Modeling and Parameter Estimation of a Small Wind Generation System
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.
Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data
Klein, Vladislav; Murphy, Patrick C.
1998-01-01
Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.
Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator
Institute of Scientific and Technical Information of China (English)
Xueping PAN; Ping JU; Feng WU; Yuqing JIN
2017-01-01
A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper.Firstly,the parameters of the DFIG and the drive train are estimated locally under different types of disturbances.Secondly,a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results.The main benefit of the proposed scheme is the improved estimation accuracy.Estimation results confirm the applicability of the proposed estimation technique.
International Nuclear Information System (INIS)
Mohammadi, Kasra; Alavi, Omid; Mostafaeipour, Ali; Goudarzi, Navid; Jalilvand, Mahdi
2016-01-01
Highlights: • Effectiveness of six numerical methods is evaluated to determine wind power density. • More appropriate method for computing the daily wind power density is estimated. • Four windy stations located in the south part of Alberta, Canada namely is investigated. • The more appropriate parameters estimation method was not identical among all examined stations. - Abstract: In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis
Directory of Open Access Journals (Sweden)
Adela-Eliza Dumitrascu
2015-01-01
Full Text Available Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram, which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.
Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina
2015-01-01
Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.
International Nuclear Information System (INIS)
Khahro, Shahnawaz Farhan; Tabbassum, Kavita; Soomro, Amir Mahmood; Dong, Lei; Liao, Xiaozhong
2014-01-01
Highlights: • Weibull scale and shape parameters are calculated using 5 numerical methods. • Yearly mean wind speed is 6.712 m/s at 80 m height with highest in May 9.595 m/s. • Yearly mean WPD is 310 W/m 2 and available energy density is 2716 kWh/m 2 at 80 m height. • Probability of higher wind speeds is more in spring and summer than in autumn and winter. • Estimated cost of per kWh of electricity from wind is calculated as 0.0263 US$/kWh. - Abstract: Pakistan is currently experiencing an acute shortage of energy and urgently needs new sources of affordable energy that could alleviate the misery of the energy starved masses. At present the government is increasing not only the conventional energy sources like hydel and thermal but also focusing on the immense potential of renewable energy sources like; solar, wind, biogas, waste-to-energy etc. The recent economic crisis worldwide, global warming and climate change have also emphasized the need for utilizing economic feasible energy sources having lowest carbon emissions. Wind energy, with its sustainability and low environmental impact, is highly prominent. The aim of this paper is to explore the wind power production prospective of one of the sites in south region of Pakistan. It is worth mentioning here that this type of detailed analysis is hardly done for any location in Pakistan. Wind power densities and frequency distributions of wind speed at four different altitudes along with estimated wind power expected to be generated through commercial wind turbines is calculated. Analysis and comparison of 5 numerical methods is presented in this paper to determine the Weibull scale and shape parameters for the available wind data. The yearly mean wind speed of the considered site is 6.712 m/s and has power density of 310 W/m 2 at 80 m height with high power density during April to August (highest in May with wind speed 9.595 m/s and power density 732 W/m 2 ). Economic evaluation, to exemplify feasibility
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian
2011-01-01
of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....
Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data
Klein, Vladislav; Murphy, Patrick C.
1998-01-01
A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...
Mathematical Model to estimate the wind power using four-parameter Burr distribution
Liu, Sanming; Wang, Zhijie; Pan, Zhaoxu
2018-03-01
When the real probability of wind speed in the same position needs to be described, the four-parameter Burr distribution is more suitable than other distributions. This paper introduces its important properties and characteristics. Also, the application of the four-parameter Burr distribution in wind speed prediction is discussed, and the expression of probability distribution of output power of wind turbine is deduced.
Directory of Open Access Journals (Sweden)
P Bhattacharya
2016-09-01
Full Text Available The wind resource varies with of the day and the season of the year and even some extent from year to year. Wind energy has inherent variances and hence it has been expressed by distribution functions. In this paper, we present some methods for estimating Weibull parameters in case of a low wind speed characterization, namely, shape parameter (k, scale parameter (c and characterize the discrete wind data sample by the discrete Hilbert transform. We know that the Weibull distribution is an important distribution especially for reliability and maintainability analysis. The suitable values for both shape parameter and scale parameters of Weibull distribution are important for selecting locations of installing wind turbine generators. The scale parameter of Weibull distribution also important to determine whether a wind farm is good or not. Thereafter the use of discrete Hilbert transform (DHT for wind speed characterization provides a new era of using DHT besides its application in digital signal processing. Basically in this paper, discrete Hilbert transform has been applied to characterize the wind sample data measured on College of Engineering and Management, Kolaghat, East Midnapore, India in January 2011.
Wind Climate Parameters for Wind Turbine Fatigue Load Assessment
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang
2016-01-01
Site-specific assessment of wind turbine design requires verification that the individual wind turbine components can survive the site-specific wind climate. The wind turbine design standard, IEC 61400-1 (third edition), describes how this should be done using a simplified, equivalent wind climate...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...
Extreme wind estimate for Hornsea wind farm
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo
The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...
Martinović, M.
2017-12-01
Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz
2016-12-14
A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.
Directory of Open Access Journals (Sweden)
D. Kidmo Kaoga
2015-07-01
Full Text Available In this study, five numerical Weibull distribution methods, namely, the maximum likelihood method, the modified maximum likelihood method (MLM, the energy pattern factor method (EPF, the graphical method (GM, and the empirical method (EM were explored using hourly synoptic data collected from 1985 to 2013 in the district of Maroua in Cameroon. The performance analysis revealed that the MLM was the most accurate model followed by the EPF and the GM. Furthermore, the comparison between the wind speed standard deviation predicted by the proposed models and the measured data showed that the MLM has a smaller relative error of -3.33% on average compared to -11.67% on average for the EPF and -8.86% on average for the GM. As a result, the MLM was precisely recommended to estimate the scale and shape parameters for an accurate and efficient wind energy potential evaluation.
Directory of Open Access Journals (Sweden)
D. Kidmo Kaoga
2014-12-01
Full Text Available In this study, five numerical Weibull distribution methods, namely, the maximum likelihood method, the modified maximum likelihood method (MLM, the energy pattern factor method (EPF, the graphical method (GM, and the empirical method (EM were explored using hourly synoptic data collected from 1985 to 2013 in the district of Maroua in Cameroon. The performance analysis revealed that the MLM was the most accurate model followed by the EPF and the GM. Furthermore, the comparison between the wind speed standard deviation predicted by the proposed models and the measured data showed that the MLM has a smaller relative error of -3.33% on average compared to -11.67% on average for the EPF and -8.86% on average for the GM. As a result, the MLM was precisely recommended to estimate the scale and shape parameters for an accurate and efficient wind energy potential evaluation.
Heating Parameter Estimation Using Coaxial Thermocouple Gages in Wind Tunnel Test Articles.
1984-12-01
Attack a Emissivity G Parameter Vector Pn Measurement Vector at nth Time Point p Density 0 Stefan-Boltzmann Constant 6 Transition Matrix APc Scaling...for. The radiation is modeled using the Stefan-Boltzmann Law, q = 60(U 4 - U, 4 ) (A-9) where 8 radiative emissivity a Stefan-Bol tzmann constant U...w00 I- 000 0 0111c :0 i zZ Z-4lwr I- E . - t J K - IL HHO "W 6i 0WZWZWO&000OW *0 . 0 - .- - -4 4 1"- 1 Lii w LiiU Li LI Li Lij Liw w ~ o 0 0wm ~wW6~w d
Directory of Open Access Journals (Sweden)
Ruben M. Mouangue
2014-05-01
Full Text Available The modeling of the wind speed distribution is of great importance for the assessment of wind energy potential and the performance of wind energy conversion system. In this paper, the choice of two determination methods of Weibull parameters shows theirs influences on the Weibull distribution performances. Because of important calm winds on the site of Ngaoundere airport, we characterize the wind potential using the approach of Weibull distribution with parameters which are determined by the modified maximum likelihood method. This approach is compared to the Weibull distribution with parameters which are determined by the maximum likelihood method and the hybrid distribution which is recommended for wind potential assessment of sites having nonzero probability of calm. Using data provided by the ASECNA Weather Service (Agency for the Safety of Air Navigation in Africa and Madagascar, we evaluate the goodness of fit of the various fitted distributions to the wind speed data using the Q – Q plots, the Pearson’s coefficient of correlation, the mean wind speed, the mean square error, the energy density and its relative error. It appears from the results that the accuracy of the Weibull distribution with parameters which are determined by the modified maximum likelihood method is higher than others. Then, this approach is used to estimate the monthly and annual energy productions of the site of the Ngaoundere airport. The most energy contribution is made in March with 255.7 MWh. It also appears from the results that a wind turbine generator installed on this particular site could not work for at least a half of the time because of higher frequency of calm. For this kind of sites, the modified maximum likelihood method proposed by Seguro and Lambert in 2000 is one of the best methods which can be used to determinate the Weibull parameters.
Fetisova, Yu. A.; Ermolenko, B. V.; Ermolenko, G. V.; Kiseleva, S. V.
2017-04-01
We studied the information basis for the assessment of wind power potential on the territory of Russia. We described the methodology to determine the parameters of the Weibull function, which reflects the density of distribution of probabilities of wind flow speeds at a defined basic height above the surface of the earth using the available data on the average speed at this height and its repetition by gradations. The application of the least square method for determining these parameters, unlike the use of graphical methods, allows performing a statistical assessment of the results of approximation of empirical histograms by the Weibull formula. On the basis of the computer-aided analysis of the statistical data, it was shown that, at a fixed point where the wind speed changes at different heights, the range of parameter variation of the Weibull distribution curve is relatively small, the sensitivity of the function to parameter changes is quite low, and the influence of changes on the shape of speed distribution curves is negligible. Taking this into consideration, we proposed and mathematically verified the methodology of determining the speed parameters of the Weibull function at other heights using the parameter computations for this function at a basic height, which is known or defined by the average speed of wind flow, or the roughness coefficient of the geological substrate. We gave examples of practical application of the suggested methodology in the development of the Atlas of Renewable Energy Resources in Russia in conditions of deficiency of source meteorological data. The proposed methodology, to some extent, may solve the problem related to the lack of information on the vertical profile of repeatability of the wind flow speeds in the presence of a wide assortment of wind turbines with different ranges of wind-wheel axis heights and various performance characteristics in the global market; as a result, this methodology can become a powerful tool for
Wind Resource Estimation using QuikSCAT Ocean Surface Winds
DEFF Research Database (Denmark)
Xu, Qing; Zhang, Guosheng; Cheng, Yongcun
2011-01-01
In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...
Offshore wind resource estimation for wind energy
DEFF Research Database (Denmark)
Hasager, Charlotte Bay; Badger, Merete; Mouche, A.
2010-01-01
Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....
Estimation of effective wind speed
Østergaard, K. Z.; Brath, P.; Stoustrup, J.
2007-07-01
The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.
Optomechanical parameter estimation
International Nuclear Information System (INIS)
Ang, Shan Zheng; Tsang, Mankei; Harris, Glen I; Bowen, Warwick P
2013-01-01
We propose a statistical framework for the problem of parameter estimation from a noisy optomechanical system. The Cramér–Rao lower bound on the estimation errors in the long-time limit is derived and compared with the errors of radiometer and expectation–maximization (EM) algorithms in the estimation of the force noise power. When applied to experimental data, the EM estimator is found to have the lowest error and follow the Cramér–Rao bound most closely. Our analytic results are envisioned to be valuable to optomechanical experiment design, while the EM algorithm, with its ability to estimate most of the system parameters, is envisioned to be useful for optomechanical sensing, atomic magnetometry and fundamental tests of quantum mechanics. (paper)
Wind farm production estimates
DEFF Research Database (Denmark)
Larsen, Torben J.; Larsen, Gunner Chr.; Aagaard Madsen, Helge
2012-01-01
In this paper, the Dynamic Wake Meandering (DWM) model is applied for simulation of wind farm production. In addition to the numerical simulations, measured data have been analyzed in order to provide the basis for a full-scale verification of the model performance. The basic idea behind the DWMm......In this paper, the Dynamic Wake Meandering (DWM) model is applied for simulation of wind farm production. In addition to the numerical simulations, measured data have been analyzed in order to provide the basis for a full-scale verification of the model performance. The basic idea behind...... the DWMmodel is to model the in- stationary wind farm flow characteristics by considering wind turbine wakes as passive tracers continuously emitted from the wind farm turbines each with a downstream transport pro- cess dictated by large scale turbulent eddies (lateral and ver- tical transportation; i.......e. meandering) and Taylor advection. For the present purpose, the DWM model has been im- plemented in the aeroelastic code HAWC2 [1], and the per- formance of the resulting model complex is mainly verified by comparing simulated and measured loads for the Dutch off-shore Egmond aan Zee wind farm [2]. This farm...
Ranking as parameter estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav; Guy, Tatiana Valentine
2009-01-01
Roč. 4, č. 2 (2009), s. 142-158 ISSN 1745-7645 R&D Projects: GA MŠk 2C06001; GA AV ČR 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : ranking * Bayesian estimation * negotiation * modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2009/AS/karny- ranking as parameter estimation.pdf
DEFF Research Database (Denmark)
Knudsen, Torben
2014-01-01
Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify the res...
Wind resource estimation and siting of wind turbines
DEFF Research Database (Denmark)
Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.
1994-01-01
Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...... lead to a so-called wind atlas. A precise prediction of the wind speed at a given site is essential because for aerodynamic reasons the power output of a wind turbine is proportional to the third power of the wind speed, hence even small errors in prediction of wind speed may result in large deviations...
Directory of Open Access Journals (Sweden)
Chen Wang
2016-01-01
Full Text Available Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD, which reduces the effect of noise on the wind speed data; (II artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM model are optimized by the cuckoo search (CS algorithm; (III parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.
Wind Farm Decentralized Dynamic Modeling With Parameters
DEFF Research Database (Denmark)
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
Fault Detection of Wind Turbines with Uncertain Parameters
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Odgaard, Peter Fogh; Bak, Thomas
2012-01-01
on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic torque and uncertainties on the parameters make fault detection a challenging problem. We use an effective wind speed estimator to reduce the noise on the wind speed measurements. A set-membership approach...... is detected. For representation of these sets we use zonotopes and for modeling of uncertainties we use matrix zonotopes, which yields a computationally efficient algorithm. The method is applied to the wind turbine benchmark problem without and with uncertainties. The result demonstrates the effectiveness...
Improved Estimates of Thermodynamic Parameters
Lawson, D. D.
1982-01-01
Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.
Improved diagnostic model for estimating wind energy
Energy Technology Data Exchange (ETDEWEB)
Endlich, R.M.; Lee, J.D.
1983-03-01
Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.
Aswath Damodaran
1999-01-01
Over the last three decades, the capital asset pricing model has occupied a central and often controversial place in most corporate finance analysts’ tool chests. The model requires three inputs to compute expected returns – a riskfree rate, a beta for an asset and an expected risk premium for the market portfolio (over and above the riskfree rate). Betas are estimated, by most practitioners, by regressing returns on an asset against a stock index, with the slope of the regression being the b...
Optimum Operational Parameters for Yawed Wind Turbines
Directory of Open Access Journals (Sweden)
David A. Peters
2011-01-01
Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.
WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED
Directory of Open Access Journals (Sweden)
Zdzisław Kamiński
2014-06-01
Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.
Estimation of Typhoon Wind Hazard Curves for Nuclear Sites
Energy Technology Data Exchange (ETDEWEB)
Choun, Young-Sun; Kim, Min-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
The intensity of such typhoons, which can influence the Korean Peninsula, is on an increasing trend owing to a rapid change of climate of the Northwest Pacific Ocean. Therefore, nuclear facilities should be prepared against future super-typhoons. Currently, the U.S. Nuclear Regulatory Commission requires that a new NPP should be designed to endure the design-basis hurricane wind speeds corresponding to an annual exceedance frequency of 10{sup -7} (return period of 10 million years). A typical technique used to estimate typhoon wind speeds is based on a sampling of the key parameters of typhoon wind models from the distribution functions fitting statistical distributions to the observation data. Thus, the estimated wind speeds for long return periods include an unavoidable uncertainty owing to a limited observation. This study estimates the typhoon wind speeds for nuclear sites using a Monte Carlo simulation, and derives wind hazard curves using a logic-tree framework to reduce the epistemic uncertainty. Typhoon wind speeds were estimated for different return periods through a Monte-Carlo simulation using the typhoon observation data, and the wind hazard curves were derived using a logic-tree framework for three nuclear sites. The hazard curves for the simulated and probable maximum winds were obtained. The mean hazard curves for the simulated and probable maximum winds can be used for the design and risk assessment of an NPP.
Wind power error estimation in resource assessments.
Directory of Open Access Journals (Sweden)
Osvaldo Rodríguez
Full Text Available Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Parameter estimation in plasmonic QED
Jahromi, H. Rangani
2018-03-01
We address the problem of parameter estimation in the presence of plasmonic modes manipulating emitted light via the localized surface plasmons in a plasmonic waveguide at the nanoscale. The emitter that we discuss is the nitrogen vacancy centre (NVC) in diamond modelled as a qubit. Our goal is to estimate the β factor measuring the fraction of emitted energy captured by waveguide surface plasmons. The best strategy to obtain the most accurate estimation of the parameter, in terms of the initial state of the probes and different control parameters, is investigated. In particular, for two-qubit estimation, it is found although we may achieve the best estimation at initial instants by using the maximally entangled initial states, at long times, the optimal estimation occurs when the initial state of the probes is a product one. We also find that decreasing the interqubit distance or increasing the propagation length of the plasmons improve the precision of the estimation. Moreover, decrease of spontaneous emission rate of the NVCs retards the quantum Fisher information (QFI) reduction and therefore the vanishing of the QFI, measuring the precision of the estimation, is delayed. In addition, if the phase parameter of the initial state of the two NVCs is equal to πrad, the best estimation with the two-qubit system is achieved when initially the NVCs are maximally entangled. Besides, the one-qubit estimation has been also analysed in detail. Especially, we show that, using a two-qubit probe, at any arbitrary time, enhances considerably the precision of estimation in comparison with one-qubit estimation.
Stellar and wind parameters of massive stars from spectral analysis
Araya, Ignacio; Curé, Michel
2017-11-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
International Nuclear Information System (INIS)
Ayodele, T.R.; Jimoh, A.A.; Munda, J.L.; Agee, J.T.
2012-01-01
Highlights: ► We evaluate capacity factor of some commercially available wind turbines. ► Wind speed in the sites studied can best be modelled using Weibull distribution. ► Site WM05 has the highest wind power potential while site WM02 has the lowest. ► More wind power can be harnessed during the day period compared to the night. ► Turbine K seems to be the best turbine for the coastal region of South Africa. - Abstract: The operating curve parameters of a wind turbine should match the local wind regime optimally to ensure maximum exploitation of available energy in a mass of moving air. This paper provides estimates of the capacity factor of 20 commercially available wind turbines, based on the local wind characteristics of ten different sites located in the Western Cape region of South Africa. Ten-min average time series wind-speed data for a period of 1 year are used for the study. First, the wind distribution that best models the local wind regime of the sites is determined. This is based on root mean square error (RMSE) and coefficient of determination (R 2 ) which are used to test goodness of fit. First, annual, seasonal, diurnal and peak period-capacity factor are estimated analytically. Then, the influence of turbine power curve parameters on the capacity factor is investigated. Some of the key results show that the wind distribution of the entire site can best be modelled statistically using the Weibull distribution. Site WM05 (Napier) presents the highest capacity factor for all the turbines. This indicates that this site has the highest wind power potential of all the available sites. Site WM02 (Calvinia) has the lowest capacity factor i.e. lowest wind power potential. This paper can assist in the planning and development of large-scale wind power-generating sites in South Africa.
Prototype bucket foundation for wind turbines - natural frequency estimation
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models capable of simulating dynamic frequency dependent behaviour of the structure-foundation system. (au)
Estimating near-shore wind resources
DEFF Research Database (Denmark)
Floors, Rogier Ralph; Hahmann, Andrea N.; Peña, Alfredo
An evaluation and sensitivity study using the WRF mesoscale model to estimate the wind in a coastal area is performed using a unique data set consisting of scanning, profiling and floating lidars. The ability of the WRF model to represent the wind speed was evaluated by running the model for a four...... grid spacings were performed for each of the two schemes. An evaluation of the wind profile using vertical profilers revealed small differences in modelled mean wind speed between the different set-ups, with the YSU scheme predicting slightly higher mean wind speeds. Larger differences between...... the different simulations were observed when comparing the root-mean-square error (RMSE) between modelled and measured wind, with the ERA interim-based simulations having the lowest errors. The simulations with finer horizontal grid spacing had a larger MSE. Horizontal transects of mean wind speed across...
Load Estimation from Modal Parameters
DEFF Research Database (Denmark)
Aenlle, Manuel López; Brincker, Rune; Fernández, Pelayo Fernández
2007-01-01
In Natural Input Modal Analysis the modal parameters are estimated just from the responses while the loading is not recorded. However, engineers are sometimes interested in knowing some features of the loading acting on a structure. In this paper, a procedure to determine the loading from a FRF m...
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Wind speed estimation using multilayer perceptron
International Nuclear Information System (INIS)
Velo, Ramón; López, Paz; Maseda, Francisco
2014-01-01
Highlights: • We present a method for determining the average wind speed using neural networks. • We use data from that site in the short term and data from other nearby stations. • The inputs used in the ANN were wind speed and direction data from a station. • The method allows knowing the wind speed without topographical data. - Abstract: Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%
Inflation and cosmological parameter estimation
Energy Technology Data Exchange (ETDEWEB)
Hamann, J.
2007-05-15
In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)
Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines
Simley, Eric J.
Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by
Applied parameter estimation for chemical engineers
Englezos, Peter
2000-01-01
Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam
Data Handling and Parameter Estimation
DEFF Research Database (Denmark)
Sin, Gürkan; Gernaey, Krist
2016-01-01
,engineers, and professionals. However, it is also expected that they will be useful both for graduate teaching as well as a stepping stone for academic researchers who wish to expand their theoretical interest in the subject. For the models selected to interpret the experimental data, this chapter uses available models from...... literature that are mostly based on the ActivatedSludge Model (ASM) framework and their appropriate extensions (Henze et al., 2000).The chapter presents an overview of the most commonly used methods in the estimation of parameters from experimental batch data, namely: (i) data handling and validation, (ii......Modelling is one of the key tools at the disposal of modern wastewater treatment professionals, researchers and engineers. It enables them to study and understand complex phenomena underlying the physical, chemical and biological performance of wastewater treatment plants at different temporal...
Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads
Energy Technology Data Exchange (ETDEWEB)
Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-01-12
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.
Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint
Energy Technology Data Exchange (ETDEWEB)
Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-13
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.
Condition Parameter Modeling for Anomaly Detection in Wind Turbines
Directory of Open Access Journals (Sweden)
Yonglong Yan
2014-05-01
Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.
Dst Prediction Based on Solar Wind Parameters
Directory of Open Access Journals (Sweden)
Yoon-Kyung Park
2009-12-01
Full Text Available We reevaluate the Burton equation (Burton et al. 1975 of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q and the decay time (tau of the equation, we examine the relationships between Dst* and VB_s, Delta Dst* and VB_s, and Delta Dst* and Dst* during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h=0 for VB_s leq0.5mV/m. The tau (hour is estimated as 0.060 Dst* + 16.65 for Dst*>-175nT and 6.15 hours for Dst* leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst* is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975 and O'Brien & McPherron (2000a. The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst* lesssim -200nT.
International Nuclear Information System (INIS)
Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.
2016-01-01
Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction
Mooring Line Damping Estimation for a Floating Wind Turbine
Directory of Open Access Journals (Sweden)
Dongsheng Qiao
2014-01-01
Full Text Available The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT. Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
Mooring line damping estimation for a floating wind turbine.
Qiao, Dongsheng; Ou, Jinping
2014-01-01
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
Parameter Estimation in Continuous Time Domain
Directory of Open Access Journals (Sweden)
Gabriela M. ATANASIU
2016-12-01
Full Text Available This paper will aim to presents the applications of a continuous-time parameter estimation method for estimating structural parameters of a real bridge structure. For the purpose of illustrating this method two case studies of a bridge pile located in a highly seismic risk area are considered, for which the structural parameters for the mass, damping and stiffness are estimated. The estimation process is followed by the validation of the analytical results and comparison with them to the measurement data. Further benefits and applications for the continuous-time parameter estimation method in civil engineering are presented in the final part of this paper.
Voyager microwave scintillation measurements of solar wind plasma parameters
International Nuclear Information System (INIS)
Martin, J.M.
1985-01-01
During the solar conjunctions of Voyager 1 and 2 spacecraft in August 1979, September 1980, and November 1982, temporal variations of intensity and frequency of the dual-wavelength (3.6 and 13 cm) radio transmissions from the spacecraft were observed and subsequently analyzed to infer characteristics of the solar wind plasma flow. Measurements of the temporal wave structure function were used to estimate the spectral index of the power law spatial spectrum of irregularities. Theoretical-intensity scintillation spectra were compared with measured intensity spectra to obtain least-squares estimates of (1) mean velocity, (2) random velocity, (3) axial ratio, and (4) electron density standard deviation. Uncertainties in parameter estimates were calculated by standard propagation of errors techniques. Mean velocity and electron density standard deviations in 1979-1980 show little dependence on solar latitude. Density standard deviation estimates were 3-10% of the background mean density and mean velocity estimates ranged from approx.200 km/s inside 17 solar radii to approx.300 km/s at 25 solar radii. 1982 density standard deviation estimates increased rapidly with latitude near 45 0 N, then sharply decreased north of that latitude, indicating the existence of a polar region of reduced fluctuations surrounded by a thin cone of strong density irregularities
Study on Parameters Modeling of Wind Turbines Using SCADA Data
Directory of Open Access Journals (Sweden)
Yonglong YAN
2014-08-01
Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.
Statistics of Parameter Estimates: A Concrete Example
Aguilar, Oscar; Allmaras, Moritz; Bangerth, Wolfgang; Tenorio, Luis
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.
2013-01-01
PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus
Representivity of wind measurements for design wind speed estimations
CSIR Research Space (South Africa)
Goliger, Adam M
2013-07-01
Full Text Available of instrumentation sited according to World Meteorological Organization (WMO) requirements. With the advent of automatic weather station technology several decades ago, wind measurements have become much more cost-effective. While previously wind measurements were...
determination of weibull parameters and analysis of wind power
African Journals Online (AJOL)
HOD
shape parameter (k) and the scale factor(c) were obtained to be 6.7 m/s and 4.3 m/s, 0.91 MW and 0.25 MW, K~ 5.4 and. 2.1, and c ... China, the forecast is not different as the report of the ..... Distribution for Wind Energy Analysis”, J. Wind Eng.
On parameter estimation in deformable models
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael
1998-01-01
Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...
Geometry of solar corona expansion and solar wind parameters
International Nuclear Information System (INIS)
Krajnev, M.B.
1980-01-01
The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters
ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS
Directory of Open Access Journals (Sweden)
muhammad zahid rashid
2011-04-01
Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR, moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes
Cosmological parameter estimation using Particle Swarm Optimization
Prasad, J.; Souradeep, T.
2014-03-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.
Cosmological parameter estimation using Particle Swarm Optimization
International Nuclear Information System (INIS)
Prasad, J; Souradeep, T
2014-01-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite
Estimating wind frequency limits for natural ventilation at remote sites
International Nuclear Information System (INIS)
Su, B.; Aynsley, R.
2006-01-01
Detailed wind data are collected at a limited number of sites, usually at airports. When a building is sited remote from the nearest wind data collection site, estimating wind frequency is more complex. The techniques involved come from the discipline of wind engineering. Where there is a relatively flat terrain between the wind data-recording site and the building site, simple computations can be made to account for the wind velocities over intervening terrain roughness. Where significant topographic features such as hills or mountains are present between the wind data-recording site and the building site, then boundary layer wind tunnel studies will be necessary to determine the influence of such features on wind speed and direction. Rough estimates can be calculated using factors used in some wind loading codes. When buildings are to be designed to take advantage of the energy efficiency offered by natural ventilation, it is important to estimate the actual potential for such ventilation. The natural ventilation potential can be estimated in terms of the percentage of time when wind exceeds some minimum value. For buildings near airports this is a relatively simple procedure. Such estimates are important as they also indicate the likely percentage of time when fans or other energy consuming devices will be needed to maintain indoor thermal comfort. This paper identifies the wind engineering techniques that can be used for such estimates and gives examples of such calculations
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Determination of performance parameters of vertical axis wind turbines in wind tunnel
Directory of Open Access Journals (Sweden)
Nguyen Van Bang
2017-01-01
Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.
Application of spreadsheet to estimate infiltration parameters
Directory of Open Access Journals (Sweden)
Mohammad Zakwan
2016-09-01
Full Text Available Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach for estimation of infiltration parameters often fails to estimate the infiltration parameters precisely. The generalised reduced gradient (GRG solver is reported to be a powerful tool for estimating parameters of nonlinear equations and it has, therefore, been implemented to estimate the infiltration parameters in the present paper. Field data of infiltration rate available in literature for sandy loam soils of Umuahia, Nigeria were used to evaluate the performance of GRG solver. A comparative study of graphical method and GRG solver shows that the performance of GRG solver is better than that of conventional graphical method for estimation of infiltration rates. Further, the performance of Kostiakov model has been found to be better than the Horton and Philip's model in most of the cases based on both the approaches of parameter estimation.
Energy Technology Data Exchange (ETDEWEB)
Lundquist, J. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pukayastha, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, C. [Univ. of Colorado, Boulder, CO (United States); Newsom, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-03-01
Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.
Estimating Wind and Wave Induced Forces On a Floating Wind Turbine
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong
2013-01-01
-principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....
Estimation of cost and value of energy from wind turbines
International Nuclear Information System (INIS)
Tande, J.O.; Fransden, S.
1995-01-01
The International Energy Agency expert group on recommended practices for wind turbine testing and evaluation is finalizing a second edition of the E stimation of cost of energy from wind energy conversion systems . This paper summarizes those recommendations. Further, the value of wind energy in terms of the associated savings is discussed, and a case study is undertaken to illustrate wind energy cost/benefit analyses. The paper concludes that while the recommended practices on cost estimation may be useful in connection with wind energy feasibility studies there is still a need for further international agreement upon guidelines on how to assess wind energy benefits. (author)
Structured Linear Parameter Varying Control of Wind Turbines
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob
2012-01-01
High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines is pre...... in the controller synthesis are solved by an iterative LMI-based algorithm. The resulting controllers can also be easily implemented in practice due to low data storage and simple math operations. The performance of the LPV controllers is assessed by nonlinear simulations results....
Parameter Estimation of Nonlinear Models in Forestry.
Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.
1999-01-01
Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...
Hurricane Wind Vector Estimates from WindSat Polarimetric Radiometer
National Research Council Canada - National Science Library
Adams, Ian S; Hennon, Christopther C; Jones, W. L; Ahmad, Khalil
2005-01-01
.... In late 2004, the first preliminary oceanic wind vector results were released, and this paper presents the first evaluation of this product for several Atlantic hurricanes during the 2003 season...
Estimating the true energy value of a wind farm
International Nuclear Information System (INIS)
Bass, J.
1995-01-01
To assess the true energy yield of a wind farm taking into account real-world effects such as control losses in individual turbines, losses in the distribution network and wake and topographic effects, this report from the Energy Technology Support Unit, has developed a more appropriate methodology for making economic assessments of wind farm projects. Simulations of wind turbines are used to enable control losses to be quantified, and long term performance data from wind turbines in operational United Kingdom wind farms adds to the accuracy of assessment. A model has also been used to estimate performance of a power distribution system for a wind farm, to enable losses associated with wind turbine, wind speed and various distribution layouts to be predicted. Data on wake effects are drawn from a separate study. All these are drawn into an economic simulation model which predicts a wind farm's likely achievement of its target energy yield, thus demonstrating the risk factors involved. (UK)
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Reionization history and CMB parameter estimation
International Nuclear Information System (INIS)
Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.
2013-01-01
We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case
Reionization history and CMB parameter estimation
Energy Technology Data Exchange (ETDEWEB)
Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.
2013-05-01
We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.
Results of large scale wind climatologically estimations
Directory of Open Access Journals (Sweden)
Andrea Kircsi
2008-05-01
Full Text Available The aim of this article is to describe theparticular field of climatology which analyzes airmovement characteristics regarding utilization of windfor energy generation. The article describes features ofwind energy potential available in Hungary compared towind conditions in other areas of the northern quartersphere in order to assist the wind energy use developmentin Hungary. Information on wind climate gives a solidbasis for financial and economic decisions ofstakeholders in the field of wind energy utilization.
International Nuclear Information System (INIS)
Tu, Yi-Long; Chang, Tsang-Jung; Chen, Cheng-Lung; Chang, Yu-Jung
2012-01-01
Highlights: ► ANN with short record training data is used to estimate power outputs in an existing station. ► The suitable numbers/parameters of input neurons for ANN are presented. ► Current wind speeds and previous power outputs are the most important input neurons. ► Choosing suitable input parameters is more important than choosing multiple parameters. - Abstract: For the brand new wind power industry, online recordings of wind power data are always in a relatively limited period. The aim of the study is to investigate the suitable numbers/parameters of input neurons for artificial neural networks under a short record of measured data. Measured wind speeds, wind directions (yaw angles) and power outputs with 10-min resolution at an existing wind power station, located at Jhongtun, Taiwan, are integrated to form three types of input neuron numbers and sixteen cases of input neurons. The first-10 days of each month in 2006 are used for data training to simulate the following 20-day power generation of the same month. The performance of various input neuron cases is evaluated. The simulated results show that using the first 10-day training data with adequate input neurons can estimate energy outputs well except the weak wind regime (May, June, and July). Among the input neuron parameters used, current wind speeds V(t) and previous power outputs P(t − 1) are the most important. Individually using one of them into input neurons can only provide satisfactory estimation. However, simultaneously using these two parameters into input neurons can give the best estimation. Thus, choosing suitable input parameters is more important than choosing multiple parameters.
Estimation of the Possible Power of a Wind Farm
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor
2014-01-01
the possible power calculated based on the estimated effective wind speed of a down regulated wind farm (the industry standard) is compared against the calculated possible power based on the algorithm presented in the paper. The latter takes into account the eect of the wakes of down regulated turbines......It seems possible to increase competitiveness of wind power plants by offering grid services (also called ancillary services) and enter the wind power plants into the ancillary market. One of the ancillary services is called reserve power, the differential capacity between the generated power...... and the available power in the farm. The total amount of energy that a wind farm can potentially generate is called possible power. It is very important for a wind farm owner to have a relatively accurate estimate of the possible power of the wind farm in order to be able to trade the reserve power. In this paper...
Statistics of Parameter Estimates: A Concrete Example
Aguilar, Oscar
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise levels, models, or prior knowledge. But what can we say about the validity of such estimates, and the influence of these assumptions? This paper is concerned with methods to address these questions, and for didactic purposes it is written in the context of a concrete nonlinear parameter estimation problem. We will use the results of a physical experiment conducted by Allmaras et al. at Texas A&M University [M. Allmaras et al., SIAM Rev., 55 (2013), pp. 149-167] to illustrate the importance of validation procedures for statistical parameter estimation. We describe statistical methods and data analysis tools to check the choices of likelihood and prior distributions, and provide examples of how to compare Bayesian results with those obtained by non-Bayesian methods based on different types of assumptions. We explain how different statistical methods can be used in complementary ways to improve the understanding of parameter estimates and their uncertainties.
Parameter estimation in X-ray astronomy
International Nuclear Information System (INIS)
Lampton, M.; Margon, B.; Bowyer, S.
1976-01-01
The problems of model classification and parameter estimation are examined, with the objective of establishing the statistical reliability of inferences drawn from X-ray observations. For testing the validities of classes of models, the procedure based on minimizing the chi 2 statistic is recommended; it provides a rejection criterion at any desired significance level. Once a class of models has been accepted, a related procedure based on the increase of chi 2 gives a confidence region for the values of the model's adjustable parameters. The procedure allows the confidence level to be chosen exactly, even for highly nonlinear models. Numerical experiments confirm the validity of the prescribed technique.The chi 2 /sub min/+1 error estimation method is evaluated and found unsuitable when several parameter ranges are to be derived, because it substantially underestimates their joint errors. The ratio of variances method, while formally correct, gives parameter confidence regions which are more variable than necessary
Parameter Estimation for Thurstone Choice Models
Energy Technology Data Exchange (ETDEWEB)
Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-24
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.
Multi-Parameter Estimation for Orthorhombic Media
Masmoudi, Nabil; Alkhalifah, Tariq Ali
2015-01-01
Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.
Multi-Parameter Estimation for Orthorhombic Media
Masmoudi, Nabil
2015-08-19
Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.
Bayesian estimation of Weibull distribution parameters
International Nuclear Information System (INIS)
Bacha, M.; Celeux, G.; Idee, E.; Lannoy, A.; Vasseur, D.
1994-11-01
In this paper, we expose SEM (Stochastic Expectation Maximization) and WLB-SIR (Weighted Likelihood Bootstrap - Sampling Importance Re-sampling) methods which are used to estimate Weibull distribution parameters when data are very censored. The second method is based on Bayesian inference and allow to take into account available prior informations on parameters. An application of this method, with real data provided by nuclear power plants operation feedback analysis has been realized. (authors). 8 refs., 2 figs., 2 tabs
Iterative importance sampling algorithms for parameter estimation
Morzfeld, Matthias; Day, Marcus S.; Grout, Ray W.; Pau, George Shu Heng; Finsterle, Stefan A.; Bell, John B.
2016-01-01
In parameter estimation problems one computes a posterior distribution over uncertain parameters defined jointly by a prior distribution, a model, and noisy data. Markov Chain Monte Carlo (MCMC) is often used for the numerical solution of such problems. An alternative to MCMC is importance sampling, which can exhibit near perfect scaling with the number of cores on high performance computing systems because samples are drawn independently. However, finding a suitable proposal distribution is ...
Bayesian parameter estimation in probabilistic risk assessment
International Nuclear Information System (INIS)
Siu, Nathan O.; Kelly, Dana L.
1998-01-01
Bayesian statistical methods are widely used in probabilistic risk assessment (PRA) because of their ability to provide useful estimates of model parameters when data are sparse and because the subjective probability framework, from which these methods are derived, is a natural framework to address the decision problems motivating PRA. This paper presents a tutorial on Bayesian parameter estimation especially relevant to PRA. It summarizes the philosophy behind these methods, approaches for constructing likelihood functions and prior distributions, some simple but realistic examples, and a variety of cautions and lessons regarding practical applications. References are also provided for more in-depth coverage of various topics
Robust estimation of hydrological model parameters
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-11-01
Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.
MCMC for parameters estimation by bayesian approach
International Nuclear Information System (INIS)
Ait Saadi, H.; Ykhlef, F.; Guessoum, A.
2011-01-01
This article discusses the parameter estimation for dynamic system by a Bayesian approach associated with Markov Chain Monte Carlo methods (MCMC). The MCMC methods are powerful for approximating complex integrals, simulating joint distributions, and the estimation of marginal posterior distributions, or posterior means. The MetropolisHastings algorithm has been widely used in Bayesian inference to approximate posterior densities. Calibrating the proposal distribution is one of the main issues of MCMC simulation in order to accelerate the convergence.
Precision Parameter Estimation and Machine Learning
Wandelt, Benjamin D.
2008-12-01
I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.
DEFF Research Database (Denmark)
Badger, Jake; Frank, Helmut; Hahmann, Andrea N.
2014-01-01
This paper demonstrates that a statistical dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind...
Energy Technology Data Exchange (ETDEWEB)
Gay, Michael; Dessel, Michel van [Lessius Mechelen, Campus De Nayer (Belgium). Dept. of Applied Engineering; Driesen, Johan [Leuven Univ. (Belgium). Dept. of Electrical Engineering / ESAT
2012-07-01
The calculation of wind energy parameters is made for small wind turbines on moderate height in a suburban environment. After using the measured data, the same parameters were calculated using first order Markov chain computer generated data. Some characteristics of the wind and the wind power were preserved using Markov, other were not. (orig.)
Pose and Wind Estimation for Autonomous Parafoils
2014-09-01
Precision Airdrop System LIDAR light detection and ranging LOP line of position MCADS Maritime Craft Air Delivery System MEMS micro-electro-mechanical...least squares SLAM simultaneous localization and mapping SPS standard positioning service TIP Turn Initiation Point TMA target motion analysis TNT...improvements and further testing on the WindPack [45]. Most recently, Herrmann proposed the use of a ground-based lidar wind measurement system to transmit
Parameter estimation for an expanding universe
Directory of Open Access Journals (Sweden)
Jieci Wang
2015-03-01
Full Text Available We study the parameter estimation for excitations of Dirac fields in the expanding Robertson–Walker universe. We employ quantum metrology techniques to demonstrate the possibility for high precision estimation for the volume rate of the expanding universe. We show that the optimal precision of the estimation depends sensitively on the dimensionless mass m˜ and dimensionless momentum k˜ of the Dirac particles. The optimal precision for the ratio estimation peaks at some finite dimensionless mass m˜ and momentum k˜. We find that the precision of the estimation can be improved by choosing the probe state as an eigenvector of the hamiltonian. This occurs because the largest quantum Fisher information is obtained by performing projective measurements implemented by the projectors onto the eigenvectors of specific probe states.
Fatigue-Damage Estimation and Control for Wind Turbines
DEFF Research Database (Denmark)
Barradas Berglind, Jose de Jesus
How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....
Nonparametric estimation of location and scale parameters
Potgieter, C.J.; Lombard, F.
2012-01-01
Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal
Sensor Placement for Modal Parameter Subset Estimation
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars
2016-01-01
The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency resp...
Postprocessing MPEG based on estimated quantization parameters
DEFF Research Database (Denmark)
Forchhammer, Søren
2009-01-01
the case where the coded stream is not accessible, or from an architectural point of view not desirable to use, and instead estimate some of the MPEG stream parameters based on the decoded sequence. The I-frames are detected and the quantization parameters are estimated from the coded stream and used...... in the postprocessing. We focus on deringing and present a scheme which aims at suppressing ringing artifacts, while maintaining the sharpness of the texture. The goal is to improve the visual quality, so perceptual blur and ringing metrics are used in addition to PSNR evaluation. The performance of the new `pure......' postprocessing compares favorable to a reference postprocessing filter which has access to the quantization parameters not only for I-frames but also on P and B-frames....
Estimating physiological skin parameters from hyperspectral signatures
Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe
2013-05-01
We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.
Parameter estimation in stochastic differential equations
Bishwal, Jaya P N
2008-01-01
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.
Wind Loads on Ships and Offshore Structures Estimated by CFD
DEFF Research Database (Denmark)
Aage, Christian; Hvid, S.L.; Hughes, P.H.
1997-01-01
Wind loads on ships and offshore structures could until recently be determined only by model tests, or by statistical methods based on model tests. By the development of Computational Fluid Dynamics or CFD there is now a realistic computational alternative available. In this paper, wind loads...... on a seagoing ferry and on a semisubmersible offshore platform have been estimated by CFD. The results have been compared with wind tunnel model tests and, for the ferry, a few full-scale measurements, and good agreement is obtained. The CFD method offers the possibility of a computational estimate of scale...... effects related to wind tunnel model testing. An example of such an estimate on the ferry is discussed. Due to the time involved in generating the computational mesh and in computing the solution, the CFD method is not at the moment economically competitive to routine wind tunnel model testing....
International Nuclear Information System (INIS)
Wallasch, Anna-Kathrin; Rehfeldt, Knud
2012-04-01
The jurisdiction for the designation of sites for wind energy requires that sufficient space was procured within the created sites for wind energy to achieve an exclusionary effect in the rest of the plan area of wind energy. This means that the designated areas must allow the economic operation of wind turbines. It is often not easy to adequately determine and assess the suitability of an area. The project economics of wind energy projects is dependent on the individual case, and there is no general guideline for estimating the decision of municipalities. In the case of allegations of so-called ''prevention plan'' against communities in which seemingly unsuitable areas have been identified the dispute is usually settled by court. This represents a considerable effort. At this point, the present investigation shall begin to prepare and carry out more detailed studies on the economics of wind energy sites, which can be used for orientation in the evaluation of possible identified areas for wind energy. For this purpose, the results of the power generation costs of wind energy projects from the Scientific accompanying report wind energy for EEG Progress Report will first used and collectively evaluated, what conclusions can be obtained based on these results for the profitability of locations. Based on the database, which was developed as part of the scientific opinion accompanying wind energy for EEG Progress Report, then a sensitivity analysis is carried out with regard to individual parameters of the economics of wind energy projects. This means individual factors within the sample locations are varied and analyzes the impact on the project economics. Thus, statements about can be taken, how limits for individual factors can be defined in terms of project economics. [de
Nonparametric estimation of location and scale parameters
Potgieter, C.J.
2012-12-01
Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal assumptions regarding the form of the distribution functions of X and Y. We discuss an approach to the estimation problem that is based on asymptotic likelihood considerations. Our results enable us to provide a methodology that can be implemented easily and which yields estimators that are often near optimal when compared to fully parametric methods. We evaluate the performance of the estimators in a series of Monte Carlo simulations. © 2012 Elsevier B.V. All rights reserved.
Estimating RASATI scores using acoustical parameters
International Nuclear Information System (INIS)
Agüero, P D; Tulli, J C; Moscardi, G; Gonzalez, E L; Uriz, A J
2011-01-01
Acoustical analysis of speech using computers has reached an important development in the latest years. The subjective evaluation of a clinician is complemented with an objective measure of relevant parameters of voice. Praat, MDVP (Multi Dimensional Voice Program) and SAV (Software for Voice Analysis) are some examples of software for speech analysis. This paper describes an approach to estimate the subjective characteristics of RASATI scale given objective acoustical parameters. Two approaches were used: linear regression with non-negativity constraints, and neural networks. The experiments show that such approach gives correct evaluations with ±1 error in 80% of the cases.
Fatigue-Damage Estimation and Control for Wind Turbines
Barradas Berglind, Jose de Jesus
2015-01-01
How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control of their operation. Accordingly, the most recognized methods of fatigue-damage estimation are discussed in this thesis.In wind energy conversion systems there is an intrinsic trade-off between power generation m...
Cosmological parameter estimation using particle swarm optimization
Prasad, Jayanti; Souradeep, Tarun
2012-06-01
Constraining theoretical models, which are represented by a set of parameters, using observational data is an important exercise in cosmology. In Bayesian framework this is done by finding the probability distribution of parameters which best fits to the observational data using sampling based methods like Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain problems in which the target function (likelihood) poses local maxima or have very high dimensionality. Apart from this, there may be examples in which we are mainly interested to find the point in the parameter space at which the probability distribution has the largest value. In this situation the problem of parameter estimation becomes an optimization problem. In the present work we show that particle swarm optimization (PSO), which is an artificial intelligence inspired population based search procedure, can also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit Λ cold dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess value or any other property of the probability distribution of parameters like standard deviation, as is common in MCMC. We also report the results of an exercise in which we consider a binned primordial power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.
Optimal design criteria - prediction vs. parameter estimation
Waldl, Helmut
2014-05-01
G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.
High-speed solar wind flow parameters at 1 AU
International Nuclear Information System (INIS)
Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.
1976-01-01
To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters
Variational estimates of point-kinetics parameters
International Nuclear Information System (INIS)
Favorite, J.A.; Stacey, W.M. Jr.
1995-01-01
Variational estimates of the effect of flux shifts on the integral reactivity parameter of the point-kinetics equations and on regional power fractions were calculated for a variety of localized perturbations in two light water reactor (LWR) model problems representing a small, tightly coupled core and a large, loosely coupled core. For the small core, the flux shifts resulting from even relatively large localized reactivity changes (∼600 pcm) were small, and the standard point-kinetics approximation estimates of reactivity were in error by only ∼10% or less, while the variational estimates were accurate to within ∼1%. For the larger core, significant (>50%) flux shifts occurred in response to local perturbations, leading to errors of the same magnitude in the standard point-kinetics approximation of the reactivity worth. For positive reactivity, the error in the variational estimate of reactivity was only a few percent in the larger core, and the resulting transient power prediction was 1 to 2 orders of magnitude more accurate than with the standard point-kinetics approximation. For a large, local negative reactivity insertion resulting in a large flux shift, the accuracy of the variational estimate broke down. The variational estimate of the effect of flux shifts on reactivity in point-kinetics calculations of transients in LWR cores was found to generally result in greatly improved accuracy, relative to the standard point-kinetics approximation, the exception being for large negative reactivity insertions with large flux shifts in large, loosely coupled cores
Zastrau, David
2017-01-01
Wind drives in combination with weather routing can lower the fuel consumption of cargo ships significantly. For this reason, the author describes a mathematical method based on quantile regression for a probabilistic estimate of the wind propulsion force on a ship route.
Estimation of Wind Speed in Connection to a Wind Turbine
DEFF Research Database (Denmark)
Ma, Xin; Poulsen, Niels Kjølstad; Bindner, Henrik
the idea, a knowledge of the system characteristics is required, therefore the fundamental relations and principles of system dynamics will be presented. Several estimation methods such as Newton-Raphson method, Kalman filter method and extended Kalman filter method will be investigated in the paper....
Fatigue Damage Estimation and Data-based Control for Wind Turbines
DEFF Research Database (Denmark)
Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen
2015-01-01
based on hysteresis operators, which can be used in control loops. The authors propose a data-based model predictive control (MPC) strategy that incorporates an online fatigue estimation method through the objective function, where the ultimate goal in mind is to reduce the fatigue damage of the wind......The focus of this work is on fatigue estimation and data-based controller design for wind turbines. The main purpose is to include a model of the fatigue damage of the wind turbine components in the controller design and synthesis process. This study addresses an online fatigue estimation method...... turbine components. The outcome is an adaptive or self-tuning MPC strategy for wind turbine fatigue damage reduction, which relies on parameter identification on previous measurement data. The results of the proposed strategy are compared with a baseline model predictive controller....
Directory of Open Access Journals (Sweden)
A. Canals
2002-09-01
Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques
Directory of Open Access Journals (Sweden)
A. Canals
Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.
Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques
PARAMETER ESTIMATION IN BREAD BAKING MODEL
Directory of Open Access Journals (Sweden)
Hadiyanto Hadiyanto
2012-05-01
Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels. Abstrak PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan
Parameter estimation in tree graph metabolic networks
Directory of Open Access Journals (Sweden)
Laura Astola
2016-09-01
Full Text Available We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.
Parameter estimation in tree graph metabolic networks.
Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J
2016-01-01
We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.
Estimation of wind stress using dual-frequency TOPEX data
Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand
1998-10-01
The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.
Parameter estimation for lithium ion batteries
Santhanagopalan, Shriram
With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of
Composite likelihood estimation of demographic parameters
Directory of Open Access Journals (Sweden)
Garrigan Daniel
2009-11-01
Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable
Kosovic, B.; Bryan, G. H.; Haupt, S. E.
2012-12-01
Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine
Preliminary Estimation of Kappa Parameter in Croatia
Stanko, Davor; Markušić, Snježana; Ivančić, Ines; Mario, Gazdek; Gülerce, Zeynep
2017-12-01
Spectral parameter kappa κ is used to describe spectral amplitude decay “crash syndrome” at high frequencies. The purpose of this research is to estimate spectral parameter kappa for the first time in Croatia based on small and moderate earthquakes. Recordings of local earthquakes with magnitudes higher than 3, epicentre distances less than 150 km, and focal depths less than 30 km from seismological stations in Croatia are used. The value of kappa was estimated from the acceleration amplitude spectrum of shear waves from the slope of the high-frequency part where the spectrum starts to decay rapidly to a noise floor. Kappa models as a function of a site and distance were derived from a standard linear regression of kappa-distance dependence. Site kappa was determined from the extrapolation of the regression line to a zero distance. The preliminary results of site kappa across Croatia are promising. In this research, these results are compared with local site condition parameters for each station, e.g. shear wave velocity in the upper 30 m from geophysical measurements and with existing global shear wave velocity - site kappa values. Spatial distribution of individual kappa’s is compared with the azimuthal distribution of earthquake epicentres. These results are significant for a couple of reasons: to extend the knowledge of the attenuation of near-surface crust layers of the Dinarides and to provide additional information on the local earthquake parameters for updating seismic hazard maps of studied area. Site kappa can be used in the re-creation, and re-calibration of attenuation of peak horizontal and/or vertical acceleration in the Dinarides area since information on the local site conditions were not included in the previous studies.
Parameter estimation techniques for LTP system identification
Nofrarias Serra, Miquel
LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.
Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities
Energy Technology Data Exchange (ETDEWEB)
Clifton, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fields, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-04-19
Understanding the amount of energy that will be harvested by a wind power plant each year and the variability of that energy is essential to assessing and potentially improving the financial viability of that power plant. The preconstruction energy estimate process predicts the amount of energy--with uncertainty estimates--that a wind power plant will deliver to the point of revenue. This report describes the preconstruction energy estimate process from a technical perspective and seeks to provide insight into the financial implications associated with each step.
Statistical distributions applications and parameter estimates
Thomopoulos, Nick T
2017-01-01
This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of ...
Statistical estimation of nuclear reactor dynamic parameters
International Nuclear Information System (INIS)
Cummins, J.D.
1962-02-01
This report discusses the study of the noise in nuclear reactors and associated power plant. The report is divided into three distinct parts. In the first part parameters which influence the dynamic behaviour of some reactors will be specified and their effect on dynamic performance described. Methods of estimating dynamic parameters using statistical signals will be described in detail together with descriptions of the usefulness of the results, the accuracy and related topics. Some experiments which have been and which might be performed on nuclear reactors will be described. In the second part of the report a digital computer programme will be described. The computer programme derives the correlation functions and the spectra of signals. The programme will compute the frequency response both gain and phase for physical items of plant for which simultaneous recordings of input and output signal variations have been made. Estimations of the accuracy of the correlation functions and the spectra may be computed using the programme and the amplitude distribution of signals may also b computed. The programme is written in autocode for the Ferranti Mercury computer. In the third part of the report a practical example of the use of the method and the digital programme is presented. In order to eliminate difficulties of interpretation a very simple plant model was chosen i.e. a simple first order lag. Several interesting properties of statistical signals were measured and will be discussed. (author)
Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast
Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.
2017-12-01
Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.
Extreme gust wind estimation using mesoscale modeling
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Kruger, Andries
2014-01-01
, surface turbulence characteristics. In this study, we follow a theory that is different from the local gust concept as described above. In this theory, the gust at the surface is non-local; it is produced by the deflection of air parcels flowing in the boundary layer and brought down to the surface...... from the Danish site Høvsøre help us to understand the limitation of the traditional method. Good agreement was found between the extreme gust atlases for South Africa and the existing map made from a limited number of measurements across the country. Our study supports the non-local gust theory. While...... through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been...
Parameter Estimation of Spacecraft Fuel Slosh Model
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
A Parameter Selection Method for Wind Turbine Health Management through SCADA Data
Directory of Open Access Journals (Sweden)
Mian Du
2017-02-01
Full Text Available Wind turbine anomaly or failure detection using machine learning techniques through supervisory control and data acquisition (SCADA system is drawing wide attention from academic and industry While parameter selection is important for modelling a wind turbine’s condition, only a few papers have been published focusing on this issue and in those papers interconnections among sub-components in a wind turbine are used to address this problem. However, merely the interconnections for decision making sometimes is too general to provide a parameter list considering the differences of each SCADA dataset. In this paper, a method is proposed to provide more detailed suggestions on parameter selection based on mutual information. First, the copula is proven to be capable of simplifying the estimation of mutual information. Then an empirical copulabased mutual information estimation method (ECMI is introduced for application. After that, a real SCADA dataset is adopted to test the method, and the results show the effectiveness of the ECMI in providing parameter selection suggestions when physical knowledge is not accurate enough.
Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures
Directory of Open Access Journals (Sweden)
Lei Zhang
2016-08-01
Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.
Estimation of the uncertainty in wind power forecasting
International Nuclear Information System (INIS)
Pinson, P.
2006-03-01
WIND POWER experiences a tremendous development of its installed capacities in Europe. Though, the intermittence of wind generation causes difficulties in the management of power systems. Also, in the context of the deregulation of electricity markets, wind energy is penalized by its intermittent nature. It is recognized today that the forecasting of wind power for horizons up to 2/3-day ahead eases the integration of wind generation. Wind power forecasts are traditionally provided in the form of point predictions, which correspond to the most-likely power production for a given horizon. That sole information is not sufficient for developing optimal management or trading strategies. Therefore, we investigate on possible ways for estimating the uncertainty of wind power forecasts. The characteristics of the prediction uncertainty are described by a thorough study of the performance of some of the state-of-the-art approaches, and by underlining the influence of some variables e.g. level of predicted power on distributions of prediction errors. Then, a generic method for the estimation of prediction intervals is introduced. This statistical method is non-parametric and utilizes fuzzy logic concepts for integrating expertise on the prediction uncertainty characteristics. By estimating several prediction intervals at once, one obtains predictive distributions of wind power output. The proposed method is evaluated in terms of its reliability, sharpness and resolution. In parallel, we explore the potential use of ensemble predictions for skill forecasting. Wind power ensemble forecasts are obtained either by converting meteorological ensembles (from ECMWF and NCEP) to power or by applying a poor man's temporal approach. A proposal for the definition of prediction risk indices is given, reflecting the disagreement between ensemble members over a set of successive look-ahead times. Such prediction risk indices may comprise a more comprehensive signal on the expected level
Reassessing Wind Potential Estimates for India: Economic and Policy Implications
Energy Technology Data Exchange (ETDEWEB)
Phadke, Amol; Bharvirkar, Ranjit; Khangura, Jagmeet
2011-09-15
We assess developable on-shore wind potential in India at three different hub-heights and under two sensitivity scenarios – one with no farmland included, the other with all farmland included. Under the “no farmland included” case, the total wind potential in India ranges from 748 GW at 80m hub-height to 976 GW at 120m hub-height. Under the “all farmland included” case, the potential with a minimum capacity factor of 20 percent ranges from 984 GW to 1,549 GW. High quality wind energy sites, at 80m hub-height with a minimum capacity factor of 25 percent, have a potential between 253 GW (no farmland included) and 306 GW (all farmland included). Our estimates are more than 15 times the current official estimate of wind energy potential in India (estimated at 50m hub height) and are about one tenth of the official estimate of the wind energy potential in the US.
Yun-Su Kim; Il-Yop Chung; Seung-Il Moon
2015-01-01
This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various operating conditions and with eigenvalues obtained from the small-signal model of the PMSG WT, which are coordinated by adjusting the PI con...
Estimation of wind and solar resources in Mali
Energy Technology Data Exchange (ETDEWEB)
Badger, J.; Kamissoko, F.; Olander Rasmussen, M.; Larsen, Soeren; Guidon, N.; Boye Hansen, L.; Dewilde, L.; Alhousseini, M.; Noergaard, P.; Nygaard, I.
2012-11-15
The wind resource has been estimated for all of Mali at 7.5 km resolution using the KAMM/WAsP numerical wind atlas methodology. Three domains were used to cover entire country and three sets of wind classes used to capture change in large scale forcing over country. The final output includes generalized climate statistics for any location in Mali, giving wind direction and wind speed distribution. The modelled generalized climate statistics can be used directly in the WAsP software. The preliminary results show a wind resource, which is relatively low, but which under certain conditions may be economically feasible, i.e. at favourably exposed sites, giving enhanced winds, and where practical utilization is possible, given consideration to grid connection or replacement or augmentation of diesel-based electricity systems. The solar energy resource for Mali was assessed for the period between July 2008 and June 2011 using a remote sensing based estimate of the down-welling surface shortwave flux. The remote sensing estimates were adjusted on a month-by-month basis to account for seasonal differences between the remote sensing estimates and in situ data. Calibration was found to improve the coefficient of determination as well as decreasing the mean error both for the calibration and validation data. Compared to the results presented in the ''Renewable energy resources in Mali - preliminary mapping''-report that showed a tendency for underestimation compared to data from the NASA PPOWER/SSE database, the presented results show a very good agreement with the in situ data (after calibration) with no significant bias. Unfortunately, the NASA-database only contains data up until 2005, so a similar comparison could not be done for the time period analyzed in this study, although the agreement with the historic NASA data is still useful as reference. (LN)
Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters
Directory of Open Access Journals (Sweden)
Jung-Hee Kim
2014-06-01
Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.
Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines
DEFF Research Database (Denmark)
Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning
2012-01-01
control and data acquisition (SCADA) system. Estimated loads can be further used for prediction of remaining operating lifetime of turbine components, detection of high stress level or fault detection. An augmented Kalman filter is chosen as the fatigue load estimator because its characteristics well suit......The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared...
Estimating generation costs for wind power production in France
International Nuclear Information System (INIS)
Benazet, J.F.; Probert, E.J.
1997-01-01
Wind power is being exploited in several European countries as one of a possible number of sources of renewable energy. However, in France there is a heavy reliance on nuclear and hydro-electric power and the potential of wind power as part of the energy mix has been virtually ignored. One of the reasons advanced for the under utilisation of this technology is that it is financially unattractive. In this paper the contribution which wind power could potentially make to overall power production levels in France is examined. A cost estimate model is developed which derives electricity generation costs and determines realistic levels of production for the future. The model automatically determines the associated number of wind turbines required and the geographical areas in which they should be located. (author)
Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters
Directory of Open Access Journals (Sweden)
Jung-Hee Kim
2014-06-01
Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.
Effect of solar wind plasma parameters on space weather
International Nuclear Information System (INIS)
Rathore, Balveer S.; Gupta, Dinesh C.; Kaushik, Subhash C.
2015-01-01
Today's challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field (IMF) conditions. Correlative studies between geomagnetic storms (GMSs) and the various interplanetary (IP) field/plasma parameters have been performed to search for the causes of geomagnetic activity and develop models for predicting the occurrence of GMSs, which are important for space weather predictions. We find a possible relation between GMSs and solar wind and IMF parameters in three different situations and also derived the linear relation for all parameters in three situations. On the basis of the present statistical study, we develop an empirical model. With the help of this model, we can predict all categories of GMSs. This model is based on the following fact: the total IMF B total can be used to trigger an alarm for GMSs, when sudden changes in total magnetic field B total occur. This is the first alarm condition for a storm's arrival. It is observed in the present study that the southward B z component of the IMF is an important factor for describing GMSs. A result of the paper is that the magnitude of B z is maximum neither during the initial phase (at the instant of the IP shock) nor during the main phase (at the instant of Disturbance storm time (Dst) minimum). It is seen in this study that there is a time delay between the maximum value of southward B z and the Dst minimum, and this time delay can be used in the prediction of the intensity of a magnetic storm two-three hours before the main phase of a GMS. A linear relation has been derived between the maximum value of the southward component of B z and the Dst, which is Dst = (−0.06) + (7.65) B z +t. Some auxiliary conditions should be fulfilled with this, for example the speed of the solar wind should, on average, be 350 km s −1 to 750 km s −1 , plasma β should be low and, most importantly, plasma temperature
International Nuclear Information System (INIS)
Liu, Heping; Shi, Jing; Qu, Xiuli
2013-01-01
Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate
An Improved Global Wind Resource Estimate for Integrated Assessment Models: Preprint
Energy Technology Data Exchange (ETDEWEB)
Eurek, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hettinger, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2017-02-01
This paper summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquely detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.
Fault Detection of Wind Turbines with Uncertain Parameters: A Set-Membership Approach
Directory of Open Access Journals (Sweden)
Thomas Bak
2012-07-01
Full Text Available In this paper a set-membership approach for fault detection of a benchmark wind turbine is proposed. The benchmark represents relevant fault scenarios in the control system, including sensor, actuator and system faults. In addition we also consider parameter uncertainties and uncertainties on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic torque and uncertainties on the parameters make fault detection a challenging problem. We use an effective wind speed estimator to reduce the noise on the wind speed measurements. A set-membership approach is used generate a set that contains all states consistent with the past measurements and the given model of the wind turbine including uncertainties and noise. This set represents all possible states the system can be in if not faulty. If the current measurement is not consistent with this set, a fault is detected. For representation of these sets we use zonotopes and for modeling of uncertainties we use matrix zonotopes, which yields a computationally efficient algorithm. The method is applied to the wind turbine benchmark problem without and with uncertainties. The result demonstrates the effectiveness of the proposed method compared to other proposed methods applied to the same problem. An advantage of the proposed method is that there is no need for threshold design, and it does not produce positive false alarms. In the case where uncertainty on the torque lookup table is introduced, some faults are not detectable. Previous research has not addressed this uncertainty. The method proposed here requires equal or less detection time than previous results.
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
Pollen parameters estimates of genetic variability among newly ...
African Journals Online (AJOL)
Pollen parameters estimates of genetic variability among newly selected Nigerian roselle (Hibiscus sabdariffa L.) genotypes. ... Estimates of some pollen parameters where used to assess the genetic diversity among ... HOW TO USE AJOL.
Estimation of light transport parameters in biological media using ...
Indian Academy of Sciences (India)
Estimation of light transport parameters in biological media using coherent backscattering ... backscattered light for estimating the light transport parameters of biological media has been investigated. ... Pramana – Journal of Physics | News.
Estimating the Probability of Wind Ramping Events: A Data-driven Approach
Wang, Cheng; Wei, Wei; Wang, Jianhui; Qiu, Feng
2016-01-01
This letter proposes a data-driven method for estimating the probability of wind ramping events without exploiting the exact probability distribution function (PDF) of wind power. Actual wind data validates the proposed method.
Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-01
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048
Directory of Open Access Journals (Sweden)
Islam Khandaker Dahirul
2016-01-01
Full Text Available This paper explores wind speed distribution using Weibull probability distribution and Rayleigh distribution methods that are proven to provide accurate and efficient estimation of energy output in terms of wind energy conversion systems. Two parameters of Weibull (shape and scale parameters k and c respectively and scale parameter of Rayleigh distribution have been determined based on hourly time-series wind speed data recorded from October 2014 to October 2015 at Saint Martin’s island, Bangladesh. This research has been carried out to examine three numerical methods namely Graphical Method (GM, Empirical Method (EM, Energy Pattern Factor method (EPF to estimate Weibull parameters. Also, Rayleigh distribution method has been analyzed throughout the study. The results in the research revealed that the Graphical method followed by Empirical method and Energy Pattern Factor method were the most accurate and efficient way for determining the value of k and c to approximate wind speed distribution in terms of estimating power error. Rayleigh distribution gives the most power error in the research. Potential for wind energy development in Saint Martin’s island, Bangladesh as found from the data analysis has been explained in this paper.
Failure Probability Estimation of Wind Turbines by Enhanced Monte Carlo
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Naess, Arvid
2012-01-01
This paper discusses the estimation of the failure probability of wind turbines required by codes of practice for designing them. The Standard Monte Carlo (SMC) simulations may be used for this reason conceptually as an alternative to the popular Peaks-Over-Threshold (POT) method. However......, estimation of very low failure probabilities with SMC simulations leads to unacceptably high computational costs. In this study, an Enhanced Monte Carlo (EMC) method is proposed that overcomes this obstacle. The method has advantages over both POT and SMC in terms of its low computational cost and accuracy...... is controlled by the pitch controller. This provides a fair framework for comparison of the behavior and failure event of the wind turbine with emphasis on the effect of the pitch controller. The Enhanced Monte Carlo method is then applied to the model and the failure probabilities of the model are estimated...
Bhattacharjya, Rajib Kumar
2018-05-01
The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.
Application of spreadsheet to estimate infiltration parameters
Zakwan, Mohammad; Muzzammil, Mohammad; Alam, Javed
2016-01-01
Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach ...
Estimates for the parameters of the heavy quark expansion
Energy Technology Data Exchange (ETDEWEB)
Heinonen, Johannes; Mannel, Thomas [Universitaet Siegen (Germany)
2015-07-01
We give improved estimates for the non-perturbative parameters appearing in the heavy quark expansion for inclusive decays. While the parameters appearing in low orders of this expansion can be extracted from data, the number of parameters in higher orders proliferates strongly, making a determination of these parameters from data impossible. Thus, one has to rely on theoretical estimates which may be obtained from an insertion of intermediate states. We refine this method and attempt to estimate the uncertainties of this approach.
Ceccotti, Clio
2015-01-01
Wind farms are widely developed even if several unsolved problems need to be faced. The rotor-wake interaction involves different physical phenomena, not yet fully understood, directly affecting the overall wind farm power production. Numerical models and engineering rules have always been used to design wind farm layout but a spread between power predictions and results is verified. In this context wind energy research assumes a "back to basic" approach, by means of wind tunne...
State of the art on wind resource estimation
Energy Technology Data Exchange (ETDEWEB)
Maribo Pedersen, B.
1998-12-31
With the increasing number of wind resource estimation studies carried out for regions, countries and even larger areas all over the world, the IEA finds that the time has come to stop and take stock of the various methods used in these studies. The IEA would therefore like to propose an Experts Meeting on wind resource estimation. The Experts Meeting should describe the models and databases used in the various studies. It should shed light on the strengths and shortcomings of the models and answer questions like: where and under what circumstances should a specific model be used? what is the expected accuracy of the estimate of the model? and what is the applicability? When addressing databases the main goal will be to identify the content and scope of these. Further, the quality, availability and reliability of the databases must also be recognised. In the various studies of wind resources the models and databases have been combined in different ways. A final goal of the Experts Meeting is to see whether it is possible to develop systems of methods which would depend on the available input. These systems of methods should be able to address the simple case (level 0) of a region with barely no data, to the complex case of a region with all available measurements: surface observations, radio soundings, satellite observations and so on. The outcome of the meeting should be an inventory of available models as well as databases and a map of already studied regions. (au)
Multi-objective optimization in quantum parameter estimation
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Estimation of Poisson-Dirichlet Parameters with Monotone Missing Data
Directory of Open Access Journals (Sweden)
Xueqin Zhou
2017-01-01
Full Text Available This article considers the estimation of the unknown numerical parameters and the density of the base measure in a Poisson-Dirichlet process prior with grouped monotone missing data. The numerical parameters are estimated by the method of maximum likelihood estimates and the density function is estimated by kernel method. A set of simulations was conducted, which shows that the estimates perform well.
Empirically modelled Pc3 activity based on solar wind parameters
Directory of Open Access Journals (Sweden)
B. Heilig
2010-09-01
Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through
Parameter estimation and testing of hypotheses
International Nuclear Information System (INIS)
Fruhwirth, R.
1996-01-01
This lecture presents the basic mathematical ideas underlying the concept of random variable and the construction and analysis of estimators and test statistics. The material presented is based mainly on four books given in the references: the general exposition of estimators and test statistics follows Kendall and Stuart which is a comprehensive review of the field; the book by Eadie et al. contains selecting topics of particular interest to experimental physicist and a host of illuminating examples from experimental high-energy physics; for the presentation of numerical procedures, the Press et al. and the Thisted books have been used. The last section deals with estimation in dynamic systems. In most books the Kalman filter is presented in a Bayesian framework, often obscured by cumbrous notation. In this lecture, the link to classical least-squares estimators and regression models is stressed with the aim of facilitating the access to this less familiar topic. References are given for specific applications to track and vertex fitting and for extended exposition of these topics. In the appendix, the link between Bayesian decision rules and feed-forward neural networks is presented. (J.S.). 10 refs., 5 figs., 1 appendix
Parameter estimation in tree graph metabolic networks
Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; Eeuwijk, van Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.
2016-01-01
We study the glycosylation processes that convert initially toxic substrates to nu- tritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme
The use of wind tunnel facilities to estimate hydrodynamic data
Hoffmann, Kristoffer; Tophøj Rasmussen, Johannes; Hansen, Svend Ole; Reiso, Marit; Isaksen, Bjørn; Egeberg Aasland, Tale
2016-03-01
Experimental laboratory testing of vortex-induced structural oscillations in flowing water is an expensive and time-consuming procedure, and the testing of high Reynolds number flow regimes is complicated due to the requirement of either a large-scale or high-speed facility. In most cases, Reynolds number scaling effects are unavoidable, and these uncertainties have to be accounted for, usually by means of empirical rules-of-thumb. Instead of performing traditional hydrodynamic measurements, wind tunnel testing in an appropriately designed experimental setup may provide an alternative and much simpler and cheaper framework for estimating the structural behavior under water current and wave loading. Furthermore, the fluid velocities that can be obtained in a wind tunnel are substantially higher than in a water testing facility, thus decreasing the uncertainty from scaling effects. In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.
Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines
DEFF Research Database (Denmark)
Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob
2011-01-01
High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this paper we design and compare multiple linear parameter-varying (LPV) controllers,...
A Comparative Study of Distribution System Parameter Estimation Methods
Energy Technology Data Exchange (ETDEWEB)
Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup
2016-07-17
In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.
Neglect Of Parameter Estimation Uncertainty Can Significantly Overestimate Structural Reliability
Directory of Open Access Journals (Sweden)
Rózsás Árpád
2015-12-01
Full Text Available Parameter estimation uncertainty is often neglected in reliability studies, i.e. point estimates of distribution parameters are used for representative fractiles, and in probabilistic models. A numerical example examines the effect of this uncertainty on structural reliability using Bayesian statistics. The study reveals that the neglect of parameter estimation uncertainty might lead to an order of magnitude underestimation of failure probability.
The Parameters Affect on Power Coefficient Vertical Axis Wind Turbine
Directory of Open Access Journals (Sweden)
Ahmed Y. Qasim
2012-04-01
Full Text Available ABSTRACT: This study describes the design of a special type of vertical axis rotor wind turbine with moveable vertically positioned vanes. The novel design increases the torque in the left side of the wind turbine by increasing the drag coefficient. It also reduces the negative torque of the frame which rotates contrary to the wind in the other side. Two different types of models, having different vane shapes (flat vane and cavity shaped vane, were fabricated. Each type consisted of two models with varying number of frames (three and four frames. The models were tested in a wind tunnel with variable wind speed in order to understand the effect of shape, weight, and number of frames on the power coefficient of the wind turbine. ABSTRAK: Di dalam kajian ini, rotor turbin angin berpaksi vertikel sebagai rangka khusus telah direkabentuk dengan lokasi vertikel mudahalih oleh bilah kipas. Rekabentuk ini meningkatkan tork di bahagian kiri turbin angin dengan meningkatkan pekali seretan dan mengurangkan tork negatif rangka yang berputar berlawanan dengan angin pada bahagian lain. Dua jenis model berbentuk berlainan telah difabrikasi (bilah kipas rata dan bilah kipas berbentuk kaviti, dengan setiap jenis mempunyai dua model dengan bilangan rangka yang berlainan (berangka tiga dan berangka empat. Model-model telah diuji di dalam terowong angin dengan kelajuan angin yang berbeza bagi mendapatkan kesan rekabentuk, berat dan bilangan rangka ke atas pekali kuasa.KEYWORDS: design; wind turbine; drag coefficient; vane
Wind gust estimation by combining numerical weather prediction model and statistical post-processing
Patlakas, Platon; Drakaki, Eleni; Galanis, George; Spyrou, Christos; Kallos, George
2017-04-01
The continuous rise of off-shore and near-shore activities as well as the development of structures, such as wind farms and various offshore platforms, requires the employment of state-of-the-art risk assessment techniques. Such analysis is used to set the safety standards and can be characterized as a climatologically oriented approach. Nevertheless, a reliable operational support is also needed in order to minimize cost drawbacks and human danger during the construction and the functioning stage as well as during maintenance activities. One of the most important parameters for this kind of analysis is the wind speed intensity and variability. A critical measure associated with this variability is the presence and magnitude of wind gusts as estimated in the reference level of 10m. The latter can be attributed to different processes that vary among boundary-layer turbulence, convection activities, mountain waves and wake phenomena. The purpose of this work is the development of a wind gust forecasting methodology combining a Numerical Weather Prediction model and a dynamical statistical tool based on Kalman filtering. To this end, the parameterization of Wind Gust Estimate method was implemented to function within the framework of the atmospheric model SKIRON/Dust. The new modeling tool combines the atmospheric model with a statistical local adaptation methodology based on Kalman filters. This has been tested over the offshore west coastline of the United States. The main purpose is to provide a useful tool for wind analysis and prediction and applications related to offshore wind energy (power prediction, operation and maintenance). The results have been evaluated by using observational data from the NOAA's buoy network. As it was found, the predicted output shows a good behavior that is further improved after the local adjustment post-process.
minimum variance estimation of yield parameters of rubber tree
African Journals Online (AJOL)
2013-03-01
Mar 1, 2013 ... It is our opinion that Kalman filter is a robust estimator of the ... Kalman filter, parameter estimation, rubber clones, Chow failure test, autocorrelation, STAMP, data ...... Mills, T.C. Modelling Current Temperature Trends.
Model-Based Estimation of Collision Risks of Predatory Birds with Wind Turbines
Directory of Open Access Journals (Sweden)
Marcus Eichhorn
2012-06-01
Full Text Available The expansion of renewable energies, such as wind power, is a promising way of mitigating climate change. Because of the risk of collision with rotor blades, wind turbines have negative effects on local bird populations, particularly on raptors such as the Red Kite (Milvus milvus. Appropriate assessment tools for these effects have been lacking. To close this gap, we have developed an agent-based, spatially explicit model that simulates the foraging behavior of the Red Kite around its aerie in a landscape consisting of different land-use types. We determined the collision risk of the Red Kite with the turbine as a function of the distance between the wind turbine and the aerie and other parameters. The impact function comprises the synergistic effects of species-specific foraging behavior and landscape structure. The collision risk declines exponentially with increasing distance. The strength of this decline depends on the raptor's foraging behavior, its ability to avoid wind turbines, and the mean wind speed in the region. The collision risks, which are estimated by the simulation model, are in the range of values observed in the field. The derived impact function shows that the collision risk can be described as an aggregated function of distance between the wind turbine and the raptor's aerie. This allows an easy and rapid assessment of the ecological impacts of (existing or planned wind turbines in relation to their spatial location. Furthermore, it implies that minimum buffer zones for different landscapes can be determined in a defensible way. This modeling approach can be extended to other bird species with central-place foraging behavior. It provides a helpful tool for landscape planning aimed at minimizing the impacts of wind power on biodiversity.
Estimation of a collision impact parameter
International Nuclear Information System (INIS)
Shmatov, S.V.; Zarubin, P.I.
2001-01-01
We demonstrate that the nuclear collision geometry (i.e. impact parameter) can be determined in an event-by-event analysis by measuring the transverse energy flow in the pseudorapidity region 3≤|η|≤5 with a minimal dependence on collision dynamics details at the LHC energy scale. Using the HIJING model we have illustrated our calculation by a simulation of events of nucleus-nucleus interactions at the c.m.s. energy from 1 up to 5.5 TeV per nucleon and various types of nuclei
Novel Method for 5G Systems NLOS Channels Parameter Estimation
Directory of Open Access Journals (Sweden)
Vladeta Milenkovic
2017-01-01
Full Text Available For the development of new 5G systems to operate in mm bands, there is a need for accurate radio propagation modelling at these bands. In this paper novel approach for NLOS channels parameter estimation will be presented. Estimation will be performed based on LCR performance measure, which will enable us to estimate propagation parameters in real time and to avoid weaknesses of ML and moment method estimation approaches.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jongk Uk; Lee, Kwan Hee; Kim, Sung Il; Yook, Dae Sik; Ahn, Sang Myeon [KINS, Daejeon (Korea, Republic of)
2016-05-15
Evaluation of the meteorological characteristics at the nuclear power plant and in the surrounding area should be performed in determining the site suitability for safe operation of the nuclear power plant. Under unexpected emergency condition, knowledge of meteorological information on the site area is important to provide the basis for estimating environmental impacts resulting from radioactive materials released in gaseous effluents during the accident condition. In the meteorological information, wind speed and direction are the important meteorological factors for examination of the safety analysis in the nuclear power plant area. Wind characteristics was analyzed on Hanbit NPP area. It was found that the Weibull parameters k and c vary 2.56 to 4.77 and 4.53 to 6.79 for directional wind speed distribution, respectively. Maximum wind frequency was NE and minimum was NNW.
Wilches-Bernal, Felipe
of the WTG while the second controller manipulates the reactive power control of the WTG using the current magnitude as the feedback signal. Finally, the dissertation proposes a parameter identification method for identifying and verifying the reactive power control parameters of WTGs. Using voltage and current measurements of a wind unit as an input, the proposed method estimates an optimal set of parameters such that the output current of a standalone WTG model better approximates the measured signal. Because WTG are nonlinear systems, the identification method is solved by a Gauss-Newton iteration used to calculate the solution of a nonlinear least-squares problem. The effectiveness of the proposed method is illustrated using a set of simulated data and actual PMU recordings.
Parameter Estimation for Improving Association Indicators in Binary Logistic Regression
Directory of Open Access Journals (Sweden)
Mahdi Bashiri
2012-02-01
Full Text Available The aim of this paper is estimation of Binary logistic regression parameters for maximizing the log-likelihood function with improved association indicators. In this paper the parameter estimation steps have been explained and then measures of association have been introduced and their calculations have been analyzed. Moreover a new related indicators based on membership degree level have been expressed. Indeed association measures demonstrate the number of success responses occurred in front of failure in certain number of Bernoulli independent experiments. In parameter estimation, existing indicators values is not sensitive to the parameter values, whereas the proposed indicators are sensitive to the estimated parameters during the iterative procedure. Therefore, proposing a new association indicator of binary logistic regression with more sensitivity to the estimated parameters in maximizing the log- likelihood in iterative procedure is innovation of this study.
Estimation of gloss from rough surface parameters
Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin
2005-12-01
Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.
A new Bayesian recursive technique for parameter estimation
Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis
2006-08-01
The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.
Control and Estimation of Distributed Parameter Systems
Kappel, F; Kunisch, K
1998-01-01
Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.
Estimation of Rotor Effective Wind Speed: A Comparison
DEFF Research Database (Denmark)
Soltani, Mohsen; Knudsen, Torben; Svenstrup, Mikael
2013-01-01
Modern wind turbine controllers use wind speed information to improve power production and reduce loads on the turbine components. The turbine top wind speed measurement is unfortunately imprecise and not a good representative of the rotor effective wind speed. Consequently, many different model...... aero-servo-elastic turbine simulations and real turbine field experiments in different wind scenarios....
Gravity Field Parameter Estimation Using QR Factorization
Klokocnik, J.; Wagner, C. A.; McAdoo, D.; Kostelecky, J.; Bezdek, A.; Novak, P.; Gruber, C.; Marty, J.; Bruinsma, S. L.; Gratton, S.; Balmino, G.; Baboulin, M.
2007-12-01
This study compares the accuracy of the estimated geopotential coefficients when QR factorization is used instead of the classical method applied at our institute, namely the generation of normal equations that are solved by means of Cholesky decomposition. The objective is to evaluate the gain in numerical precision, which is obtained at considerable extra cost in terms of computer resources. Therefore, a significant increase in precision must be realized in order to justify the additional cost. Numerical simulations were done in order to examine the performance of both solution methods. Reference gravity gradients were simulated, using the EIGEN-GL04C gravity field model to degree and order 300, every 3 seconds along a near-circular, polar orbit at 250 km altitude. The simulation spanned a total of 60 days. A polar orbit was selected in this simulation in order to avoid the 'polar gap' problem, which causes inaccurate estimation of the low-order spherical harmonic coefficients. Regularization is required in that case (e.g., the GOCE mission), which is not the subject of the present study. The simulated gravity gradients, to which white noise was added, were then processed with the GINS software package, applying EIGEN-CG03 as the background gravity field model, followed either by the usual normal equation computation or using the QR approach for incremental linear least squares. The accuracy assessment of the gravity field recovery consists in computing the median error degree-variance spectra, accumulated geoid errors, geoid errors due to individual coefficients, and geoid errors calculated on a global grid. The performance, in terms of memory usage, required disk space, and CPU time, of the QR versus the normal equation approach is also evaluated.
Model-based Estimation of Gas Leakage for Fluid Power Accumulators in Wind Turbines
DEFF Research Database (Denmark)
Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen
2017-01-01
for accumulators, namely gas leakage. The method utilizes an Extended Kalman Filter for joint state and parameter estimation with special attention to limiting the use of sensors to those commonly used in wind turbines. The precision of the method is investigated on an experimental setup which allows for operation...... of the accumulator similar to the conditions in a turbine. The results show that gas leakage is indeed detectable during start-up of the turbine and robust behavior is achieved in a multi-fault environment where both gas and external fluid leakage occur simultaneously. The estimation precision is shown...... to be sensitive to initial conditions for the gas temperature and volume....
The use of wind tunnel facilities to estimate hydrodynamic data
Directory of Open Access Journals (Sweden)
Hoffmann Kristoffer
2016-01-01
In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.
Online State Space Model Parameter Estimation in Synchronous Machines
Directory of Open Access Journals (Sweden)
Z. Gallehdari
2014-06-01
The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Estimation of ground water hydraulic parameters
Energy Technology Data Exchange (ETDEWEB)
Hvilshoej, Soeren
1998-11-01
The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.
DEFF Research Database (Denmark)
Gögmen, Tuhfe; Giebel, Gregor
2016-01-01
varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...
International Nuclear Information System (INIS)
Chan, P W; Wong, K H
2008-01-01
Estimates of the wind gusts associated with intense convective weather could be obtained using empirical relationships such as GUSTEX based on radiosonde measurements. However, such data are only available a couple of times a day and may not reflect the rapidly changing atmospheric condition in spring and summer times. The feasibility of combining the thermodynamic profiles from a ground-based microwave radiometer and wind profiles given by radar wind profilers in the continuous estimation of wind gusts is studied in this paper. Based on the results of a 4-month trial of a microwave radiometer in Hong Kong in 2004, the estimated and the actual gusts are reasonably well correlated. It is also found that the wind gusts so estimated provide better indications of the strength of squalls compared with those based on radiosonde measurements and with a lead time of about one hour
Bayesian Parameter Estimation for Heavy-Duty Vehicles
Energy Technology Data Exchange (ETDEWEB)
Miller, Eric; Konan, Arnaud; Duran, Adam
2017-03-28
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.
Parameter and State Estimator for State Space Models
Directory of Open Access Journals (Sweden)
Ruifeng Ding
2014-01-01
Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.
Potential of neuro-fuzzy methodology to estimate noise level of wind turbines
Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin
2016-01-01
Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.
DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System
Directory of Open Access Journals (Sweden)
MARIAN GAICEANU
2010-12-01
Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.
Blade Bearing Friction Estimation of Operating Wind Turbines
DEFF Research Database (Denmark)
Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning
2012-01-01
Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...
Parameters determining maximum wind velocity in a tropical cyclone
International Nuclear Information System (INIS)
Choudhury, A.M.
1984-09-01
The spiral structure of a tropical cyclone was earlier explained by a tangential velocity distribution which varies inversely as the distance from the cyclone centre outside the circle of maximum wind speed. The case has been extended in the present paper by adding a radial velocity. It has been found that a suitable combination of radial and tangential velocities can account for the spiral structure of a cyclone. This enables parametrization of the cyclone. Finally a formula has been derived relating maximum velocity in a tropical cyclone with angular momentum, radius of maximum wind speed and the spiral angle. The shapes of the spirals have been computed for various spiral angles. (author)
Parameter estimation and prediction of nonlinear biological systems: some examples
Doeswijk, T.G.; Keesman, K.J.
2006-01-01
Rearranging and reparameterizing a discrete-time nonlinear model with polynomial quotient structure in input, output and parameters (xk = f(Z, p)) leads to a model linear in its (new) parameters. As a result, the parameter estimation problem becomes a so-called errors-in-variables problem for which
Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes
DEFF Research Database (Denmark)
Chougule, Abhijit S.; Mann, Jakob; Segalini, A.
2015-01-01
A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...... was better than that of the cross-wind component. No significant difference was found between the performance of the model at the forested and the agricultural areas. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd....
A Novel Nonlinear Parameter Estimation Method of Soft Tissues
Directory of Open Access Journals (Sweden)
Qianqian Tong
2017-12-01
Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.
HF Radar Observations of Current, Wave and Wind Parameters in the South Australian Gulf
Middleditch, A.; Cosoli, S.
2016-12-01
The Australian Coastal Ocean Radar Network (ACORN) has been measuring metocean parameters from an array of HF radar systems since 2007. Current, wave and wind measurements from a WERA phased-array radar system in the South Australian Gulf are evaluated using current meter, wave buoy and weather station data over a 12-month period. The spatial and temporal scales of the radar deployment have been configured for the measurement of surface currents from the first order backscatter spectra. Quality control procedures are applied to the radar currents that relate to the geometric configurations, statistical properties, and diagnostic variables provided by the analysis software. Wave measurements are obtained through an iterative inversion algorithm that provides an estimate of the directional frequency spectrum. The standard static configurations and data sampling strategies are not optimised for waves and so additional signal processing steps need to be implemented in order to provide reliable estimates. These techniques are currently only applied in offline mode but a real-time approach is in development. Improvements in the quality of extracted wave data are found through increased averaging of the raw radar data but the impact of temporal non-stationarity and spatial inhomogeneities in the WERA measurement region needs to be taken into account. Validations of wind direction data from a weather station on Neptune Island show the potential of using HF radar to combat the spread of bushfires in South Australia.
Directory of Open Access Journals (Sweden)
Yun-Su Kim
2015-02-01
Full Text Available This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various operating conditions and with eigenvalues obtained from the small-signal model of the PMSG WT, which are coordinated by adjusting the PI controller parameters. The parameters to be tuned are chosen by investigating participation factors of state variables, which simplifies the problem by reducing the number of parameters to be tuned. The process of adjusting these PI controller parameters is carried out using particle swarm optimization (PSO. To characterize the improvements in the control method due to the PSO method of tuning the PI controller parameters, the PMSG WT is modeled using the MATLAB/SimPowerSystems libraries with the obtained PI controller parameters.
CHARACTERIZATION OF TRANSITIONS IN THE SOLAR WIND PARAMETERS
International Nuclear Information System (INIS)
Perri, S.; Balogh, A.
2010-01-01
The distinction between fast and slow solar wind streams and the dynamically evolved interaction regions is reflected in the characteristic fluctuations of both the solar wind and the embedded magnetic field. High-resolution magnetic field data from the Ulysses spacecraft have been analyzed. The observations show rapid variations in the magnetic field components and in the magnetic field strength, suggesting a structured nature of the solar wind at small scales. The typical sizes of fluctuations cover a broad range. If translated to the solar surface, the scales span from the size of granules (∼10 3 km) and supergranules (∼10 4 km) on the Sun down to ∼10 2 km and less. The properties of the short time structures change in the different types of solar wind. While fluctuations in fast streams are more homogeneous, slow streams present a bursty behavior in the magnetic field variances, and the regions of transition are characterized by high levels of power in narrow structures around the transitions. The probability density functions of the magnetic field increments at several scales reveal a higher level of intermittency in the mixed streams, which is related to the presence of well localized features. It is concluded that, apart from the differences in the nature of fluctuations in flows of different coronal origin, there is a small-scale structuring that depends on the origin of streams themselves but it is also related to a bursty generation of the fluctuations.
Ma, Ke; Liserre, Marco; Blaabjerg, Frede
2013-01-01
As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power...
Tijera, Manuel; Maqueda, Gregorio; Cano, José L.; López, Pilar; Yagüe, Carlos
2010-05-01
The wind velocity series of the atmospheric turbulent flow in the planetary boundary layer (PBL), in spite of being highly erratic, present a self-similarity structure (Frisch, 1995; Peitgen et., 2004; Falkovich et., 2006). So, the wind velocity can be seen as a fractal magnitude. We calculate the fractal dimension (Komolgorov capacity or box-counting dimension) of the wind perturbation series (u' = u- ) in the physical spaces (namely velocity-time). It has been studied the time evolution of the fractal dimension along different days and at three levels above the ground (5.8 m, 13.5 m, 32 m). The data analysed was recorded in the experimental campaign SABLES-98 (Cuxart et al., 2000) at the Research Centre for the Lower Atmosphere (CIBA) located in Valladolid (Spain). In this work the u, v and w components of wind velocity series have been measured by sonic anemometers (20 Hz sampling rate). The fractal dimension versus the integral length scales of the mean wind series have been studied, as well as the influence of different turbulent parameters. A method for estimating these integral scales is developed using the normalized autocorrelation function and a Gaussian fit. Finally, it will be analysed the variation of the fractal dimension versus stability parameters (as Richardson number) in order to explain some of the dominant features which are likely immersed in the fractal nature of these turbulent flows. References - Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilá J, Redondo JM, Cantalapiedra IR and Conangla L (2000) Stable atmospheric boundary-layer experiment in Spain (SABLES98): a report. Boundary- Layer Meteorol 96:337-370 - Falkovich G and Kattepalli R. Sreenivasan (2006) Lessons from Hidrodynamic Turbulence. Physics Today 59: 43-49 - Frisch U (1995) Turbulence the legacy of A.N. Kolmogorov Cambridge University Press 269pp - Peitgen H, Jürgens H and
Robust Parameter and Signal Estimation in Induction Motors
DEFF Research Database (Denmark)
Børsting, H.
This thesis deals with theories and methods for robust parameter and signal estimation in induction motors. The project originates in industrial interests concerning sensor-less control of electrical drives. During the work, some general problems concerning estimation of signals and parameters...... in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods...... for robust estimation of the rotor speed and driving torque of the induction motor based only on measurements of stator voltages and currents. Only contimuous-time models have been used, which means that physical related signals and parameters are estimated directly and not indirectly by some discrete...
Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters
Shi, L.
2015-12-01
This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.
Mode extraction on wind turbine blades via phase-based video motion estimation
Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu
2017-04-01
In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.
A simulation of water pollution model parameter estimation
Kibler, J. F.
1976-01-01
A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.
How to fool cosmic microwave background parameter estimation
International Nuclear Information System (INIS)
Kinney, William H.
2001-01-01
With the release of the data from the Boomerang and MAXIMA-1 balloon flights, estimates of cosmological parameters based on the cosmic microwave background (CMB) have reached unprecedented precision. In this paper I show that it is possible for these estimates to be substantially biased by features in the primordial density power spectrum. I construct primordial power spectra which mimic to within cosmic variance errors the effect of changing parameters such as the baryon density and neutrino mass, meaning that even an ideal measurement would be unable to resolve the degeneracy. Complementary measurements are necessary to resolve this ambiguity in parameter estimation efforts based on CMB temperature fluctuations alone
State Estimation-based Transmission line parameter identification
Directory of Open Access Journals (Sweden)
Fredy Andrés Olarte Dussán
2010-01-01
Full Text Available This article presents two state-estimation-based algorithms for identifying transmission line parameters. The identification technique used simultaneous state-parameter estimation on an artificial power system composed of several copies of the same transmission line, using measurements at different points in time. The first algorithm used active and reactive power measurements at both ends of the line. The second method used synchronised phasor voltage and current measurements at both ends. The algorithms were tested in simulated conditions on the 30-node IEEE test system. All line parameters for this system were estimated with errors below 1%.
International Nuclear Information System (INIS)
Verma, P L; Singh, Puspraj; Singh, Preetam
2014-01-01
Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.
DEFF Research Database (Denmark)
Ma, Ke; Liserre, Marco; Blaabjerg, Frede
2013-01-01
for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... estimation, more detailed information for the reliability performance of wind power converter can be obtained....
A variational approach to parameter estimation in ordinary differential equations
Directory of Open Access Journals (Sweden)
Kaschek Daniel
2012-08-01
Full Text Available Abstract Background Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. Results The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. Conclusions The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.
Estimating Soil Hydraulic Parameters using Gradient Based Approach
Rai, P. K.; Tripathi, S.
2017-12-01
The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.
A variational approach to parameter estimation in ordinary differential equations.
Kaschek, Daniel; Timmer, Jens
2012-08-14
Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.
Kinetic parameter estimation from attenuated SPECT projection measurements
International Nuclear Information System (INIS)
Reutter, B.W.; Gullberg, G.T.
1998-01-01
Conventional analysis of dynamically acquired nuclear medicine data involves fitting kinetic models to time-activity curves generated from regions of interest defined on a temporal sequence of reconstructed images. However, images reconstructed from the inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system can contain artifacts that lead to biases in the estimated kinetic parameters. To overcome this problem the authors investigated the estimation of kinetic parameters directly from projection data by modeling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated transverse slice, kinetic parameters were estimated for simple one compartment models for three myocardial regions of interest, as well as for the liver. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated data had biases ranging between 1--63%. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Predicted uncertainties (standard deviations) of the parameters obtained for 500,000 detected events ranged between 2--31% for the myocardial uptake parameters and 2--23% for the myocardial washout parameters
Models for estimating photosynthesis parameters from in situ production profiles
Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana
2017-12-01
The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of
Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.
Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke
2013-04-01
In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module
REML estimates of genetic parameters of sexual dimorphism for ...
Indian Academy of Sciences (India)
Administrator
Full and half sibs were distinguished, in contrast to usual isofemale studies in which animals ... studies. Thus, the aim of this study was to estimate genetic parameters of sexual dimorphism in isofemale lines using ..... Muscovy ducks. Genet.
Modal Parameter Identification of New Design of Vertical Axis Wind Turbine
DEFF Research Database (Denmark)
Chougule, Prasad; Nielsen, Søren R.K.
2013-01-01
Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... first kind of design before experimental analysis. Therefore a study is carried out to determine the natural frequency to avoid unstable state of the system due to rotational frequency of rotor. The present paper outlines a conceptual design of vertical axis wind turbine and a modal analysis by using...
A distributed approach for parameters estimation in System Biology models
International Nuclear Information System (INIS)
Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.
2009-01-01
Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.
Kinetic parameter estimation from SPECT cone-beam projection measurements
International Nuclear Information System (INIS)
Huesman, Ronald H.; Reutter, Bryan W.; Zeng, G. Larry; Gullberg, Grant T.
1998-01-01
Kinetic parameters are commonly estimated from dynamically acquired nuclear medicine data by first reconstructing a dynamic sequence of images and subsequently fitting the parameters to time-activity curves generated from regions of interest overlaid upon the image sequence. Biased estimates can result from images reconstructed using inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system. If the SPECT data are acquired using cone-beam collimators wherein the gantry rotates so that the focal point of the collimators always remains in a plane, additional biases can arise from images reconstructed using insufficient, as well as truncated, projection samples. To overcome these problems we have investigated the estimation of kinetic parameters directly from SPECT cone-beam projection data by modelling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated chest image volume, kinetic parameters were estimated for simple one-compartment models for four myocardial regions of interest. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated cone-beam data had biases ranging between 3-26% and 0-28%, respectively. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Statistical uncertainties of parameter estimates for 10 000 000 events ranged between 0.2-9% for the uptake parameters and between 0.3-6% for the washout parameters. (author)
Kalman filter data assimilation: targeting observations and parameter estimation.
Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex
2014-06-01
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
Kalman filter data assimilation: Targeting observations and parameter estimation
International Nuclear Information System (INIS)
Bellsky, Thomas; Kostelich, Eric J.; Mahalov, Alex
2014-01-01
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation
Kalman filter estimation of RLC parameters for UMP transmission line
Directory of Open Access Journals (Sweden)
Mohd Amin Siti Nur Aishah
2018-01-01
Full Text Available This paper present the development of Kalman filter that allows evaluation in the estimation of resistance (R, inductance (L, and capacitance (C values for Universiti Malaysia Pahang (UMP short transmission line. To overcome the weaknesses of existing system such as power losses in the transmission line, Kalman Filter can be a better solution to estimate the parameters. The aim of this paper is to estimate RLC values by using Kalman filter that in the end can increase the system efficiency in UMP. In this research, matlab simulink model is developed to analyse the UMP short transmission line by considering different noise conditions to reprint certain unknown parameters which are difficult to predict. The data is then used for comparison purposes between calculated and estimated values. The results have illustrated that the Kalman Filter estimate accurately the RLC parameters with less error. The comparison of accuracy between Kalman Filter and Least Square method is also presented to evaluate their performances.
Energy Technology Data Exchange (ETDEWEB)
Nagai, H [Nihon University, Tokyo (Japan); Kojima, T [Yamagata Wind Energy Institute, Yamagata (Japan)
1996-10-27
For two 400kW wind turbines erected in Jan. 1996 of Yamagata Wind Energy Institute, their estimated power output was compared with actual output for 7 months. AMeDAS data in 1985-94 were totaled every month to use as basic data. The altitude and surface roughness model necessary for WAsP analysis recommended by NEDO`s wind condition close inspection manual were prepared using 1/25,000 maps and aerial photographs. The obstacle model for estimating wind conditions at height of the wind turbine was prepared using the data obtained by field survey. Mean wind velocity and latent energy were determined by statistical analysis of wind velocity occurrence relative frequencies and Weibull distribution parameters. The power output of 717,700kWh was obtained for 7 months, which is equivalent to 88.5% of the estimated output of 810,730kWh for the same period. It was clarified from obtained characteristic wind conditions at the site that the wind power generation is promising at the site not only in winter but also in summer. Although the test period was too short, this method was effective as analytical method of output estimation in the planning stage of wind turbines. 3 refs., 8 figs., 4 tabs.
A high resolution global wind atlas - improving estimation of world wind resources
DEFF Research Database (Denmark)
Badger, Jake; Ejsing Jørgensen, Hans
2011-01-01
to population centres, electrical transmission grids, terrain types, and protected land areas are important parts of the resource assessment downstream of the generation of wind climate statistics. Related to these issues of integration are the temporal characteristics and spatial correlation of the wind...... resources. These aspects will also be addressed by the Global Wind Atlas. The Global Wind Atlas, through a transparent methodology, will provide a unified, high resolution, and public domain dataset of wind energy resources for the whole world. The wind atlas data will be the most appropriate wind resource...
Aryan, Homayon; Yearby, Keith; Balikhin, Michael; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Boynton, Richard
2014-08-01
Energetic electrons within the Earth's radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. The common approach is to present model wave distributions in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However, it has been shown that only around 50% of geomagnetic storms increase flux of relativistic electrons at geostationary orbit while 20% causes a decrease and the remaining 30% has relatively no effect. This emphasizes the importance of including solar wind parameters such as bulk velocity (V), density (n), flow pressure (P), and the vertical interplanetary magnetic field component (Bz) that are known to be predominately effective in the control of high energy fluxes at the geostationary orbit. Therefore, in the present study the set of parameters of the wave distributions is expanded to include the solar wind parameters in addition to the geomagnetic activity. The present study examines almost 4 years (1 January 2004 to 29 September 2007) of Spatio-Temporal Analysis of Field Fluctuation data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of wave magnetic field intensities for the chorus waves as a function of magnetic local time, L shell (L), magnetic latitude (λm), geomagnetic activity, and solar wind parameters. Generally, the results indicate that the intensity of chorus emission is not only dependent upon geomagnetic activity but also dependent on solar wind parameters with velocity and southward interplanetary magnetic field Bs (Bz < 0), evidently the most influential solar wind parameters. The largest peak chorus intensities in the order of 50 pT are observed during active conditions, high solar wind velocities, low solar wind densities, high
Accelerated maximum likelihood parameter estimation for stochastic biochemical systems
Directory of Open Access Journals (Sweden)
Daigle Bernie J
2012-05-01
Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods
Inherent uncertainties in meteorological parameters for wind turbine design
Doran, J. C.
1982-01-01
Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.
State and parameter estimation in biotechnical batch reactors
Keesman, K.J.
2000-01-01
In this paper the problem of state and parameter estimation in biotechnical batch reactors is considered. Models describing the biotechnical process behaviour are usually nonlinear with time-varying parameters. Hence, the resulting large dimensions of the augmented state vector, roughly > 7, in
DEFF Research Database (Denmark)
Thummala, Prasanth; Schneider, Henrik; Ouyang, Ziwei
2013-01-01
In a bi-directional DC-DC converter for capacitive charging application, the losses associated with the transformer makes it a critical component. In order to calculate the transformer losses, its parameters such as AC resistance, leakage inductance and self capacitance of the high voltage (HV......) winding has to be estimated accurately. This paper analyzes the following losses of bi-directional flyback converter namely switching loss, conduction loss, gate drive loss, transformer core loss, and snubber loss, etc. Iterative analysis of transformer parameters viz., AC resistance, leakage inductance...
An improvement of wind velocity estimation from radar Doppler spectra in the upper mesosphere
Directory of Open Access Journals (Sweden)
S. Takeda
2001-08-01
Full Text Available We have developed a new parameter estimation method for Doppler wind spectra in the mesosphere observed with an MST radar such as the MU radar in the DBS (Doppler Beam Swinging mode. Off-line incoherent integration of the Doppler spectra is carried out with a new algorithm excluding contamination by strong meteor echoes. At the same time, initial values on a least square fitting of the Gaussian function are derived using a larger number of integration of the spectra for a longer time and for multiple heights. As a result, a significant improvement has been achieved with the probability of a successful fitting and parameter estimation above 80 km. The top height for the wind estimation has been improved to around 95 km. A comparison between the MU radar and the High Resolution Doppler Imager (HRDI on the UARS satellite is shown and the capability of the new method for a validation of a future satellite mission is suggested.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics – Radio science (remote sensing; signal processing
On the Nature of SEM Estimates of ARMA Parameters.
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2002-01-01
Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…
On robust parameter estimation in brain-computer interfacing
Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert
2017-12-01
Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
2002-01-01
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Estimation of genetic parameters for body weights of Kurdish sheep ...
African Journals Online (AJOL)
Genetic parameters and (co)variance components were estimated by restricted maximum likelihood (REML) procedure, using animal models of kind 1, 2, 3, 4, 5 and 6, for body weight in birth, three, six, nine and 12 months of age in a Kurdish sheep flock. Direct and maternal breeding values were estimated using the best ...
Aircraft parameter estimation ± A tool for development of ...
Indian Academy of Sciences (India)
In addition, actuator performance and controller gains may be flight condition dependent. Moreover, this approach may result in open-loop parameter estimates with low accuracy. 6. Aerodynamic databases for high fidelity flight simulators. Estimation of a comprehensive aerodynamic model suitable for a flight simulator is an.
The use of energy pattern factor (EPF) in estimating wind power ...
African Journals Online (AJOL)
The Energy Pattern Factor (EPF) method is a less computational method of estimating the available wind power density of an area and wind speed variation account for the energy power density throughout a given period. Using the Average daily wind speed data for an 11 year period (2004-2014) obtained from the ...
Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load
Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.
2017-12-01
Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.
A Note On the Estimation of the Poisson Parameter
Directory of Open Access Journals (Sweden)
S. S. Chitgopekar
1985-01-01
distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.
Adaptive distributed parameter and input estimation in linear parabolic PDEs
Mechhoud, Sarra
2016-01-01
First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.
Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst
2016-05-01
Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Parameter Estimation of Damped Compound Pendulum Using Bat Algorithm
Directory of Open Access Journals (Sweden)
Saad Mohd Sazli
2016-01-01
Full Text Available In this study, the parameter identification of the damped compound pendulum system is proposed using one of the most promising nature inspired algorithms which is Bat Algorithm (BA. The procedure used to achieve the parameter identification of the experimental system consists of input-output data collection, ARX model order selection and parameter estimation using bat algorithm (BA method. PRBS signal is used as an input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the autoregressive with exogenous input (ARX model. The performance of the model is validated using mean squares error (MSE between the actual and predicted output responses of the models. Finally, comparative study is conducted between BA and the conventional estimation method (i.e. Least Square. Based on the results obtained, MSE produce from Bat Algorithm (BA is outperformed the Least Square (LS method.
Iterative methods for distributed parameter estimation in parabolic PDE
Energy Technology Data Exchange (ETDEWEB)
Vogel, C.R. [Montana State Univ., Bozeman, MT (United States); Wade, J.G. [Bowling Green State Univ., OH (United States)
1994-12-31
The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the `forward problem` is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.
Method for Estimating the Parameters of LFM Radar Signal
Directory of Open Access Journals (Sweden)
Tan Chuan-Zhang
2017-01-01
Full Text Available In order to obtain reliable estimate of parameters, it is very important to protect the integrality of linear frequency modulation (LFM signal. Therefore, in the practical LFM radar signal processing, the length of data frame is often greater than the pulse width (PW of signal. In this condition, estimating the parameters by fractional Fourier transform (FrFT will cause the signal to noise ratio (SNR decrease. Aiming at this problem, we multiply the data frame by a Gaussian window to improve the SNR. Besides, for a further improvement of parameters estimation precision, a novel algorithm is derived via Lagrange interpolation polynomial, and we enhance the algorithm by a logarithmic transformation. Simulation results demonstrate that the derived algorithm significantly reduces the estimation errors of chirp-rate and initial frequency.
The problem of the second wind turbine – a note on a common but flawed wind power estimation method
Directory of Open Access Journals (Sweden)
A. Kleidon
2012-06-01
Full Text Available Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than
A wave parameters and directional spectrum analysis for extreme winds
Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier
2013-01-01
In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefﬁcient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical compar...
Simple method for quick estimation of aquifer hydrogeological parameters
Ma, C.; Li, Y. Y.
2017-08-01
Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.
A software for parameter estimation in dynamic models
Directory of Open Access Journals (Sweden)
M. Yuceer
2008-12-01
Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.
Parameter Estimation in Stochastic Grey-Box Models
DEFF Research Database (Denmark)
Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay
2004-01-01
An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended...... Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool...... and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term....
Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms
Lee, Giwhyun
2015-04-22
In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power production and assessing a turbine’s energy production efficiency. Nevertheless, actual wind power data indicate that the power output is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily consider wind speed and, sometimes, wind speed and direction. We propose an additive multivariate kernel method that can include the aforementioned environmental factors as a new power curve model. Our model provides, conditional on a given environmental condition, both the point estimation and density estimation of power output. It is able to capture the nonlinear relationships between environmental factors and the wind power output, as well as the high-order interaction effects among some of the environmental factors. Using operational data associated with four turbines in an inland wind farm and two turbines in an offshore wind farm, we demonstrate the improvement achieved by our kernel method.
Estimation of extreme wind speeds in the mixed strong wind climate of South Africa
CSIR Research Space (South Africa)
Kruger, AC
2010-08-01
Full Text Available wind-generating mechanisms for Australia. Annual extreme wind speeds are generated by different mechanisms, forthcoming from thunderstorm activity and the passages of extratropical low pressure systems, which were identified. Separate extreme value...
Long-period variations of wind parameters in the mesopause region and the solar cycle dependence
International Nuclear Information System (INIS)
Greisiger, K.M.; Schminder, R.; Kuerschner, D.
1987-01-01
The solar cycle dependence of wind parameters below 100 km on the basis of long term continuous ionospheric drift measurements in the low frequency range is discussed. For the meridional prevailing wind no significant variation was found. The same comparison as for winter was done for summer where the previous investigations gave no correlation. Now the radar meteor wind measurement values, too, showed a significant negative correlation of the zonal prevailing wind with solar activity for the years 1976 to 1983. The ionospheric drift measurement results of Collm have the same tendency but a larger dispersion due to the lower accuracy of the harmonic analysis because of the shorter daily measuring interval in summer. Continuous wind observations in the upper mesopause region over more than 20 years revealed distinct long term variations, the origin of which cannot be explained with the present knowledge
Effects of normal and extreme turbulence spectral parameters on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob
2017-01-01
the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...... of design loads is investigated with a focus on the commonly used Mann turbulence model. Quantification of the Mann model parameters is made through wind measurements acquired from the Høvsøre site. The parameters of the Mann model fitted to site specific observations can differ significantly from...... and tower base loads under normal turbulence and extreme turbulence, whereby the change in operating extreme and fatigue design loads obtained through turbulence model parameter variations is compared with corresponding variations obtained from random seeds of turbulence. The investigations quantify...
Traveltime approximations and parameter estimation for orthorhombic media
Masmoudi, Nabil
2016-05-30
Building anisotropy models is necessary for seismic modeling and imaging. However, anisotropy estimation is challenging due to the trade-off between inhomogeneity and anisotropy. Luckily, we can estimate the anisotropy parameters Building anisotropy models is necessary for seismic modeling and imaging. However, anisotropy estimation is challenging due to the trade-off between inhomogeneity and anisotropy. Luckily, we can estimate the anisotropy parameters if we relate them analytically to traveltimes. Using perturbation theory, we have developed traveltime approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2, and Δχ in inhomogeneous background media. The parameter Δχ is related to Tsvankin-Thomsen notation and ensures easier computation of traveltimes in the background model. Specifically, our expansion assumes an inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. We have used the Shanks transform to enhance the accuracy of the formulas. A homogeneous medium simplification of the traveltime expansion provided a nonhyperbolic moveout description of the traveltime that was more accurate than other derived approximations. Moreover, the formulation provides a computationally efficient tool to solve the eikonal equation of an orthorhombic medium, without any constraints on the background model complexity. Although, the expansion is based on the factorized representation of the perturbation parameters, smooth variations of these parameters (represented as effective values) provides reasonable results. Thus, this formulation provides a mechanism to estimate the three effective parameters η1, η2, and Δχ. We have derived Dix-type formulas for orthorhombic medium to convert the effective parameters to their interval values.
Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters
Hoshino, Takahiro; Shigemasu, Kazuo
2008-01-01
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
Assumptions of the primordial spectrum and cosmological parameter estimation
International Nuclear Information System (INIS)
Shafieloo, Arman; Souradeep, Tarun
2011-01-01
The observables of the perturbed universe, cosmic microwave background (CMB) anisotropy and large structures depend on a set of cosmological parameters, as well as the assumed nature of primordial perturbations. In particular, the shape of the primordial power spectrum (PPS) is, at best, a well-motivated assumption. It is known that the assumed functional form of the PPS in cosmological parameter estimation can affect the best-fit-parameters and their relative confidence limits. In this paper, we demonstrate that a specific assumed form actually drives the best-fit parameters into distinct basins of likelihood in the space of cosmological parameters where the likelihood resists improvement via modifications to the PPS. The regions where considerably better likelihoods are obtained allowing free-form PPS lie outside these basins. In the absence of a preferred model of inflation, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed form of PPS. Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of the primordial spectrum from upcoming cosmological data. It is equally important for theorists to keep an open mind towards early universe scenarios that produce features in the PPS. (paper)
Influences of some parameters on the performance of a small vertical axis wind turbine
Directory of Open Access Journals (Sweden)
Dumitrache Alexandru
2016-01-01
Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.
Small sample GEE estimation of regression parameters for longitudinal data.
Paul, Sudhir; Zhang, Xuemao
2014-09-28
Longitudinal (clustered) response data arise in many bio-statistical applications which, in general, cannot be assumed to be independent. Generalized estimating equation (GEE) is a widely used method to estimate marginal regression parameters for correlated responses. The advantage of the GEE is that the estimates of the regression parameters are asymptotically unbiased even if the correlation structure is misspecified, although their small sample properties are not known. In this paper, two bias adjusted GEE estimators of the regression parameters in longitudinal data are obtained when the number of subjects is small. One is based on a bias correction, and the other is based on a bias reduction. Simulations show that the performances of both the bias-corrected methods are similar in terms of bias, efficiency, coverage probability, average coverage length, impact of misspecification of correlation structure, and impact of cluster size on bias correction. Both these methods show superior properties over the GEE estimates for small samples. Further, analysis of data involving a small number of subjects also shows improvement in bias, MSE, standard error, and length of the confidence interval of the estimates by the two bias adjusted methods over the GEE estimates. For small to moderate sample sizes (N ≤50), either of the bias-corrected methods GEEBc and GEEBr can be used. However, the method GEEBc should be preferred over GEEBr, as the former is computationally easier. For large sample sizes, the GEE method can be used. Copyright © 2014 John Wiley & Sons, Ltd.
Adaptive distributed parameter and input estimation in linear parabolic PDEs
Mechhoud, Sarra
2016-01-01
In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.
Pattern statistics on Markov chains and sensitivity to parameter estimation
Directory of Open Access Journals (Sweden)
Nuel Grégory
2006-10-01
Full Text Available Abstract Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,.... Results: In the particular case where pattern statistics (overlap counting only computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
Parameter Estimation of Damped Compound Pendulum Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Saad Mohd Sazli
2016-01-01
Full Text Available This paper present the parameter identification of damped compound pendulum using differential evolution algorithm. The procedure used to achieve the parameter identification of the experimental system consisted of input output data collection, ARX model order selection and parameter estimation using conventional method least square (LS and differential evolution (DE algorithm. PRBS signal is used to be input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the ARX model. The residual error between the actual and predicted output responses of the models is validated using mean squares error (MSE. Analysis showed that, MSE value for LS is 0.0026 and MSE value for DE is 3.6601×10-5. Based results obtained, it was found that DE have lower MSE than the LS method.
CTER—Rapid estimation of CTF parameters with error assessment
Energy Technology Data Exchange (ETDEWEB)
Penczek, Pawel A., E-mail: Pawel.A.Penczek@uth.tmc.edu [Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054 (United States); Fang, Jia [Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054 (United States); Li, Xueming; Cheng, Yifan [The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158 (United States); Loerke, Justus; Spahn, Christian M.T. [Institut für Medizinische Physik und Biophysik, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany)
2014-05-01
In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300 kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03 Å without, and 3.85 Å with, inclusion of astigmatism parameters. - Highlights: • We describe methodology for estimation of CTF parameters with error assessment. • Error estimates provide means for automated elimination of inferior micrographs. • High computational efficiency allows real-time monitoring of EM data quality. • Accurate CTF estimation yields structure of the 80S human ribosome at 3.85 Å.
An approach of parameter estimation for non-synchronous systems
International Nuclear Information System (INIS)
Xu Daolin; Lu Fangfang
2005-01-01
Synchronization-based parameter estimation is simple and effective but only available to synchronous systems. To come over this limitation, we propose a technique that the parameters of an unknown physical process (possibly a non-synchronous system) can be identified from a time series via a minimization procedure based on a synchronization control. The feasibility of this approach is illustrated in several chaotic systems
Parameter estimation in stochastic rainfall-runoff models
DEFF Research Database (Denmark)
Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur
2006-01-01
A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...
Estimation of octanol/water partition coefficients using LSER parameters
Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.
1998-01-01
The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.
Application of genetic algorithms for parameter estimation in liquid chromatography
International Nuclear Information System (INIS)
Hernandez Torres, Reynier; Irizar Mesa, Mirtha; Tavares Camara, Leoncio Diogenes
2012-01-01
In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography
Possible Power Estimation of Down-Regulated Offshore Wind Power Plants
DEFF Research Database (Denmark)
Gögmen, Tuhfe
The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...... the wind farm scale production capacity. However the summation of these individual signals is simply an over-estimation for the wind power plant, due to reduced wake losses during curtailment. The determination of the possible power with the PossPOW algorithm works as follows: firstly the second...
Estimation of wake propagation behind the rotors of wind-powered generators
DEFF Research Database (Denmark)
Naumov, I. V.; Mikkelsen, Robert Flemming; Okulov, Valery
2016-01-01
. It is shown that the recovery of velocity of incident flow is faster than has been previously defined in the models of calculating the impact of wind electric power plants on the regional climate changes. Thus, existing wind loss calculated on the model of wake behind the wind-powered generator, adjusted......The objectives of this work are to develop the experimental model of wake behind the wind-power generator rotor to estimate its propagation distance and the impact on the average and pulsation characteristics of incident flow with the possibility of further use of these data in the calculation...... models of wind and climate changes in the regions and to determine the optimal operation of wind turbines. For experimental modeling, the laboratory model of wind-powered generator with a horizontal axis was used that operated as wind turbine in optimal mode. The kinematic characteristics of flow...
The distribution of waves in the inner magnetosphere as a function of solar wind parameters
Aryan, Homayon; Balikhin, Michael A.; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Yearby, Keith
Energetic electrons within the Earth’s radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. Studies of the evolution of energetic electron fluxes rely heavily on numerical codes in order to model energy and pitch angle diffusion due to electron interaction with plasma waves in the frame of quasilinear approximation. Application of these codes requires knowledge of statistical wave models to present wave distributions in the magnetosphere. A number of such models are based on CRESS, Cluster, THEMIS and other mission data. These models present wave distributions as a function of L-shell, magnetic local time, magnetic latitude and geomagnetic activity expressed by geomagnetic indices (Kp or Ae). However, it has been shown by G. Reeves and co-authors that only 50% of geomagnetic storms increase flux of relativistic electrons at GEO while 20% cause a decrease. This emphasizes the importance of including solar wind parameters in addition to geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of STAFF (Spatio-Temporal Analysis of Field Fluctuation) data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of chorus wave intensities as a function of L-shell, magnetic local time, magnetic latitude, geomagnetic indices and solar wind parameters. The results show that chorus emission is not only sub-storm dependent but also dependent upon solar wind parameters with solar wind velocity evidently the most influential solar wind parameter. The largest peak intensities are observed for lower band chorus during active conditions, high solar wind velocity, low density and high pressure.
Bayesian estimation of parameters in a regional hydrological model
Directory of Open Access Journals (Sweden)
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
Targeted estimation of nuisance parameters to obtain valid statistical inference.
van der Laan, Mark J
2014-01-01
In order to obtain concrete results, we focus on estimation of the treatment specific mean, controlling for all measured baseline covariates, based on observing independent and identically distributed copies of a random variable consisting of baseline covariates, a subsequently assigned binary treatment, and a final outcome. The statistical model only assumes possible restrictions on the conditional distribution of treatment, given the covariates, the so-called propensity score. Estimators of the treatment specific mean involve estimation of the propensity score and/or estimation of the conditional mean of the outcome, given the treatment and covariates. In order to make these estimators asymptotically unbiased at any data distribution in the statistical model, it is essential to use data-adaptive estimators of these nuisance parameters such as ensemble learning, and specifically super-learning. Because such estimators involve optimal trade-off of bias and variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a sub-optimal bias/variance trade-off for the resulting real-valued estimator of the estimand. We demonstrate that additional targeting of the estimators of these nuisance parameters guarantees that this bias for the estimand is second order and thereby allows us to prove theorems that establish asymptotic linearity of the estimator of the treatment specific mean under regularity conditions. These insights result in novel targeted minimum loss-based estimators (TMLEs) that use ensemble learning with additional targeted bias reduction to construct estimators of the nuisance parameters. In particular, we construct collaborative TMLEs (C-TMLEs) with known influence curve allowing for statistical inference, even though these C-TMLEs involve variable selection for the propensity score based on a criterion that measures how effective the resulting fit of the propensity score is in removing bias for the estimand. As a particular special
Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images
DEFF Research Database (Denmark)
Calaudi, Rosamaria; Arena, Felice; Badger, Merete
Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods of m...
Revisiting Boltzmann learning: parameter estimation in Markov random fields
DEFF Research Database (Denmark)
Hansen, Lars Kai; Andersen, Lars Nonboe; Kjems, Ulrik
1996-01-01
This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization...... and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce...
Wind turbine power coefficient estimation by soft computing methodologies: Comparative study
International Nuclear Information System (INIS)
Shamshirband, Shahaboddin; Petković, Dalibor; Saboohi, Hadi; Anuar, Nor Badrul; Inayat, Irum; Akib, Shatirah; Ćojbašić, Žarko; Nikolić, Vlastimir; Mat Kiah, Miss Laiha; Gani, Abdullah
2014-01-01
Highlights: • Variable speed operation of wind turbine to increase power generation. • Changeability and fluctuation of wind has to be accounted. • To build an effective prediction model of wind turbine power coefficient. • The impact of the variation in the blade pitch angle and tip speed ratio. • Support vector regression methodology application as predictive methodology. - Abstract: Wind energy has become a large contender of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, reasonable wind speed is not adequately sustainable everywhere to build an economical wind farm. In wind energy conversion systems, one of the operational problems is the changeability and fluctuation of wind. In most cases, wind speed can vacillate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion plants. Several control techniques have been applied to improve the quality of power generated from wind turbines. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of support vector regression (SVR) to estimate optimal power coefficient value of the wind turbines. Instead of minimizing the observed training error, SVR p oly and SVR r bf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR approach in compare to other soft computing methodologies
SCoPE: an efficient method of Cosmological Parameter Estimation
International Nuclear Information System (INIS)
Das, Santanu; Souradeep, Tarun
2014-01-01
Markov Chain Monte Carlo (MCMC) sampler is widely used for cosmological parameter estimation from CMB and other data. However, due to the intrinsic serial nature of the MCMC sampler, convergence is often very slow. Here we present a fast and independently written Monte Carlo method for cosmological parameter estimation named as Slick Cosmological Parameter Estimator (SCoPE), that employs delayed rejection to increase the acceptance rate of a chain, and pre-fetching that helps an individual chain to run on parallel CPUs. An inter-chain covariance update is also incorporated to prevent clustering of the chains allowing faster and better mixing of the chains. We use an adaptive method for covariance calculation to calculate and update the covariance automatically as the chains progress. Our analysis shows that the acceptance probability of each step in SCoPE is more than 95% and the convergence of the chains are faster. Using SCoPE, we carry out some cosmological parameter estimations with different cosmological models using WMAP-9 and Planck results. One of the current research interests in cosmology is quantifying the nature of dark energy. We analyze the cosmological parameters from two illustrative commonly used parameterisations of dark energy models. We also asses primordial helium fraction in the universe can be constrained by the present CMB data from WMAP-9 and Planck. The results from our MCMC analysis on the one hand helps us to understand the workability of the SCoPE better, on the other hand it provides a completely independent estimation of cosmological parameters from WMAP-9 and Planck data
Synoptic maps of solar wind parameters from in situ spacecraft observations
Gazis, P. R.
1995-01-01
Solar wind observations from the Interplanetary Monitoring Platform-8 (IMP-8) and Pioneer Venus Orbiter (PVO) spacecraft from 1982 until 1988 are combined to construct synoptic maps of solar wind parameters near 1 AU. Each map consists of 6 months of hourly averaged solar wind data, binned by heliographic latitude and Carrington longitude and projected back to the Sun. These maps show the structure and time evolution of solar wind streams near 1 AU in the heliographic latitudes of +/- 7.25 deg and provide and explicit picture of several phenomena, such as gradients, changes in the inclination of the heliospheric current sheet, and the relative positions of various structures in the inner heliosphere, that is difficult to obtain from single-spacecraft observations. The stream structure varied significantly during the last solar cycle. Between 1982 and early 1985, solar wind parameters did not depend strongly on heliographic latitude. During the last solar minimum, the solar wind developed significant latitudinal structure, and high-speed streams were excluded from the vicinity of the solar equator. The interplanetary magnetic field was strongly correlated with the coronal field, and the current sheet tended to coincide with the coronal neutral line. The solar wind speed showed the expected correlations with temperature, interplanetary magnetic field, and distance from the current sheet. The solar wind speed was anticorrelated with density, but the regions of highest density occurred east of the heliospheric current sheet and the regions of lowest solar wind speed. This is consistent with compression at the leading edge of high-speed streams.
Estimation of the wind turbine yaw error by support vector machines
DEFF Research Database (Denmark)
Sheibat-Othman, Nida; Othman, Sami; Tayari, Raoaa
2015-01-01
Wind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology...... is data-based, simulated data from a high fidelity aero-elastic model is used for learning. The model simulates a variable speed horizontal-axis wind turbine composed of three blades and a full converter. Both partial load (blade angles fixed at 0 deg) and full load zones (active pitch actuators...
Estimation of Compaction Parameters Based on Soil Classification
Lubis, A. S.; Muis, Z. A.; Hastuty, I. P.; Siregar, I. M.
2018-02-01
Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight (γ dmax) and optimum water content (Wopt) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data’s from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight (γdmax *)=1,862-0,005*FINES- 0,003*LL and estimation of the optimum water content (wopt *)=- 0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation Y=mLogG+k), for estimation of the maximum dry unit weight (γdmax *) with m=-0,376 and k=2,482, for estimation of the optimum water content (wopt *) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained.
Low Complexity Parameter Estimation For Off-the-Grid Targets
Jardak, Seifallah
2015-10-05
In multiple-input multiple-output radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, a derived cost function is usually evaluated and optimized over a grid of points. The performance of such algorithms is directly affected by the size of the grid: increasing the number of points will enhance the resolution of the algorithm but exponentially increase its complexity. In this work, to estimate the parameters of a target, a reduced complexity super resolution algorithm is proposed. For off-the-grid targets, it uses a low order two dimensional fast Fourier transform to determine a suboptimal solution and then an iterative algorithm to jointly estimate the spatial location and Doppler shift. Simulation results show that the mean square estimation error of the proposed estimators achieve the Cram\\'er-Rao lower bound. © 2015 IEEE.
Estimation of object motion parameters from noisy images.
Broida, T J; Chellappa, R
1986-01-01
An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.
Revised models and genetic parameter estimates for production and ...
African Journals Online (AJOL)
Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...
A Sparse Bayesian Learning Algorithm With Dictionary Parameter Estimation
DEFF Research Database (Denmark)
Hansen, Thomas Lundgaard; Badiu, Mihai Alin; Fleury, Bernard Henri
2014-01-01
This paper concerns sparse decomposition of a noisy signal into atoms which are specified by unknown continuous-valued parameters. An example could be estimation of the model order, frequencies and amplitudes of a superposition of complex sinusoids. The common approach is to reduce the continuous...
Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems
DEFF Research Database (Denmark)
Knudsen, Morten
variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...
Parameter Estimates in Differential Equation Models for Population Growth
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
Parameter extraction and estimation based on the PV panel outdoor ...
African Journals Online (AJOL)
The experimental data obtained are validated and compared with the estimated results obtained through simulation based on the manufacture's data sheet. The simulation is based on the Newton-Raphson iterative method in MATLAB environment. This approach aids the computation of the PV module's parameters at any ...
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
MPEG2 video parameter and no reference PSNR estimation
DEFF Research Database (Denmark)
Li, Huiying; Forchhammer, Søren
2009-01-01
MPEG coded video may be processed for quality assessment or postprocessed to reduce coding artifacts or transcoded. Utilizing information about the MPEG stream may be useful for these tasks. This paper deals with estimating MPEG parameter information from the decoded video stream without access t...
NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION
Directory of Open Access Journals (Sweden)
Roman L. Leibov
2017-09-01
Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented
Estimates Of Genetic Parameters Of Body Weights Of Different ...
African Journals Online (AJOL)
four (44) farrowings were used to estimate the genetic parameters (heritability and repeatability) of body weight of pigs. Results obtained from the study showed that the heritability (h2) of birth and weaning weights were moderate (0.33±0.16 ...
Estimation of stature from facial parameters in adult Abakaliki people ...
African Journals Online (AJOL)
This study is carried out in order to estimate the height of adult Igbo people of Abakaliki ethnic group in South-Eastern Nigeria from their facial Morphology. The parameters studied include Facial Length, Bizygomatic Diameter, Bigonial Diameter, Nasal Length, and Nasal Breadth. A total of 1000 subjects comprising 669 ...
On Modal Parameter Estimates from Ambient Vibration Tests
DEFF Research Database (Denmark)
Agneni, A.; Brincker, Rune; Coppotelli, B.
2004-01-01
Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...
Measuring, calculating and estimating PEP's parasitic mode loss parameters
International Nuclear Information System (INIS)
Weaver, J.N.
1981-01-01
This note discusses various ways the parasitic mode losses from a bunched beam to a vacuum chamber can be measured, calculated or estimated. A listing of the parameter, k, for the various PEP ring components is included. A number of formulas for calculating multiple and single pass losses are discussed and evaluated for several cases. 25 refs., 1 fig., 1 tab
Visco-piezo-elastic parameter estimation in laminated plate structures
DEFF Research Database (Denmark)
Araujo, A. L.; Mota Soares, C. M.; Herskovits, J.
2009-01-01
A parameter estimation technique is presented in this article, for identification of elastic, piezoelectric and viscoelastic properties of active laminated composite plates with surface-bonded piezoelectric patches. The inverse method presented uses experimental data in the form of a set of measu...
Estimates of genetic parameters and genetic gains for growth traits ...
African Journals Online (AJOL)
Estimates of genetic parameters and genetic gains for growth traits of two Eucalyptus ... In South Africa, Eucalyptus urophylla is an important species due to its ... as hybrid parents to cross with E. grandis was 59.8% over the population mean.
Estimation of riverbank soil erodibility parameters using genetic ...
Indian Academy of Sciences (India)
Tapas Karmaker
2017-11-07
Nov 7, 2017 ... process. Therefore, this is a study to verify the applicability of inverse parameter ... successful modelling of the riverbank erosion, precise estimation of ..... For this simulation, about 40 iterations are found to attain the convergence. ..... rithm for function optimization: a Matlab implementation. NCSU-IE TR ...
estimation of shear strength parameters of lateritic soils using
African Journals Online (AJOL)
user
... a tool to estimate the. Nigerian Journal of Technology (NIJOTECH). Vol. ... modeling tools for the prediction of shear strength parameters for lateritic ... 2.2 Geotechnical Analysis of the Soils ... The back propagation learning algorithm is the most popular and ..... [10] Alsaleh, M. I., Numerical modeling for strain localization in ...
Estimation of genetic parameters for carcass traits in Japanese quail ...
African Journals Online (AJOL)
The aim of this study was to estimate genetic parameters of some carcass characteristics in the Japanese quail. For this aim, carcass weight (Cw), breast weight (Bw), leg weight (Lw), abdominal fat weight (AFw), carcass yield (CP), breast percentage (BP), leg percentage (LP) and abdominal fat percentage (AFP) were ...
Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea
Sawlan, Zaid A
2012-12-01
Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.
Dual ant colony operational modal analysis parameter estimation method
Sitarz, Piotr; Powałka, Bartosz
2018-01-01
Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.
Accuracy and sensitivity analysis on seismic anisotropy parameter estimation
Yan, Fuyong; Han, De-Hua
2018-04-01
There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.
Estimation of parameter sensitivities for stochastic reaction networks
Gupta, Ankit
2016-01-07
Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a continuous-time Markov chain whose states represent the molecular counts of various species. For such models, effects of parameter uncertainty are often quantified by estimating the infinitesimal sensitivities of some observables with respect to model parameters. The aim of this talk is to present a holistic approach towards this problem of estimating parameter sensitivities for stochastic reaction networks. Our approach is based on a generic formula which allows us to construct efficient estimators for parameter sensitivity using simulations of the underlying model. We will discuss how novel simulation techniques, such as tau-leaping approximations, multi-level methods etc. can be easily integrated with our approach and how one can deal with stiff reaction networks where reactions span multiple time-scales. We will demonstrate the efficiency and applicability of our approach using many examples from the biological literature.
Lumped-Parameter Models for Wind-Turbine Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars; Liingaard, Morten
2007-01-01
The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computational model significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...
Estimation of Parameters in Mean-Reverting Stochastic Systems
Directory of Open Access Journals (Sweden)
Tianhai Tian
2014-01-01
Full Text Available Stochastic differential equation (SDE is a very important mathematical tool to describe complex systems in which noise plays an important role. SDE models have been widely used to study the dynamic properties of various nonlinear systems in biology, engineering, finance, and economics, as well as physical sciences. Since a SDE can generate unlimited numbers of trajectories, it is difficult to estimate model parameters based on experimental observations which may represent only one trajectory of the stochastic model. Although substantial research efforts have been made to develop effective methods, it is still a challenge to infer unknown parameters in SDE models from observations that may have large variations. Using an interest rate model as a test problem, in this work we use the Bayesian inference and Markov Chain Monte Carlo method to estimate unknown parameters in SDE models.
Estimating Arrhenius parameters using temperature programmed molecular dynamics
International Nuclear Information System (INIS)
Imandi, Venkataramana; Chatterjee, Abhijit
2016-01-01
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
Estimating Arrhenius parameters using temperature programmed molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in [Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)
2016-07-21
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
Using Genetic Algorithm to Estimate Hydraulic Parameters of Unconfined Aquifers
Directory of Open Access Journals (Sweden)
Asghar Asghari Moghaddam
2009-03-01
Full Text Available Nowadays, optimization techniques such as Genetic Algorithms (GA have attracted wide attention among scientists for solving complicated engineering problems. In this article, pumping test data are used to assess the efficiency of GA in estimating unconfined aquifer parameters and a sensitivity analysis is carried out to propose an optimal arrangement of GA. For this purpose, hydraulic parameters of three sets of pumping test data are calculated by GA and they are compared with the results of graphical methods. The results indicate that the GA technique is an efficient, reliable, and powerful method for estimating the hydraulic parameters of unconfined aquifer and, further, that in cases of deficiency in pumping test data, it has a better performance than graphical methods.
Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters
Aguglia, D; Martins, C.D.A.
2014-01-01
This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experim...
Directory of Open Access Journals (Sweden)
Jonathan R Karr
2015-05-01
Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
Global parameter estimation for thermodynamic models of transcriptional regulation.
Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N
2013-07-15
Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.
Capacity factor of wind power realized values vs. estimates
International Nuclear Information System (INIS)
Boccard, Nicolas
2009-01-01
For two decades now, the capacity factor of wind power measuring the average energy delivered has been assumed in the 30-35% range of the name plate capacity. Yet, the mean realized value for Europe over the last five years is below 21%; accordingly private cost is two-third higher and the reduction of carbon emissions is 40% less than previously expected. We document this discrepancy and offer rationalizations that emphasize the long term variations of wind speeds, the behavior of the wind power industry, political interference and the mode of finance. We conclude with the consequences of the capacity factor miscalculation and some policy recommendations.
Estimation of wind power potential of the Gulf of Finland
DEFF Research Database (Denmark)
Monzikova, Anna K.; Kudryavtsev, V.N.; Larsen, Søren Ejling
2013-01-01
boundary layer. Calculations of the wind power potential take into account effect of the atmospheric stratification over the water surface and peculiarities of the surface roughness in the presence of ice cover. Evaluations of the number of wind turbines needed to «replace» electricity production......An assessment of wind power potential of the eastern part of the Gulf of Finland and its seasonal variations are presented. Measurements taken from meteorological stations around the coastline are used as the input data. Calculations are based on the similarity theory for the atmospheric planetary...
Estimating model parameters in nonautonomous chaotic systems using synchronization
International Nuclear Information System (INIS)
Yang, Xiaoli; Xu, Wei; Sun, Zhongkui
2007-01-01
In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation
Influence of measurement errors and estimated parameters on combustion diagnosis
International Nuclear Information System (INIS)
Payri, F.; Molina, S.; Martin, J.; Armas, O.
2006-01-01
Thermodynamic diagnosis models are valuable tools for the study of Diesel combustion. Inputs required by such models comprise measured mean and instantaneous variables, together with suitable values for adjustable parameters used in different submodels. In the case of measured variables, one may estimate the uncertainty associated with measurement errors; however, the influence of errors in model parameter estimation may not be so easily established on an experimental basis. In this paper, a simulated pressure cycle has been used along with known input parameters, so that any uncertainty in the inputs is avoided. Then, the influence of errors in measured variables and geometric and heat transmission parameters on the results of a diagnosis combustion model for direct injection diesel engines have been studied. This procedure allowed to establish the relative importance of these parameters and to set limits to the maximal errors of the model, accounting for both the maximal expected errors in the input parameters and the sensitivity of the model to those errors
Korner-Nievergelt, Fränzi; Brinkmann, Robert; Niermann, Ivo; Behr, Oliver
2013-01-01
Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.
Directory of Open Access Journals (Sweden)
Fränzi Korner-Nievergelt
Full Text Available Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.
International Nuclear Information System (INIS)
Bobrov, M.S.
1977-01-01
Solar wind effect on the magnetospheric ring-current region has been considered. The correlations with solar wind parameters of the magnitude qsub(o) proportional to the total energy of particles being injected into the magnetospheric ring-current region per one hour are studied statistically and by comparison of time variations. The data on 8 sporadic geomagnetic storms of various intensity, from moderate to very severe one, are used. It is found that qsub(o) correlates not only with the magnitude and the direction of the solar-wind magnetic field component normal to the ecliptic plane, Bsub(z), but also with the variability, sigmasub(B), of the total magnetic-field strength vector. The solar-wind flux velocity ν influences the average storm intensity but the time variations of ν during any individual storm do not correlate with those of qsub(o)
Stable Parameter Estimation for Autoregressive Equations with Random Coefficients
Directory of Open Access Journals (Sweden)
V. B. Goryainov
2014-01-01
Full Text Available In recent yearsthere has been a growing interest in non-linear time series models. They are more flexible than traditional linear models and allow more adequate description of real data. Among these models a autoregressive model with random coefficients plays an important role. It is widely used in various fields of science and technology, for example, in physics, biology, economics and finance. The model parameters are the mean values of autoregressive coefficients. Their evaluation is the main task of model identification. The basic method of estimation is still the least squares method, which gives good results for Gaussian time series, but it is quite sensitive to even small disturbancesin the assumption of Gaussian observations. In this paper we propose estimates, which generalize the least squares estimate in the sense that the quadratic objective function is replaced by an arbitrary convex and even function. Reasonable choice of objective function allows you to keep the benefits of the least squares estimate and eliminate its shortcomings. In particular, you can make it so that they will be almost as effective as the least squares estimate in the Gaussian case, but almost never loose in accuracy with small deviations of the probability distribution of the observations from the Gaussian distribution.The main result is the proof of consistency and asymptotic normality of the proposed estimates in the particular case of the one-parameter model describing the stationary process with finite variance. Another important result is the finding of the asymptotic relative efficiency of the proposed estimates in relation to the least squares estimate. This allows you to compare the two estimates, depending on the probability distribution of innovation process and of autoregressive coefficients. The results can be used to identify an autoregressive process, especially with nonGaussian nature, and/or of autoregressive processes observed with gross
Estimation of wind speed and wave height during cyclones
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Mandal, S.; AshokKumar, K.
, the isobaric charts were collected at three hourly intervals from the India Meteorological Department. The storm variables such as central pressure, radius of maximum wind, speed of forward motion and direction of storm movement were extracted and the method...
Pedotransfer functions estimating soil hydraulic properties using different soil parameters
DEFF Research Database (Denmark)
Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye
2008-01-01
Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...
DEFF Research Database (Denmark)
Li, H.; Zhao, B.; Yang, C.
2011-01-01
based on normal form theory is proposed. The transient models of the wind turbine generation system including the flexible drive train model are derived based on the direct transient stability estimation method. A method of critical clearing time (CCT) calculation is developed for the transient......Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation...... of a grid-connected wind turbine with squirrel cage induction generator (SCIG). Firstly, by using an equivalent lump mass method, a three-mass wind turbine equivalent model is proposed considering both the blades and the shaft flexibility of the wind turbine drive train system. Combined with the detailed...
Consistent Parameter and Transfer Function Estimation using Context Free Grammars
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2017-04-01
This contribution presents a method for the inference of transfer functions for rainfall-runoff models. Here, transfer functions are defined as parametrized (functional) relationships between a set of spatial predictors (e.g. elevation, slope or soil texture) and model parameters. They are ultimately used for estimation of consistent, spatially distributed model parameters from a limited amount of lumped global parameters. Additionally, they provide a straightforward method for parameter extrapolation from one set of basins to another and can even be used to derive parameterizations for multi-scale models [see: Samaniego et al., 2010]. Yet, currently an actual knowledge of the transfer functions is often implicitly assumed. As a matter of fact, for most cases these hypothesized transfer functions can rarely be measured and often remain unknown. Therefore, this contribution presents a general method for the concurrent estimation of the structure of transfer functions and their respective (global) parameters. Note, that by consequence an estimation of the distributed parameters of the rainfall-runoff model is also undertaken. The method combines two steps to achieve this. The first generates different possible transfer functions. The second then estimates the respective global transfer function parameters. The structural estimation of the transfer functions is based on the context free grammar concept. Chomsky first introduced context free grammars in linguistics [Chomsky, 1956]. Since then, they have been widely applied in computer science. But, to the knowledge of the authors, they have so far not been used in hydrology. Therefore, the contribution gives an introduction to context free grammars and shows how they can be constructed and used for the structural inference of transfer functions. This is enabled by new methods from evolutionary computation, such as grammatical evolution [O'Neill, 2001], which make it possible to exploit the constructed grammar as a
Estimating the impacts of wind power on power systems—summary of IEA Wind collaboration
Holttinen, Hannele
2008-04-01
Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.
Estimating the impacts of wind power on power systems-summary of IEA Wind collaboration
International Nuclear Information System (INIS)
Holttinen, Hannele
2008-01-01
Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power
METAHEURISTIC OPTIMIZATION METHODS FOR PARAMETERS ESTIMATION OF DYNAMIC SYSTEMS
Directory of Open Access Journals (Sweden)
V. Panteleev Andrei
2017-01-01
Full Text Available The article considers the usage of metaheuristic methods of constrained global optimization: “Big Bang - Big Crunch”, “Fireworks Algorithm”, “Grenade Explosion Method” in parameters of dynamic systems estimation, described with algebraic-differential equations. Parameters estimation is based upon the observation results from mathematical model behavior. Their values are derived after criterion minimization, which describes the total squared error of state vector coordinates from the deduced ones with precise values observation at different periods of time. Paral- lelepiped type restriction is imposed on the parameters values. Used for solving problems, metaheuristic methods of constrained global extremum don’t guarantee the result, but allow to get a solution of a rather good quality in accepta- ble amount of time. The algorithm of using metaheuristic methods is given. Alongside with the obvious methods for solving algebraic-differential equation systems, it is convenient to use implicit methods for solving ordinary differen- tial equation systems. Two ways of solving the problem of parameters evaluation are given, those parameters differ in their mathematical model. In the first example, a linear mathematical model describes the chemical action parameters change, and in the second one, a nonlinear mathematical model describes predator-prey dynamics, which characterize the changes in both kinds’ population. For each of the observed examples there are calculation results from all the three methods of optimization, there are also some recommendations for how to choose methods parameters. The obtained numerical results have demonstrated the efficiency of the proposed approach. The deduced parameters ap- proximate points slightly differ from the best known solutions, which were deduced differently. To refine the results one should apply hybrid schemes that combine classical methods of optimization of zero, first and second orders and
Directory of Open Access Journals (Sweden)
A. Elsonbaty
2014-10-01
Full Text Available In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.
Parameter estimation in nonlinear models for pesticide degradation
International Nuclear Information System (INIS)
Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.
1991-01-01
A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)
Estimation of common cause failure parameters with periodic tests
Energy Technology Data Exchange (ETDEWEB)
Barros, Anne [Institut Charles Delaunay - Universite de technologie de Troyes - FRE CNRS 2848, 12, rue Marie Curie - BP 2060 -10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Grall, Antoine [Institut Charles Delaunay - Universite de technologie de Troyes - FRE CNRS 2848, 12, rue Marie Curie - BP 2060 -10010 Troyes cedex (France); Vasseur, Dominique [Electricite de France, EDF R and D - Industrial Risk Management Department 1, av. du General de Gaulle- 92141 Clamart (France)
2009-04-15
In the specific case of safety systems, CCF parameters estimators for standby components depend on the periodic test schemes. Classically, the testing schemes are either staggered (alternation of tests on redundant components) or non-staggered (all components are tested at the same time). In reality, periodic tests schemes performed on safety components are more complex and combine staggered tests, when the plant is in operation, to non-staggered tests during maintenance and refueling outage periods of the installation. Moreover, the CCF parameters estimators described in the US literature are derived in a consistent way with US Technical Specifications constraints that do not apply on the French Nuclear Power Plants for staggered tests on standby components. Given these issues, the evaluation of CCF parameters from the operating feedback data available within EDF implies the development of methodologies that integrate the testing schemes specificities. This paper aims to formally propose a solution for the estimation of CCF parameters given two distinct difficulties respectively related to a mixed testing scheme and to the consistency with EDF's specific practices inducing systematic non-simultaneity of the observed failures in a staggered testing scheme.
DEFF Research Database (Denmark)
Sommer, Helle Mølgaard; Holst, Helle; Spliid, Henrik
1995-01-01
Three identical microbiological experiments were carried out and analysed in order to examine the variability of the parameter estimates. The microbiological system consisted of a substrate (toluene) and a biomass (pure culture) mixed together in an aquifer medium. The degradation of the substrate...... and the growth of the biomass are described by the Monod model consisting of two nonlinear coupled first-order differential equations. The objective of this study was to estimate the kinetic parameters in the Monod model and to test whether the parameters from the three identical experiments have the same values....... Estimation of the parameters was obtained using an iterative maximum likelihood method and the test used was an approximative likelihood ratio test. The test showed that the three sets of parameters were identical only on a 4% alpha level....
Scour depth estimation using an equation based on wind tunnel experiments
Directory of Open Access Journals (Sweden)
Tsutsui Takayuki
2016-01-01
Full Text Available Scour is the result of degradation and aggradation by wind or moving fluid in the front and back of a pole standing in sand, respectively, and is often observed at the bottom of bridge piers in rivers. In this study, we propose a method of estimating the scour depth around a cylindrical structure standing in sand. The relationships among the depth of the scour, the aspect ratio of the structure (= height/diameter, the fluid velocity, and the sand properties (particle size and density were determined experimentally using a wind tunnel. The experiments were carried out under clear-water scour conditions. In the experiments, the aspect ratio of the cylindrical structure, the fluid velocity, and the sand particle size were varied systematically. The diameters of the structure were 20, 40, and 60 mm, and the aspect ratio was varied from 0.25 to 3.0. Sand particles of four sizes (200, 275, 475, and 600 μm were used in the experiment, and the velocity was varied from 4 to 11 m/s. The depth and radius of the scour were measured. As a result, we have developed an equation for estimating the scour depth that uses the aspect ratio, fluid velocity, and sand particle size as parameters.
PWR system simulation and parameter estimation with neural networks
International Nuclear Information System (INIS)
Akkurt, Hatice; Colak, Uener
2002-01-01
A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected
PWR system simulation and parameter estimation with neural networks
Energy Technology Data Exchange (ETDEWEB)
Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr
2002-11-01
A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.
Directory of Open Access Journals (Sweden)
Y. Lehahn
2010-07-01
Full Text Available Six years (2003–2008 of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS and surface wind speeds from Quick Scatterometer (QuikSCAT, the Advanced Microwave Scanning Radiometer (AMSR-E, and the Special Sensor Microwave Imager (SSM/I, are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.
Tracking of nuclear reactor parameters via recursive non linear estimation
International Nuclear Information System (INIS)
Pages Fita, J.; Alengrin, G.; Aguilar Martin, J.; Zwingelstein, M.
1975-01-01
The usefulness of nonlinear estimation in the supervision of nuclear reactors, as well for reactivity determination as for on-line modelisation in order to detect eventual and unwanted changes in working operation is illustrated. It is dealt with the reactivity estimation using an a priori dynamical model under the hypothesis of one group of delayed neutrons (measurements were done with an ionisation chamber). The determination of the reactivity using such measurements appears as a nonlinear estimation procedure derived from a particular form of nonlinear filter. Observed inputs being demand of power and inside temperature, and output being the reactivity balance, a recursive algorithm is derived for the estimation of the parameters that define the actual behavior of the reactor. Example of treatment of real data is given [fr
Parameter Estimation as a Problem in Statistical Thermodynamics.
Earle, Keith A; Schneider, David J
2011-03-14
In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm.
2016-08-10
IM/CLO) FROM ASTM STANDARD SINGLE WIND VELOCITY MEASURES DISCLAIMER The opinions or assertions contained herein are the private views of the...USARIEM TECHNICAL REPORT T16-14 METHOD FOR ESTIMATING EVAPORATIVE POTENTIAL (IM/CLO) FROM ASTM STANDARD SINGLE WIND VELOCITY... ASTM STANDARD SINGLE WIND VELOCITY MEASURES Adam W. Potter Biophysics and Biomedical Modeling Division U.S. Army Research Institute of Environmental
Directory of Open Access Journals (Sweden)
A. Venäläinen
2017-07-01
Full Text Available The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount of wind damage for certain forest stand configurations.
Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine
Directory of Open Access Journals (Sweden)
Jeremy T. Howard
2018-02-01
Full Text Available In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198 that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope. The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite was 0.15 (0.18 and 0.31 (0.40, respectively. For the parent drug (metabolite, the mean heritability across time was 0.27 (0.60 and 0.14 (0.44 for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug
Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine
Howard, Jeremy T.; Ashwell, Melissa S.; Baynes, Ronald E.; Brooks, James D.; Yeatts, James L.; Maltecca, Christian
2018-01-01
In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug
ESTIMATION OF DISTANCES TO STARS WITH STELLAR PARAMETERS FROM LAMOST
Energy Technology Data Exchange (ETDEWEB)
Carlin, Jeffrey L.; Newberg, Heidi Jo [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Liu, Chao; Deng, Licai; Li, Guangwei; Luo, A-Li; Wu, Yue; Yang, Ming; Zhang, Haotong [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Beers, Timothy C. [Department of Physics and JINA: Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Chen, Li; Hou, Jinliang; Smith, Martin C. [Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030 (China); Guhathakurta, Puragra [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hou, Yonghui [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Zheng, Zheng, E-mail: jeffreylcarlin@gmail.com [Department of Physics and Astronomy, University of Utah, UT 84112 (United States)
2015-07-15
We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star’s absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ∼5° diameter “plate” that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ∼20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ∼40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.
Characteristics for wind energy and wind turbines by considering vertical wind shear
Institute of Scientific and Technical Information of China (English)
郑玉巧; 赵荣珍
2015-01-01
The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.
Bayesian Parameter Estimation via Filtering and Functional Approximations
Matthies, Hermann G.
2016-11-25
The inverse problem of determining parameters in a model by comparing some output of the model with observations is addressed. This is a description for what hat to be done to use the Gauss-Markov-Kalman filter for the Bayesian estimation and updating of parameters in a computational model. This is a filter acting on random variables, and while its Monte Carlo variant --- the Ensemble Kalman Filter (EnKF) --- is fairly straightforward, we subsequently only sketch its implementation with the help of functional representations.
Bayesian Parameter Estimation via Filtering and Functional Approximations
Matthies, Hermann G.; Litvinenko, Alexander; Rosic, Bojana V.; Zander, Elmar
2016-01-01
The inverse problem of determining parameters in a model by comparing some output of the model with observations is addressed. This is a description for what hat to be done to use the Gauss-Markov-Kalman filter for the Bayesian estimation and updating of parameters in a computational model. This is a filter acting on random variables, and while its Monte Carlo variant --- the Ensemble Kalman Filter (EnKF) --- is fairly straightforward, we subsequently only sketch its implementation with the help of functional representations.
Parameter and state estimation in nonlinear dynamical systems
Creveling, Daniel R.
This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling
Estimation of Medium Voltage Cable Parameters for PD Detection
DEFF Research Database (Denmark)
Villefrance, Rasmus; Holbøll, Joachim T.; Henriksen, Mogens
1998-01-01
Medium voltage cable characteristics have been determined with respect to the parameters having influence on the evaluation of results from PD-measurements on paper/oil and XLPE-cables. In particular, parameters essential for discharge quantification and location were measured. In order to relate...... and phase constants. A method to estimate this propagation constant, based on high frequency measurements, will be presented and will be applied to different cable types under different conditions. The influence of temperature and test voltage was investigated. The relevance of the results for cable...
Estimating parameters for probabilistic linkage of privacy-preserved datasets.
Brown, Adrian P; Randall, Sean M; Ferrante, Anna M; Semmens, James B; Boyd, James H
2017-07-10
Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. The linkage strategy and associated match probabilities are often estimated through investigations into data quality and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic privacy-preserved record linkage using Bloom filters. Our method was tested through a simulation study using synthetic data, followed by an application using real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and threshold estimation technique on real-world data. Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using estimated probabilities produced an F-measure that was higher
Czech Academy of Sciences Publication Activity Database
Kraus, Michaela; Borges Fernandes, M.; Kubát, Jiří
2009-01-01
Roč. 499, č. 1 (2009), s. 291-299 ISSN 0004-6361 R&D Projects: GA AV ČR KJB300030701; GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * fundamental parameters * winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009
Estimation of economic parameters of U.S. hydropower resources
Energy Technology Data Exchange (ETDEWEB)
Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Reeves, Kelly S. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Carroll, Greg R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)
2003-06-01
Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”
Probabilistic estimation of the constitutive parameters of polymers
Directory of Open Access Journals (Sweden)
Siviour C.R.
2012-08-01
Full Text Available The Mulliken-Boyce constitutive model predicts the dynamic response of crystalline polymers as a function of strain rate and temperature. This paper describes the Mulliken-Boyce model-based estimation of the constitutive parameters in a Bayesian probabilistic framework. Experimental data from dynamic mechanical analysis and dynamic compression of PVC samples over a wide range of strain rates are analyzed. Both experimental uncertainty and natural variations in the material properties are simultaneously considered as independent and joint distributions; the posterior probability distributions are shown and compared with prior estimates of the material constitutive parameters. Additionally, particular statistical distributions are shown to be effective at capturing the rate and temperature dependence of internal phase transitions in DMA data.
Propagation channel characterization, parameter estimation, and modeling for wireless communications
Yin, Xuefeng
2016-01-01
Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...
PARAMETER ESTIMATION OF THE HYBRID CENSORED LOMAX DISTRIBUTION
Directory of Open Access Journals (Sweden)
Samir Kamel Ashour
2010-12-01
Full Text Available Survival analysis is used in various fields for analyzing data involving the duration between two events. It is also known as event history analysis, lifetime data analysis, reliability analysis or time to event analysis. One of the difficulties which arise in this area is the presence of censored data. The lifetime of an individual is censored when it cannot be exactly measured but partial information is available. Different circumstances can produce different types of censoring. The two most common censoring schemes used in life testing experiments are Type-I and Type-II censoring schemes. Hybrid censoring scheme is mixture of Type-I and Type-II censoring scheme. In this paper we consider the estimation of parameters of Lomax distribution based on hybrid censored data. The parameters are estimated by the maximum likelihood and Bayesian methods. The Fisher information matrix has been obtained and it can be used for constructing asymptotic confidence intervals.
A Bayesian framework for parameter estimation in dynamical models.
Directory of Open Access Journals (Sweden)
Flávio Codeço Coelho
Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.
CosmoSIS: A System for MC Parameter Estimation
Energy Technology Data Exchange (ETDEWEB)
Zuntz, Joe [Manchester U.; Paterno, Marc [Fermilab; Jennings, Elise [Chicago U., EFI; Rudd, Douglas [U. Chicago; Manzotti, Alessandro [Chicago U., Astron. Astrophys. Ctr.; Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Bridle, Sarah [Manchester U.; Sehrish, Saba [Fermilab; Kowalkowski, James [Fermilab
2015-01-01
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in Cosmo- SIS, including camb, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis.
Estimating parameters of chaotic systems synchronized by external driving signal
International Nuclear Information System (INIS)
Wu Xiaogang; Wang Zuxi
2007-01-01
Noise-induced synchronization (NIS) has evoked great research interests recently. Two uncoupled identical chaotic systems can achieve complete synchronization (CS) by feeding a common noise with appropriate intensity. Actually, NIS belongs to the category of external feedback control (EFC). The significance of applying EFC in secure communication lies in fact that the trajectory of chaotic systems is disturbed so strongly by external driving signal that phase space reconstruction attack fails. In this paper, however, we propose an approach that can accurately estimate the parameters of the chaotic systems synchronized by external driving signal through chaotic transmitted signal, driving signal and their derivatives. Numerical simulation indicates that this approach can estimate system parameters and external coupling strength under two driving modes in a very rapid manner, which implies that EFC is not superior to other methods in secure communication
On Using Exponential Parameter Estimators with an Adaptive Controller
Patre, Parag; Joshi, Suresh M.
2011-01-01
Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.
Basic Earth's Parameters as estimated from VLBI observations
Directory of Open Access Journals (Sweden)
Ping Zhu
2017-11-01
Full Text Available The global Very Long Baseline Interferometry observation for measuring the Earth rotation's parameters was launched around 1970s. Since then the precision of the measurements is continuously improving by taking into account various instrumental and environmental effects. The MHB2000 nutation model was introduced in 2002, which is constructed based on a revised nutation series derived from 20 years VLBI observations (1980–1999. In this work, we firstly estimated the amplitudes of all nutation terms from the IERS-EOP-C04 VLBI global solutions w.r.t. IAU1980, then we further inferred the BEPs (Basic Earth's Parameters by fitting the major nutation terms. Meanwhile, the BEPs were obtained from the same nutation time series using a BI (Bayesian Inversion. The corrections to the precession rate and the estimated BEPs are in an agreement, independent of which methods have been applied.
Spatial Distribution of Estimated Wind-Power Royalties in West Texas
Directory of Open Access Journals (Sweden)
Christian Brannstrom
2015-12-01
Full Text Available Wind-power development in the U.S. occurs primarily on private land, producing royalties for landowners through private contracts with wind-farm operators. Texas, the U.S. leader in wind-power production with well-documented support for wind power, has virtually all of its ~12 GW of wind capacity sited on private lands. Determining the spatial distribution of royalty payments from wind energy is a crucial first step to understanding how renewable power may alter land-based livelihoods of some landowners, and, as a result, possibly encourage land-use changes. We located ~1700 wind turbines (~2.7 GW on 241 landholdings in Nolan and Taylor counties, Texas, a major wind-development region. We estimated total royalties to be ~$11.5 million per year, with mean annual royalty received per landowner per year of $47,879 but with significant differences among quintiles and between two sub-regions. Unequal distribution of royalties results from land-tenure patterns established before wind-power development because of a “property advantage,” defined as the pre-existing land-tenure patterns that benefit the fraction of rural landowners who receive wind turbines. A “royalty paradox” describes the observation that royalties flow to a small fraction of landowners even though support for wind power exceeds 70 percent.
Energy Technology Data Exchange (ETDEWEB)
Nigim, K.A. [University of Waterloo, Waterloo, Ont. (Canada). Department of Electrical and Computer Engineering; Parker, Paul [University of Waterloo, Waterloo, Ont. (Canada). Department of Geography, Environmental Studies
2007-04-15
The paper describes two investigative procedures to estimate wind power from measured wind velocities. Wind velocity data are manipulated to visualize the site potential by investigating the probable wind power availability and its capacity to meet a targeted demand. The first procedure is an availability procedure that looks at the wind characteristics and its probable energy capturing profile. This profile of wind enables the probable maximum operating wind velocity profile for a selected wind turbine design to be predicted. The structured procedures allow for a consequent adjustment, sorting and grouping of the measured wind velocity data taken at different time intervals and hub heights. The second procedure is the adequacy procedure that investigates the probable degree of availability and the application consequences. Both procedures are programmed using MathCAD symbolic mathematical software. The math tool is used to generate a visual interpolation of the data as well as numerical results from extensive data sets that exceed the capacity of conventional spreadsheet tools. Two sites located in Southern Ontario, Canada are investigated using the procedures. Successful implementation of the procedures supports informed decision making where a hill site is shown to have much higher wind potential than that measured at the local airport. The process is suitable for a wide spectrum of users who are considering the energy potential for either a grid-tied or off-grid wind energy system. (author)
Estimation of parameters of interior permanent magnet synchronous motors
International Nuclear Information System (INIS)
Hwang, C.C.; Chang, S.M.; Pan, C.T.; Chang, T.Y.
2002-01-01
This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement
Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model
DEFF Research Database (Denmark)
Åberg, Andreas; Widd, Anders; Abildskov, Jens
2016-01-01
be used directly for accurate full-scale transient simulations. The model was validated against full-scale data with an engine following the European Transient Cycle. The validation showed that the predictive capability for nitrogen oxides (NOx) was satisfactory. After re-estimation of the adsorption...... and desorption parameters with full-scale transient data, the fit for both NOx and NH3-slip was satisfactory....
Fundamental limits of radio interferometers: calibration and source parameter estimation
Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J.
2012-01-01
We use information theory to derive fundamental limits on the capacity to calibrate next-generation radio interferometers, and measure parameters of point sources for instrument calibration, point source subtraction, and data deconvolution. We demonstrate the implications of these fundamental limits, with particular reference to estimation of the 21cm Epoch of Reionization power spectrum with next-generation low-frequency instruments (e.g., the Murchison Widefield Array -- MWA, Precision Arra...
Robust estimation of track parameters in wire chambers
International Nuclear Information System (INIS)
Bogdanova, N.B.; Bourilkov, D.T.
1988-01-01
The aim of this paper is to compare numerically the possibilities of the least square fit (LSF) and robust methods for modelled and real track data to determine the linear regression parameters of charged particles in wire chambers. It is shown, that Tukey robust estimate is superior to more standard (versions of LSF) methods. The efficiency of the method is illustrated by tables and figures for some important physical characteristics
Factorized Estimation of Partially Shared Parameters in Diffusion Networks
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2017-01-01
Roč. 65, č. 19 (2017), s. 5153-5163 ISSN 1053-587X R&D Projects: GA ČR(CZ) GP14-06678P; GA ČR GA16-09848S Institutional support: RVO:67985556 Keywords : Diffusion network * Diffusion estimation * Heterogeneous parameters * Multitask networks Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 4.300, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/dedecius-0477044.pdf
Statistical methods of parameter estimation for deterministically chaotic time series
Pisarenko, V. F.; Sornette, D.
2004-03-01
We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A “segmentation fitting” maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x1 considered as an additional unknown parameter. The segmentation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the “multiple shooting” previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).
Estimation of parameters of interior permanent magnet synchronous motors
Hwang, C C; Pan, C T; Chang, T Y
2002-01-01
This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement.
CTER-rapid estimation of CTF parameters with error assessment.
Penczek, Pawel A; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M T
2014-05-01
In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters. Copyright © 2014 Elsevier B.V. All rights reserved.
Estimation of solid earth tidal parameters and FCN with VLBI
International Nuclear Information System (INIS)
Krásná, H.
2012-01-01
Measurements of a space-geodetic technique VLBI (Very Long Baseline Interferometry) are influenced by a variety of processes which have to be modelled and put as a priori information into the analysis of the space-geodetic data. The increasing accuracy of the VLBI measurements allows access to these parameters and provides possibilities to validate them directly from the measured data. The gravitational attraction of the Moon and the Sun causes deformation of the Earth's surface which can reach several decimetres in radial direction during a day. The displacement is a function of the so-called Love and Shida numbers. Due to the present accuracy of the VLBI measurements the parameters have to be specified as complex numbers, where the imaginary parts describe the anelasticity of the Earth's mantle. Moreover, it is necessary to distinguish between the single tides within the various frequency bands. In this thesis, complex Love and Shida numbers of twelve diurnal and five long-period tides included in the solid Earth tidal displacement modelling are estimated directly from the 27 years of VLBI measurements (1984.0 - 2011.0). In this work, the period of the Free Core Nutation (FCN) is estimated which shows up in the frequency dependent solid Earth tidal displacement as well as in a nutation model describing the motion of the Earth's axis in space. The FCN period in both models is treated as a single parameter and it is estimated in a rigorous global adjustment of the VLBI data. The obtained value of -431.18 ± 0.10 sidereal days differs slightly from the conventional value -431.39 sidereal days given in IERS Conventions 2010. An empirical FCN model based on variable amplitude and phase is determined, whose parameters are estimated in yearly steps directly within VLBI global solutions. (author) [de
Directory of Open Access Journals (Sweden)
Akatsuki eKimura
2015-03-01
Full Text Available Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE in a prediction or to maximize likelihood. A (local maximum of likelihood or (local minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.
Model parameters estimation and sensitivity by genetic algorithms
International Nuclear Information System (INIS)
Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca
2003-01-01
In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The
Applicability of genetic algorithms to parameter estimation of economic models
Directory of Open Access Journals (Sweden)
Marcel Ševela
2004-01-01
Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.
Comparison of sampling techniques for Bayesian parameter estimation
Allison, Rupert; Dunkley, Joanna
2014-02-01
The posterior probability distribution for a set of model parameters encodes all that the data have to tell us in the context of a given model; it is the fundamental quantity for Bayesian parameter estimation. In order to infer the posterior probability distribution we have to decide how to explore parameter space. Here we compare three prescriptions for how parameter space is navigated, discussing their relative merits. We consider Metropolis-Hasting sampling, nested sampling and affine-invariant ensemble Markov chain Monte Carlo (MCMC) sampling. We focus on their performance on toy-model Gaussian likelihoods and on a real-world cosmological data set. We outline the sampling algorithms themselves and elaborate on performance diagnostics such as convergence time, scope for parallelization, dimensional scaling, requisite tunings and suitability for non-Gaussian distributions. We find that nested sampling delivers high-fidelity estimates for posterior statistics at low computational cost, and should be adopted in favour of Metropolis-Hastings in many cases. Affine-invariant MCMC is competitive when computing clusters can be utilized for massive parallelization. Affine-invariant MCMC and existing extensions to nested sampling naturally probe multimodal and curving distributions.
Automatic estimation of elasticity parameters in breast tissue
Skerl, Katrin; Cochran, Sandy; Evans, Andrew
2014-03-01
Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.
A large-eddy simulation based power estimation capability for wind farms over complex terrain
Senocak, I.; Sandusky, M.; Deleon, R.
2017-12-01
There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.
Statistical Evaluation of the Identified Structural Parameters of an idling Offshore Wind Turbine
International Nuclear Information System (INIS)
Kramers, Hendrik C.; Van der Valk, Paul L.C.; Van Wingerden, Jan-Willem
2016-01-01
With the increased need for renewable energy, new offshore wind farms are being developed at an unprecedented scale. However, as the costs of offshore wind energy are still too high, design optimization and new innovations are required for lowering its cost. The design of modern day offshore wind turbines relies on numerical models for estimating ultimate and fatigue loads of the turbines. The dynamic behavior and the resulting structural loading of the turbines is determined for a large part by its structural properties, such as the natural frequencies and damping ratios. Hence, it is important to obtain accurate estimates of these modal properties. For this purpose stochastic subspace identification (SSI), in combination with clustering and statistical evaluation methods, is used to obtain the variance of the identified modal properties of an installed 3.6MW offshore wind turbine in idling conditions. It is found that one is able to obtain confidence intervals for the means of eigenfrequencies and damping ratios of the fore-aft and side-side modes of the wind turbine. (paper)
Rapid estimation of high-parameter auditory-filter shapes
Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.
2014-01-01
A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086
Basic MR sequence parameters systematically bias automated brain volume estimation
International Nuclear Information System (INIS)
Haller, Sven; Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte; Meuli, Reto; Thiran, Jean-Philippe; Krueger, Gunnar; Lovblad, Karl-Olof; Kober, Tobias
2016-01-01
Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)
Impact of relativistic effects on cosmological parameter estimation
Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.
2018-01-01
Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.
Basic MR sequence parameters systematically bias automated brain volume estimation
Energy Technology Data Exchange (ETDEWEB)
Haller, Sven [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Affidea Centre de Diagnostique Radiologique de Carouge CDRC, Geneva (Switzerland); Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Meuli, Reto [University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Thiran, Jean-Philippe [LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Krueger, Gunnar [Siemens Medical Solutions USA, Inc., Boston, MA (United States); Lovblad, Karl-Olof [University of Geneva, Faculty of Medicine, Geneva (Switzerland); University Hospitals of Geneva, Geneva (Switzerland); Kober, Tobias [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)
2016-11-15
Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)
Chloramine demand estimation using surrogate chemical and microbiological parameters.
Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose
2017-07-01
A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (F m ) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection. Copyright © 2017. Published by Elsevier B.V.
Estimation of Snow Parameters from Dual-Wavelength Airborne Radar
Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew
1997-01-01
Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.
A parameter tree approach to estimating system sensitivities to parameter sets
International Nuclear Information System (INIS)
Jarzemba, M.S.; Sagar, B.
2000-01-01
A post-processing technique for determining relative system sensitivity to groups of parameters and system components is presented. It is assumed that an appropriate parametric model is used to simulate system behavior using Monte Carlo techniques and that a set of realizations of system output(s) is available. The objective of our technique is to analyze the input vectors and the corresponding output vectors (that is, post-process the results) to estimate the relative sensitivity of the output to input parameters (taken singly and as a group) and thereby rank them. This technique is different from the design of experimental techniques in that a partitioning of the parameter space is not required before the simulation. A tree structure (which looks similar to an event tree) is developed to better explain the technique. Each limb of the tree represents a particular combination of parameters or a combination of system components. For convenience and to distinguish it from the event tree, we call it the parameter tree. To construct the parameter tree, the samples of input parameter values are treated as either a '+' or a '-' based on whether or not the sampled parameter value is greater than or less than a specified branching criterion (e.g., mean, median, percentile of the population). The corresponding system outputs are also segregated into similar bins. Partitioning the first parameter into a '+' or a '-' bin creates the first level of the tree containing two branches. At the next level, realizations associated with each first-level branch are further partitioned into two bins using the branching criteria on the second parameter and so on until the tree is fully populated. Relative sensitivities are then inferred from the number of samples associated with each branch of the tree. The parameter tree approach is illustrated by applying it to a number of preliminary simulations of the proposed high-level radioactive waste repository at Yucca Mountain, NV. Using a
Dependence of Weibull distribution parameters on the CNR threshold i wind lidar data
DEFF Research Database (Denmark)
Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph
2015-01-01
in the boundary layer. Observations from tall towers in combination with observations from a lidar of wind speed up to 600 m are used to study the long-term variability of the wind profile over sub-urban, rural, coastal and marine areas. The variability is expressed in terms of the shape parameter in the Weibull...... over land, both terms are about equally important in the coastal area where the height of the reversal height is low and in the marine conditions, the second term dominates....
Aryan, H.; Yearby, K.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.
2013-12-01
The interaction of gyroresonant wave particles with chorus waves largely determine the dynamics of the Earth's radiation belts that effects the acceleration and loss of radiation belt electrons. The common approach is to present model waves distribution in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However it is known that solar wind parameters such as bulk velocity (V) and density (n) are more effective in the control of high energy fluxes at the geostationary orbit. Therefore in the present study the set of parameters of the wave distribution is expanded to include the solar wind parameters in addition to the geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of Cluster STAFF-SA, Double Star TC1 and OMNI data in order to present a combined model of wave magnetic field intensities for the chorus waves as a function of magnetic local time (MLT), L-shell (L*), geomagnetic activity, and solar wind velocity and density. Generally, the largest wave intensities are observed during average solar wind velocities (3006cm-3. On the other hand the wave intensity is lower and limited between 06:00 to 18:00 MLT for V700kms-1.
Bentley, S.; Watt, C.; Owens, M. J.
2017-12-01
Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.
Directory of Open Access Journals (Sweden)
Mehmet KURBAN
2007-01-01
Full Text Available In this paper, the wind energy potential of the region is analyzed with Weibull and Reyleigh statistical distribution functions by using the wind speed data measured per 15 seconds in July, August, September, and October of 2005 at 10 m height of 30-m observation pole in the wind observation station constructed in the coverage of the scientific research project titled "The Construction of Hybrid (Wind-Solar Power Plant Model by Determining the Wind and Solar Potential in the Iki Eylul Campus of A.U." supported by Anadolu University. The Maximum likelihood method is used for finding the parameters of these distributions. The conclusion of the analysis for the months taken represents that the Weibull distribution models the wind speeds better than the Rayleigh distribution. Furthermore, the error rate in the monthly values of power density computed by using the Weibull distribution is smaller than the values by Rayleigh distribution.
Analysis of the wind data and estimation of the resultant air concentration rates
International Nuclear Information System (INIS)
Hu, Shze Jer; Katagiri, Hiroshi; Kobayashi, Hideo
1988-09-01
Statistical analyses and comparisons of the meteorological wind data obtained by the propeller and supersonic anemometers for the year of 1987 in the Japan Atomic Energy Research Institute, Tokai, were performed. For wind speeds less than 1 m/s, the propeller readings are generally 0.5 m/s less than those of the supersonic readings. The resultant average air concentration and ground level γ exposure rates due to the radioactive releases for the normal operation of a nuclear plant are over-estimated when calculated using the propeller wind data. As supersonic anemometer can give accurate wind speed to as low as 0.01 m/s, it should be used to measure the low wind speed. The difference in the average air concentrations and γ exposure rates calculated using the two different sets of wind data, is due to the influence of low wind speeds at calm. If the number at calm is large, actual low wind speeds and wind directions should be used in the statistical analysis of atmospheric dispersion to give a more accurate and realistic estimation of the air concentrations and γ exposure rates due to the normal operation of a nuclear plant. (author). 4 refs, 3 figs, 9 tabs
Estimation of power system variability due to wind power
Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.
2007-01-01
The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the
Real-time Wind Profile Estimation using Airborne Sensors
In 't Veld, A.C.; De Jong, P.M.A.; Van Paassen, M.M.; Mulder, M.
2011-01-01
Wind is one of the major contributors to uncertainty in continuous descent approach operations. Especially when aircraft that are flying low or idle thrust approaches are issued a required time of arrival over the runway threshold, as is foreseen in some of the future ATC scenarios, the on-board
Estimating Health Condition of the Wind Turbine Drivetrain System
Directory of Open Access Journals (Sweden)
Peng Qian
2017-10-01
Full Text Available Condition Monitoring (CM has been considered as an effective method to enhance the reliability of wind turbines and implement cost-effective maintenance. Thus, adopting an efficient approach for condition monitoring of wind turbines is desirable. This paper presents a data-driven model-based CM approach for wind turbines based on the online sequential extreme learning machine (OS-ELM algorithm. A physical kinetic energy correction model is employed to normalize the temperature change to the value at the rated power output to eliminate the effect of variable speed operation of the turbines. The residual signal, obtained by comparing the predicted values and practical measurements, is processed by the physical correction model and then assessed with a Bonferroni interval method for fault diagnosis. Models have been validated using supervisory control and data acquisition (SCADA data acquired from an operational wind farm, which contains various types of temperature data of the gearbox. The results show that the proposed method can detect more efficiently both the long-term aging characteristics and the short-term faults of the gearbox.
Energy Technology Data Exchange (ETDEWEB)
Matsuzawa, K.; Kimura, Y.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan); Nagai, H. [Nihon Univ., Chiba (Japan). Coll. of Industrial Technology
1998-09-01
In order to clarify problems involved in application of Weibull probability distribution used for estimation of power production by a large wind turbine to a small wind turbine, and solutions thereof, the estimated results are compared with the observed ones. The conventional estimation method, when applied to a small wind turbine, tends to overestimate production of power, because of overestimated production in a high wind velocity range which occurs less frequently. Estimation of power produced by a wind turbine is based on working wind velocity range, determined from the furling mechanism for the power generation characteristics of the wind turbine concerned. In the case of a small wind turbine, on the other hand, better estimates are obtained from the working wind velocity range in which Weibull wind velocity distribution is used to determine probability of occurrence. For wind turbines working at low to medium wind velocities, such as Savonius wind turbine, the estimates are in fairly good agreement with the observed results, by which is meant that the conventional estimation method aided by Weibull distribution can be directly applicable to small wind turbines. 4 refs., 3 figs., 3 tabs.
Estimating unknown parameters in haemophilia using expert judgement elicitation.
Fischer, K; Lewandowski, D; Janssen, M P
2013-09-01
The increasing attention to healthcare costs and treatment efficiency has led to an increasing demand for quantitative data concerning patient and treatment characteristics in haemophilia. However, most of these data are difficult to obtain. The aim of this study was to use expert judgement elicitation (EJE) to estimate currently unavailable key parameters for treatment models in severe haemophilia A. Using a formal expert elicitation procedure, 19 international experts provided information on (i) natural bleeding frequency according to age and onset of bleeding, (ii) treatment of bleeds, (iii) time needed to control bleeding after starting secondary prophylaxis, (iv) dose requirements for secondary prophylaxis according to onset of bleeding, and (v) life-expectancy. For each parameter experts provided their quantitative estimates (median, P10, P90), which were combined using a graphical method. In addition, information was obtained concerning key decision parameters of haemophilia treatment. There was most agreement between experts regarding bleeding frequencies for patients treated on demand with an average onset of joint bleeding (1.7 years): median 12 joint bleeds per year (95% confidence interval 0.9-36) for patients ≤ 18, and 11 (0.8-61) for adult patients. Less agreement was observed concerning estimated effective dose for secondary prophylaxis in adults: median 2000 IU every other day The majority (63%) of experts expected that a single minor joint bleed could cause irreversible damage, and would accept up to three minor joint bleeds or one trauma related joint bleed annually on prophylaxis. Expert judgement elicitation allowed structured capturing of quantitative expert estimates. It generated novel data to be used in computer modelling, clinical care, and trial design. © 2013 John Wiley & Sons Ltd.
Ga-Hee Moon
2011-01-01
It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...
DEFF Research Database (Denmark)
Ma, Ke; Liserre, Marco; Blaabjerg, Frede
2015-01-01
for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....
NEWBOX: A computer program for parameter estimation in diffusion problems
International Nuclear Information System (INIS)
Nestor, C.W. Jr.; Godbee, H.W.; Joy, D.S.
1989-01-01
In the analysis of experiments to determine amounts of material transferred form 1 medium to another (e.g., the escape of chemically hazardous and radioactive materials from solids), there are at least 3 important considerations. These are (1) is the transport amenable to treatment by established mass transport theory; (2) do methods exist to find estimates of the parameters which will give a best fit, in some sense, to the experimental data; and (3) what computational procedures are available for evaluating the theoretical expressions. The authors have made the assumption that established mass transport theory is an adequate model for the situations under study. Since the solutions of the diffusion equation are usually nonlinear in some parameters (diffusion coefficient, reaction rate constants, etc.), use of a method of parameter adjustment involving first partial derivatives can be complicated and prone to errors in the computation of the derivatives. In addition, the parameters must satisfy certain constraints; for example, the diffusion coefficient must remain positive. For these reasons, a variant of the constrained simplex method of M. J. Box has been used to estimate parameters. It is similar, but not identical, to the downhill simplex method of Nelder and Mead. In general, they calculate the fraction of material transferred as a function of time from expressions obtained by the inversion of the Laplace transform of the fraction transferred, rather than by taking derivatives of a calculated concentration profile. With the above approaches to the 3 considerations listed at the outset, they developed a computer program NEWBOX, usable on a personal computer, to calculate the fractional release of material from 4 different geometrical shapes (semi-infinite medium, finite slab, finite circular cylinder, and sphere), accounting for several different boundary conditions
Experimental and analytical determination of stability parameters for a balloon tethered in a wind
Redd, L. T.; Bennett, R. M.; Bland, S. R.
1973-01-01
Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.
International Nuclear Information System (INIS)
Kaldellis, J.K.; Kapsali, M.; Tiligadas, D.
2012-01-01
Highlights: ► This study estimates the maximum wind energy contribution to an isolated micro-grid. ► An integrated computational tool is developed on the basis of stochastic analysis. ► The probability distribution of the wind energy surplus and deficit is estimated. ► The results indicate that a strict penetration limit is imposed to wind energy. -- Abstract: The electrification in remote islands whose electricity distribution network is not connected to the mainland’s grid is mostly based on Autonomous Power Stations (APSs) that are usually characterized by a considerably high electricity production cost, while at the same time the contribution of Renewable Energy Sources (RES) in these regions accounts for less than 10% of the total electricity generation. This actually results from the fact that despite the excellent wind potential of most of these islands, the wind energy contribution is significantly restricted from limits imposed to protect the remote electrical grids from possible instability problems, due to the stochastic wind speed behavior and the variable electricity consumption. On the basis of probability distribution of the load demand of a representative Greek island and the corresponding data related to the available wind potential, the present study estimates the maximum – acceptable by the local grid – wind energy contribution. For that reason, an integrated computational algorithm has been developed from first principles, based on a stochastic analysis. According to the results obtained, it becomes evident that with the current wind turbine technology, wind energy cannot play a key role in coping with the electrification problems encountered in many Greek island regions, excluding however the case of introducing bulk energy storage systems that may provide considerable recovery of the remarkable wind energy rejections expected.
Reliability/Cost Evaluation on Power System connected with Wind Power for the Reserve Estimation
DEFF Research Database (Denmark)
Lee, Go-Eun; Cha, Seung-Tae; Shin, Je-Seok
2012-01-01
Wind power is ideally a renewable energy with no fuel cost, but has a risk to reduce reliability of the whole system because of uncertainty of the output. If the reserve of the system is increased, the reliability of the system may be improved. However, the cost would be increased. Therefore...... the reserve needs to be estimated considering the trade-off between reliability and economic aspects. This paper suggests a methodology to estimate the appropriate reserve, when wind power is connected to the power system. As a case study, when wind power is connected to power system of Korea, the effects...
Statistical estimation of ultrasonic propagation path parameters for aberration correction.
Waag, Robert C; Astheimer, Jeffrey P
2005-05-01
Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.
PARAMETER ESTIMATION OF VALVE STICTION USING ANT COLONY OPTIMIZATION
Directory of Open Access Journals (Sweden)
S. Kalaivani
2012-07-01
Full Text Available In this paper, a procedure for quantifying valve stiction in control loops based on ant colony optimization has been proposed. Pneumatic control valves are widely used in the process industry. The control valve contains non-linearities such as stiction, backlash, and deadband that in turn cause oscillations in the process output. Stiction is one of the long-standing problems and it is the most severe problem in the control valves. Thus the measurement data from an oscillating control loop can be used as a possible diagnostic signal to provide an estimate of the stiction magnitude. Quantification of control valve stiction is still a challenging issue. Prior to doing stiction detection and quantification, it is necessary to choose a suitable model structure to describe control-valve stiction. To understand the stiction phenomenon, the Stenman model is used. Ant Colony Optimization (ACO, an intelligent swarm algorithm, proves effective in various fields. The ACO algorithm is inspired from the natural trail following behaviour of ants. The parameters of the Stenman model are estimated using ant colony optimization, from the input-output data by minimizing the error between the actual stiction model output and the simulated stiction model output. Using ant colony optimization, Stenman model with known nonlinear structure and unknown parameters can be estimated.
Sensitivity and parameter-estimation precision for alternate LISA configurations
International Nuclear Information System (INIS)
Vallisneri, Michele; Crowder, Jeff; Tinto, Massimo
2008-01-01
We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of √2 at low frequencies, and by up to ∼2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available
Temporal Parameters Estimation for Wheelchair Propulsion Using Wearable Sensors
Directory of Open Access Journals (Sweden)
Manoela Ojeda
2014-01-01
Full Text Available Due to lower limb paralysis, individuals with spinal cord injury (SCI rely on their upper limbs for mobility. The prevalence of upper extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel. Mean absolute errors (MAE and mean absolute percentage of error (MAPE were calculated. Intraclass correlation coefficients and Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for monitoring temporal parameters of wheelchair propulsion.
Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation
Saini, Aditya
The identification of inflow air data quantities such as airspeed, angle of attack, and local lift coefficient on various sections of a wing or rotor blade provides the capability for load monitoring, aerodynamic diagnostics, and control on devices ranging from air vehicles to wind turbines. Real-time measurement of aerodynamic parameters during flight provides the ability to enhance aircraft operating capabilities while preventing dangerous stall situations. This thesis presents a novel Leading-Edge Flow Sensing (LEFS) algorithm for the determination of the air -data parameters using discrete surface pressures measured at a few ports in the vicinity of the leading edge of a wing or blade section. The approach approximates the leading-edge region of the airfoil as a parabola and uses pressure distribution from the exact potential-ow solution for the parabola to _t the pressures measured from the ports. Pressures sensed at five discrete locations near the leading edge of an airfoil are given as input to the algorithm to solve the model using a simple nonlinear regression. The algorithm directly computes the inflow velocity, the stagnation-point location, section angle of attack and lift coefficient. The performance of the algorithm is assessed using computational and experimental data in the literature for airfoils under different ow conditions. The results show good correlation between the actual and predicted aerodynamic quantities within the pre-stall regime, even for a rotating blade section. Sensing the deviation of the aerodynamic behavior from the linear regime requires additional information on the location of ow separation on the airfoil surface. Bio-inspired artificial hair sensors were explored as a part of the current research for stall detection. The response of such artificial micro-structures can identify critical ow characteristics, which relate directly to the stall behavior. The response of the microfences was recorded via an optical microscope for
Campbell, D A; Chkrebtii, O
2013-12-01
Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
A method for model identification and parameter estimation
International Nuclear Information System (INIS)
Bambach, M; Heinkenschloss, M; Herty, M
2013-01-01
We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)
Voicescu, Sonia A; Michaud, David S; Feder, Katya; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Bower, Tara; van den Berg, Frits; Broner, Norm; Lavigne, Eric
2016-03-01
The Community Noise and Health Study conducted by Health Canada included randomly selected participants aged 18-79 yrs (606 males, 632 females, response rate 78.9%), living between 0.25 and 11.22 km from operational wind turbines. Annoyance to wind turbine noise (WTN) and other features, including shadow flicker (SF) was assessed. The current analysis reports on the degree to which estimating high annoyance to wind turbine shadow flicker (HAWTSF) was improved when variables known to be related to WTN exposure were also considered. As SF exposure increased [calculated as maximum minutes per day (SFm)], HAWTSF increased from 3.8% at 0 ≤ SFm wind turbine-related features, concern for physical safety, and noise sensitivity. Reported dizziness was also retained in the final model at p = 0.0581. Study findings add to the growing science base in this area and may be helpful in identifying factors associated with community reactions to SF exposure from wind turbines.
Transport parameter estimation from lymph measurements and the Patlak equation.
Watson, P D; Wolf, M B
1992-01-01
Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.
Averaging models: parameters estimation with the R-Average procedure
Directory of Open Access Journals (Sweden)
S. Noventa
2010-01-01
Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.
Synchronization and parameter estimations of an uncertain Rikitake system
International Nuclear Information System (INIS)
Aguilar-Ibanez, Carlos; Martinez-Guerra, Rafael; Aguilar-Lopez, Ricardo; Mata-Machuca, Juan L.
2010-01-01
In this Letter we address the synchronization and parameter estimation of the uncertain Rikitake system, under the assumption the state is partially known. To this end we use the master/slave scheme in conjunction with the adaptive control technique. Our control approach consists of proposing a slave system which has to follow asymptotically the uncertain Rikitake system, refereed as the master system. The gains of the slave system are adjusted continually according to a convenient adaptation control law, until the measurable output errors converge to zero. The convergence analysis is carried out by using the Barbalat's Lemma. Under this context, uncertainty means that although the system structure is known, only a partial knowledge of the corresponding parameter values is available.
Estimation of power in low velocity vertical axis wind turbine
Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.
2015-06-01
The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.
Multivariate phase type distributions - Applications and parameter estimation
DEFF Research Database (Denmark)
Meisch, David
The best known univariate probability distribution is the normal distribution. It is used throughout the literature in a broad field of applications. In cases where it is not sensible to use the normal distribution alternative distributions are at hand and well understood, many of these belonging...... and statistical inference, is the multivariate normal distribution. Unfortunately only little is known about the general class of multivariate phase type distribution. Considering the results concerning parameter estimation and inference theory of univariate phase type distributions, the class of multivariate...... projects and depend on reliable cost estimates. The Successive Principle is a group analysis method primarily used for analyzing medium to large projects in relation to cost or duration. We believe that the mathematical modeling used in the Successive Principle can be improved. We suggested a novel...
Energy parameter estimation in solar powered wireless sensor networks
Mousa, Mustafa
2014-02-24
The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.
Optimization-based particle filter for state and parameter estimation
Institute of Scientific and Technical Information of China (English)
Li Fu; Qi Fei; Shi Guangming; Zhang Li
2009-01-01
In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.
Energy parameter estimation in solar powered wireless sensor networks
Mousa, Mustafa; Claudel, Christian G.
2014-01-01
The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.
Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control
Eshak, Peter B.
Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to
Estimation of modal parameters using bilinear joint time frequency distributions
Roshan-Ghias, A.; Shamsollahi, M. B.; Mobed, M.; Behzad, M.
2007-07-01
In this paper, a new method is proposed for modal parameter estimation using time-frequency representations. Smoothed Pseudo Wigner-Ville distribution which is a member of the Cohen's class distributions is used to decouple vibration modes completely in order to study each mode separately. This distribution reduces cross-terms which are troublesome in Wigner-Ville distribution and retains the resolution as well. The method was applied to highly damped systems, and results were superior to those obtained via other conventional methods.
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
Estimating the parameters of a generalized lambda distribution
International Nuclear Information System (INIS)
Fournier, B.; Rupin, N.; Najjar, D.; Iost, A.; Rupin, N.; Bigerelle, M.; Wilcox, R.; Fournier, B.
2007-01-01
The method of moments is a popular technique for estimating the parameters of a generalized lambda distribution (GLD), but published results suggest that the percentile method gives superior results. However, the percentile method cannot be implemented in an automatic fashion, and automatic methods, like the starship method, can lead to prohibitive execution time with large sample sizes. A new estimation method is proposed that is automatic (it does not require the use of special tables or graphs), and it reduces the computational time. Based partly on the usual percentile method, this new method also requires choosing which quantile u to use when fitting a GLD to data. The choice for u is studied and it is found that the best choice depends on the final goal of the modeling process. The sampling distribution of the new estimator is studied and compared to the sampling distribution of estimators that have been proposed. Naturally, all estimators are biased and here it is found that the bias becomes negligible with sample sizes n ≥ 2 * 10(3). The.025 and.975 quantiles of the sampling distribution are investigated, and the difference between these quantiles is found to decrease proportionally to 1/root n.. The same results hold for the moment and percentile estimates. Finally, the influence of the sample size is studied when a normal distribution is modeled by a GLD. Both bounded and unbounded GLDs are used and the bounded GLD turns out to be the most accurate. Indeed it is shown that, up to n = 10(6), bounded GLD modeling cannot be rejected by usual goodness-of-fit tests. (authors)
Two methods for estimating limits to large-scale wind power generation.
Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel
2015-09-08
Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.
Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo
2017-10-01
An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.
Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region
International Nuclear Information System (INIS)
Ozay, Can; Celiktas, Melih Soner
2016-01-01
Highlights: • Wind speed & direction data from September 2008 to March 2014 has been analyzed. • Mean wind speed for the whole data set has been found to be 8.11 m/s. • Highest wind speed is observed in July with a monthly mean value of 9.10 m/s. • Wind speed with the most energy has been calculated as 12.77 m/s. • Observed data has been fit to a Weibull distribution and k &c parameters have been calculated as 2.05 and 9.16. - Abstract: Weibull Statistical Distribution is a common method for analyzing wind speed measurements and determining wind energy potential. Weibull probability density function can be used to forecast wind speed, wind density and wind energy potential. In this study a two-parameter Weibull statistical distribution is used to analyze the wind characteristics of Alaçatı region, located in Çeşme, İzmir. The data used in the density function are acquired from a wind measurement station in Alaçatı. Measurements were gathered on three different heights respectively 70, 50 and 30 m between 10 min intervals for five and half years. As a result of this study; wind speed frequency distribution, wind direction trends, mean wind speed, and the shape and the scale (k&c) Weibull parameters have been calculated for the region. Mean wind speed for the entirety of the data set is found to be 8.11 m/s. k&c parameters are found as 2.05 and 9.16 in relative order. Wind direction analysis along with a wind rose graph for the region is also provided with the study. Analysis suggests that higher wind speeds which range from 6–12 m/s are prevalent between the sectors 340–360°. Lower wind speeds, from 3 to 6 m/s occur between sectors 10–29°. Results of this study contribute to the general knowledge about the regions wind energy potential and can be used as a source for investors and academics.
Statistical characterization of roughness uncertainty and impact on wind resource estimation
Directory of Open Access Journals (Sweden)
M. Kelly
2017-04-01
Full Text Available In this work we relate uncertainty in background roughness length (z0 to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty arising from differing wind-observation and turbine-prediction sites; this is done for the case of roughness bias as well as for the general case. For estimation of uncertainty in annual energy production (AEP, we also develop a generalized analytical turbine power curve, from which we derive a relation between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.
Directory of Open Access Journals (Sweden)
L. Vollmer
2016-09-01
Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.
Analytic continuation by duality estimation of the S parameter
International Nuclear Information System (INIS)
Ignjatovic, S. R.; Wijewardhana, L. C. R.; Takeuchi, T.
2000-01-01
We investigate the reliability of the analytic continuation by duality (ACD) technique in estimating the electroweak S parameter for technicolor theories. The ACD technique, which is an application of finite energy sum rules, relates the S parameter for theories with unknown particle spectra to known OPE coefficients. We identify the sources of error inherent in the technique and evaluate them for several toy models to see if they can be controlled. The evaluation of errors is done analytically and all relevant formulas are provided in appendixes including analytical formulas for approximating the function 1/s with a polynomial in s. The use of analytical formulas protects us from introducing additional errors due to numerical integration. We find that it is very difficult to control the errors even when the momentum dependence of the OPE coefficients is known exactly. In realistic cases in which the momentum dependence of the OPE coefficients is only known perturbatively, it is impossible to obtain a reliable estimate. (c) 2000 The American Physical Society
A robust methodology for modal parameters estimation applied to SHM
Cardoso, Rharã; Cury, Alexandre; Barbosa, Flávio
2017-10-01
The subject of structural health monitoring is drawing more and more attention over the last years. Many vibration-based techniques aiming at detecting small structural changes or even damage have been developed or enhanced through successive researches. Lately, several studies have focused on the use of raw dynamic data to assess information about structural condition. Despite this trend and much skepticism, many methods still rely on the use of modal parameters as fundamental data for damage detection. Therefore, it is of utmost importance that modal identification procedures are performed with a sufficient level of precision and automation. To fulfill these requirements, this paper presents a novel automated time-domain methodology to identify modal parameters based on a two-step clustering analysis. The first step consists in clustering modes estimates from parametric models of different orders, usually presented in stabilization diagrams. In an automated manner, the first clustering analysis indicates which estimates correspond to physical modes. To circumvent the detection of spurious modes or the loss of physical ones, a second clustering step is then performed. The second step consists in the data mining of information gathered from the first step. To attest the robustness and efficiency of the proposed methodology, numerically generated signals as well as experimental data obtained from a simply supported beam tested in laboratory and from a railway bridge are utilized. The results appeared to be more robust and accurate comparing to those obtained from methods based on one-step clustering analysis.
Parameter estimation in space systems using recurrent neural networks
Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.
1991-01-01
The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.
Parameter estimation and hypothesis testing in linear models
Koch, Karl-Rudolf
1999-01-01
The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...
Periodic orbits of hybrid systems and parameter estimation via AD
International Nuclear Information System (INIS)
Guckenheimer, John; Phipps, Eric Todd; Casey, Richard
2004-01-01
Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method (GM00, Phi03). Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance
Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej
2017-09-01
The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.
Wind climate estimation using WRF model output: method and model sensitivities over the sea
DEFF Research Database (Denmark)
Hahmann, Andrea N.; Vincent, Claire Louise; Peña, Alfredo
2015-01-01
setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface...... temperature used as lower boundary conditions. Also, the strength and form (grid vs spectral) of the nudging is quite irrelevant for the mean wind speed at 100 m. Large sensitivity is found to the choice of boundary layer parametrization, and to the length of the period that is discarded as spin-up to produce...... a wind climatology. It is found that the spin-up period for the boundary layer winds is likely larger than 12 h over land and could affect the wind climatology for points offshore for quite a distance downstream from the coast....
Energy Technology Data Exchange (ETDEWEB)
Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Velazquez, Sergio [Department of Electronics and Automatics Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Matias, J.M. [Department of Statistics, University of Vigo, Lagoas Marcosende, 36200 Vigo (Spain)
2011-02-15
Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station. (author)
International Nuclear Information System (INIS)
Carta, Jose A.; Velazquez, Sergio; Matias, J.M.
2011-01-01
Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station.
DEFF Research Database (Denmark)
Sommer, Helle Mølgaard; Holst, Helle; Spliid, Henrik
1995-01-01
Three identical microbiological experiments were carried out and analysed in order to examine the variability of the parameter estimates. The microbiological system consisted of a substrate (toluene) and a biomass (pure culture) mixed together in an aquifer medium. The degradation of the substrate...
Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions
Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.
2017-01-01
Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.
Estimation of Parameters of CCF with Staggered Testing
International Nuclear Information System (INIS)
Kim, Myung-Ki; Hong, Sung-Yull
2006-01-01
Common cause failures are extremely important in reliability analysis and would be dominant to risk contributor in a high reliable system such as a nuclear power plant. Of particular concern is common cause failure (CCF) that degrades redundancy or diversity implemented to improve a reliability of systems. Most of analyses of parameters of CCF models such as beta factor model, alpha factor model, and MGL(Multiple Greek Letters) model deal a system with a nonstaggered testing strategy. Non-staggered testing is that all components are tested at the same time (or at least the same shift) and staggered testing is that if there is a failure in the first component, all the other components are tested immediately, and if it succeeds, no more is done until the next scheduled testing time. Both of them are applied in the nuclear power plants. The strategy, however, is not explicitly described in the technical specifications, but implicitly in the periodic test procedure. For example, some redundant components particularly important to safety are being tested with staggered testing strategy. Others are being performed with non-staggered testing strategy. This paper presents the parameter estimator of CCF model such as beta factor model, MGL model, and alpha factor model with staggered testing strategy. In addition, a new CCF model, rho factor model, is proposed and its parameter is presented with staggered testing strategy
Estimating negative binomial parameters from occurrence data with detection times.
Hwang, Wen-Han; Huggins, Richard; Stoklosa, Jakub
2016-11-01
The negative binomial distribution is a common model for the analysis of count data in biology and ecology. In many applications, we may not observe the complete frequency count in a quadrat but only that a species occurred in the quadrat. If only occurrence data are available then the two parameters of the negative binomial distribution, the aggregation index and the mean, are not identifiable. This can be overcome by data augmentation or through modeling the dependence between quadrat occupancies. Here, we propose to record the (first) detection time while collecting occurrence data in a quadrat. We show that under what we call proportionate sampling, where the time to survey a region is proportional to the area of the region, that both negative binomial parameters are estimable. When the mean parameter is larger than two, our proposed approach is more efficient than the data augmentation method developed by Solow and Smith (, Am. Nat. 176, 96-98), and in general is cheaper to conduct. We also investigate the effect of misidentification when collecting negative binomially distributed data, and conclude that, in general, the effect can be simply adjusted for provided that the mean and variance of misidentification probabilities are known. The results are demonstrated in a simulation study and illustrated in several real examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimation Parameters And Modelling Zero Inflated Negative Binomial
Directory of Open Access Journals (Sweden)
Cindy Cahyaning Astuti
2016-11-01
Full Text Available Regression analysis is used to determine relationship between one or several response variable (Y with one or several predictor variables (X. Regression model between predictor variables and the Poisson distributed response variable is called Poisson Regression Model. Since, Poisson Regression requires an equality between mean and variance, it is not appropriate to apply this model on overdispersion (variance is higher than mean. Poisson regression model is commonly used to analyze the count data. On the count data type, it is often to encounteredd some observations that have zero value with large proportion of zero value on the response variable (zero Inflation. Poisson regression can be used to analyze count data but it has not been able to solve problem of excess zero value on the response variable. An alternative model which is more suitable for overdispersion data and can solve the problem of excess zero value on the response variable is Zero Inflated Negative Binomial (ZINB. In this research, ZINB is applied on the case of Tetanus Neonatorum in East Java. The aim of this research is to examine the likelihood function and to form an algorithm to estimate the parameter of ZINB and also applying ZINB model in the case of Tetanus Neonatorum in East Java. Maximum Likelihood Estimation (MLE method is used to estimate the parameter on ZINB and the likelihood function is maximized using Expectation Maximization (EM algorithm. Test results of ZINB regression model showed that the predictor variable have a partial significant effect at negative binomial model is the percentage of pregnant women visits and the percentage of maternal health personnel assisted, while the predictor variables that have a partial significant effect at zero inflation model is the percentage of neonatus visits.
Automated modal parameter estimation using correlation analysis and bootstrap sampling
Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.
2018-02-01
The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to
Learn-as-you-go acceleration of cosmological parameter estimates
International Nuclear Information System (INIS)
Aslanyan, Grigor; Easther, Richard; Price, Layne C.
2015-01-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly
Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials
Barghouty, Abdulmasser F.; Adams, James H., Jr.
2008-01-01
At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.
Correlation of Magnetic Fields with Solar Wind Plasma Parameters at 1AU
Shen, F.
2017-12-01
The physical parameters of the solar wind observed in-situ near 1AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature T and velocity V, and the negative correlation between density N and velocity V, are well known. However, the magnetic field intensity does not appear to be well correlated with any individual plasma parameter. In this paper, we discuss previously under-reported correlations between B and the combined plasma parameters √NV2 as well as between B and √NT. These two correlations are strong during the periods of corotating interaction regions and high speed streams, moderate during intervals of slow solar wind, and rather poor during the passage of interplanetary coronal mass ejections. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure. Then, we employ a 3D MHD model to simulate the formation of the relationships between the magnetic strength B and √NV2 as well as √NT observed at 1AU. The inner boundary condition is derived by empirical models, with the magnetic field and density are optional. Five kinds of boundary conditions at the inner boundary of heliosphere are tested. In the cases that the magnetic field is related to speed at the inner boundary, the correlation coefficients between B and √NV2 as well as between B and √NT are even higher than that in the observational results. At 1AU the simulated radial magnetic field shows little latitude dependence, which matches the observation of Ulysses. Most of the modeled characters in these cases are closer to observation than others. This inner boundary condition may more accurately characterize Sun's magnetic influence on the heliosphere. The new input may be able to improve the simulation of CME propagation in the inner heliosphere and the space weather forecasting.
Estimate of Hurricane Wind Speed from AMSR-E Low-Frequency Channel Brightness Temperature Data
Directory of Open Access Journals (Sweden)
Lei Zhang
2018-01-01
Full Text Available Two new parameters (W6H and W6V were defined that represent brightness temperature increments for different low-frequency channels due to ocean wind. We developed a new wind speed retrieval model inside hurricanes based on W6H and W6V using brightness temperature data from AMSR-E. The AMSR-E observations of 12 category 3–5 hurricanes from 2003 to 2011 and corresponding data from the H*wind analysis system were used to develop and validate the AMSR-E wind speed retrieval model. The results show that the mean bias and the overall root-mean-square (RMS difference of the AMSR-E retrieved wind speeds with respect to H*wind (HRD Real-time Hurricane Wind Analysis System analysis data were −0.01 m/s and 2.66 m/s, respectively. One case study showed that W6H and W6V were less sensitive to rain than the observed AMSR-E C-band and X-band brightness temperature data. The AMSR-E retrieval model was further validated by comparing the retrieved wind speeds against stepped-frequency microwave radiometer (SFMR measurements. The comparison showed an RMS difference of 3.41 m/s and a mean bias of 0.49 m/s.
Crespo, J.; Posselt, D. J.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.
Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation
Jardak, Seifallah
2014-04-01
Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location
Estimation of the Alpha Factor Parameters Using the ICDE Database
Energy Technology Data Exchange (ETDEWEB)
Kang, Dae Il; Hwang, M. J.; Han, S. H
2007-04-15
Detailed common cause failure (CCF) analysis generally need for the data for CCF events of other nuclear power plants because the CCF events rarely occur. KAERI has been participated at the international common cause failure data exchange (ICDE) project to get the data for the CCF events. The operation office of the ICDE project sent the CCF event data for EDG to the KAERI at December 2006. As a pilot study, we performed the detailed CCF analysis of EDGs for Yonggwang Units 3 and 4 and Ulchin Units 3 and 4 using the ICDE database. There are two onsite EDGs for each NPP. When an offsite power and the two onsite EDGs are not available, one alternate AC (AAC) diesel generator (hereafter AAC) is provided. Two onsite EDGs and the AAC are manufactured by the same company, but they are designed differently. We estimated the Alpha Factor and the CCF probability for the cases where three EDGs were assumed to be identically designed, and for those were assumed to be not identically designed. For the cases where three EDGs were assumed to be identically designed, double CCF probabilities of Yonggwang Units 3/4 and Ulchin Units 3/4 for 'fails to start' were estimated as 2.20E-4 and 2.10E-4, respectively. Triple CCF probabilities of those were estimated as 2.39E-4 and 2.42E-4, respectively. As each NPP has no experience for 'fails to run', Yonggwang Units 3/4 and Ulchin Units 3/4 have the same CCF probability. The estimated double and triple CCF probabilities for 'fails to run' are 4.21E-4 and 4.61E-4, respectively. Quantification results show that the system unavailability for the cases where the three EDGs are identical is higher than that where the three EDGs are different. The estimated system unavailability of the former case was increased by 3.4% comparing with that of the latter. As a future study, a computerization work for the estimations of the CCF parameters will be performed.
Estimation of genetic parameters for reproductive traits in Shall sheep.
Amou Posht-e-Masari, Hesam; Shadparvar, Abdol Ahad; Ghavi Hossein-Zadeh, Navid; Hadi Tavatori, Mohammad Hossein
2013-06-01
The objective of this study was to estimate genetic parameters for reproductive traits in Shall sheep. Data included 1,316 records on reproductive performances of 395 Shall ewes from 41 sires and 136 dams which were collected from 2001 to 2007 in Shall breeding station in Qazvin province at the Northwest of Iran. Studied traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), litter mean weight per lamb weaned (LMWLW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW). Test of significance to include fixed effects in the statistical model was performed using the general linear model procedure of SAS. The effects of lambing year and ewe age at lambing were significant (Psheep.
Multiphase flow parameter estimation based on laser scattering
Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.
2015-07-01
The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.
Estimating Phenomenological Parameters in Multi-Assets Markets
Raffaelli, Giacomo; Marsili, Matteo
Financial correlations exhibit a non-trivial dynamic behavior. This is reproduced by a simple phenomenological model of a multi-asset financial market, which takes into account the impact of portfolio investment on price dynamics. This captures the fact that correlations determine the optimal portfolio but are affected by investment based on it. Such a feedback on correlations gives rise to an instability when the volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correlations very similar to those observed in real markets. We discuss how the model's parameter can be estimated in real market data with a maximum likelihood principle. This confirms the main conclusion that real markets operate close to a dynamically unstable point.
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
Cosmological Parameter Estimation with Large Scale Structure Observations
Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien
2014-01-01
We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.
Multiphase flow parameter estimation based on laser scattering
International Nuclear Information System (INIS)
Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M
2015-01-01
The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)
Review of methods for level density estimation from resonance parameters
International Nuclear Information System (INIS)
Froehner, F.H.
1983-01-01
A number of methods are available for statistical analysis of resonance parameter sets, i.e. for estimation of level densities and average widths with account of missing levels. The main categories are (i) methods based on theories of level spacings (orthogonal-ensemble theory, Dyson-Mehta statistics), (ii) methods based on comparison with simulated cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (iii) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The present review will concentrate on (iii) with the aim of clarifying the basic mathematical concepts and the relationship between the various techniques. Recent theoretical progress in the treatment of resolution effects, detectability thresholds and p-wave admixture is described. (Auth.)
MANOVA, LDA, and FA criteria in clusters parameter estimation
Directory of Open Access Journals (Sweden)
Stan Lipovetsky
2015-12-01
Full Text Available Multivariate analysis of variance (MANOVA and linear discriminant analysis (LDA apply such well-known criteria as the Wilks’ lambda, Lawley–Hotelling trace, and Pillai’s trace test for checking quality of the solutions. The current paper suggests using these criteria for building objectives for finding clusters parameters because optimizing such objectives corresponds to the best distinguishing between the clusters. Relation to Joreskog’s classification for factor analysis (FA techniques is also considered. The problem can be reduced to the multinomial parameterization, and solution can be found in a nonlinear optimization procedure which yields the estimates for the cluster centers and sizes. This approach for clustering works with data compressed into covariance matrix so can be especially useful for big data.
Simplified rotor load models and fatigue damage estimates for offshore wind turbines.
Muskulus, M
2015-02-28
The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Artificial neural network approach to spatial estimation of wind velocity data
International Nuclear Information System (INIS)
Oztopal, Ahmet
2006-01-01
In any regional wind energy assessment, equal wind velocity or energy lines provide a common basis for meaningful interpretations that furnish essential information for proper design purposes. In order to achieve regional variation descriptions, there are methods of optimum interpolation with classical weighting functions or variogram methods in Kriging methodology. Generally, the weighting functions are logically and geometrically deduced in a deterministic manner, and hence, they are imaginary first approximations for regional variability assessments, such as wind velocity. Geometrical weighting functions are necessary for regional estimation of the regional variable at a location with no measurement, which is referred to as the pivot station from the measurements of a set of surrounding stations. In this paper, weighting factors of surrounding stations necessary for the prediction of a pivot station are presented by an artificial neural network (ANN) technique. The wind speed prediction results are compared with measured values at a pivot station. Daily wind velocity measurements in the Marmara region from 1993 to 1997 are considered for application of the ANN methodology. The model is more appropriate for winter period daily wind velocities, which are significant for energy generation in the study area. Trigonometric point cumulative semivariogram (TPCSV) approach results are compared with the ANN estimations for the same set of data by considering the correlation coefficient (R). Under and over estimation problems in objective analysis can be avoided by the ANN approach
Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad
2018-03-01
In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Transient analysis of intercalation electrodes for parameter estimation
Devan, Sheba
An essential part of integrating batteries as power sources in any application, be it a large scale automotive application or a small scale portable application, is an efficient Battery Management System (BMS). The combination of a battery with the microprocessor based BMS (called "smart battery") helps prolong the life of the battery by operating in the optimal regime and provides accurate information regarding the battery to the end user. The main purposes of BMS are cell protection, monitoring and control, and communication between different components. These purposes are fulfilled by tracking the change in the parameters of the intercalation electrodes in the batteries. Consequently, the functions of the BMS should be prompt, which requires the methodology of extracting the parameters to be efficient in time. The traditional transient techniques applied so far may not be suitable due to reasons such as the inability to apply these techniques when the battery is under operation, long experimental time, etc. The primary aim of this research work is to design a fast, accurate and reliable technique that can be used to extract parameter values of the intercalation electrodes. A methodology based on analysis of the short time response to a sinusoidal input perturbation, in the time domain is demonstrated using a porous electrode model for an intercalation electrode. It is shown that the parameters associated with the interfacial processes occurring in the electrode can be determined rapidly, within a few milliseconds, by measuring the response in the transient region. The short time analysis in the time domain is then extended to a single particle model that involves bulk diffusion in the solid phase in addition to interfacial processes. A systematic procedure for sequential parameter estimation using sensitivity analysis is described. Further, the short time response and the input perturbation are transformed into the frequency domain using Fast Fourier Transform
Smoothing of, and parameter estimation from, noisy biophysical recordings.
Directory of Open Access Journals (Sweden)
Quentin J M Huys
2009-05-01
Full Text Available Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo ("particle filtering" methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise are inferred automatically from noisy data via expectation-maximization. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise.
Project Parameter Estimation on the Basis of an Erp Database
Directory of Open Access Journals (Sweden)
Relich Marcin
2013-12-01
Full Text Available Nowadays, more and more enterprises are using Enterprise Resource Planning (EPR systems that can also be used to plan and control the development of new products. In order to obtain a project schedule, certain parameters (e.g. duration have to be specified in an ERP system. These parameters can be defined by the employees according to their knowledge, or can be estimated on the basis of data from previously completed projects. This paper investigates using an ERP database to identify those variables that have a significant influence on the duration of a project phase. In the paper, a model of knowledge discovery from an ERP database is proposed. The presented method contains four stages of the knowledge discovery process such as data selection, data transformation, data mining and interpretation of patterns in the context of new product development. Among data mining techniques, a fuzzy neural system is chosen to seek relationships on the basis of data from completed projects stored in an ERP system.
Bayesian parameter estimation for stochastic models of biological cell migration
Dieterich, Peter; Preuss, Roland
2013-08-01
Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.
Estimation of fracture parameters using elastic full-waveform inversion
Zhang, Zhendong
2017-08-17
Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution and suffer from uncertainties in the inverted parameters. Here, we propose to estimate the spatial distribution and physical properties of fractures using full-waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. A shape regularization term is added to the objective function to improve the estimation of the fracture azimuth, which is otherwise poorly constrained. The cracks are assumed to be penny-shaped to reduce the nonuniqueness in the inverted fracture weaknesses and achieve a faster convergence. To better understand the inversion results, we analyze the radiation patterns induced by the perturbations in the fracture weaknesses and orientation. Due to the high-resolution potential of elastic FWI, the developed algorithm can recover the spatial fracture distribution and identify localized “sweet spots” of intense fracturing. However, the fracture azimuth can be resolved only using long-offset data.
Estimation of genetic parameters for reproductive traits in alpacas.
Cruz, A; Cervantes, I; Burgos, A; Morante, R; Gutiérrez, J P
2015-12-01
One of the main deficiencies affecting animal breeding programs in Peruvian alpacas is the low reproductive performance leading to low number of animals available to select from, decreasing strongly the selection intensity. Some reproductive traits could be improved by artificial selection, but very few information about genetic parameters exists for these traits in this specie. The aim of this study was to estimate genetic parameters for six reproductive traits in alpacas both in Suri (SU) and Huacaya (HU) ecotypes, as well as their genetic relationship with fiber and morphological traits. Dataset belonging to Pacomarca experimental farm collected between 2000 and 2014 was used. Number of records for age at first service (AFS), age at first calving (AFC), copulation time (CT), pregnancy diagnosis (PD), gestation length (GL), and calving interval (CI) were, respectively, 1704, 854, 19,770, 5874, 4290 and 934. Pedigree consisted of 7742 animals. Regarding reproductive traits, model of analysis included additive and residual random effects for all traits, and also permanent environmental effect for CT, PD, GL and CI traits, with color and year of recording as fixed effects for all the reproductive traits and also age at mating and sex of calf for GL trait. Estimated heritabilities, respectively for HU and SU were 0.19 and 0.09 for AFS, 0.45 and 0.59 for AFC, 0.04 and 0.05 for CT, 0.07 and 0.05 for PD, 0.12 and 0.20 for GL, and 0.14 and 0.09 for CI. Genetic correlations between them ranged from -0.96 to 0.70. No important genetic correlations were found between reproductive traits and fiber or morphological traits in HU. However, some moderate favorable genetic correlations were found between reproductive and either fiber and morphological traits in SU. According to estimated genetic correlations, some reproductive traits might be included as additional selection criteria in HU. Copyright © 2015 Elsevier B.V. All rights reserved.
Burkatovskaya, Yuliya Borisovna; Kabanova, T.; Khaustov, Pavel Aleksandrovich
2016-01-01
CUSUM algorithm for controlling chain state switching in the Markov modulated Poissonprocess was investigated via simulation. Recommendations concerning the parameter choice were givensubject to characteristics of the process. Procedure of the process parameter estimation was described.
Directory of Open Access Journals (Sweden)
J. Uwamahoro
2012-06-01
Full Text Available Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME and related interplanetary (IP events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW, the CME speed (Vcme, and the comprehensive flare index (cfi, which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw and the southward Z-component of the interplanetary magnetic field (IMF or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ −100 nT. For moderate storms (−100 < Dst ≤ −50, the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.
Ben Mosbah, Abdallah
In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their
DEFF Research Database (Denmark)
Gryning, Sven-Erik; Floors, Rogier Ralph; Peña, Alfredo
2016-01-01
Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is ex...... of the vertical profile of the shape parameter fits well with observations over land, coastal regions and over the sea. An applied model for the dependence of the reversal height on the surface roughness is in good agreement with the observations over land....
Genetic parameter estimation of reproductive traits of Litopenaeus vannamei
Tan, Jian; Kong, Jie; Cao, Baoxiang; Luo, Kun; Liu, Ning; Meng, Xianhong; Xu, Shengyu; Guo, Zhaojia; Chen, Guoliang; Luan, Sheng
2017-02-01
In this study, the heritability, repeatability, phenotypic correlation, and genetic correlation of the reproductive and growth traits of L. vannamei were investigated and estimated. Eight traits of 385 shrimps from forty-two families, including the number of eggs (EN), number of nauplii (NN), egg diameter (ED), spawning frequency (SF), spawning success (SS), female body weight (BW) and body length (BL) at insemination, and condition factor (K), were measured,. A total of 519 spawning records including multiple spawning and 91 no spawning records were collected. The genetic parameters were estimated using an animal model, a multinomial logit model (for SF), and a sire-dam and probit model (for SS). Because there were repeated records, permanent environmental effects were included in the models. The heritability estimates for BW, BL, EN, NN, ED, SF, SS, and K were 0.49 ± 0.14, 0.51 ± 0.14, 0.12 ± 0.08, 0, 0.01 ± 0.04, 0.06 ± 0.06, 0.18 ± 0.07, and 0.10 ± 0.06, respectively. The genetic correlation was 0.99 ± 0.01 between BW and BL, 0.90 ± 0.19 between BW and EN, 0.22 ± 0.97 between BW and ED, -0.77 ± 1.14 between EN and ED, and -0.27 ± 0.36 between BW and K. The heritability of EN estimated without a covariate was 0.12 ± 0.08, and the genetic correlation was 0.90 ± 0.19 between BW and EN, indicating that improving BW may be used in selection programs to genetically improve the reproductive output of L. vannamei during the breeding. For EN, the data were also analyzed using body weight as a covariate (EN-2). The heritability of EN-2 was 0.03 ± 0.05, indicating that it is difficult to improve the reproductive output by genetic improvement. Furthermore, excessive pursuit of this selection is often at the expense of growth speed. Therefore, the selection of high-performance spawners using BW and SS may be an important strategy to improve nauplii production.
Online Estimation of wind turbine blade deflection with UWB signals
DEFF Research Database (Denmark)
Jensen, Tobias Lindstrøm; Jakobsen, Morten Lomholt; Østergaard, Jan
2015-01-01
between the two distance estimates is detrimental for the tip localization accuracy. Measurement data acquired in an anechoic chamber is used to confirm that the UWB-hardware complies with the desired/relevant ranging accuracy. Finally, measurement data obtained from a static test bench is used...
Takagi, Hiroshi; Wu, Wenjie
2016-03-01
Even though the maximum wind radius (Rmax) is an important parameter in determining the intensity and size of tropical cyclones, it has been overlooked in previous storm surge studies. This study reviews the existing estimation methods for Rmax based on central pressure or maximum wind speed. These over- or underestimate Rmax because of substantial variations in the data, although an average radius can be estimated with moderate accuracy. As an alternative, we propose an Rmax estimation method based on the radius of the 50 kt wind (R50). Data obtained by a meteorological station network in the Japanese archipelago during the passage of strong typhoons, together with the JMA typhoon best track data for 1990-2013, enabled us to derive the following simple equation, Rmax = 0.23 R50. Application to a recent strong typhoon, the 2015 Typhoon Goni, confirms that the equation provides a good estimation of Rmax, particularly when the central pressure became considerably low. Although this new method substantially improves the estimation of Rmax compared to the existing models, estimation errors are unavoidable because of fundamental uncertainties regarding the typhoon's structure or insufficient number of available typhoon data. In fact, a numerical simulation for the 2013 Typhoon Haiyan as well as 2015 Typhoon Goni demonstrates a substantial difference in the storm surge height for different Rmax. Therefore, the variability of Rmax should be taken into account in storm surge simulations (e.g., Rmax = 0.15 R50-0.35 R50), independently of the model used, to minimize the risk of over- or underestimating storm surges. The proposed method is expected to increase the predictability of major storm surges and to contribute to disaster risk management, particularly in the western North Pacific, including countries such as Japan, China, Taiwan, the Philippines, and Vietnam.
A novel application of artificial neural network for wind speed estimation
Fang, Da; Wang, Jianzhou
2017-05-01
Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.
On the estimation of wind comfort in a building environment by micro-scale simulation
Directory of Open Access Journals (Sweden)
Günter Gross
2014-06-01
Full Text Available A three-dimensional micro-scale model is used to study some aspects of wind comfort in a built-up area. The equations for calculating the mean wind have been extended by a Markov approach for short-term wind fluctuations. The model components have been successfully verified against wind tunnel measurements and observations of a field experiment. The simulated time series are used to estimate wind comfort measures. It turns out that the frequency of exceedance of prescribed thresholds depends strongly on the specification of the gust duration time. It was also possible to calculate the spatial distribution of a gust factor g$g$ depending on local wind characteristics. The simulated range is much broader than a value of g=3–3.5$g=3\\text{--}3.5$ commonly used for wind comfort assessments. Again, the order of magnitude and the bandwidth of g$g$ depends strongly on the definition of a gust.
Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing
2018-04-01
Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.
2016-12-01
Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems, and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are non-specific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters, but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity respectively. Results show that the average scale size of chorus wave packets is approximately 1300 - 2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere, and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.
International Nuclear Information System (INIS)
Jeong, Jong Tae; Jung, Won Dea
2001-01-01
Variations in the number of early health effects resulting from the severe accidents of the YGN 3 and 4 nuclear power plants were examined for different combinations of release parameters and meteorological data. The release parameters and meteorological data were selected in combination to define a limited number of basic spectra characterized by release height, heat content, release time, warning time, wind speed, rainfall rate, and atmospheric stability class. Variant seasonal spectra were also defined in order to estimate the potential significance of seasonal variations as a factor determining the incidence or number of early health effects. The results show that there are large differences in consequences from spectrum to spectrum, although an equal amount and mix of radioactive material is released to the atmosphere in each case. Also, there are large differences in the estimated number of health effects from season to season due to distinct seasonal variations in meteorological combinations in Korea. Therefore, it is necessary to consider seasonal characteristics in developing optimum emergency response strategies
Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling
Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.
2015-01-01
Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless
International Nuclear Information System (INIS)
Gonzalez, W.D.; Gonzalez, A.L.C.; Tsurutani, B.T.
1990-01-01
For intervals with intense geomagnetic activity it is shown that the solar wind coupling parameter ε and the magnetospheric output parameter U T are equivalent and that ranges of values of ε can be set up in terms of values of the ring current-time constant τ. (author)
Effects of Velocity Parameters of the Wind on the Line Formation for 32 CYG
Directory of Open Access Journals (Sweden)
Kyung-Mee Kim
1999-12-01
Full Text Available We calculate the theoretical line profiles in order to investigate the influence of various velocity parameters. Line profiles are calculated by using the exponential velocoty law with two acceleration regions for orbital phases 0.70 and 0.06. From this compttation we find that the influence of the wind velocity gradient on a giant star is more important in the region near the star than in the region away from the star. The observed lines show stronger emission than the calculated line profiles and we interpret the difference is caused by the inhomogeniety in the atmosphere of 32 Cyg.
Directory of Open Access Journals (Sweden)
Pradeep K. Goyal
2011-09-01
Full Text Available This paper presents a study conducted on the probabilistic distribution of key cyclone parameters and the cyclonic wind speed by analyzing the cyclone track records obtained from India meteorological department for east coast region of India. The dataset of historical landfalling storm tracks in India from 1975–2007 with latitude /longitude and landfall locations are used to map the cyclone tracks in a region of study. The statistical tests were performed to find a best fit distribution to the track data for each cyclone parameter. These parameters include central pressure difference, the radius of maximum wind speed, the translation velocity, track angle with site and are used to generate digital simulated cyclones using wind field simulation techniques. For this, different sets of values for all the cyclone key parameters are generated randomly from their probability distributions. Using these simulated values of the cyclone key parameters, the distribution of wind velocity at a particular site is obtained. The same distribution of wind velocity at the site is also obtained from actual track records and using the distributions of the cyclone key parameters as published in the literature. The simulated distribution is compared with the wind speed distributions obtained from actual track records. The findings are useful in cyclone disaster mitigation.
Performance Analysis of Methods for Estimating Weibull Parameters ...
African Journals Online (AJOL)
The performance analysis revealed that the MLM was the most accurate model followed by the EPF and the GM. Furthermore, the comparison between the wind speed standard deviation predicted by the proposed models and the measured data showed that the MLM has a smaller relative error of -3.33% on average ...
Long-period variations of wind parameters in the mesopause region and the solar cycle dependence
International Nuclear Information System (INIS)
Greisiger, K.M.; Schminder, R.; Kuerschner, D.
1987-01-01
A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. However, after the years 1973-1974 we found a significant negative correlation with solar activity with an indication of a new change after 1983. We conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control. Recent satellite data of the solar u.v. radiation and the upper stratospheric ozone have shown that the possible variation of the thermal tidal excitation during the solar cycle amounts to only a few per cent. This is, therefore, insufficient to account for the 40-70% variation of the tidal amplitudes. Some other possibilities of explaining this result are discussed. (author)
AUTOMATIC ESTIMATION OF SIZE PARAMETERS USING VERIFIED COMPUTERIZED STEREOANALYSIS
Directory of Open Access Journals (Sweden)
Peter R Mouton
2011-05-01
Full Text Available State-of-the-art computerized stereology systems combine high-resolution video microscopy and hardwaresoftware integration with stereological methods to assist users in quantifying multidimensional parameters of importance to biomedical research, including volume, surface area, length, number, their variation and spatial distribution. The requirement for constant interactions between a trained, non-expert user and the targeted features of interest currently limits the throughput efficiency of these systems. To address this issue we developed a novel approach for automatic stereological analysis of 2-D images, Verified Computerized Stereoanalysis (VCS. The VCS approach minimizes the need for user interactions with high contrast [high signal-to-noise ratio (S:N] biological objects of interest. Performance testing of the VCS approach confirmed dramatic increases in the efficiency of total object volume (size estimation, without a loss of accuracy or precision compared to conventional computerized stereology. The broad application of high efficiency VCS to high-contrast biological objects on tissue sections could reduce labor costs, enhance hypothesis testing, and accelerate the progress of biomedical research focused on improvements in health and the management of disease.
Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette
2009-01-01
Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.
Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.
2013-01-01
A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.
Estimating return periods of extreme values from relatively short time series of winds
Jonasson, Kristjan; Agustsson, Halfdan; Rognvaldsson, Olafur; Arfeuille, Gilles
2013-04-01
An important factor for determining the prospect of individual wind farm sites is the frequency of extreme winds at hub height. Here, extreme winds are defined as the value of the highest 10 minutes averaged wind speed with a 50 year return period, i.e. annual exceeding probability of 2% (Rodrigo, 2010). A frequently applied method to estimate winds in the lowest few hundred meters above ground is to extrapolate observed 10-meter winds logarithmically to higher altitudes. Recent study by Drechsel et al. (2012) showed however that this methodology is not as accurate as interpolating simulated results from the global ECMWF numerical weather prediction (NWP) model to the desired height. Observations of persistent low level jets near Colima in SW-Mexico also show that the logarithmic approach can give highly inaccurate results for some regions (Arfeuille et al., 2012). To address these shortcomings of limited, and/or poorly representative, observations and extrapolations of winds one can use NWP models to dynamically scale down relatively coarse resolution atmospheric analysis. In the case of limited computing resources one has typically to make a compromise between spatial resolution and the duration of the simulated period, both of which can limit the quality of the wind farm siting. A common method to estimate maximum winds is to fit an extreme value distribution (e.g. Gumbel, gev or Pareto) to the maximum values of each year of available data, or the tail of these values. If data are only available for a short period, e.g. 10 or 15 years, then this will give a rather inaccurate estimate. It is possible to deal with this problem by utilizing monthly or weekly maxima, but this introduces new problems: seasonal variation, autocorrelation of neighboring values, and increased discrepancy between data and fitted distribution. We introduce a new method to estimate return periods of extreme values of winds at hub height from relatively short time series of winds, simulated
Understanding the Role of Wind in Reducing the Surface Mass Balance Estimates over East Antarctica
Das, I.; Scambos, T. A.; Koenig, L.; Creyts, T. T.; Bell, R. E.; van den Broeke, M. R.; Lenaerts, J.; Paden, J. D.
2014-12-01
Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. An improved estimate of surface mass balance must include the significant role near-surface wind plays in the sublimation and redistribution of snow across Antarctica. We have developed an empirical model based on airborne radar and lidar observations, and modeled surface mass balance and wind fields to produce a continent-wide prediction of wind-scour zones over Antarctica. These zones have zero to negative surface mass balance, are located over locally steep ice sheet areas (>0.002) and controlled by bedrock topography. The near-surface winds accelerate over these zones, eroding and sublimating the surface snow. This scouring results in numerous localized regions (≤ 200 km2) with reduced surface accumulation. Each year, tens of gigatons of snow on the Antarctic ice sheet are ablated by persistent near-surface katabatic winds over these wind-scour zones. Large uncertainties remain in the surface mass balance estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss through sublimation or redistribution over the wind-scour zones. In this study, we integrate Operation IceBridge's snow radar over the Recovery Ice Stream with a series of ice core dielectric and depth-density profiles for improved surface mass balance estimates that reflect the mass loss over the wind-scour zones. Accurate surface mass balance estimates from snow radars require spatially variable depth-density profiles. Using an ensemble of firn cores, MODIS-derived surface snow grain size, modeled accumulation rates and surface temperatures from RACMO2, we assemble spatially variable depth-density profiles and use our mapping of snow density variations to estimate layer mass and net accumulation rates from snow radar layer data. Our study improves the quantification of
PERFORMANCE ANALYSIS OF METHODS FOR ESTIMATING ...
African Journals Online (AJOL)
2014-12-31
Dec 31, 2014 ... speed is the most significant parameter of the wind energy. ... wind-powered generators and applied to estimate potential power output at various ...... Wind and Solar Power Systems, U.S. Merchant Marine Academy Kings.
Energy Technology Data Exchange (ETDEWEB)
Carranza, O. [Escuela Superior de Computo, Instituto Politecnico Nacional, Av. Juan de Dios Batiz S/N, Col. Lindavista, Del. Gustavo A. Madero 7738, D.F. (Mexico); Figueres, E.; Garcera, G. [Grupo de Sistemas Electronicos Industriales, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, Camino de Vera S/N, 7F, 46020 Valencia (Spain); Gonzalez, L.G. [Departamento de Ingenieria Electronica, Universidad de los Andes, Merida (Venezuela)
2011-03-15
This paper presents a comparative study of several speed estimators to implement a sensorless speed control loop in Wind Energy Generation Systems driven by power factor correction three-phase boost rectifiers. This rectifier topology reduces the low frequency harmonics contents of the generator currents and, consequently, the generator power factor approaches unity whereas undesired vibrations of the mechanical system decrease. For implementation of the speed estimators, the compared techniques start from the measurement of electrical variables like currents and voltages, which contain low frequency harmonics of the fundamental frequency of the wind generator, as well as switching frequency components due to the boost rectifier. In this noisy environment it has been analyzed the performance of the following estimation techniques: Synchronous Reference Frame Phase Locked Loop, speed reconstruction by measuring the dc current and voltage of the rectifier and speed estimation by means of both an Extended Kalman Filter and a Linear Kalman Filter. (author)
DEFF Research Database (Denmark)
Henriksen, Matthew Lee; Jensen, Bogi Bech
2013-01-01
Several methods of estimating the annual energy losses for wind turbine generators are investigated in this paper. Utilizing a high amount of transient simulations with motion is first demonstrated. Usage of a space-time transformation for prediction of iron losses is also explored. The methods, ...
Van der Male, P.
2013-01-01
Offshore wind turbines are highly exposed to timevarying loads. For support structures, estimation of the fatigue damage during the lifetime of the structure is an essential design aspect. This already applies for the preliminary design stage. In determining the dynamic amplification in the
Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data
Molod, Andrea M.; Salmun, H.; Dempsey, M
2015-01-01
An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.
Numerical Estimation of Fatigue Life of Wind Turbines due to Shadow Effect
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Pedersen, Ronnie; Nielsen, Søren R.K.
2009-01-01
The influence of tower design on damage accumulation in up-wind turbine blades during tower passage is discussed. The fatigue life of a blade is estimated for a tripod tower configuration and a standard mono-tower. The blade stresses are determined from a dynamic mechanical model with a delay...
Automated Modal Parameter Estimation of Civil Engineering Structures
DEFF Research Database (Denmark)
Andersen, Palle; Brincker, Rune; Goursat, Maurice
In this paper the problems of doing automatic modal parameter extraction of ambient excited civil engineering structures is considered. Two different approaches for obtaining the modal parameters automatically are presented: The Frequency Domain Decomposition (FDD) technique and a correlation...
Estimation of uranium migration parameters in sandstone aquifers.
Malov, A I
2016-03-01
The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are
Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea
Directory of Open Access Journals (Sweden)
Sara Pensieri
2015-01-01
Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.