinho

    2009-01-01

    Full Text Available The Alcântara Space Center (ASC region has a peculiar topography due to the existence of a coastal cliff, which modifies the atmospheric boundary layer characteristic in a way that can affect rocket launching operations. Wind tunnel measurements can be an important tool for the understanding of turbulence and wind flow pattern characteristics in the ASC neighborhood, along with computational fluid dynamics and observational data. The purpose of this paper is to describe wind tunnel experiments that have been carried out by researchers from the Brazilian Institutions IAE, ITA and INPE. The technologies of Hot-Wire Anemometer and Particle Image Velocimetry (PIV have been used in these measurements, in order to obtain information about wind flow patterns as velocity fields and vorticity. The wind tunnel measurements are described and the results obtained are presented.

  7. The problem of the second wind turbine – a note on a common but flawed wind power estimation method

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2012-06-01

    Full Text Available Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than

  8. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Robert W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Bagenal, Fran [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); McComas, David J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Fowler, Christopher M., E-mail: rebert@swri.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2014-09-19

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1–4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013a), Jupiter's bow shock and magnetopause is expected to be at least 8–12% further from Jupiter, if these trends continue.

  9. Long Term Expected Revenue of Wind Farms Considering the Bidding Admission Uncertainty

    DEFF Research Database (Denmark)

    Bashi, Mazaher Haji; Yousefi, G.R.; Bak, Claus Leth

    2016-01-01

    in the long term expected revenue of wind farms. We show that this consideration could perfectly explain the observed bid shading behavior of wind farm owners. We use a novel market price model with a stochastic model of a wind farm to derive indices describing the uncertainty of bidding admission....... The optimal behavior of the wind farm is then obtained by establishing a multi objective optimization problem and subsequently solved using genetic algorithm. The method is applied to the analysis of long term bidding behavior of a wind farm participating in a Pay-as-Bid (PAB) auction such as Iran Electricity...... Market (IEM). The results demonstrate that wind farm owners change their bid shading behavior in a PAB Auction. However, the expected revenue of the wind farm will also decrease in a PAB auction. As a result, it is not recommended to make an obligation for the wind farms to participate in a PAB auction...

  10. On Space-Time Resolution of Inflow Representations for Wind Turbine Loads Analysis

    Directory of Open Access Journals (Sweden)

    Lance Manuel

    2012-06-01

    Full Text Available Efficient spatial and temporal resolution of simulated inflow wind fields is important in order to represent wind turbine dynamics and derive load statistics for design. Using Fourier-based stochastic simulation of inflow turbulence, we first investigate loads for a utility-scale turbine in the neutral atmospheric boundary layer. Load statistics, spectra, and wavelet analysis representations for different space and time resolutions are compared. Next, large-eddy simulation (LES is employed with space-time resolutions, justified on the basis of the earlier stochastic simulations, to again derive turbine loads. Extreme and fatigue loads from the two approaches used in inflow field generation are compared. On the basis of simulation studies carried out for three different wind speeds in the turbine’s operating range, it is shown that inflow turbulence described using 10-meter spatial resolution and 1 Hz temporal resolution is adequate for assessing turbine loads. Such studies on the investigation of adequate filtering or resolution of inflow wind fields help to establish efficient strategies for LES and other physical or stochastic simulation needed in turbine loads studies.

  11. An economic assessment of tropical cyclone risk on offshore wind farms

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    2012-01-01

    and cost and setting design parameters for offshore wind turbines are then discussed. The impact of tropical cyclones on offshore wind farms likes a double-edged sword, which might be advantageous for some regions in terms of increasing full-loaded hours of turbines, but also disadvantageous for others due....... A probabilistic tropical cyclone event model is applied to evaluate 20-year, 30-year, 50-year and 100-year recurrence of extreme wind speeds by geographical location. Combining a damage model derived from empirical loss data and an investment cost model within a Geographical Information System (GIS), the annual...... to its destructive effects. However, specific design standards and insurance of turbines would help reduce risks and economic losses of offshore wind farms in tropical cyclone-prone areas and expand exploitable locations for future offshore wind farms....

  12. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  13. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    , variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.

  14. Climate information for the wind energy industry in the Mediterranean Region

    Science.gov (United States)

    Calmanti, Sandro; Davis, Melanie; Schmidt, Peter; Dell'Aquila, Alessandro

    2013-04-01

    According to the World Wind Energy Association the total wind generation capacity worldwide has come close to cover 3% of the world's electricity demand in 2011. Thanks to the enormous resource potential and the relatively low costs of construction and maintenance of wind power plants, the wind energy sector will remain one of the most attractive renewable energy investment options. Studies reveal that climate variability and change pose a new challenge to the entire renewable energy sector, and in particular for wind energy. Stakeholders in the wind energy sector mainly use, if available, site-specific historical climate information to assess wind resources at a given project site. So far, this is the only source of information that investors (e.g., banks) are keen to accept for decisions concerning the financing of wind energy projects. However, one possible wind energy risk at the seasonal scale is the volatility of earnings from year to year investment. The most significant risk is therefore that not enough units of energy (or megawatt hours) can be generated from the project to capture energy sales to pay down debt in any given quarter or year. On the longer time scale the risk is that a project's energy yields fall short of their estimated levels, resulting in revenues that consistently come in below their projection, over the life of the project. The nature of the risk exposure determines considerable interest in wind scenarios, as a potential component of both the planning and operational phase of a renewable energy project. Fundamentally, by using climate projections, the assumption of stationary wind regimes can be compared to other scenarios where large scale changes in atmospheric circulation patterns may affect local wind regimes. In the framework of CLIM-RUN EU FP7 project, climate experts are exploring the potential of seasonal to decadal climate forecast techniques (time-frame 2012-2040) and regional climate scenarios (time horizon 2040+) over the

  15. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  16. Wind energy centre at Gujarat State, India. Business plan

    International Nuclear Information System (INIS)

    Van Hulle, F.; Jansen, J.C.; Prasad, N.S.; Suresh, R.

    1997-07-01

    The report describes the business plan for the establishment of a Wind Energy Centre in Gujarat. This Wind Energy Center has to provide a reliable delivery of a range of development and technical quality assurance services to the wind energy industry in northern India on the basis of sustained operations and recovery of all operating costs and - contingent on the way the Centre is financed - at least part of the initial investment costs. Core activities of the Wind Energy Centre are: Research and development supporting activities for the wind energy sector; Testing and certification of wind energy equipment; Consultancy, monitoring and information services; and Training courses on wind energy technology and implementation. The wind energy centre aims with its services at a number of customers: the manufacturing industry, wind farm developers and governmental authorities. An exploration of the market for the services of the envisaged wind energy centre shows that the concept is financially viable. A set of assumptions has been made about the growth rate of the installed wind power capacity in Northern India and about the number of wind turbine manufacturing companies in the target area of the centre. From these assumptions the total number of new wind turbine types coming on the Indian market annually is derived for a period of ten years. These figures have served as a basis for the determination of the required manpower and facilities of the centre for design and development support activities, feasibility and siting studies, testing and certification. Furthermore a projection has been made for providing expert manpower capacity for carrying out R and D, consultancy and other services. 14 tabs., 1 ref

  17. Emission-line widths and stellar-wind flows in T Tauri stars

    International Nuclear Information System (INIS)

    Sa, C.; Lago, M.T.V.T.

    1986-01-01

    Spectra are reported of T Tauri stars taken with the IPCS on the Isaac Newton Telescope at the Observatorio del Roque de los Muchachos at a dispersion of l7 A mm -1 . These were taken in order to determine emission-line widths and hence flow velocities in the winds of these stars following the successful modelling of the wind from RU Lupi using such data. Line widths in RW Aur suggest a similar pattern to the wind flow as in RU Lupi with velocities rising in the inner chromosphere of the star and then entering a 'ballistic' zone. The wind from DFTau is also similar but velocities are generally much lower and the lines sharper. (author)

  18. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2015-04-01

    While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.

  19. Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight

    International Nuclear Information System (INIS)

    Jacobson, Mark Z.; Howarth, Robert W.; Delucchi, Mark A.; Scobie, Stan R.; Barth, Jannette M.; Dvorak, Michael J.; Klevze, Megan; Katkhuda, Hind; Miranda, Brian; Chowdhury, Navid A.; Jones, Rick; Plano, Larsen; Ingraffea, Anthony R.

    2013-01-01

    Jacobson et al. (2013, hereinafter J13), presented the technical and economic feasibility of converting New York States' all-purpose energy infrastructure (electricity, transportation, heating/cooling, industry) to one powered by wind, water, and sunlight (WWS) producing electricity and electrolytic hydrogen. Gilbraith et al. (2013) question several aspects of our approach. Unfortunately, Gilbraith et al. inaccurately portray what we stated and referenced and ignore many recent supporting studies. They also refer to previous misplaced critiques of our earlier global WWS study but fail to reference the responses to those critiques, Delucchi and Jacobson (2011b) and Jacobson and Delucchi (2013). We fully stand by the conclusions of both the previous and present studies. - Highlights: • New York State's all-purpose energy can be derived from wind, water, and sunlight. • The main limitations are social and political, not technical or economic. • This response to commentary reaffirms these conclusions

  20. Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain.

    Science.gov (United States)

    Fang, Jiannong; Peringer, Alexander; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Buttler, Alexandre; Golay, Francois; Porté-Agel, Fernando

    2018-10-15

    Many mountainous regions with high wind energy potential are characterized by multi-scale variabilities of vegetation in both spatial and time dimensions, which strongly affect the spatial distribution of wind resource and its time evolution. To this end, we developed a coupled interdisciplinary modeling framework capable of assessing the shifts in wind energy potential following land-use driven vegetation dynamics in complex mountain terrain. It was applied to a case study area in the Romanian Carpathians. The results show that the overall shifts in wind energy potential following the changes of vegetation pattern due to different land-use policies can be dramatic. This suggests that the planning of wind energy project should be integrated with the land-use planning at a specific site to ensure that the expected energy production of the planned wind farm can be reached over its entire lifetime. Moreover, the changes in the spatial distribution of wind and turbulence under different scenarios of land-use are complex, and they must be taken into account in the micro-siting of wind turbines to maximize wind energy production and minimize fatigue loads (and associated maintenance costs). The proposed new modeling framework offers, for the first time, a powerful tool for assessing long-term variability in local wind energy potential that emerges from land-use change driven vegetation dynamics over complex terrain. Following a previously unexplored pathway of cause-effect relationships, it demonstrates a new linkage of agro- and forest policies in landscape development with an ultimate trade-off between renewable energy production and biodiversity targets. Moreover, it can be extended to study the potential effects of micro-climatic changes associated with wind farms on vegetation development (growth and patterning), which could in turn have a long-term feedback effect on wind resource distribution in mountainous regions. Copyright © 2018 Elsevier B.V. All rights

  1. Wind-induced circulation in a large tropical lagoon: Chetumal Bay

    Science.gov (United States)

    Palacios, E.; Carrillo, L.

    2013-05-01

    Chetumal Bay is a large tropical lagoon located at the Mesoamerican Reef System. Windinduced circulation in this basin was investigated by using direct measurements of current, sea level, and 2d barotropic numerical model. Acoustic Doppler Profiler (ADP) transects covering the north of Chetumal Bay during two campaigns September 2006 and March 2007 were used. The 2d barotropic numerical model was ROMs based and wind forced. Wind information was obtained from a meteorological station located at ECOSUR Chetumal. Sea level data was collected from a pressure sensor deployed in the lagoon. A seasonal pattern of circulation was observed. From observations, during September 2006, a northward flow was shown in most part of the bay and a southward flow in the eastern coast was observed with velocities ranged from 6 cm s-1 to 36 cm s-1. In March 2007, the current pattern was more complex; divergences and converges were identified. The dominant circulation was northward in eastern portion, and southward in the central and western zone. The average current speed was 6 cm s-1 with maximum values of 26 -34 cm s-1. During September 2006 predominant wind was easternsoutheastern and during March 2007, northerly wind events were recorded. Sea level amplitude responded quickly to changes in the magnitude and direction of the wind. Results of sea level and circulation from the 2d barotropic numerical model agreed with observations at first approximation.

  2. Counterintuitive effects of global warming-induced wind patterns on primary production in the Northern Humboldt Current System.

    Science.gov (United States)

    Mogollón, Rodrigo; R Calil, Paulo H

    2018-04-14

    It has been hypothesized that global warming will strengthen upwelling-favorable winds in the Northern Humboldt Current System (NHCS) as a consequence of the increase of the land-sea thermal gradient along the Peruvian coast. The effect of strengthened winds in this region is assessed with the use of a coupled physical-biogeochemical model forced with projected and climatological winds. Strengthened winds induce an increase in primary production of 2% per latitudinal degree from 9.5°S to 5°S. In some important coastal upwelling sites primary production is reduced. This is due to a complex balance between nutrient availability, nutrient use efficiency, as well as eddy- and wind-driven factors. Mesoscale activity induces a net offshore transport of inorganic nutrients, thus reducing primary production in the coastal upwelling region. Wind mixing, in general disadvantageous for primary producers, leads to shorter residence times in the southern and central coastal zones. Overall, instead of a proportional enhancement in primary production due to increased winds, the NHCS becomes only 5% more productive (+5 mol C m -2 year -1 ), 10% less limited by nutrients and 15% less efficient due to eddy-driven effects. It is found that regions with a initial strong nutrient limitation are more efficient in terms of nutrient assimilation which makes them more resilient in face of the acceleration of the upwelling circulation. © 2018 John Wiley & Sons Ltd.

  3. Statistics of LES simulations of large wind farms

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2016-01-01

    . The statistical moments appear to collapse and hence the turbulence inside large wind farms can potentially be scaled accordingly. The thrust coefficient is estimated by two different reference velocities and the generic CT expression by Frandsen. A reference velocity derived from the power production is shown...... to give very good agreement and furthermore enables the very good estimation of the thrust force using only the steady CT-curve, even for very short time samples. Finally, the effective turbulence inside large wind farms and the equivalent loads are examined....

  4. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    Science.gov (United States)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  5. Local Equation of State for Protons, and Implications for Proton Heating in the Solar Wind.

    Science.gov (United States)

    Zaslavsky, A.; Maksimovic, M.; Kasper, J. C.

    2017-12-01

    The solar wind protons temperature is observed to decrease with distance to the Sun at a slower rate than expected from an adiabatic expansion law: the protons are therefore said to be heated. This observation raises the question of the evaluation of the heating rate, and the question of the heat source.These questions have been investigated by previous authors by gathering proton data on various distances to the Sun, using spacecraft as Helios or Ulysses, and then computing the radial derivative of the proton temperature in order to obtain a heating rate from the internal energy equation. The problem of such an approach is the computation of the radial derivative of the temperature profile, for which uncertainties are very large, given the dispersion of the temperatures measured at a given distance.An alternative approach, that we develop in this paper, consists in looking for an equation of state that links locally the pressure (or temperature) to the mass density. If such a relation exists then one can evaluate the proton heating rate on a local basis, without having any space derivative to compute.Here we use several years of STEREO and WIND proton data to search for polytropic equation of state. We show that such relationships are indeed a good approximation in given solar wind's velocity intervals and deduce the associated protons heating rates as a function of solar wind's speed. The obtained heating rates are shown to scale from around 1 kW/kg in the slow wind to around 10 kW/kg in the fast wind, in remarkable agreement with the rate of energy observed by previous authors to cascade in solar wind's MHD turbulence at 1 AU. These results therefore support the idea of proton turbulent heating in the solar wind.

  6. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  7. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  8. Bird interactions with wind turbines : a Canadian case study

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.; Hamilton, B. [TAEM Ltd., Calgary, AB (Canada)

    2004-07-01

    An environmental study has been conducted on a wind farm adjacent to Castle River, in the foothills of the Rocky Mountains in Alberta. The objective was to determine the impact of the many wind turbines on birds. The study involved observations of different bird species including raptors, waterfowl and passerines. The observations looked at bird numbers, location relative to turbines, and changes in flight pattern. The study found that raptors flew around or over the turbine blades, while passerines remained below, and waterfowl flew up and over the blades. Very few dead birds were found over the monitoring period, suggesting that wind turbines do not have a major impact on birds. figs.

  9. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...... lead to a so-called wind atlas. A precise prediction of the wind speed at a given site is essential because for aerodynamic reasons the power output of a wind turbine is proportional to the third power of the wind speed, hence even small errors in prediction of wind speed may result in large deviations...

  10. Wind turbine design : with emphasis on Darrieus concept

    Energy Technology Data Exchange (ETDEWEB)

    Paraschivoiu, I. [Ecole Polytechnique, Montreal, PQ (Canada)

    2002-07-01

    This book described software applications designed to model the aerodynamic performance of the Darrieus vertical-axis wind turbine. The book also provided a comprehensive review of current vertical-axis wind turbine (VAWT) technology, and discussed recent advances in understanding the physics of flow associated with the Darrieus type of turbine. The principal theories and aerodynamic models for calculating the performance of the turbines were presented, as well as results from experimental data derived from prototypes as well as laboratory measurements. The book was divided into 10 chapters: (1) wind definition and characteristics; (2) a review of the Madaras rotor concept along with an introduction to vortex modelling; (3) an introduction to the geometry of the Darrieus rotor; (4) a single streamtube model; (5) dynamic-stall phenomenon and numerical simulations; (6) double actuator risk theory; (7) details of water channel experiments; (8) modelling of turbine components; (9) wind turbine design parameters; and (10) issues related to socio-economic and environmental impacts. refs., tabs., figs.

  11. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades

    International Nuclear Information System (INIS)

    Scungio, M.; Arpino, F.; Focanti, V.; Profili, M.; Rotondi, M.

    2016-01-01

    Highlights: • Wind tunnel investigations of Darrieus-style VAWT with auxiliary blades have been made. • Results have been compared with those from standard Darrieus VAWT. • Static and dynamic power and torque coefficients were measured and evaluated. • The auxiliary airfoils have demonstrated to give more torque at the lower wind speeds. • The proposed VAWT configuration is able to work in a wide range of wind speeds. - Abstract: Renewable sources of energy, needed because of the increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in wind energy. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, wind tunnel investigations about the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds, has been made on scaled models. The micro turbine under investigation consists of three pairs of airfoils. Each pair consists of a main and auxiliary airfoil with different chord lengths. A standard Darrieus configuration, consisting of three single airfoils, was also tested for comparison. The experiments were conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). Measured data were reported in terms of dimensionless power and torque coefficients for dynamic performance analysis and static torque coefficient for static performance analysis. The adoption of auxiliary airfoils has demonstrated to give more dynamic torque at the lower wind speeds with respect to a standard Darrieus rotor, resulting in better performance for all the wind speeds considered. In terms of dynamic power coefficient, the standard Darrieus

  12. Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load validation

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand

    2017-01-01

    We demonstrate a method for incorporating wind velocity measurements from multiple-point scanning lidars into threedimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly gener...

  13. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  14. Wind farm project economics : value of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  15. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    DEFF Research Database (Denmark)

    Meibom, Peter; Weber, C.; Barth, R.

    2009-01-01

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and partial predictability of wind power production. For large amounts of wind power production, the expectation is that the specific operational costs (fuel costs, start......-up costs, variable operation and maintenance costs, costs of consuming CO2 emission permits) of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing...... the operational costs in two power system configurations: with wind power production and with alternative wind production having properties such as conventional production, that is, being predictable and less variable. The choice of the characteristics of the alternative production is not straightforward...

  16. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  17. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  18. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    the angle of attack. The art of designing stall rotors is to make the separated area on the blades extend in such a way, that the extracted power remains precisely constant, independent of the wind speed, while the power in the wind at cut-out exceeds the maximum power of the turbine by a factor of 8. Since the stall behaviour is influenced by many parameters, this demand cannot be easily met. However, if it can be met, the advantage of stall control is its passive operation, which is reliable and cheap. Problem Definition In practical application, stall control is not very accurate and many stall-controlled turbines do not meet their specifications. Deviations of the design-power in the order of tens of percent are regular. In the nineties, the aerodynamic research on these deviations focussed on: profile aerodynamics, computational fluid dynamics, rotational effects on separation and pressure measurements on test turbines. However, this did not adequately solve the actual problems with stall turbines. In this thesis, we therefore formulated the following as the essential question: "Does the separated blade area really extend with the wind speed, as we predict?" To find the answer a measurement technique was required, which 1) was applicable on large commercial wind turbines, 2) could follow the dynamic changes of the stall pattern, 3) was not influenced by the centrifugal force and 4) did not disturb the flow. Such a technique was not available, therefore we decided to develop it. Stall Flag Method For this method, a few hundred indicators are fixed to the rotor blades in a special pattern. These indicators, called "stall flags" are patented by the Netherlands Energy Research Foundation (ECN). They have a retro-reflective area which, depending on the flow direction, is or is not covered. A powerful light source in the field up to 500m behind the turbine illuminates the swept rotor area. The uncovered reflectors reflect the light to the source, where a digital video

  19. Statistical Validation of Calibrated Wind Data Collected From NOAA's Hurricane Hunter Aircraft

    Science.gov (United States)

    Graham, K.; Sears, I. T.; Holmes, M.; Henning, R. G.; Damiano, A. B.; Parrish, J. R.; Flaherty, P. T.

    2015-12-01

    Obtaining accurate in situ meteorological measurements from the NOAA G-IV Hurricane Hunter Aircraft currently requires annual wind calibration flights. This project attempts to demonstrate whether an alternate method to wind calibration flights can be implemented using data collected from many previous hurricane, winter storm, and surveying flights. Wind derivations require using airplane attack and slip angles, airplane pitch, pressure differentials, dynamic pressures, ground speeds, true air speeds, and several other variables measured by instruments on the aircraft. Through the use of linear regression models, future wind measurements may be fit to past statistical models. This method of wind calibration could replace the need for annual wind calibration flights, decreasing NOAA expenses and providing more accurate data. This would help to ensure all data users have reliable data and ultimately contribute to NOAA's goal of building of a Weather Ready Nation.

  20. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.; Genton, Marc G.; Hering, Amanda S.; Sain, Stephan R.

    2015-01-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either

  1. Impact of wind on the spatial distribution of rain over micro-scale topography : numerical modelling and experimental verification

    NARCIS (Netherlands)

    Blocken, B.J.E.; Poesen, J.; Carmeliet, J.

    2006-01-01

    The wind-driven-rain effect refers to the redistribution of rainfall over micro-scale topography due to the existence of local perturbed wind-flow patterns. Rainfall measurements reported in the literature point to the fact that the wind-driven-rain distribution can show large variations over

  2. Accounting for the speed shear in wind turbine power performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.

    2010-04-15

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and therefore of the power output, cannot be ignored any longer. Primary effects on the power performance are from the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were considered both resulting in the reduction of the scatter in the power curve. As a lidar wind profiler can measure the wind speed at several heights within the rotor span, the wind speed profile is described with more accuracy than with the power law model. The equivalent wind speed derived from measurements, including at least one measurement above hub height, resulted in a smaller scatter in the power curve than the equivalent wind speed derived from profiles extrapolated from measurements

  3. Precipitation measurement and derivation of precipitation inclination in a windy mountainous area in northern Costa Rica. Scientific Briefing.

    NARCIS (Netherlands)

    Frumau, K.F.A.; Bruijnzeel, L.A.; Tobón, C.

    2011-01-01

    Over small-scale topography in windy areas, precipitation tends to be redistributed by wind through the modification of precipitation inclination. The latter is often derived from wind speed and conventional rain gauge records by application of relations-derived mainly for convective rainfall

  4. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  5. Optimal wind power deployment in Europe. A portfolio approach

    International Nuclear Information System (INIS)

    Roques, Fabien; Hiroux, Celine; Saguan, Marcelo

    2010-01-01

    Geographic diversification of wind farms can smooth out the fluctuations in wind power generation and reduce the associated system balancing and reliability costs. The paper uses historical wind production data from five European countries (Austria, Denmark, France, Germany, and Spain) and applies the Mean-Variance Portfolio theory to identify cross-country portfolios that minimise the total variance of wind production for a given level of production. Theoretical unconstrained portfolios show that countries (Spain and Denmark) with the best wind resource or whose size contributes to smoothing out the country output variability dominate optimal portfolios. The methodology is then elaborated to derive optimal constrained portfolios taking into account national wind resource potential and transmission constraints and compare them with the projected portfolios for 2020. Such constraints limit the theoretical potential efficiency gains from geographical diversification, but there is still considerable room to improve performance from actual or projected portfolios. These results highlight the need for more cross-border interconnection capacity, for greater coordination of European renewable support policies, and for renewable support mechanisms and electricity market designs providing locational incentives. Under these conditions, a mechanism for renewables credits trading could help aligning wind power portfolios with the theoretically efficient geographic dispersion. (author)

  6. Horse-collar aurora: A frequent pattern of the aurora in quiet times

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Evans, D.S.; Newell, P.T.

    1989-01-01

    Reported here are DE 1 auroral imager observations of an auroral configuration which is given the name ''horse-collar aurora.'' The horse-collar pattern comprises the total area of auroral emissions from a single hemisphere and derives its name from the shape of the emitting area. The pattern is found in images recorded during quiet geomagnetic conditions and is possibly related to the theta aurora, another quiet time configuration of the auroras. This initial report of the DE 1 observations illustrates the horse-collar aurora with a 2-hour images sequence that displays its basic features and shows an example of its evolution into a theta-like auroral pattern. The interplanetary magnetic field was northward during this image sequence and there is some evidence for IMF B/sub y/ influence of the temporal development of the horse-collar pattern. A preliminary statistical analysis found the horse-collar pattern appearing in one-third or more of image sequences recorded during quiet conditions; it did not appear during disturbed conditions. Further study is required to establish more fully the characteristics of the horse-collar aurora and to determine its implications concerning solar wind-magnetosphere coupling when the IMF B/sub z/ is northward. copyright American Geophysical Union 1989

  7. Assessing the impacts of wind energy development on bats

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, E.B. [Bat Conservation International, Austin, TX (United States)

    2008-07-01

    Research conducted by the Bats and Wind Energy Cooperative in West Virginia was presented. Bats are key pollinators, seed dispersers, and insect predators. Bats also help to protect crops and play an important role in helping to reduce pesticide use. However, bats reproduce slowly and are susceptible to mortality factors. In 2003, between 1398 and 4031 bats were killed at the Mountaineer Wind Energy Facility in West Virginia. Possible explanations why bats are killed by wind turbines include the fact that wind farms form a linear corridor. Acoustics, echolocation failure, and electromagnetic-disorientation may also play a role in bat mortalities. Unifying patterns of bat fatalities at wind facilities include the fact that fatalities are heavily skewed toward migratory bats. Peak turbine collision fatalities occur in mid-summer. Bat fatalities are highest during periods of low wind speed and seem to be related to climate variables associated with the passage of weather fronts. Studies have also shown that the changing cut-in speeds of turbines may also reduce bat fatalities. It was concluded that pre-construction assessments should be conducted to determine high risk areas. tabs., figs.

  8. NASA's GMAO Atmospheric Motion Vectors Simulator: Description and Application to the MISTiC Winds Concept

    Science.gov (United States)

    Carvalho, David; McCarty, Will; Errico, Ron; Prive, Nikki

    2018-01-01

    An atmospheric wind vectors (AMVs) simulator was developed by NASA's GMAO to simulate observations from future satellite constellation concepts. The synthetic AMVs can then be used in OSSEs to estimate and quantify the potential added value of new observations to the present Earth observing system and, ultimately, the expected impact on the current weather forecasting skill. The GMAO AMV simulator is a tunable and flexible computer code that is able to simulate AMVs expected to be derived from different instruments and satellite orbit configurations. As a case study and example of the usefulness of this tool, the GMAO AMV simulator was used to simulate AMVs envisioned to be provided by the MISTiC Winds, a NASA mission concept consisting of a constellation of satellites equipped with infrared spectral midwave spectrometers, expected to provide high spatial and temporal resolution temperature and humidity soundings of the troposphere that can be used to derive AMVs from the tracking of clouds and water vapor features. The GMAO AMV simulator identifies trackable clouds and water vapor features in the G5NR and employs a probabilistic function to draw a subset of the identified trackable features. Before the simulator is applied to the MISTiC Winds concept, the simulator was calibrated to yield realistic observations counts and spatial distributions and validated considering as a proxy instrument to the MISTiC Winds the Himawari-8 Advanced Imager (AHI). The simulated AHI AMVs showed a close match with the real AHI AMVs in terms of observation counts and spatial distributions, showing that the GMAO AMVs simulator synthesizes AMVs observations with enough quality and realism to produce a response from the DAS equivalent to the one produced with real observations. When applied to the MISTiC Winds scanning points, it can be expected that the MISTiC Winds will be able to collect approximately 60,000 wind observations every 6 hours, if considering a constellation composed of

  9. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  10. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design......, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model...... of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...

  11. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Directory of Open Access Journals (Sweden)

    Robert Wilkes Ebert

    2014-09-01

    Full Text Available We examine Ulysses solar wind and interplanetary magnetic field (IMF observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 – 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013, Jupiter’s bow shock and magnetopause is expected to be at least 8 – 12% further from Jupiter, if these trends continue.

  12. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  13. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  14. A NEW METHOD TO DETECT REGIONS ENDANGERED BY HIGH WIND SPEEDS

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2016-06-01

    Full Text Available In this study we evaluate whether the methodology of Boosted Regression Trees (BRT suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM acquired within the Shuttle Radar Topography Mission (SRTM is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect and quality (landform classification. Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  15. Wind Farm Wake: The Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Pierre-Elouan Réthoré

    2013-02-01

    Full Text Available The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surface temperature as well as ground-based information at and near the wind farm, including Supervisory Control and Data Acquisition (SCADA data. The SCADA data reveal that the case of fog formation occurred 12 February 2008 on the 10:10 UTC. The fog formation is due to very special atmospheric conditions where a layer of cold humid air above a warmer sea surface re-condensates to fog in the wake of the turbines. The process is fed by warm humid air up-drafted from below in the counter-rotating swirl generated by the clock-wise rotating rotors. The condensation appears to take place primarily in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog.

  16. Hourly interaction between wind speed and energy fluxes in Brazilian Wetlands - Mato Grosso - Brazil

    Directory of Open Access Journals (Sweden)

    THIAGO R. RODRIGUES

    Full Text Available ABSTRACT Matter and energy flux dynamics of wetlands are important to understand environmental processes that govern biosphere-atmosphere interactions across ecosystems. This study presents analyses about hourly interaction between wind speed and energy fluxes in Brazilian Wetlands - Mato Grosso - Brazil. This study was conducted in Private Reserve of Natural Heritage (PRNH SESC, 16º39'50''S; 56º47'50''W in Brazilian Wetland. According to Curado et al. (2012, the wet season occurs between the months of January and April, while the June to September time period is the dry season. Results presented same patterns in energies fluxes in all period studied. Wind speed and air temperature presented same patterns, while LE was relative humidity presented inverse patterns of the air temperature. LE was predominant in all seasons and the sum of LE and H was above 90% of net radiation. Analyses of linear regression presented positive interactions between wind speed and LE, and wind speed and H in all seasons, except in dry season of 2010. Confidence coefficient regression analyses present statistical significance in all wet and dry seasons, except dry season of 2010, suggest that LE and H had interaction with other micrometeorological variables.

  17. Regional Analysis of Long-term Local and Synoptic Effects on Wind Velocity and Energy Patterns in Complex Terrain

    Science.gov (United States)

    Belu, R.; Koracin, D. R.

    2017-12-01

    Investments in renewable energy are justified in both environmental and economic terms. Climate change risks call for mitigation strategies aimed to reduce pollutant emissions, while the energy supply is facing high uncertainty by the current or future global economic and political contexts. Wind energy is playing a strategic role in the efforts of any country for sustainable development and energy supply security. Wind energy is a weather and climate-dependent resource, having a natural spatio-temporal variability at time scales ranging from fraction of seconds to seasons and years, while at spatial scales is strongly affected by the topography and vegetation. Main objective of the study is to investigate spatio-temporal characteristics of the wind velocity in the Southwest U.S., that are relevant to wind energy assessment, analysis, development, operation, and grid integration, by using long-term multiple meteorological tower observations. Wind velocity data and other meteorological parameters from five towers, located near Tonopah, Nevada, operated between 2003 to 2008, and from three towers are located in Carson Valley, Nevada, operated between 2006 and 2014 were used in this study. Multi-annual wind speed data collected did not show significant increase trends with increasing elevation; the differences are mainly governed by the topographic complexity, including local atmospheric circulations. Auto- and cross-correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multi-day periodicity with increasing lag periods. Besides pronounced diurnal periodicity at all locations, detrended fluctuation analysis also showed significant seasonal and annual periodicities, and long-memory persistence with similar characteristics. In spite of significant differences in mean wind speeds among the towers, due to location specifics, the relatively high auto- and cross-correlation coefficients among the towers indicate

  18. Derivation of Optimal Cropping Pattern in Part of Hirakud Command using Cuckoo Search

    Science.gov (United States)

    Rath, Ashutosh; Biswal, Sudarsan; Samantaray, Sandeep; Swain, Prakash Chandra, PROF.

    2017-08-01

    The economicgrowth of a Nation depends on agriculture which relies on the obtainable water resources, available land and crops. The contribution of water in an appropriate quantity at appropriate time plays avitalrole to increase the agricultural production. Optimal utilization of available resources can be achieved by proper planning and management of water resources projects and adoption of appropriate technology. In the present work, the command area of Sambalpur distribrutary System is taken up for investigation. Further, adoption of a fixed cropping pattern causes the reduction of yield. The present study aims at developing different crop planning strategies to increase the net benefit from the command area with minimum investment. Optimization models are developed for Kharif season using LINDO and Cuckoo Search (CS) algorithm for maximization of the net benefits. In process of development of Optimization model the factors such as cultivable land, seeds, fertilizers, man power, water cost, etc. are taken as constraints. The irrigation water needs of major crops and the total available water through canals in the command of Sambalpur Distributary are estimated. LINDO and Cuckoo Search models are formulated and used to derive the optimal cropping pattern yielding maximum net benefits. The net benefits of Rs.585.0 lakhs in Kharif Season are obtained by adopting LINGO and 596.07 lakhs from Cuckoo Search, respectively, whereas the net benefits of 447.0 lakhs is received by the farmers of the locality with the adopting present cropping pattern.

  19. Transmission of wave energy through an offshore wind turbine farm

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Johnson, Martin; Sørensen, Ole Rene

    2013-01-01

    condition at infinity. From airborne and Satellite SAR (Synthetic Aperture Radar) a model has been derived for the change of the water surface friction C) inside and on the lee side of the offshore wind farm. The effects have been implemented in a spectral wind wave model,MIKE21 SW, and a parametric study......The transmission of wave energy passing an offshore wind farm is studied. Three effects that can change the wave field are analysed, which is the A) energy dissipation due to drag resistance, B) wave reflection/diffraction from structures, and C) the effect of a modified wind field inside...... and on the lee side of the wind farm. The drag dissipation, A), is quantified by a quadratic resistance law. The effect of B) is parameterised based on 1st order potential theory. A method to find the amount of reflected and transmitted wave energy is developed based on the panel method WAMIT™ and a radiation...

  20. Wind stress over the Arabian Sea from ship reports and Seasat scatterometer data

    Science.gov (United States)

    Perigaud, C.; Minster, J. F.; Delecluse, P.

    1989-01-01

    Seasat scatterometer data over the Arabian Sea are used to build wind-stress fields during July and August 1978. They are first compared with 3-day wind analyses from ship data along the Somali coast. Seasat scatterometer specifications of 2-m/s and 20-deg accuracy are fulfilled in almost all cases. The exceptions are for winds stronger than 14 m/s, which are underestimated by the scatterometer by 15 percent. Wind stress is derived from these wind data using a bulk formula with a drag coefficient depending on the wind intensity. A successive-correction objective analysis is used to build the wind-stress field over the Arabian Sea with 2 x 2-deg and 6-day resolution. The final wind-stress fields are not significantly dependent on the objective analysis because of the dense coverage of the scatterometer. The combination of scatterometer and coastal ship data gives the best coverage to resolve monsoon wind structures even close to the coast. The final wind stress fields show wind features consistent with other monthly mean wind stress field. However, a high variability is observed on the 6-day time scale.

  1. The influence of colour on the aesthetics of wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    This paper summarises the results of studies examining the role that colour plays in reducing the visual impact of wind turbines and the development of a method for selecting the colour and pattern focusing on UK rural wind farms. Published material is reviewed, and visual factors relevant to visibility, factors influencing the choice of colour for buildings and other installations in the landscape, issues arising from the choice of colour, theories of camouflage, the testing of different colours, strategies for applying colour to wind turbines, the effectiveness of the different colours, and the effect of the different colour schemes on the visual impact of wind turbine arrays are addressed. Recommendations concerning colour selection are presented. A compact disc is provided with the paper. (UK)

  2. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  3. Wavelet Transformation for Damage Identication in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Skov, Jonas falk; Kirkegaard, Poul Henning

    2014-01-01

    The present paper documents a proposed modal and wavelet analysis-based structural health monitoring (SHM) method for damage identification in wind turbine blades. A finite element (FE) model of a full-scale wind turbine blade is developed and introduced to a transverse surface crack. Hereby, post......-damage mode shapes are derived through modal analysis and subsequently analyzed with continuous two-dimensional wavelet transformation for damage identification, namely detection, localization and assessment. It is found that valid damage identification is obtained even when utilizing the mode shape...

  4. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  5. Short-term Probabilistic Forecasting of Wind Speed Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg

    2016-01-01

    and uncertain nature. In this paper, we propose a modeling framework for wind speed that is based on stochastic differential equations. We show that stochastic differential equations allow us to naturally capture the time dependence structure of wind speed prediction errors (from 1 up to 24 hours ahead) and......It is widely accepted today that probabilistic forecasts of wind power production constitute valuable information for both wind power producers and power system operators to economically exploit this form of renewable energy, while mitigating the potential adverse effects related to its variable......, most importantly, to derive point and quantile forecasts, predictive distributions, and time-path trajectories (also referred to as scenarios or ensemble forecasts), all by one single stochastic differential equation model characterized by a few parameters....

  6. Wind energy mission analysis. Final report, appendices A--J. [USA

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-18

    Information is presented concerning meteorological data and supporting analyses, gross energy consumption patterns and end-use analysis, analysis for industrial applications of wind energy conversion systems (WECS), analysis for residential applications of WECS, analysis for application of WECS to communities remote from utility grids, analysis for agricultural applications of WECS, regional evaluation of the economics of wind turbine generation to the U. S. electric utility district, impact of storage on WECS, financial analysis techniques, and system spacing.

  7. Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions

    Science.gov (United States)

    Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.

    2018-02-01

    Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.

  8. Regime-based supervisory control to reduce power fluctuations from offshore wind power plants

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; Cutululis, Nicolaos Antonio; Trombe, Pierre-Julien

    2013-01-01

    Wind power fluctuations, especially offshore, can pose challenges in the secure and stable operation of the power system. In modern large offshore wind farms, there are supervisory controls designed to reduce the power fluctuations. Their operation is limited due to the fact that they imply loss...... that consider different wind power regimes to derive control setpoints by using a Markov-Switching AutoRegressive model. We evaluate the performance versus measured data in terms of power ramp characteristics and energy efficiency....

  9. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  10. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  11. Scales of North Atlantic wind stress curl determined from the comprehensive ocean-atmosphere data set

    Science.gov (United States)

    Ehret, Laura L.; O'Brien, James J.

    1989-01-01

    Nineteen years of wind data over the North Atlantic are used to calculate a field of wind stress curl. An empirical orthogonal function (EOF) analysis is performed on this field, resulting in spatial patterns of wind stress curl and associated time series. A Monte Carlo technique is used to establish the statistical significance of each spatial pattern, and the associated time series are spectrally analyzed. The first four statistically significant EOF modes represent more than 50 percent of the curl variance, and the spatial patterns of curl associated with these modes exhibit the major elements of North Atlantic climatology. Most of the time series spectral variance is contained in annual and semiannual frequencies. The features observed include the individual annual variation of the subtropical high and the subpolar low, the annual oscillation of intensity between pressure centers, the influence of localized strong SST gradients and associated cyclogenesis regions, and the constant nature of the trades.

  12. Characterization of traffic-related PM concentration distribution and fluctuation patterns in near-highway urban residential street canyons.

    Science.gov (United States)

    Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard

    2009-12-01

    Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean

  13. Forecasting and decision-making in electricity markets with focus on wind energy

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi

    This thesis deals with analysis, forecasting and decision making in liberalised electricity markets. Particular focus is on wind power, its interaction with the market and the daily decision making of wind power generators. Among recently emerged renewable energy generation technologies, wind power...... derivation of practically applicable tools for decision making highly relevant. The main characteristics of wind power differ fundamentally from those of conventional thermal power. Its effective generation capacity varies over time and is directly dependent on the weather. This dependency makes future...... has become the global leader in terms of installed capacity and advancement. This makes wind power an ideal candidate to analyse the impact of growing renewable energy generation capacity on the electricity markets. Furthermore, its present status of a significant supplier of electricity makes...

  14. An intercomparison of mesoscale models at simple sites for wind energy applications

    DEFF Research Database (Denmark)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria

    2017-01-01

    of the output from 25 NWP models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated sing a number of statistical properties relevant to wind energy and verified with observations. On average the models have small wind speed biases offshore and aloft ( ... %) and larger biases closer to the surface over land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that using a grid spacing larger than 3 km...... decreases the accuracy of the models, but we found no evidence that using a grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction....

  15. Bats and wind energy in Canada : causes, consequences and variation of fatalities

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, R.; Baerwald, E. [Calgary Univ., AB (Canada). Dept. of Biology

    2008-07-01

    This presentation discussed various aspects of bat mortalities that occur at wind turbines. The majority of bat fatalities related to wind turbines take place in the Fall among Hoary, Silver-haired, and Eastern red bat species. The fatality rate varies geographically. Migratory routes explain the geographic variations of bats. Tall wind turbines kill more bats than birds. Activity and fatality rates vary geographically. Small-scale geographic patterns were discussed along with bat mortality rates at different wind farm facilities. Higher turbines are known to disrupt bat activities. During a 1-year period in Alberta only 189 bird mortalities were recorded compared to 1775 bat mortalities. Across North America, 3940 bats died in collisions with wind turbines compared to only 1241 birds. It was concluded that monitoring studies conducted from the ground do not fully indicate the risks of wind turbines to bats. tabs., figs.

  16. Dietary patterns derived from principal component- and k-means cluster analysis: long-term association with coronary heart disease and stroke.

    Science.gov (United States)

    Stricker, M D; Onland-Moret, N C; Boer, J M A; van der Schouw, Y T; Verschuren, W M M; May, A M; Peeters, P H M; Beulens, J W J

    2013-03-01

    Studies comparing dietary patterns derived from different a posteriori methods in view of predicting disease risk are scarce. We aimed to explore differences between dietary patterns derived from principal component- (PCA) and k-means cluster analysis (KCA) in relation to their food group composition and ability to predict CHD and stroke risk. The study was conducted in the EPIC-NL cohort that consists of 40,011 men and women. Baseline dietary intake was measured using a validated food-frequency questionnaire. Food items were consolidated into 31 food groups. Occurrence of CHD and stroke was assessed through linkage with registries. After 13 years of follow-up, 1,843 CHD and 588 stroke cases were documented. Both PCA and KCA extracted a prudent pattern (high intakes of fish, high-fiber products, raw vegetables, wine) and a western pattern (high consumption of French fries, fast food, low-fiber products, other alcoholic drinks, soft drinks with sugar) with small variation between components and clusters. The prudent component was associated with a reduced risk of CHD (HR for extreme quartiles: 0.87; 95%-CI: 0.75-1.00) and stroke (0.68; 0.53-0.88). The western component was not related to any outcome. The prudent cluster was related with a lower risk of CHD (0.91; 0.82-1.00) and stroke (0.79; 0.67-0.94) compared to the western cluster. PCA and KCA found similar underlying patterns with comparable associations with CHD and stroke risk. A prudent pattern reduced the risk of CHD and stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    2014-01-01

    To develop and test wind power technology for use on Mars, Ames Research Center turned to Northern Power Systems (NPS), based in Barre, Vermont. Ames awarded NPS an SBIR contract so the company could enhance their turbine’s function. Today, over 200 NASA-derived Northern Power 100s are in operation on Earth and have reduced carbon emissions by 50,000 tons annually.

  18. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  19. Actigraphy-Derived Daily Rest-Activity Patterns and Body Mass Index in Community-Dwelling Adults.

    Science.gov (United States)

    Cespedes Feliciano, Elizabeth M; Quante, Mirja; Weng, Jia; Mitchell, Jonathan A; James, Peter; Marinac, Catherine R; Mariani, Sara; Redline, Susan; Kerr, Jacqueline; Godbole, Suneeta; Manteiga, Alicia; Wang, Daniel; Hipp, J Aaron

    2017-12-01

    To examine associations between 24-hour rest-activity patterns and body mass index (BMI) among community-dwelling US adults. Rest-activity patterns provide a field method to study exposures related to circadian rhythms. Adults (N = 578) wore an actigraph on their nondominant wrist for 7 days. Intradaily variability and interdaily stability (IS), M10 (most active 10-hours), L5 (least active 5-hours), and relative amplitude (RA) were derived using nonparametric rhythm analysis. Mesor, acrophase, and amplitude were calculated from log-transformed count data using the parametric cosinor approach. Participants were 80% female and mean (standard deviation) age was 52 (15) years. Participants with higher BMI had lower values for magnitude, RA, IS, total sleep time (TST), and sleep efficiency. In multivariable analyses, less robust 24-hour rest-activity patterns as represented by lower RA were consistently associated with higher BMI: comparing the bottom quintile (least robust) to the top quintile (most robust 24-hour rest-activity pattern) of RA, BMI was 3-kg/m2 higher (p = .02). Associations were similar in magnitude to an hour less of TST (1-kg/m2 higher BMI) or a 10% decrease in sleep efficiency (2-kg/m2 higher BMI), and independent of age, sex, race, education, and the duration of rest and/or activity. Lower RA, reflecting both higher night activity and lower daytime activity, was associated with higher BMI. Independent of the duration of rest or activity during the day or night, 24-hour rest, and activity patterns from actigraphy provide aggregated measures of activity that associate with BMI in community-dwelling adults. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. Comparison of cluster and principal component analysis techniques to derive dietary patterns in Irish adults.

    Science.gov (United States)

    Hearty, Aine P; Gibney, Michael J

    2009-02-01

    The aims of the present study were to examine and compare dietary patterns in adults using cluster and factor analyses and to examine the format of the dietary variables on the pattern solutions (i.e. expressed as grams/day (g/d) of each food group or as the percentage contribution to total energy intake). Food intake data were derived from the North/South Ireland Food Consumption Survey 1997-9, which was a randomised cross-sectional study of 7 d recorded food and nutrient intakes of a representative sample of 1379 Irish adults aged 18-64 years. Cluster analysis was performed using the k-means algorithm and principal component analysis (PCA) was used to extract dietary factors. Food data were reduced to thirty-three food groups. For cluster analysis, the most suitable format of the food-group variable was found to be the percentage contribution to energy intake, which produced six clusters: 'Traditional Irish'; 'Continental'; 'Unhealthy foods'; 'Light-meal foods & low-fat milk'; 'Healthy foods'; 'Wholemeal bread & desserts'. For PCA, food groups in the format of g/d were found to be the most suitable format, and this revealed four dietary patterns: 'Unhealthy foods & high alcohol'; 'Traditional Irish'; 'Healthy foods'; 'Sweet convenience foods & low alcohol'. In summary, cluster and PCA identified similar dietary patterns when presented with the same dataset. However, the two dietary pattern methods required a different format of the food-group variable, and the most appropriate format of the input variable should be considered in future studies.

  1. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  2. Association of Empirically Derived Dietary Patterns with Cardiovascular Risk Factors: A Comparison of PCA and RRR Methods.

    Directory of Open Access Journals (Sweden)

    Nicolas Sauvageot

    Full Text Available Principal component analysis is used to determine dietary behaviors of a population whereas reduced rank regression is used to construct disease-related dietary patterns. This study aimed to compare both types of DP and theirs associations with cardiovascular risk factors (CVRF.Data were derived from the cross sectional NESCAV (Nutrition, Environment and Cardiovascular Health study, aiming to describe the cardiovascular health of the Greater region's population (Grand duchy of Luxembourg, Wallonia (Belgium, Lorraine (France. 2298 individuals were included for this study and dietary intake was assessed using a 134-item food frequency questionnaire.We found that CVRF-related patterns also reflect eating behaviours of the population. Comparing concordant food groups between both dietary pattern methods, a diet high in fruits, oleaginous and dried fruits, vegetables, olive oil, fats rich in omega 6 and tea and low in fried foods, lean and fatty meat, processed meat, ready meal, soft drink and beer was associated with lower prevalence of CVRF. In the opposite, a pattern characterized by high intakes of fried foods, meat, offal, beer, wine and aperitifs and spirits, and low intakes of cereals, sugar and sweets and soft drinks was associated with higher prevalence of CVRF.In sum, we found that a "Prudent" and "Animal protein and alcohol" patterns were both associated with CVRF and behaviourally meaningful. Moreover, the relationships of those dietary patterns with lifestyle characteristics support the theory that food choices are part of a larger pattern of healthy lifestyle.

  3. Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems

    Science.gov (United States)

    Abdel-Karim, Noha

    electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in

  4. A time-localized response of wave growth process under turbulent winds

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2007-06-01

    Full Text Available Very short time series (with lengths of approximately 40 s or 5~7 wave periods of wind velocity fluctuations and wave elevation were recorded simultaneously and investigated using the wavelet bispectral analysis. Rapid changes in the wave and wind spectra were detected, which were found to be intimately related to significant energy transfers through transient quadratic wind-wave and wave-wave interactions. A possible pattern of energy exchange between the wind and wave fields was further deduced. In particular, the generation and variation of the strong wave-induced perturbation velocity in the wind can be explained by the strengthening and diminishing of the associated quadratic interactions, which cannot be unveiled by linear theories. On small time scales, the wave-wave quadratic interactions were as active and effective in transferring energy as the wind-wave interactions. The results also showed that the wind turbulence was occasionally effective in transferring energy between the wind and the wave fields, so that the background turbulence in the wind cannot be completely neglected. Although these effects are all possibly significant over short times, the time-localized growth of the wave spectrum may not considerably affect the long-term process of wave development.

  5. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu...

  6. Relationship between Spatio-Temporal Travel Patterns Derived from Smart-Card Data and Local Environmental Characteristics of Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Mi-Kyeong Kim

    2018-03-01

    Full Text Available With the incorporation of an automated fare-collection system into the management of public transportation, not only can the quality of transportation services be improved but also that of the data collected from users when coupled with smart-card technology. The data collected from smart cards provide opportunities for researchers to analyze big data sets and draw meaningful information out of them. This study aims to identify the relationship between travel patterns derived from smart-card data and urban characteristics. Using seven-day transit smart-card data from the public-transportation system in Seoul, the capital city of the Republic of Korea, we investigated the temporal and spatial boarding and alighting patterns of the users. The major travel patterns, classified into five clusters, were identified by utilizing the K-Spectral Centroid clustering method. We found that the temporal pattern of urban mobility reflects daily activities in the urban area and that the spatial pattern of the five clusters classified by travel patterns was closely related to urban structure and urban function; that is, local environmental characteristics extracted from land-use and census data. This study confirmed that the travel patterns at the citywide level can be used to understand the dynamics of the urban population and the urban spatial structure. We believe that this study will provide valuable information about general patterns, which represent the possibility of finding travel patterns from individuals and urban spatial traits.

  7. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  8. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  9. Optimal sharing of quantity risk for a coalition of wind power producers facing nodal prices

    KAUST Repository

    Bitar, E. Y.; Baeyens, E.; Khargonekar, P. P.; Poolla, K.; Varaiya, P.

    2012-01-01

    It is widely accepted that aggregation of geographically diverse wind energy resources offers compelling potential to mitigate wind power variability, as wind speed at different geographic locations tends to decorrelate with increasing spatial separation. In this paper, we explore the extent to which a coalition of wind power producers can exploit the statistical benefits of aggregation to mitigate the risk of quantity shortfall with respect to forward contract offerings for energy. We propose a simple augmentation of the existing two-settlement market system with nodal pricing to permit quantity risk sharing among wind power producers by affording the group a recourse opportunity to utilize improved forecasts of their ensuing wind energy production to collectively modify their forward contracted positions so as to utilize the projected surplus in generation at certain buses to balance the projected shortfall in generation at complementary buses. Working within this framework, we show that the problem of optimally sizing a set of forward contracts for a group of wind power producers reduces to convex programming and derive closed form expressions for the set of optimal recourse policies. We also asses the willingness of individual wind power producers to form a coalition to cooperatively offer contracts for energy. We first show that the expected profit derived from coalitional contract offerings with recourse is greater than that achievable through independent contract offerings. And, using tools from coalitional game theory, we show that the core for our game is non-empty.

  10. Optimal sharing of quantity risk for a coalition of wind power producers facing nodal prices

    KAUST Repository

    Bitar, E. Y.

    2012-06-01

    It is widely accepted that aggregation of geographically diverse wind energy resources offers compelling potential to mitigate wind power variability, as wind speed at different geographic locations tends to decorrelate with increasing spatial separation. In this paper, we explore the extent to which a coalition of wind power producers can exploit the statistical benefits of aggregation to mitigate the risk of quantity shortfall with respect to forward contract offerings for energy. We propose a simple augmentation of the existing two-settlement market system with nodal pricing to permit quantity risk sharing among wind power producers by affording the group a recourse opportunity to utilize improved forecasts of their ensuing wind energy production to collectively modify their forward contracted positions so as to utilize the projected surplus in generation at certain buses to balance the projected shortfall in generation at complementary buses. Working within this framework, we show that the problem of optimally sizing a set of forward contracts for a group of wind power producers reduces to convex programming and derive closed form expressions for the set of optimal recourse policies. We also asses the willingness of individual wind power producers to form a coalition to cooperatively offer contracts for energy. We first show that the expected profit derived from coalitional contract offerings with recourse is greater than that achievable through independent contract offerings. And, using tools from coalitional game theory, we show that the core for our game is non-empty.

  11. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  12. Investigation of the interactions between wind turbines and radio systems aimed at establishing co-siting guidelines. Phase 1: Introduction and modelling of wind turbine scatter, appendices E, F and G

    International Nuclear Information System (INIS)

    Dabis, H.S.; Chignell, R.J.

    1997-01-01

    The potential for wind turbines to interfere with radio systems can be a source of conflict between radio operators and the wind energy community. In this report, the problem of accurately predicting the effects of wind turbines on radio systems with the aim of establishing guidelines for their installation is investigated. Initially models for the scatter mechanisms that occur at the wind turbine are developed. These models predict the wind turbine radar cross section and the modulation effects due to the rotation of the blades. Initial validation of these models is established by comparing the predicted results with a set of measurements obtained from experiments performed on a 20:1 scale model wind turbine. It is shown that generally these results agree well. These results are then used in the guideline formulation to compute, for specific radio systems, regions where wind turbines cannot be installed. Examples using realistic parameters for various radio systems are presented. Further validation of the derived models is required. (author)

  13. Wind Turbines Support Techniques during Frequency Drops — Energy Utilization Comparison

    Directory of Open Access Journals (Sweden)

    Ayman B. Attya

    2014-08-01

    Full Text Available The supportive role of wind turbines during frequency drops is still not clear enough, although there are many proposed algorithms. Most of the offered techniques make the wind turbine deviates from optimum power generation operation to special operation modes, to guarantee the availability of reasonable power support, when the system suffers frequency deviations. This paper summarizes the most dominant support algorithms and derives wind turbine power curves for each one. It also conducts a comparison from the point of view of wasted energy, with respect to optimum power generation. The authors insure the advantage of a frequency support algorithm, they previously presented, as it achieved lower amounts of wasted energy. This analysis is performed in two locations that are promising candidates for hosting wind farms in Egypt. Additionally, two different types of wind turbines from two different manufacturers are integrated. Matlab and Simulink are the implemented simulation environments.

  14. Suitability Analyses of Wind Power Generation Complex in South Korea by Using Environmental & Social Criterias

    Science.gov (United States)

    Zhu, Y.; Jeon, S. W.; Seong, M.

    2017-12-01

    In case of wind-power, one of the most economical renewable energy resources, it is highly emerged owing to the strategic aspect of the response of environmental restriction and strong energy security as well as the upcoming motivation for huge industrial growth in the future. According to the fourth Fundamental Renewable Energy Plan, declared in Sep. 2014, the government instituted the scheme to minimize the proportion of previous RDF(Refused Derived Fuel) till 2035, promoting the solar power and wind power as the core energy for the next generation. Especially in South Korea, it is somewhat desperate to suggest the standard for environmentally optimal locations of wind power setup accompanied with the prevention of disasters from the climate changes. This is because that in case of South Korea, most of suitable places for Wind power complex are in the ridge of the mountains, where is highly invaluable sites as the pool of bio-resources and ecosystem conservations. In this research, we are to focus on the analysis of suitable locations for wind farm site which is relevant to the meteorological and geological factors, by utilizing GIS techniques through the whole South Korea. Ultimately, this analyses are to minimize the adverse effect derived from the current development of wind power in mountain ridges and the time for negotiation for wind power advance.

  15. Errors in second moments estimated from monostatic Doppler sodar winds. II. Application to field measurements

    DEFF Research Database (Denmark)

    Gaynor, J. E.; Kristensen, Leif

    1986-01-01

    Observatory tower. The approximate magnitude of the error due to spatial and temporal pulse volume separation is presented as a function of mean wind angle relative to the sodar configuration and for several antenna pulsing orders. Sodar-derived standard deviations of the lateral wind component, before...

  16. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  17. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    Science.gov (United States)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  18. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  19. Anomalous diffusion in a lattice-gas wind-tree model

    International Nuclear Information System (INIS)

    Kong, X.P.; Cohen, E.G.D.

    1989-01-01

    Two new strictly deterministic lattice-gas automata derived from Ehrenfest's wind-tree model are studied. While in one model normal diffusion occurs, the other model exhibits abnormal diffusion in that the distribution function of the displacements of the wind particle is non-Gaussian, but its second moment, the mean-square displacement, is proportional to the time, so that a diffusion coefficient can be defined. A connection with the percolation problem and a self-avoiding random walk for the case in which the lattice is completely covered with trees is discussed

  20. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.

    2010-12-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric energy market, we derive analytical expressions for optimal contract size and corresponding expected optimal profit. We also address problems involving overproduction penalties, cost of reserves, and utility of additional sensor information. We obtain analytical expressions for marginal profits from investing in local generation and energy storage. ©2010 IEEE.