Solar Wind MHD Turbulence: Anomalous Scaling and Intermittency Effects in the Slow and Fast Wind
Salem, C.; Mangeney, A.; Bale, S. D.
2007-12-01
Although considerable progress has been made in the understanding of MHD turbulence over the past few decades through the analysis of in-situ solar wind data, two of the primary problems of solar wind MHD turbulence that still remain a puzzle are the nature of the nonlinear energy cascade, and the strong intermittent character of solar wind fluctuations in the inertial range. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. Anomalous scaling of both solar wind magnetic field and velocity fluctuations in the inertial range, as well as intermittency effects have recently been investigated in detail using Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). This powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs, as well as new results on the nature of the intermittent coherent structures will be presented. The turbulent properties and intermittency effects in different solar wind regimes will be also discussed.
Scaling laws and intermittent structures in solar wind MHD turbulence
Veltri, Pierluigi; Mangeney, André
1999-06-01
Thirteen months of velocity and magnetic field data from ISEE space experiment have been used to calculate spectra and structure functions using Haar wavelets technique in the range from 1 minute to about 1 day. Using conditioned structure function definition we have been able to eliminate the intermittency effects in the spectra and thus to evidentiate which kind of phenomenology of nonlinear cascade between Kolmogorov and Kraichnan is taking place in Solar Wind turbulence. By the same technique the most intermittent structures in solar wind turbulence can also be identified and they turn out to be either shock waves or one dimensional current sheets, at variance with ordinary fluid intermittency, where the most intermittent structures are two dimensional vortices.
SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Franci, Luca; Verdini, Andrea; Landi, Simone [Dipartimento di Fisica e Astronomia, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, Petr [Astronomical Institute, AS CR, Bocni II/1401, CZ-14100 Prague (Czech Republic)
2015-05-10
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures.
Veltri, P.
1999-03-01
High-resolution numerical simulations on the one hand and solar wind data analysis on the other hand have allowed for much progress in our understanding of magnetohydrodynamic (MHD) turbulence. In this paper the author gives a schematic view of the main properties of solar wind MHD turbulence and discusses some results obtained from the analysis of velocity and magnetic field data measured during the space experiments of Helios and ISEE. In particular, he shows that applying the Haar wavelets technique to about one year of data taken every minute during the ISEE space experiment, it is possible to calculate spectra and structure functions of the turbulence; moreover the definition of a conditioned structure function allows: (a) the elimination of intermittency effects in spectra and thus for a clear identification of which kind of phenomenology of nonlinear cascade between Kolmogorov (1941) and Kraichnan (1974) is taking place in solar wind turbulence; (b) the identification of the most intermittent structures which turn out to be either shock waves or one-dimensional current sheets, at variance with ordinary fluid intermittency, where the most intermittent structures are found to be two-dimensional vortices.
Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment
Schaffner, D. A.; Brown, M. R.; Wan, A.
2013-12-01
The turbulence of colliding plasmas is explored in an MHD wind tunnel on the SSX in an effort to understand solar wind physics in a laboratory setting. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1m by 15cm copper cylinder creating plasma with L/ρi ~ 75-150, β ~ 0.1-0.2 and Lundquist number ~ 1000. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/k-spectra and correlation times and lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane using both FFT and wavelet analysis techniques. Power-law behavior is observed spanning about two decades of frequencies [100kHz-10MHz] and about one decade of wavelength [10cm-1cm]. Power-law fits to spectra show scaling in these regions to be robust to changes in stuffing flux; fits are on the order of f-4 and k-2 for all flux variations. Low frequency fluctuations [law behavior is seen in f-spectra for frequencies around f=fci while changes in k-spectra slopes appear around 1/k ~ 5ρi. Dissipation range fits are made with an exponentially modified power-law model [Terry et al, PoP 2012]. Fluctuation measurements in axial velocity are made using a Mach probe with edge flows reaching M ~ 0.4. Both B-field and velocity fluctuations persist on the same timescale in these experiments, though Mach velocity f-spectra show power-laws slightly shallower than those for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.
Anomalous scaling and the role of intermittency in solar wind MHD turbulence: new insights
Salem, C.; Mangeney, A.; Bale, S. D.; Veltri, P.; Bruno, R.
2007-08-01
In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large ``energy containing'' scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale ``singular'' or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs and new results on the nature of the intermittent coherent structures will be presented.
Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations
Czech Academy of Sciences Publication Activity Database
Franci, L.; Verdini, A.; Matteini, L.; Landi, S.; Hellinger, Petr
2015-01-01
Roč. 804, č. 2 (2015), L39/1-L39/5 ISSN 2041-8205 R&D Projects: GA ČR(CZ) GA15-10057S Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * plasmas * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
Intermittency in MHD turbulence and coronal nanoflares modelling
Directory of Open Access Journals (Sweden)
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
Interstellar MHD Turbulence and Star Formation
Vázquez-Semadeni, Enrique
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses
Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas
Directory of Open Access Journals (Sweden)
G. G. Howes
2009-03-01
Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.
Turbulent Transport in a Three-dimensional Solar Wind
Energy Technology Data Exchange (ETDEWEB)
Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)
2017-03-01
Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
Analysis and statistics of discontinuities as obtained from 3D simulation of MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei; He, Jian-Sen, E-mail: jshept@pku.edu.cn; Tu, Chuan-Yi; Wang, Xin; Wang, Ling-Hua [Institute of Space Physics and Applied Techonologies, Department of Geophysics, Peking University (China); Yang, Li-Ping [Institute of Space Physics and Applied Techonologies, Department of Geophysics, Peking University (China); State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel (Germany)
2016-03-25
The turbulent solar wind abounds with MHD discontinuities, and such discontinuities are often found in close connection with turbulence intermittency, constituting a possible main contributor to the turbulence dissipation and solar wind heating. Among the discontinuities, tangential (TD) and rotational (RD) ones are two most important types. Recently, the connection between turbulence intermittency and proton thermodynamics has been being intensively investigated. Such connections are founded to be involved with MHD instablilities, but the difference of TDs an RDs in this process has not yet been covered. Herewith we define new methods for identifying TDs and RDs obtained from a three-dimensional MHD simulation with pressure anisotropy. Especially, we define the Total Variance of Increments (TVI) as a new measure of magnetic field changes. Based on the identified cases, we compare their occurrence rates and heating effects. More specifically, we find that the thermal states embedding TDs, compared with their RD counterparts, tend to be more associated with extreme plasma parameters or instabilites. Some other possible applications of TVI-like norms are also herewith discussed.
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Vincenzo Carbone
2013-05-01
Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
Wind energy impact of turbulence
Hölling, Michae; Ivanell, Stefan
2014-01-01
This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application
Turbulent Magnetic Relaxation in Pulsar Wind Nebulae
Zrake, Jonathan; Arons, Jonathan
2017-09-01
We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.
Spectral variability in relativistic MHD winds
Thompson, Christopher
1998-05-01
Any cosmological GRB source with a rotation period of ~1 msec and the density of nuclear matter plausibly develops a very strong magnetic field B~1015 G, and disgorges ordered Poynting flux at the required rate of ~1051 erg s-1 [11,6]. This MHD wind advects outward an intense flux of thermal MeV photons which act as Compton seeds and regulate the thermodynamic state of matter. Electron-positron pairs created by photon collisions feed back strongly on the emergent spectrum, enhancing the efficiency of energy deposition in the leptonic component, and making regions of the wind with power-law high-energy spectra much brighter than regions with thermal spectra. By contrast, dissipation deep inside the electron-ion photosphere plausibly leads to quasi-thermal spectra, and may account for the soft X-ray tails seen by Ginga and soft subpulses seen by BATSE. Explicit solutions to the Kompaneets equation in an expanding wind containing isolated hotspots show that a broken power-law spectrum develops in a pair-dominated atmosphere that covers a very large range (~mp/me) in radius, and through which the integrated scattering depth significantly exceeds unity. The overall softening trend observed in many bursts may reflect gradual mixing between a high-Γ jet and surrounding lower-Γ material. We compare double Compton emission and cyclo-synchrotron radiation as sources of Compton seeds. The existence of bursts with soft high-energy cutoffs at rest frame energies much less than ~1 MeV indicates that quasi-thermal Comptonization is occuring. The γ-ray light-curve may provide interesting information about the central source if the asymptotic Lorentz factor is regulated by neutrino emission, yielding a characteristic luminosity of LP~1051 erg s-1. Off-axis material with Lorentz factor Γ∞~1-2 becomes optically thin to scattering with a delay of ~1 day(E/1052 erg)1/2, and can be a direct source of afterglow radiation.
Wind effect in turbulence parametrization
Colombini, M.; Stocchino, A.
2005-09-01
The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.
Anisotropy of Third-order Structure Functions in MHD Turbulence
Czech Academy of Sciences Publication Activity Database
Verdini, A.; Grappin, R.; Hellinger, Petr; Landi, S.; Mueller, W.Ch.
2015-01-01
Roč. 804, č. 2 (2015), 119/1-119/13 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/2023 Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015
A study of runaway electron confinement and theory of neoclassical MHD turbulence
International Nuclear Information System (INIS)
Kwon, Oh Jin
1989-07-01
This thesis consists of two major studies: a study of runaway electron confinement and a theory of neoclassical MHD turbulence. The aim of the former is to study the structure of internal magnetic turbulence in tokamaks, which is thought by many to be responsible for the heat transport. The aim of the latter is to extend existing theories of MHD turbulence in tokamaks into experimentally relevant low-collisionality regimes. This section contains a theory of neoclassical pressure-gradient-driven turbulence and a theory of neoclassical resistivity-gradient-driven turbulence
A consistent thermodynamics of the MHD wave-heated two-fluid solar wind
Directory of Open Access Journals (Sweden)
I. V. Chashei
2003-07-01
Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at
A consistent thermodynamics of the MHD wave-heated two-fluid solar wind
Directory of Open Access Journals (Sweden)
I. V. Chashei
Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at
The flux tube paradigm and its role in MHD turbulence in the solar atmosphere
Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.
2011-12-01
Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
Turbulence and other processes for the scale-free texture of the fast solar wind
Hnat, B.; Chapman, S. C.; Gogoberidze, G.; Wicks, R. T.
2012-04-01
The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 hours. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ˜1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind which co-exists with the signature of MHD turbulence but extends to lower frequencies. Importantly, scaling and non- Gaussian statistics of fluctuations are not unique to turbulence and can imply other physical mechanisms- our results thus place a strong constraint on theories of the dynamics of the solar corona and solar wind. Intriguingly, the magnetic field and velocity components also show scale-dependent dynamic alignment outside of the inertial range of MHD turbulence.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
International Nuclear Information System (INIS)
Hadid, L. Z.; Sahraoui, F.; Galtier, S.
2017-01-01
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
Energy Technology Data Exchange (ETDEWEB)
Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC Univ Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research University, F-91128 Palaiseau (France)
2017-03-20
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfvén turbulence
Directory of Open Access Journals (Sweden)
Y. Voitenko
2011-09-01
Full Text Available A weakly dispersive range (WDR of kinetic Alfvén turbulence is identified and investigated for the first time in the context of the MHD/kinetic turbulence transition. We find perpendicular wavenumber spectra ∝ k_{⊥}^{−3} and ∝ k_{⊥}^{−4} formed in WDR by strong and weak turbulence of kinetic Alfvén waves (KAWs, respectively. These steep WDR spectra connect shallower spectra in the MHD and strongly dispersive KAW ranges, which results in a specific double-kink (2-k pattern often seen in observed turbulent spectra. The first kink occurs where MHD turbulence transforms into weakly dispersive KAW turbulence; the second one is between weakly and strongly dispersive KAW ranges. Our analysis suggests that partial turbulence dissipation due to amplitude-dependent non-adiabatic ion heating may occur in the vicinity of the first spectral kink. The threshold-like nature of this process results in a conditional selective dissipation that affects only the largest over-threshold amplitudes and that decreases the intermittency in the range below the first spectral kink. Several recent counter-intuitive observational findings can be explained by the coupling between such a selective dissipation and the nonlinear interaction among weakly dispersive KAWs.
Energy Technology Data Exchange (ETDEWEB)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.
Decay of Solar Wind Turbulence behind Interplanetary Shocks
International Nuclear Information System (INIS)
Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk; Franci, Luca
2017-01-01
We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.
Decay of Solar Wind Turbulence behind Interplanetary Shocks
Energy Technology Data Exchange (ETDEWEB)
Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague, CZ-18000 (Czech Republic); Franci, Luca, E-mail: offelius@gmail.com [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, I-50125 Firenze (Italy)
2017-07-20
We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.
Program to determine space vehicle response to wind turbulence
Wilkening, H. D.
1972-01-01
Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.
Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe
International Nuclear Information System (INIS)
Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko
2007-01-01
Experimental studies of MHD turbulent pipe flow of Flibe simulant fluid have been conducted as a part of US-Japan JUPITER-II collaboration. Flibe is considered as a promising candidate for coolant and tritium breeder in some fusion reactor design concepts because of its low electrical conductivity compared to liquid metals. This reduces the MHD pressure drop to a negligible level; however, turbulence can be significantly suppressed by MHD effects in fusion reactor magnetic field conditions. Heat transfer in the Flibe coolant is characterized by its high Prandtl number. In order to achieve sufficient heat transfer and to prevent localized heat concentration in a high Prandtl number coolant, high turbulence is essential. Even though accurate prediction of the MHD effects on heat transfer for high Prandtl number fluids in the fusion environment is very important, reliable data is not available. In these experiments, an aqueous solution of potassium hydroxide is used as a simulant fluid for Flibe. This paper presents the experimental results obtained by flow field measurement using particle image velocimetry (PIV) technique. The PIV measurements provide 2-dimensional 2-velocity component information on the MHD flow field. The test section is a circular pipe with 89 mm inner diameter and 7.0 m in length, which is 79 times pipe diameter. This relatively large diameter pipe is selected in order to maximize the MHD effects measured by Hartmann number (Ha=BL(sigma/mu)1/2), and to allow better resolution of the flow in the near-wall region. The test section is placed under maximum 2 Tesla magnetic fields for 1.4m of the axial length. The hydrodynamic developing length under the magnetic field is expected to be 1.2 m. In order to apply PIV technique in the magnetic field condition, special optical devices and visualization sections were created. PIV measurements are performed for Re = 11600 with variable Hartmann numbers. The turbulence statistics of the MHD turbulent flow
Anisotropy of turbulence in wind turbine wakes
Energy Technology Data Exchange (ETDEWEB)
Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)
2005-10-01
This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.
Lidar for Wind and Optical Turbulence Profiling
Directory of Open Access Journals (Sweden)
Fastig Shlomo
2018-01-01
Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.
International Nuclear Information System (INIS)
Chapman, S. C.; Nicol, R. M.; Leonardis, E.; Kiyani, K.; Carbone, V.
2009-01-01
We perform statistical analysis of the fluctuating magnetic field observed in-situ by the Ulysses spacecraft, from the perspective of quantitative characterization of the evolving magnetohydrodynamic (MHD) turbulence. We focus on two successive polar passes around solar minimum which provide extended intervals of quiet, fast solar wind at a range of radial distances and latitudes: the south polar pass of 1994 and the north polar pass of 1995. Fully developed inertial range turbulence has a characteristic statistical similarity property of quantities that characterize the flow, such as the magnetic field components B k (t), so that the pth moment of fluctuations has power-law dependence on scale τ such that k (t + τ) - B k (t)| p > ∼ τ ζ(p) . We instead find a generalized similarity k (t + τ) - B k (t)| p > ∼ g(τ/τ 0 ) ζ(p) consistent with extended self-similarity; and in particular all of these Ulysses observations, from both polar passes, share the same single function g(τ/τ 0 ). If these observations are indeed characteristic of MHD turbulence evolving in-situ, then this quantifies for the first time a key aspect of the universal nature of evolving MHD turbulence in a system of finite size, with implications both for theoretical development, and for our understanding of the evolving solar wind.
Intermittent heating of the solar corona by MHD turbulence
Directory of Open Access Journals (Sweden)
É. Buchlin
2007-10-01
Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.
Interferometry and MHD turbulence measurements in toroidal pinches
International Nuclear Information System (INIS)
Dutt, T.L.; Evans, D.E.; Wilcock, P.D.
1976-01-01
A 10.6 micron interferometer produced 2 to 3 good quality fringes in the HBTX plasma. There is substantial agreement in the electron densities determined by interferometry and by Thomson scattering, but since the former is an absolute measurement and is systematically lower than the Thomson scattering values, the latter may be too great by about 35%. In RF Pinches, turbulence associated with the instability deflects the beam and corrupts the interferogram. However, if the intensity fluctuations induced in this beam by the turbulence, are measured, as is done in the second experiment performed in the FRSX plasma with a HCN laser, the frequency spectrum of the turbulence can be deduced. In this plasma, rms fluctuations in the density were measured by this means to be 20%, and the dominant frequency of the fluctuations multiplied by the tube diameter was approximately Alfven speed, favouring an interpretation of the gross turbulence in this plasma in terms of Alfen waves. (U.K.)
MHD from a Microscopic Concept and Onset of Turbulence in Hartmann Flow
International Nuclear Information System (INIS)
Jirkovsky, L.; Bo-ot, L. Ma.; Chiang, C. M.
2010-01-01
We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using projection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number. (physics of gases, plasmas, and electric discharges)
JOINT INVERSE CASCADE OF MAGNETIC ENERGY AND MAGNETIC HELICITY IN MHD TURBULENCE
International Nuclear Information System (INIS)
Stepanov, R.; Frick, P.; Mizeva, I.
2015-01-01
We show that oppositely directed fluxes of energy and magnetic helicity coexist in the inertial range in fully developed magnetohydrodynamic (MHD) turbulence with small-scale sources of magnetic helicity. Using a helical shell model of MHD turbulence, we study the high Reynolds number MHD turbulence for helicity injection at a scale that is much smaller than the scale of energy injection. In a short range of scales larger than the forcing scale of magnetic helicity, a bottleneck-like effect appears, which results in a local reduction of the spectral slope. The slope changes in a domain with a high level of relative magnetic helicity, which determines that part of the magnetic energy is related to the helical modes at a given scale. If the relative helicity approaches unity, the spectral slope tends to –3/2. We show that this energy pileup is caused by an inverse cascade of magnetic energy associated with the magnetic helicity. This negative energy flux is the contribution of the pure magnetic-to-magnetic energy transfer, which vanishes in the non-helical limit. In the context of astrophysical dynamos, our results indicate that a large-scale dynamo can be affected by the magnetic helicity generated at small scales. The kinetic helicity, in particular, is not involved in the process at all. An interesting finding is that an inverse cascade of magnetic energy can be provided by a small-scale source of magnetic helicity fluctuations without a mean injection of magnetic helicity
Turbulent wind waves on a water current
Directory of Open Access Journals (Sweden)
M. V. Zavolgensky
2008-05-01
Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.
Role and Nature of Intermittency in Solar Wind Alfvénic Turbulence: Wind Observations.
Salem, C. S.; Mangeney, A.; Bale, S. D.
2006-12-01
In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs will be reviewed and new results on the nature of the intermittent coherent structures will be presented.
Scale-Invariance and Intermittency in the Solar Wind Alfvénic Turbulence: Wind Observations
Salem, C. S.; Mangeney, A.; Bale, S. D.; Veltri, P.
2004-12-01
In the "Alfvénic" regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards the small scales where dissipation by kinetic effects is presumed to act. However, the intermittent character of solar wind fluctuations is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We present here a new approach to study the scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Using the Haar wavelet transform, spectra and structure functions are calculated. We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. We finally discuss the various effects which may be important for the formation of these structures in the absence of collisions.
Fatigue reliability and effective turbulence models in wind farms
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.
2007-01-01
Offshore wind farms with 100 or more wind turbines are expected to be installed many places during the next years. Behind a wind turbine a wake is formed where the mean wind speed decreases slightly and the turbulence intensity increases significantly. This increase in turbulence intensity in wak...
Depression of Nonlinearity in Decaying Isotropic MHD Turbulence
International Nuclear Information System (INIS)
Servidio, S.; Matthaeus, W. H.; Dmitruk, P.
2008-01-01
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency
MHD-IPS analysis of relationship among solar wind density, temperature, and flow speed
Hayashi, Keiji; Tokumaru, Munetoshi; Fujiki, Ken'ichi
2016-08-01
The solar wind properties near the Sun are a decisive factor of properties in the rest of heliosphere. As such, determining realistic plasma density and temperature near the Sun is very important in models for solar wind, specifically magnetohydrodynamics (MHD) models. We had developed a tomographic analysis to reconstruct three-dimensional solar wind structures that satisfy line-of-sight-integrated solar wind speed derived from the interplanetary scintillation (IPS) observation data and nonlinear MHD equations simultaneously. In this study, we report a new type of our IPS-MHD tomography that seeks three-dimensional MHD solution of solar wind, matching additionally near-Earth and/or Ulysses in situ measurement data for each Carrington rotation period. In this new method, parameterized relation functions of plasma density and temperature at 50 Rs are optimized through an iterative forward model minimizing discrepancy with the in situ measurements. Satisfying three constraints, the derived 50 Rs maps of plasma quantities provide realistic observation-based information on the state of solar wind near the Sun that cannot be well determined otherwise. The optimized plasma quantities exhibit long-term variations over the solar cycles 21 to 24. The differences in plasma quantities derived from the optimized and original IPS-MHD tomography exhibit correlations with the source-surface magnetic field strength, which can in future give new quantitative constrains and requirements to models of coronal heating and acceleration.
On soft stability loss in rotating turbulent MHD flows
International Nuclear Information System (INIS)
Kapusta, Arkady; Mikhailovich, Boris
2014-01-01
The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)
Wind turbine wake in atmospheric turbulence
Energy Technology Data Exchange (ETDEWEB)
Rethore, P.-E.
2009-10-15
This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)
Can Wind Lidars Measure Turbulence?
DEFF Research Database (Denmark)
Sathe, Ameya; Mann, Jakob; Gottschall, Julia
2011-01-01
and conical scanning. The predictions are compared with the measurements from the ZephIR, WindCube, and sonic anemometers at a flat terrain test site under different atmospheric stability conditions. The sonic measurements are used at several heights on a meteorological mast in combination with lidars...... errors also vary with atmospheric stability and are low for unstable conditions. In general, for both lidars, the model agrees well with the measurements at all heights and under different atmospheric stability conditions. For the ZephIR, the model results are improved when an additional low-pass filter...
Mirror Instability in the Turbulent Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.
2017-01-01
Roč. 838, č. 2 (2017), č. článku 158. ISSN 0004-637X Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.533, year: 2016 http://iopscience.iop.org/article/10.3847/1538-4357/aa67e0
Growth of dust rims around chondrules in MHD-turbulent protoplanetary disks
Carballido, A.
2009-12-01
The accretion of dust onto chondrule-sized particles is modeled through magnetohydrodynamic (MHD) simulations of a protoplanetary disk. The observed dust rims around chondrules in meteorites, such as CM carbonaceous chondrites, have been suggested to form on the parent body by a combination of compaction and aqueous alteration of a generic enveloping matrix. However, a nebular origin of these rims seems to be favored in semi-analytical models, where turbulence drives the dynamics of dust sweep-up by chondrules. To assess the feasibility of this scenario, we model a small patch of a gaseous circumstellar disk. The patch is assumed to be located at an orbital radius of 3 AU , and is represented by a Cartesian box in which the equations of ideal MHD are solved. Turbulence is self-consistently generated by the action of the so-called magnetorotational instability, which is triggered by the effect of the disk differential rotation on magnetic field lines threading the disk. Fine-grained dust is modeled as a passive contaminant, with initial densities f0 equal to the gas density, and half this value. Turbulence quickly disperses the initial dust concentration, which acquires different equilibrium values depending on f0. These values can vary by as much as a factor of ˜100. Chondrules are modeled as Lagrangian particles that are subject to gas drag. An equation for the growth rate of the radius of a chondrule-dust compound is integrated whenever a chondrule enters a region permeated by dust, and perfect sticking is assumed. The rate of growth of the radius depends on the local dust density and on the relative velocity between the chondrule and the dust component. The variation of the equilibrium dust density has an effect on the final distribution of compound radii, with most compounds growing by factors ranging from less than ˜1.5 up to ˜8. Growth times are typically of the order of 10 years, roughly consistent with previous analytical results for the level of
Laminar-Turbulent transition on Wind Turbines
DEFF Research Database (Denmark)
Martinez Hernandez, Gabriel Gerardo
The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Division of Mechanical Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8540 (Japan)
2016-11-01
Highlights: • We succeeded the establishing DNS database for the epsilon transport equation for turbulent channel flows under high-Re and Ha conditions. • Turbulent dissipation process under the MHD effects shows the similarity under the same R condition, where R is the Reynolds number based on the Hartmann layer thickness and the laminar centerline velocity. • Modulation of the non-MHD terms is important from the view point of the turbulence modeling. - Abstract: In this study, we succeeded in establishing DNS database significantly increased the range of Reynolds number and Hartmann numbers for the epsilon transport equation in turbulent channel flows imposed on a wall-normal uniform magnetic field. Maximum friction Reynolds number based on the channel half-height is 1000 with the Hartmann number based on the channel half-height, 0, 24, and 34. The contribution of MHD source term derived from Lorentz force on the turbulent dissipation process is very small. However, modulation of the other terms in this process was remarkably observed with Hartmann number increasing. The turbulent dissipation process under the MHD effects is similar under the same R condition, where R is the Reynolds number based on the Hartmann layer thickness and the laminar centerline velocity.
Large- and small-scale turbulent spectra in MHD and atmospheric flows
Directory of Open Access Journals (Sweden)
O. G. Chkhetiani
2006-01-01
Full Text Available In the present review we discuss certain studies of large- and small-scale turbulent spectra in MHD and atmospheric flows performed by S. S. Moiseev and his co-authors during the last years of his life and continued by his co-authors after he passed away. It is shown that many ideas developed in these works have not lost their novelty and urgency until now, and can form the basis of future studies in this field.
Further analysis of MHD acceleration for a hypersonic wind tunnel
International Nuclear Information System (INIS)
Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.
1995-01-01
A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation
Sorriso-Valvo, Luca; Carbone, Vincenzo; Veltri, Pierluigi; Consolini, Giuseppe; Bruno, Roberto
Intermittency in fluid turbulence can be emphasized through the analysis of Probability Distribution Functions (PDF) for velocity fluctuations, which display a strong non-gaussian behavior at small scales. Castaing et al. (1990) have introduced the idea that this behavior can be represented, in the framework of a multiplicative cascade model, by a convolution of gaussians whose variances is distributed according to a log-normal distribution. In this letter we have tried to test this conjecture on the MHD solar wind turbulence by performing a fit of the PDF of the bulk speed and magnetic field intensity fluctuations calculated in the solar wind, with the model. This fit allows us to calculate a parameter λ² depending on the scale, which represents the width of the log-normal distribution of the variances of the gaussians. The physical implications of the obtained values of the parameter as well as of its scaling law are finally discussed.
Characterising Turbulence Intensity for Fatigue Load Analysis of Wind Turbines
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2005-01-01
Turbulence in wind velocity presents a major factor for modern wind turbine design as cost reduction as are sort for the dynamic structures. Therefore this paper contains a parametrisation of the turbulence intensity at given sites, relevant for the calculation of fatigue loading of wind turbines....... The parameterisation is based on wind speed measurements extracted from the “Database on Wind Characteristics” (www.winddata.com). The parameterisation is based on the LogNormal distribution, which has proven to be suitable distribution to describe the turbulence intensity distribution....
Measurements of the MHD activity and of the micro-turbulence using fast sweep reflectometry
International Nuclear Information System (INIS)
Vermare, L.
2005-04-01
This work is dedicated to the measurement of the fluctuations of the electronic density of a fusion plasma through the use of sweep reflectometry. In a plasma 2 types of fluctuations can be characterized: on one hand the plasma fluctuations over a large spatial scale (> 1 cm), they are associated with MHD-type modes and on the other hand the micro-fluctuations (< 1 cm) associated with micro-turbulence. The first chapter presents the issue of confinement in tokamak plasmas. In the chapter 2, the technical specificities of the reflectometers used in this work are detailed as well as the wave propagation laws in turbulent plasmas. In the chapter 3 the author shows how the sweep reflectometry can detect rational surfaces on which magnetic islands develop. The chapter 4 deals with the measurement of micro-turbulence in mode-X plasmas. A method giving the determination of the local spectra in radial wave numbers of the density fluctuations is proposed. The knowledge of these spectra gives the distribution of the turbulence energy over various spatial scales and could help to identify the types of micro-instabilities present in the plasma. (A.C.)
Czech Academy of Sciences Publication Activity Database
Bruno, R.; Carbone, V.; Vörös, Z.; D'Amicis, R.; Bavassano, B.; Cattaneo, M. B.; Mura, A.; Milillo, A.; Orsini, S.; Veltri, P.; Sorriso-Valvo, L.; Zhang, T. L.; Biernat, H.; Rucker, H.; Baumjohann, W.; Jankovičová, Dana; Kovács, B.
2009-01-01
Roč. 104, 1-4 (2009), s. 101-104 ISSN 0167-9295. [European General Assembly on International Heliophysics Year. Torino, 18.06.2007-22.06.2007] Institutional research plan: CEZ:AV0Z30420517 Keywords : Solar wind * MHD turbulence * Space plasma physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.655, year: 2009 http://www.springerlink.com/content/4368229757764645/fulltext.pdf
On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes
Lignarolo, L.E.M.
2016-01-01
The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production
Global MHD Modelling of the ISM - From large towards small scale turbulence
de Avillez, M.; Breitschwerdt, D.
2005-06-01
Dealing numerically with the turbulent nature and non-linearity of the physical processes involved in the ISM requires the use of sophisticated numerical schemes coupled to HD and MHD mathematical models. SNe are the main drivers of the interstellar turbulence by transferring kinetic energy into the system. This energy is dissipated by shocks (which is more efficient) and by molecular viscosity. We carried out adaptive mesh refinement simulations (with a finest resolution of 0.625 pc) of the turbulent ISM embedded in a magnetic field with mean field components of 2 and 3 μG. The time scale of our run was 400 Myr, sufficiently long to avoid memory effects of the initial setup, and to allow for a global dynamical equilibrium to be reached in case of a constant energy input rate. It is found that the longitudinal and transverse turbulent length scales have a time averaged (over a period of 50 Myr) ratio of 0.52-0.6, almost similar to the one expected for isotropic homogeneous turbulence. The mean characteristic size of the larger eddies is found to be ˜ 75 pc in both runs. In order to check the simulations against observations, we monitored the OVI and HI column densities within a superbubble created by the explosions of 19 SNe having masses and velocities of the stars that exploded in vicinity of the Sun generating the Local Bubble. The model reproduces the FUSE absorption measurements towards 25 white dwarfs of the OVI column density as function of distance and of N(HI). In particular for lines of sight with lengths smaller than 120 pc it is found that there is no correlation between N(OVI) and N(HI).
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2017-11-01
In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.
Wind farm turbulence impacts on general aviation airports in Kansas.
2014-01-01
Wind turbines and wind farms have become popular in the State of Kansas. Some general aviation pilots have expressed a concern about the : turbulence that the spinning blades are creating. If a wind farm is built near an airport, does this affect the...
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence.
Nicol, R.; Leonardis, E.; Chapman, S. C.; Foullon, C.
2011-12-01
Fluctuations associated with fully developed magnetohydrodynamic (MHD) turbulent flows in an infinite medium are characterized by non-Gaussian statistics which are scale invariant; this implies power law power spectra and multiscaling for the Generalized Structure Functions (GSFs). Given an observable f(r,t) and assuming statistical stationary, the p'th order moment of the GSF of the fluctuating differences scales as Lzeta(p), where L is the observation scale and ζ (p) are the scaling exponents. For turbulence in a system that is of finite size, or that is not fully developed, the statistical property of scale invariance is replaced by a generalized scale invariance, or extended self- similarity (ESS), for which the various moments of the GSF have a power-law dependence on an initially unknown functions, G, such that Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett. 103, 241101 (2009); S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)
Constraining MHD Disk-Winds with X-ray Absorbers
Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.
2014-01-01
From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.
3-D Wind and Turbulence Measurement System for UAV Project
National Aeronautics and Space Administration — In situ wind and turbulence measurements play a key role in the support and validation of Earth science missions using spaced-based technology. NASA has been using...
Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær
2014-01-01
In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics....
Energy Technology Data Exchange (ETDEWEB)
Alfyorov, V.I.; Rudakova, A.P.; Rukavets, V.P.; Shcherbakov, G.I. [Central Aerohydrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)
1995-12-31
One of the main weaknesses of available MHD gas acceleration wind tunnels which restricts their application for simulating vehicle re-entry flights and reproducing scramjet combustion chamber conditions is a relatively low static pressure in the channel (P{approximately}0.1 to 0.2 Atm). The possibility of increasing this pressure and the influence of the increased pressure on the MHD-accelerator characteristics are the subject of the present paper. It is shown that the main challenge is the necessity of increasing the total Lorentz force proportionally to the channel gas density at electrode current density not resulting in heat and electrical breakdown and the development of the side walls and interelectrode insulators designed for higher heat fluxes, q {approximately} 5 to 10 kw/cm{sup 2}. Some possible wall design versions are suggested. The influence of increased pressure is investigated using the Faraday - type MED channel at static pressures in the MHD channel from 0.2 to 1.0 Atm and total accelerating current I = 300 to 1,100 Amps when B=2.5T. Forty five electrodes are used in the MHD channel at maximum current density of 50 A/cm{sup 2}. The channel flow is calculated by applying the model of a gas in thermodynamic equilibrium. The influence of the increased pressure on electrodynamic (accelerator electrode voltages and currents, Hall voltage and current) and gasdynamic (distributions of static pressure, temperature, velocity, Mach numbers, etc., along the channel length) characteristics is evaluated. Some recommendations on the development of MHD channels for hypersonic wind tunnels designed for high pressure are suggested.
Model of wind shear conditional on turbulence and its impact on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.
2015-01-01
fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...
Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars
Sathe, A.R.
2012-01-01
Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be
Improving Lidar Turbulence Estimates for Wind Energy
Energy Technology Data Exchange (ETDEWEB)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.
Reuter, K.; Jenko, F.; Forest, C. B.; Bayliss, R. A.
2008-08-01
A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported. It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86 processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases ( 1500
Elmegreen, Bruce G.
1999-01-01
Two dimensional compressible magneto-hydrodynamical (MHD) simulations run for 20 crossing times on a 800x640 grid with two stable thermal states show persistent hierarchical density structures and Kolmogorov turbulent motions in the interaction zone between incoming non-linear Alfven waves. These structures and motions are similar to what are commonly observed in weakly self-gravitating interstellar clouds, suggesting that these clouds get their fractal structures from non-linear magnetic wav...
MHD effects of the solar wind flow around planets
Directory of Open Access Journals (Sweden)
H. K. Biernat
2000-01-01
Full Text Available The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc., the boundary conditions at the magnetopause (low/high magnetic shear, and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.
Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid
Rumple, Christopher; Welch, Matthew; Naughton, Jonathan
2017-11-01
The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.
Directory of Open Access Journals (Sweden)
T. R. Sun
2012-08-01
Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.
A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus
DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.
1996-01-01
A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.
3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges
Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.
2017-12-01
WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.
Flow Structure and Turbulence in Wind Farms
Stevens, Richard Johannes Antonius Maria; Meneveau, Charles
2017-01-01
Similar to other renewable energy sources, wind energy is characterized by a low power density. Hence, for wind energy to make considerable contributions to the world's overall energy supply, large wind farms (on- and offshore) consisting of arrays of ever larger wind turbines are being envisioned
Atmospheric turbulence affects wind turbine nacelle transfer functions
Directory of Open Access Journals (Sweden)
C. M. St. Martin
2017-06-01
Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence
Hirai, Kenichiro; Katoh, Yuto; Terada, Naoki; Kawai, Soshi
2018-02-01
Magnetic turbulence in accretion disks under ideal magnetohydrodynamic (MHD) conditions is expected to be driven by the magneto-rotational instability (MRI) followed by secondary parasitic instabilities. We develop a three-dimensional ideal MHD code that can accurately resolve turbulent structures, and carry out simulations with a net vertical magnetic field in a local shearing box disk model to investigate the role of parasitic instabilities in the formation process of magnetic turbulence. Our simulations reveal that a highly anisotropic Kelvin–Helmholtz (K–H) mode parasitic instability evolves just before the first peak in turbulent stress and then breaks large-scale shear flows created by MRI. The wavenumber of the enhanced parasitic instability is larger than the theoretical estimate, because the shear flow layers sometimes become thinner than those assumed in the linear analysis. We also find that interaction between antiparallel vortices caused by the K–H mode parasitic instability induces small-scale waves that break the shear flows. On the other hand, at repeated peaks in the nonlinear phase, anisotropic wavenumber spectra are observed only in the small wavenumber region and isotropic waves dominate at large wavenumbers unlike for the first peak. Restructured channel flows due to MRI at the peaks in nonlinear phase seem to be collapsed by the advection of small-scale shear structures into the restructured flow and resultant mixing.
Adaptive control algorithm for improving power capture of wind turbines in turbulent winds
DEFF Research Database (Denmark)
Diaz-Guerra, Lluis; Adegas, Fabiano Daher; Stoustrup, Jakob
2012-01-01
, the complex and time-varying aerodynamics a WT face due to turbulent winds make their determination a hard task. The selected constant parameters may maximize energy for a particular, but not all, wind regime conditions. Adaptivity can modify the controller to increase power capture under variable wind...
Precision Electron Density Measurements in the SSX MHD Wind Tunnel
Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.
2017-10-01
We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.
Turbulence Driven by Common Non-stationary Weak Winds
Mahrt, L.
2015-12-01
Complications with analysis of turbulence in common non-stationary weak-wind conditions are briefly surveyed. The behavior of turbulent transport in the weak-wind stably stratified boundary layer is then examined in terms of the non-stationarity of the wind field using measurements from three field programs with towers ranging from 12 to 20 m and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and small non-stationary submeso motions are studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The relationship between the heat flux, wind speed and stratification is investigated. Weak wind conditions include frequent vertical convergence of the heat flux and implied temperature advection.
Turbulence and turbulence-generated structural loading in wind turbine clusters
Energy Technology Data Exchange (ETDEWEB)
Frandsen, Sten
2007-01-15
Turbulence, in terms of standard deviation of wind speed fluctuations, and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to 'wind farm flow'. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence and horizontal flow-shear also influence the dynamic response and thus fatigue loading. However, these parameters are typically negatively or positively correlated with the standard deviation of wind speed fluctuations, which therefore can, if need be, represent these other variables. Thus, models for spatially averaged turbulence intensity inside the wind farm and direct-wake turbulence intensity are being devised and a method to combine the different load situations is proposed. The combination of the load cases implies a weighting method involving the slope of the considered material's Woehler curve. In the context, this is novel and necessary to avoid excessive safety for fatigue estimation of the structure's steel components, and non-conservatism for fibreglass components. The proposed model offers significant reductions in computational efforts in the design process. The status for the implementation of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms are discussed. (au)
Wind Turbine Power Curves Incorporating Turbulence Intensity
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
2014-01-01
The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...
Sahraoui, Fouad; Goldstein, Melvyn L.
2010-01-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges
DEFF Research Database (Denmark)
Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas
2017-01-01
WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated ...
Lidar Turbulence Measurements for Wind Energy
DEFF Research Database (Denmark)
Mann, Jakob; Sathe, Ameya; Gottschall, Julia
2012-01-01
Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averaging...
Lidar Turbulence Measurements for Wind Energy
DEFF Research Database (Denmark)
Mann, Jakob; Sathe, Ameya; Gottschall, Julia
2012-01-01
Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averagi...
Response of wind shear warning systems to turbulence with implication of nuisance alerts
Bowles, Roland L.
1988-01-01
The objective was to predict the inherent turbulence response characteristics of candidate wind shear warning system concepts and to assess the potential for nuisance alerts. Information on the detection system and associated signal processing, physical and mathematical models, wind shear factor root mean square turbulence response and the standard deviation of the wind shear factor due to turbulence is given in vugraph form.
Wind direction variability in Afternoon and Sunset Turbulence
Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry
2014-05-01
Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations
Effects of Freestream Turbulence in a Model Wind Turbine Wake
Directory of Open Access Journals (Sweden)
Yaqing Jin
2016-10-01
Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .
A New Look at Some Solar Wind Turbulence Puzzles
Roberts, Aaron
2006-01-01
Some aspects of solar wind turbulence have defied explanation. While it seems likely that the evolution of Alfvenicity and power spectra are largely explained by the shearing of an initial population of solar-generated Alfvenic fluctuations, the evolution of the anisotropies of the turbulence does not fit into the model so far. A two-component model, consisting of slab waves and quasi-two-dimensional fluctuations, offers some ideas, but does not account for the turning of both wave-vector-space power anisotropies and minimum variance directions in the fluctuating vectors as the Parker spiral turns. We will show observations that indicate that the minimum variance evolution is likely not due to traditional turbulence mechanisms, and offer arguments that the idea of two-component turbulence is at best a local approximation that is of little help in explaining the evolution of the fluctuations. Finally, time-permitting, we will discuss some observations that suggest that the low Alfvenicity of many regions of the solar wind in the inner heliosphere is not due to turbulent evolution, but rather to the existence of convected structures, including mini-clouds and other twisted flux tubes, that were formed with low Alfvenicity. There is still a role for turbulence in the above picture, but it is highly modified from the traditional views.
Kim, T. K.; Kryukov, I.; Pogorelov, N. V.; Elliott, H. A.; Zank, G. P.
2017-12-01
The outer heliosphere is an interesting region characterized by the interaction between the solar wind and the interstellar neutral atoms. Having accomplished the mission to Pluto in 2015 and currently on the way to the Kuiper Belt, the New Horizons spacecraft is following the footsteps of the two Voyager spacecraft that previously explored this region lying roughly beyond 30 AU from the Sun. We model the three-dimensional, time-dependent solar wind plasma flow to the outer heliosphere using our own software Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which, in addition to the thermal solar wind plasma, takes into account charge exchange of the solar wind protons with interstellar neutral atoms and treats nonthermal ions (i.e., pickup ions) born during this process as a separate fluid. Additionally, MS-FLUKSS allows us to model turbulence generated by pickup ions. We use MS-FLUKSS to investigate the evolution of plasma and turbulent fluctuations along the trajectory of the New Horizons spacecraft using plasma and turbulence parameters from OMNI data as time-dependent boundary conditions at 1 AU for the Reynolds-averaged MHD equations. We compare the model with in situ plasma observations by New Horizons, Voyager 2, and Ulysses. We also compare the model pickup proton parameters with those derived from the Ulysses-SWICS data.
Directory of Open Access Journals (Sweden)
Chengwu Li
2016-05-01
Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.
Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power
DEFF Research Database (Denmark)
Fischer, Andreas
Flow measurements were carried out in the wind tunnel of LM Wind Power A/S with a Dantec Streamline CTA system to characterize the flow turbulence. Besides the free tunnel flow with empty test section we also investigated the tunnel flow when two grids with different mesh size were introduced dow...
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
Mirror Instability in the Turbulent Solar Wind
Energy Technology Data Exchange (ETDEWEB)
Hellinger, Petr [Astronomical Institute, CAS, Bocni II/1401,CZ-14100 Prague (Czech Republic); Landi, Simone; Verdini, Andrea; Franci, Luca [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo, E-mail: petr.hellinger@asu.cas.cz [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)
2017-04-01
The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.
On Usage of Pareto curves to Select Wind Turbine Controller Tunings to the Wind Turbulence Level
DEFF Research Database (Denmark)
Odgaard, Peter Fogh
2015-01-01
Model predictive control has in recently publications shown its potential for lowering of cost of energy of modern wind turbines. Pareto curves can be used to evaluate performance of these controllers with multiple conflicting objectives of power and fatigue loads. In this paper an approach...... to update an model predictive wind turbine controller tuning as the wind turbulence increases, as increased turbulence levels results in higher loads for the same controller tuning. In this paper the Pareto curves are computed using an industrial high fidelity aero-elastic model. Simulations show...
Analysis of turbulent wake behind a wind turbine
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær
2013-01-01
The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome......The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass...... ambient wind velocities (higher thrust coefficients), this trend may be improved due to the faster recovery of the wake and therefore closer values to the theoretical approach may be obtained. In addition, the assumption of self-similarity behavior of the mean velocity profile, when scaled with center...
A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines
Spera, David A.
1995-01-01
Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
Ostriker, Eve
Current studies of star and galaxy formation have concluded that energetic feedback from young stars and supernovae (SNe) is crucial, both for controlling observed interstellar medium (ISM) properties and star formation rates in the Milky Way and other galaxies, and for driving galactic winds that govern the baryon abundance in dark matter halos. However, in many numerical studies of the ISM, energy inputs have not been implemented self-consistently with the evolving rate of gravitational collapse to make stars, or have considered only isolated star-forming clouds without a realistic galactic environment (including sheared rotation and externally-originating SNe), or have not directly incorporated radiation, magnetic, and chemical effects that are important or even dominant. In models of galaxy formation and evolution in the cosmic context, galactic winds are indispensable but highly uncertain as the physics of superbubble evolution and radiation-gas interactions cannot be resolved. Our central objectives are (1) to address the above limitations of current models, developing self-consistent simulations of the multiphase ISM in disk galaxies that resolve both star formation and stellar feedback, covering the range of scales needed to connect star cluster formation to galactic superwind ejection, and the range of environments from dwarfs to ULIRGs; and (2) to analyze the detailed properties of the gas, magnetic field, radiation field, and star formation/SNe in our simulations, including dependencies on local galactic disk environment, and to connect intrinsic properties with observable diagnostics. The proposed project will employ the Athena code for numerical magneto-hydrodynamic (MHD) and radiation-hydrodynamic (RHD) simulations, using comprehensive physics modules that have been developed, tested, and demonstrated in sample simulations. We will consider local ``shearing box'' disk models with gas surface density Sigma = 2 - 10,000 Msun/pc^2, and a range of stellar
Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study
Directory of Open Access Journals (Sweden)
Leonardo P. Chamorro
2011-11-01
Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.
Interaction of turbulent length scales with wind turbine blades
Torres-Nieves, Sheilla N.
Understanding the effects of free-stream turbulence (FST) and surface roughness on the flow around wind turbine blades is imperative in the quest for higher wind turbine efficiency, specially under stall conditions. While many investigations have focused on the aerodynamic loads on wind turbine airfoils, there are no studies that examine the effects of free-stream turbulence and surface roughness on the velocity field around a wind turbine airfoil. Hence, the aim of this investigation is to study the influence of high levels of FST on the flow around smooth and rough surfaces with pressure gradients. Moreover, of great importance in this study is the examination of how the length scales of turbulence and surface roughness interact in the flow over wind turbine airfoils to affect flow separation. Particle Image Velocimetry measurements were performed to analyze the overall flow around a S809 wind turbine blade. Results indicate that when the flow is fully attached, free-stream turbulence significantly decreases aerodynamic efficiency by 82%, yielding to higher loads and fatigue on the blades. On the contrary, when the flow is separated, the effect is reversed and aerodynamic performance is slightly improved (i.e., by 5%) by the presence of the free-stream turbulence. Analysis of the mean flow over the suction surface shows that, under stall conditions, free-stream turbulence delays separation, and surface roughness advances separation. Interestingly, the highly non-linear interaction between free-stream turbulence and surface roughness results in the further advancement of separation. Of particular interest is the study of the region closer to the wall (i.e., the boundary layer), where the flow interacts with both the surface of the blade and the free-stream. Turbulent boundary layer experiments subject to an external favorable pressure gradient (FPG) were performed to study the influence of FST, surface roughness and external pressure gradient (present around the
Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels
International Nuclear Information System (INIS)
Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.
1995-01-01
The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant
Mirror Instability in the Turbulent Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.
2017-01-01
Roč. 838, č. 2 (2017), 158/1-158/7 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : instabilities * solar wind * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016
Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance
Directory of Open Access Journals (Sweden)
S. Yahaya
2004-11-01
Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.
Non-steady wind turbine response to daytime atmospheric turbulence
Nandi, Tarak N.; Herrig, Andreas; Brasseur, James G.
2017-03-01
Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue 'Wind energy in complex terrains'.
Detection of magnetic discontinuities in the dissipation regime of solar wind turbulence
Perri, S.; Goldstein, M. L.; Dorelli, J.; Sahraoui, F.
2012-12-01
Recent spacecraft observations of solar wind magnetic field fluctuations have shown the existence of a cascade of magnetic energy from the scale of the proton Larmor radius ρ_cp, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius ρ_ce, where electrons become demagnetized. This energy cascade has been conjectured to consist of highly oblique kinetic Alfvénic fluctuations (KAW) that are dissipated by proton and electron Landau damping. Analyzing the 450 vec/s resolution data from the STAFF search-coil magnetometer on Cluster, we report, for the first time, evidence for the existence in the solar wind of thin current sheets and discontinuities that exhibit spatial scales that range from the proton Larmor scale down to the electron Larmor scale. In the cases studied, the current sheets are very localized and have an extent between 20-200 km, size that is often close to both the proton Larmor radius and the proton inertial length. These isolated structures appear to be a manifestation of intermittency and may localize sites turbulent dissipation. Furthermore, we compare in-situ observations of thin current sheets and discontinuities in the solar wind at proton scales with results that come from two-dimensional Hall MHD turbulence simulations in the presence of a strong guide field. The initial condition in the simulations is a large scale flux rope structure which breaks down into smaller and smaller current sheets due to the turbulent energy transfer. The comparison shows good qualitative agreement between the properties of the structures observed in Cluster data and the properties of current sheets that arise in the simulations. Our results highlight two competing processes that contribute to the dissipation of solar wind turbulence when the plasma beta is of order unity; viz., kinetic (Landau) damping by protons and electrons and the general tendency of the cascade to form thin current sheets where reconnection and
Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae
Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.
2018-01-01
Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.
Turbulent Structure Under Short Fetch Wind Waves
2015-12-01
surface gravity waves. While it assumes a flat bottom, it is valid both inside and outside the surf zone (Guza and Thornton 1980). Early research, such...J., T. Crawford, J. Crescenti, T. Farrar, J. French , et al. 2007: The coupled boundary layers and air-sea transfer experiment in low winds (CBLAST...before reaching the deployment site ( ). Map created in Google Earth , October 12, 2015, http://www.google.com/ earth /. 30 Elevations around the
Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes
DEFF Research Database (Denmark)
Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels
2014-01-01
of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower-order models. The conclusion......A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations...... is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd....
Kosovic, B.; Bryan, G. H.; Haupt, S. E.
2012-12-01
Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine
Directory of Open Access Journals (Sweden)
V. A. Sergeev
2008-08-01
Full Text Available We performed global MHD simulations to investigate the magnetotail response to the solar wind directional changes (V_{z}-variations. These changes, although small, cause significant variations of the neutral sheet shape and location even in the near and middle tail regions. They display a complicated temporal response, in which ~60 to 80% of the final shift of the neutral sheet in Z direction occurs within first 10–15 min (less for faster solar wind, whereas a much longer time (exceeding half hour is required to reach a new equilibrium. The asymptotic equilibrium shape of the simulated neutral sheet is consistent with predictions of Tsyganenko-Fairfield (2004 empirical model. To visualize a physical origin of the north-south tail motion we compared the values of the total pressure in the northern and southern tail lobes and found a considerable difference (10–15% for only 6° change of the solar wind direction used in the simulation. That difference builds up during the passage of the solar wind directional discontinuity and is responsible for the vertical shift of the neutral sheet, although some pressure difference remains in the near tail even near the new equilibrium. Surprisingly, at a given tailward distance, the response was found to be first initiated in the tail center (the "leader effect", rather than near the flanks, which can be explained by the wave propagation in the tail, and which may have interesting implications for the substorm triggering studies. The present results have serious implications for the data-based modeling, as they place constraints on the accuracy of tail magnetic configurations to be derived for specific events using data of multi-spacecraft missions, e.g. such as THEMIS.
A Unified View of X-ray Absorbers in AGNs and XRBs with MHD Winds
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Behar, Ehud; Contopoulos, John
2016-01-01
The presence of UV and X-ray absorbers (aka. warm absorbers or WAs) has been long known for decades from extensive spectroscopic studies across diverse AGN populations such as nearby Seyfert galaxies and distant quasars. Furthermore, another class of seemingly distinct type of absorbers, ultra-fast outflows or UFOs, is becoming increasingly known today. Nonetheless, a physical identification of such absorbers, such as geometrical property and physical conditions, is very elusive to date despite the recent state-of-the-art observations. We develop a coherent scenario in which the detected absorbers are driven primarily (if not exclusively) by the action of global magnetic fields originating from a black hole accretion disk. In the context of MHD disk-wind of density profile of n~1/r, it is found that the properties of the observed WAs/UFOs are successfully described assuming a characteristic SED. As a case study, we analyze PG1211+143 and GRO J1655-40 to demonstrate that our wind model can systematically unify apparently diverse absorbers in both AGNs and XRBs in terms of explaining their global behavior as well as individual spectral lines.
Ionospheric energy input as a function of solar wind parameters: global MHD simulation results
Directory of Open Access Journals (Sweden)
M. Palmroth
2004-01-01
Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation. Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms
Ionospheric energy input as a function of solar wind parameters: global MHD simulation results
Directory of Open Access Journals (Sweden)
M. Palmroth
2004-01-01
Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation.
Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms
Adaptive control algorithm for improving power capture of wind turbines in turbulent winds
Diaz-Guerra, Lluis; Adegas, Fabiano Daher; Stoustrup, Jakob; Monros, Miriam
2012-01-01
The standard wind turbine (WT) control law modifies the torque applied to the generator as a quadratic function of the generator speed (K!2) while blades are positioned at some optimal pitch angle (). The value of K and should be properly selected such that energy capture is increased. In practice, the complex and time-varying aerodynamics a WT face due to turbulent winds make their determination a hard task. The selected constant parameters may maximize energy for a particular, but not all, ...
Large Eddy Simulation of Turbulent Flows in Wind Energy
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak
Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number......This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... volume method. The study is followed by a detailed investigation of the Sub-Grid Scale (SGS) modeling. New SGS models are implemented into the computing code, and the effect of SGS models are examined for different applications. Fully developed boundary layer flows are investigated at low and high...
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Division of Mechanical Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki, E-mail: kunugi@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku 615-8540, Kyoto (Japan)
2016-11-01
Highlights: • We show the applicability to predict the heat transfer imposed on a uniform wall-normal magnetic field by means of the zero-equation heat transfer model. • Quasi-theoretical turbulent Prandtl numbers with various molecular Prandtl number fluids were obtained. • Improvements of the prediction accuracy in turbulent kinetic energy and turbulent dissipation rate under the magnetic fields were accomplished. - Abstract: Zero-equation heat transfer models based on the constant turbulent Prandtl number are evaluated using direct numerical simulation (DNS) data for fully developed channel flows imposed on a uniform wall-normal magnetic field. Quasi-theoretical turbulent Prandtl numbers are estimated by DNS data of various molecular Prandtl number fluids. From the viewpoint of highly-accurate magneto-hydrodynamic (MHD) heat transfer prediction, the parameters of the turbulent eddy viscosity of the k–É› model are optimized under the magnetic fields. Consequently, we use the zero-equation model based on a constant turbulent Prandtl number to demonstrate MHD heat transfer, and show the applicability of using this model to predict the heat transfer.
Non-steady wind turbine response to daytime atmospheric turbulence.
Nandi, Tarak N; Herrig, Andreas; Brasseur, James G
2017-04-13
Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
The influence of turbulence on the aero-elastic instability of wind turbines
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R.K.
2014-01-01
calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...... turbine shifts from a stable state into an instable state, is determined in different cases. Results show that turbulence intensity has significant influence on the aeroelastic stability of high-performance wind turbines operating close to stall, and the stability of the wind turbine might be changed due...
Intermittent structures at ion scales in the turbulent solar wind
Perrone, Denise; Alexandrova, Olga; Lion, Sonny; Roberts, Owen W.; Maksimovic, Milan; Escoubet, Philippe C.; Zouganelis, Yannis
2017-04-01
Understanding the physical mechanisms of dissipation, and the related heating, in turbulent collisionless plasmas (such as the solar wind) represents nowadays one of the key issues of plasma physics. Although the complex behavior of the solar wind has been matter of investigation of many years, some of the primary problems still remain a puzzle for the scientific community. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to current sheets and Alfvén vortex-like structures. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field and typical scales around ion characteristic scales. Moreover, some of them propagate in the plasma rest frame. Moreover, a further analysis on the ion velocity distribution shows a high variability; in particular, close to coherent structures the proton distribution function appears strongly deformed and far from the thermodynamic equilibrium. We discuss possible interpretation of the observed structures and their role in the heating process of the plasma.
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Improved observations of turbulence dissipation rates from wind profiling radars
Directory of Open Access Journals (Sweden)
K. McCaffrey
2017-07-01
Full Text Available Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiple post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. The optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well (R2 = 0. 54 and 0. 41 with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.
Effects of normal and extreme turbulence spectral parameters on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob
2017-01-01
Loads simulations as performed to obtain design loads on wind turbines, requires wind turbulence as an input, characterized by parameters associated with the turbulence length scale, dissipation and anisotropy. The effect of variation in these turbulence spectral parameters on the magnitude...... the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...
Model for vortex turbulence with discontinuities in the solar wind
Directory of Open Access Journals (Sweden)
O. P. Verkhoglyadova
2003-01-01
Full Text Available A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling.
The influence of wind speed on surface layer stability and turbulent ...
Indian Academy of Sciences (India)
wind regime (Mahrt et al. ... Influence of wind speed on surface layer stability and turbulent fluxes. 1401. Table 1. Specifications of the eddy ..... different soil and vegetation properties and other regional climatic factors. Earlier, it was found that.
The Skipheia Wind Measurement Station. Instrumentation, Wind Speed Profiles and Turbulence Spectra
Energy Technology Data Exchange (ETDEWEB)
Aasen, S.E.
1995-10-01
This thesis describes the design of a measurement station for turbulent wind and presents results from an analysis of the collected data. The station is located at Skipheia near the south-west end of Froeya, an island off the coast of Mid-Norway. The station is unique for studies of turbulent winds because of the large numbers of sensors, which are located at various heights above ground up to 100 m, a sampling rate of 0.85 Hz and storage of the complete time series. The frequency of lightning and atmospheric discharges to the masts are quite high and much effort has gone into minimizing the damage caused by lightning activity. A major part of the thesis deals with data analysis and modelling. There are detailed discussions on the various types of wind sensors and their calibration, the data acquisition system and operating experiences with it, the database, data quality control, the wind speed profile and turbulence. 40 refs., 78 figs., 17 tabs.
Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.
Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.
2017-12-01
Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular
International Nuclear Information System (INIS)
Roux, A.
1989-01-01
The interaction between the supersonic and super-Alfvenic solar wind plasma and the Earth's magnetic field leads to the formation of critical layers, such as the bow shock, the magnetopause, the polar cusp, and the inner and outer edge of the plasmasheet. The mean free path between binary colisions being much larger than the transverse scale of these layers, plasma turbulence must ensure the thermalization, the magnetic diffusion, the dissipation within these critical layers. We suggest the existence of small scale, presumably 2D structures, developing within these thin layers. The unambiguous characterization of these small-scale structures is, however, beyond the capabilities of existing spacecraft, which cannot spatially resolve them, nor disentangle spatial/temporal variations. We present a new mission concept: a cluster of four relatively simple spacecraft, which will make it possible (i) to disentangle spatial from temporal variations, (ii) to evaluate, by finite differences between spacecraft measurements, the gradients, divergences, curls of MHD parameters, and )iii) to characterize small-scale structures, via inter-spacecraft correlations. (author). 10 refs.; 10 figs
Effect of atmospheric turbulence on wind turbine wakes: An LES study
Wu, Y. T.; Porté-Agel, F.
2012-04-01
A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi
2017-06-12
Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.
Coastal wind in the transition from turbulence to mesoscale
Champagne-Philippe, MichèLe
1989-06-01
During the second survey of the Travaux d'Océanographie Spatiale: Capteurs actifs dans l'Atlantique Nord-Est (TOSCANE T) experiment (February 14 to April 17, 1985), seven wind masts were operated on the shore of the "Baie d'Audierne." Distances between them ranged from 1.5 to 13.7 km, and the data were sampled at 3 s. An important portion of the data was recorded under severe weather conditions. Results from 27 cases of wind blowing from the sea, which corresponded to synoptically stationary wind regimes, show that for both horizontal components the spectral energy in the transition region between mesoscale and Kolmogorov turbulence takes the shape of a well-marked dip when weather types are stable or slightly unstable. But, in more convective cases the dip disappears and the transition region becomes almost horizontal; spectral energy density follows an n-1 law (where n is equal to frequency) until the Kolmogorov region is reached. Coherences and cross correlations between masts show that in the 6-s to 1-hour period range, only mesoscale fluctuations are coherent. Turbulent fluctuations are not correlated for the separation distances of the masts. Under synoptically steady or slightly unstable conditions, such single-point measurements could reliably be time-averaged for use in satellite wind sensor calibration. In more convective conditions, especially for the ubiquitous open mesoscale cells found over mid-latitude oceans in cold air advections, interpretation problems might occur because mesoscale events, as time-averaged from coastal masts, buoys, or ships, could be different from those spatially integrated in the footprint of a satellite sensor. In these cases, some relationship must be used to relate single-point averaging times to the area illuminated by the satellite. To do so, Taylor's hypothesis is commonly extended to the mesoscale; but, the present data show that such an extension cannot be made under usual actual conditions because of the structure of
Solar Wind Turbulence at Sub-Ion and Electron Scales
Alexandrova, O.; Lacombe, C.; Matteini, L.; Zaslavsky, A.; Orel, I.
2017-12-01
We study magnetic fluctuations at sub-ion scales and down to sub-electron scales (from 1 to 200Hz) using two complementary approaches: (i) a statistical study of the turbulent spectra of the different field components in the reference frame based on the quasi-local mean field B and velocity V; (ii) a detailed analysis of magnetic waveforms in the same reference frame. For this statistical study, we consider 93 10-minute intervals of Cluster/STAFF measurements. We find that the fluctuations are non-gyrotropic at a given frequency f, a property already observed at larger scales. This non-gyrotropy provides indications on the angular distribution of the wave vectors k: at f> k||, mainly in the fast wind; at f>10Hz, the k are more isotropic. We then consider the magnetic compressibility of the fluctuations: it increases with f and at electron scales the fluctuations become isotropic. From 1 to 20Hz, there is a strong correlation between the observed compressibility and the one expected for the kinetic Alfven waves (KAWs), which only depends on the total plasma beta. For f>20Hz, the observed compressibility is larger than the one expected for classical KAWs, and it is stronger in the slow wind: this could be an indication of the presence of a slow-ion acoustic mode of fluctuations, which is more compressive and is favoured by the larger values of the electron to proton temperature ratio generally observed in the slow wind. For the analysis of the magnetic waveforms, we use burst mode intervals in the solar wind and in the Earth's magnetosheath during the Cluster Guest Investigator campaign in 2015, when C3 and C4 were at 7km apart only. Time-frequency analysis using Morlet wavelets shows that the turbulence is non-homogeneous and filled in with intermittent events. A detailed study of magnetic fluctuations on C3 and C4 shows signatures of electron-scale magnetic vortices, but with strong compressible components, in agreement with our statistical study discussed above
Improving Lidar Turbulence Estimates for Wind Energy: Preprint
Energy Technology Data Exchange (ETDEWEB)
Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew; Klein, Petra
2016-10-01
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.
International Nuclear Information System (INIS)
Pendergast, M.M.; Gilhousen, D.B.
1980-01-01
The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours
Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri
2018-03-01
We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Vech, Daniel; Chen, Christopher H K
2016-01-01
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.
SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.
2013-01-01
Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW
Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence
Gary, S. P.
2015-12-01
The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.
Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise
Gliebe, P. R.
1980-01-01
An analytical study of the effects of wind tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80-foot wind tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise, refined and extended to include first-order effects of inlet turbulence anisotropy, was employed to carry out a parametric study of the effects of fan size, blade number, and operating line for outdoor test stand, NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels, they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.
Wind farm turbulence impacts on general aviation airports in Kansas : [technical summary].
2014-01-01
Wind turbines and wind farms have become popular in the State of Kansas. Some general aviation : pilots have expressed a concern about the turbulence that the spinning blades are creating. If a : wind farm is built near an airport, does this affect t...
Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow
Rolin, Vincent; Porté-Agel, Fernando
2015-04-01
Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.
Accounting for the effect of turbulence on wind turbine power curves
DEFF Research Database (Denmark)
Clifton, A.; Wagner, Rozenn
2014-01-01
Wind turbines require methods to predict the power produced as inflow conditions change. We compare the standard method of binning with a turbulence renormalization method and a machine learning approach using a data set derived from simulations. The method of binning is unable to cope with changes...... in turbulence; the turbulence renormalization method cannot account for changes in shear other than by using the the equivalent wind speed, which is derived from wind speed data at multiple heights in the rotor disk. The machine learning method is best able to predict the power as conditions change, and could...
Energy Technology Data Exchange (ETDEWEB)
Larsen, G.C.
1998-09-01
The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.
TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES
Energy Technology Data Exchange (ETDEWEB)
DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Laboratory, Newark, DE 19711 (United States); Rice, D. R. [Northwestern University, 633 Clark St., Evanston, IL 60208 (United States)
2015-10-20
By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysis and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.
International Nuclear Information System (INIS)
Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien
2001-05-01
This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number
Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.
2018-01-01
We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.
An Error-Reduction Algorithm to Improve Lidar Turbulence Estimates for Wind Energy
Energy Technology Data Exchange (ETDEWEB)
Newman, Jennifer F.; Clifton, Andrew
2016-08-01
Currently, cup anemometers on meteorological (met) towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability. However, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install met towers at potential sites. As a result, remote sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. While lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence with lidars. This uncertainty in lidar turbulence measurements is one of the key roadblocks that must be overcome in order to replace met towers with lidars for wind energy applications. In this talk, a model for reducing errors in lidar turbulence estimates is presented. Techniques for reducing errors from instrument noise, volume averaging, and variance contamination are combined in the model to produce a corrected value of the turbulence intensity (TI), a commonly used parameter in wind energy. In the next step of the model, machine learning techniques are used to further decrease the error in lidar TI estimates.
Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds
International Nuclear Information System (INIS)
Nielsen, M; Larsen, G C; Hansen, K S
2007-01-01
Turbulence time series are needed for wind turbine load simulation. The multivariate Fourier simulation method often used for this purpose is extended for inhomogeneous and non-stationary processes of general probability distribution. This includes optional conditional simulation matching simulated series to field measurements at selected points. A probability model for the application of turbine wind loads is discussed, and finally the technique for non-stationary processes is illustrated by turbulence simulation during a front passage
A new low-turbulence wind tunnel for animal and small vehicle flight experiments
Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David
2017-01-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a...
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan
2016-01-01
the insertion point. The presence of the wind turbine and its wake is found to have insignificant effect on upstream turbulence. Finally, the mean velocity profiles in the wake are found to be in good agreement with both lidar measurements and CFD simulations. (C) 2016 Elsevier Ltd. All rights reserved....
Heating of the Solar Wind Beyond 1 AU by Turbulent Dissipation
Smith, Charles
The deposition of energy into the solar wind is argued to result from the dissipation of low frequency magnetohydrodynamic turbulence via kinetic processes at spatial scales comparable to the ion gyroradius. We present a theory for heating the solar wind that relies on uid processes such as wind shear inside about 10 AU and the pickup of interstellar ions and the associated generation of waves and turbulence beyond the ionization cavity to serve as energy sources for the heating. We compare the predictions of this theory to the observed magnetic turbulence levels and solar wind temperature measured by Voyager 2 beyond 1 AU. The contribution to the heating of the solar wind provided by interstellar pickup ions is a key feature of this theory and is chie y responsible for the excellent agreement between theory and observation that is seen beyond 10 AU.
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
Ma, Y. J.; Nagy, A. F.; Russell, C. T.; Najib, D.; Toth, G.
2012-09-01
We study the solar wind interaction with Venus, using a new advanced multi-fluid MHD model that has been developed recently. The model is similar to the numerical model that was successfully applied to Mars (Najib et al., 2011). Mass densities, velocities and pressures of the protons and three important ionosphere ion species (O+, O2+ and CO2+) are self-consistently calculated by solving the individual coupled continuity, momentum and energy equations. The various chemical reactions and ion-neutral collision processes are considered in the model. The simulation domain covers the region from 100 km altitude above the surface up to 16 RV in the tail. An adaptive spherical grid structure is constructed with radial resolution of about 10 km in the lower ionosphere. The model is applied to both solar-maximum and solar-minimum conditions and model results are compared in detail with multi-species single fluid model results and VEX observations.
Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind
Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.
2010-12-01
A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)
Energy Technology Data Exchange (ETDEWEB)
Cohen, O. [Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, MA 01854 (United States)
2017-02-01
The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.
International Nuclear Information System (INIS)
Smith, Z.K.; Dryer, M.; Fillius, R.W.; Smith, E.J.; Wolfe, J.H.
1981-01-01
We examine the major changes in the solar wind before, during, and after the Pioneer 10 and 11 encounters with the Jovian magnetosphere during 1973 and 1974, respectively. In an earlier study, Smith et al. (1978) concluded that the Jovian magnetosphere was subjected to large-scale compression during at least three or four intervals during which it appeared that the spacecraft had reentered the solar wind or magnetosheath near 50 R/sub J/ after having first entered the magnetosphere near 100 R/sub J/. They based this suggestion on the observations of the sister spacecraft, which indicated--on the basis of a kinematic translation of corotating interaction regions (CIR's)--that these structures would be expected to arrive at Jupiter at the appropriate beginning of these three intervals. Our reexamination of this suggestion involved the numerical simulation of the multiple CIR evolutions from one spacecraft to the sister spacecraft. This approach, considered to be a major improvement, confirms the suggestion by Smith et al. (1978) that Jupiter's magnetosphere was compressed by interplanetary CIR's during three or four of these events. Our MHD simulation also suggests that Jupiter's magnetosphere reacts to solar wind rarefactions in the opposite way--by expanding. A previously unexplained pair of magnetopause crossings on the Pioneer 11 outbound pass may simply be due to a delayed reexpansion of Jupiter's magnetosphere from a compression that occurred during the inbound pass
Three-dimensional density and compressible magnetic structure in solar wind turbulence
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-03-01
The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.
Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind
Czech Academy of Sciences Publication Activity Database
Vandas, Marek; Odstrčil, Dušan; Watari, S.
2002-01-01
Roč. 107, A9 (2002), s. SSH2-1 - SSH2-11 ISSN 0148-0227 R&D Projects: GA AV ČR KSK3012103; GA ČR GA205/99/1712; GA AV ČR IAA3003003; GA AV ČR IBS1003006 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic cloud s * MHD simulations * interplanetary magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002
A new low-turbulence wind tunnel for animal and small vehicle flight experiments
Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David
2017-03-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.
A new low-turbulence wind tunnel for animal and small vehicle flight experiments.
Quinn, Daniel B; Watts, Anthony; Nagle, Tony; Lentink, David
2017-03-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s -1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s -1 . To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.
On the spread and decay of wind turbine wakes in ambient turbulence
Johnson, P. B.; Jonsson, C.; Achilleos, S.; Eames, I.
2014-12-01
The decay of the downstream wake of a wind turbine plays an important role in the performance of wind farms. The spread and decay of a wake depend both on wake meandering (advection of the wake as a whole) and wake diffusion (widening of the wake within its meandering frame of reference). Both of these effects depend strongly on the intensity of the ambient turbulence relative to the velocity deficit in the wake, and on the integral length scale of the turbulence relative to the wake width. Recent theory, which we review here, shows how intense large-scale turbulence can lead to a rapid x-2 decay in the time-averaged centreline velocity deficit, as compared to a x-1 decay for smaller scale turbulence, where x is distance downstream. We emphasise in this paper that common wind farm models do not predict this rapid decay. We present new experimental measurements of the velocity deficit downstream of a porous disc in relatively large-scale ambient turbulence which corroborate predictions of a x-2 decay, and we show theoretically that the commonly used k-epsilon model does not capture this effect. We further show that a commercial CFD package, configured to match our experiments and employing the k-epsilon model, fails to predict such rapid decay. We conclude that steady simulations of wind turbine wake dynamics are insufficient for informing wind farm layout optimisation.
On the spread and decay of wind turbine wakes in ambient turbulence
International Nuclear Information System (INIS)
Johnson, P B; Jonsson, C; Achilleos, S; Eames, I
2014-01-01
The decay of the downstream wake of a wind turbine plays an important role in the performance of wind farms. The spread and decay of a wake depend both on wake meandering (advection of the wake as a whole) and wake diffusion (widening of the wake within its meandering frame of reference). Both of these effects depend strongly on the intensity of the ambient turbulence relative to the velocity deficit in the wake, and on the integral length scale of the turbulence relative to the wake width. Recent theory, which we review here, shows how intense large-scale turbulence can lead to a rapid x −2 decay in the time-averaged centreline velocity deficit, as compared to a x −1 decay for smaller scale turbulence, where x is distance downstream. We emphasise in this paper that common wind farm models do not predict this rapid decay. We present new experimental measurements of the velocity deficit downstream of a porous disc in relatively large-scale ambient turbulence which corroborate predictions of a x −2 decay, and we show theoretically that the commonly used k-ε model does not capture this effect. We further show that a commercial CFD package, configured to match our experiments and employing the k-ε model, fails to predict such rapid decay. We conclude that steady simulations of wind turbine wake dynamics are insufficient for informing wind farm layout optimisation
Directory of Open Access Journals (Sweden)
K. V. S. Namboodiri
2014-01-01
Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.
Directory of Open Access Journals (Sweden)
Lukas Pauscher
2018-01-01
Full Text Available This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint modelling was used to model the area of effect and to relate the observed turbulence characteristics to the ruggedness and roughness within the estimated fetch area. Among the investigated turbulence quantities, the normalised standard deviation of the wind velocity along the streamlines showed the highest correlation with the effective roughness and ruggedness within the footprint followed by the normalised friction velocity and normalised standard deviation of the vertical wind speed. A differentiation between the effects of roughness and ruggedness was not possible, as forest cover and complex orography are highly correlated at the investigated site. An analysis of turbulence intensity by wind speed indicated a strong influence of atmospheric stability. Stable conditions lead to an overall reduction in turbulence intensity for a wind speed range between approx. 6–12 m s−1 when compared to neutral stratification. The variance of the horizontal wind speed strongly varied over the height range which is typical for a modern wind turbine and was in the order of the differences between different standard turbulence classes for wind turbines.
Dynamics of transitional region of the solar wind turbulence with heliocentric distance
Galinsky, V.; Shevchenko, V. I.
2010-12-01
Scale-separation model of wave-particle interaction in divergent solar wind was applied to study the transitional region of solar wind turbulence [1]. We concentrated on area from around the end of the inertial range to the region where proton cyclotron dumping is important. Our goal is to investigate how the transitional region changes due to change of the solar wind plasma parameters (and most important due to the change of local cyclotron frequency) with heliocentric distance. Previously we discovered that shell distribution developed in solar wind due to wave-particle interaction is becoming unstable as solar wind expands [2]. Waves that are generated by this instability modify the transitional region of turbulence. [1] Galinsky, V.L and V. I. Shevchenko, Phys. Rev. Letters, 85, 90, 2000. [2] Shevchenko V.I. et al., Phys. of Plasmas, 11, 4290, 2004.
Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas
International Nuclear Information System (INIS)
Dong, Yue
2014-01-01
This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling
Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations.
Carbone, V; Marino, R; Sorriso-Valvo, L; Noullez, A; Bruno, R
2009-08-07
Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvénic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Barthelmie, Rebecca J.; Jensen, Leo E.
2012-01-01
unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase. Power deficit is a function of ambient turbulence intensity. The level...
Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea
Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.
2015-12-01
The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass
Multi-fluid MHD simulation of the solar wind interaction with Venus
Nagy, A. F.; Najib, D.; Ma, Y.; Russell, C. T.; Toth, G.
2011-12-01
This paper reports on a new advanced multi-fluid MHD model that has recently been developed for Venus. The model is similar to the numerical model that was successfully applied to Mars (Najib et al., 2011). Mass densities, velocities and pressures of the protons and major ionosphere ion species (O+, O2+ and CO2+) are self-consistently calculated by solving the individual coupled continuity, momentum and energy equations. The various chemical reactions and ion-neutral collision processes are considered in the model. The simulation domain covers the region from 100 km altitude above the surface up to 16 RV in the tail. An adaptive spherical grid structure is constructed with radial resolution of about 10 km in the lower ionosphere. The model is applied to both solar-maximum and solar-minimum conditions and model results are compared in detail with multi-species single fluid model results.
Multi-fluid MHD Study of the Solar Wind Induced Plasma Escape from the Martian Atmosphere
Ma, Y.; Russell, C. T.; Nagy, A. F.; Toth, G.; Dong, C.; Bougher, S. W.
2013-12-01
In this study, the multi-fluid MHD model (Najib et al., 2011) is further improved to include an electron pressure equation to self-consistently calculate the electron temperature. The electron pressure equation included in the improved model can accurately calculate the electron temperature and the electron pressure force. The electron temperature is also needed to calculate rates of some electron temperature dependent chemical reactions such as dissociative recombination and electron impact ionization. So the improvement of the model leads to a more accurate evaluation of the ion density in the ionosphere and a more accurate description of the interaction process. Model results of a typical case with electron pressure equation included are compared in detail to an identical case without the electron pressure equation to identify the effect of the improved physics. The two cases will be examined to identify changes in the global interaction patterns. Electron temperature will also be compared for the two cases to identify regions where temperatures differs the most. The ion density profiles at different locations will be compared to identify the changes of plasma density due to changes of recombination rates and impact ionization rates caused by different electron temperatures. The calculated electron temperature profile will also be compared to the only available pre-MAVEN electron observations from the Viking Retarding Potential Analyzer (RPA) (Hansen et al., 1977). Based on model results, two-dimensional maps of the ion densities and fluxes are to be generated in the tail region at various distances to locate the intense region for plasma bulk escape. We will also plan to fly through the 3D MHD model results using planned MAVEN orbits to predict when and where the spacecraft will pass different plasma boundaries (such as the bow shock, MPB, and ionopause), and the typical range of the plasma parameters in different regions.
Modeling of 830 nm FSO Link Attenuation in Fog or Wind Turbulence
Czech Academy of Sciences Publication Activity Database
Pešek, J.; Fišer, Ondřej; Svoboda, Jaroslav; Schejbal, V.
2010-01-01
Roč. 19, č. 2 (2010), s. 237-241 ISSN 1210-2512 R&D Projects: GA ČR GA102/08/0851; GA MŠk OC09027 Institutional research plan: CEZ:AV0Z30420517 Keywords : Free space optics propagation * fog attenuation, * wind turbulence attenuation * turbulent energy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.503, year: 2010 http://www.radioeng.cz/fulltexts/2010/10_02_237_241.pdf
Osman, K T; Wan, M; Matthaeus, W H; Weygand, J M; Dasso, S
2011-10-14
The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind.
Jia, Xianzhe; Slavin, James; Poh, Gangkai; Toth, Gabor; Gombosi, Tamas
2016-04-01
As the innermost planet, Mercury arguably undergoes the most direct space weathering interactions due to its weak intrinsic magnetic field and its close proximity to the Sun. It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to intense magnetopause reconnection and the shielding effect of the induction currents generated at the conducting core, compete against each other in governing the large-scale structure of Mercury's magnetosphere. An outstanding question concerning Mercury's space weather is which of the two processes is more important. To address this question, we have developed a global MHD model in which Mercury's interior is electromagnetically coupled to the surrounding space environment. As demonstrated in Jia et al. (2015), the new modeling capability allows for self-consistently characterizing the dynamical response of the Mercury system to time-varying external conditions. To assess the relative importance of induction and magnetopause reconnection in controlling the magnetospheric configuration, especially under strong solar driving conditions, we have carried out multiple global simulations that adopt a wide range of solar wind dynamic pressure and IMF conditions. We find that, while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the solar wind pressure follows closely a power-law relationship with an index of ~ -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. This result suggests that for the range of solar wind conditions examined, the two competing processes, namely induction and reconnection, appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014) based on MESSENGER observations. We also find that the magnetic perturbations produced by the magnetospheric current systems
International Nuclear Information System (INIS)
Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun
2011-01-01
In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.
2011-01-01
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.
Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds
Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.
2013-04-01
We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.
Wijsen, N.; Poedts, S.; Pomoell, J.
2017-12-01
Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.
Tu, C.; Wang, X.; He, J.; Marsch, E.; Wang, L.
2013-12-01
The magnetic intermittent micro-structures (on time scales of 20-40s) in both fast and slow solar wind are studied by using plasma and field measurements from the WIND spacecraft. In the fast wind these structures are found to be composed of mostly rotational discontinuities (RDs) and rarely tangential current sheets (TCSs). The RDs do not show prominent plasma-parameter changes. Conversely, the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of the magnetic field magnitude. These results show that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to the TCSs found in fast wind. However in slow wind, magnetic intermittent micro-structures are found to consist of mainly magnetic field directional turnings (MFDTs, Tu & Marsch, Ann. Geophysicae, 9, 319,1991) and rarely tangential current sheets (TCSs). The MFDTs are characterized by: (1) clear variation of the field component in the L dimension of the LMN coordinate system using the MVA method; (2) at least one of B_M or B_N is near to zero, or the velocity component V_L is near to zero; (3) the magnetic magnitude does not have a clear change; (4) no significant temperature and density peaks. The TCSs found in slow wind are not associated with prominent temperature enhancements. The TCSs found in both fast and slow wind may be created by turbulence interactions. The heating effect of TCSs in slow wind is weaker because the turbulence level is lower. The origin of the RDs in fast wind and the MFDTs in slow wind will be a topic for future studies. MFDTs may be observed when crossing a magnetic helical micro-tube, which may be formed due to tearing mode instability and magnetic multi-x-point reconnection in the slow wind.
Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis
Laituri, Tony R.
1988-01-01
Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.
Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon
2017-11-01
The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.
Free-stream turbulence effects on the flow around an S809 wind turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)
2012-07-01
Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)
Relevant Criteria for Testing the Quality of Models for Turbulent Wind Speed Fluctuations
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, John Dalsgaard
2008-01-01
10% smaller than the IEC model for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3 s and 10 s preaveraging of wind speed data are relevant for megawatt......Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approximately...
DEFF Research Database (Denmark)
Gögmen, Tuhfe; Giebel, Gregor
2016-01-01
varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...
Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU
International Nuclear Information System (INIS)
Fraternale, F; Gallana, L; Iovieno, M; Tordella, D; Opher, M; Richardson, J D
2016-01-01
Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between −2.1 and −1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency. (invited comment)
Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie
Wang, H
2014-06-16
Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.
Wang, Xin; Tu, Chuanyi; He, Jiansen; Marsch, Eckart; Wang, Linghua
2013-08-01
The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These results confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Lazarov, Boyan Stefanov
2015-01-01
. A numerical study shows the application of the constrained turbulence method to load simulations on a 10MW wind turbine model, using two example lidar patterns – a 5-point pattern forming a square with a central point, and a circular one. Based on the results of this study, we assess the influence of applying...... the proposed method on the statistical uncertainty in wind turbine extreme and fatigue loads....
Pauscher, L.; Callies, D.; Klaas, T.; Foken, T.
2018-01-01
This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint modelling was used to model the area of effect a...
Simulation of shear and turbulence impact on wind turbine performance
DEFF Research Database (Denmark)
Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.
of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...
Directory of Open Access Journals (Sweden)
C. M. St. Martin
2016-11-01
Full Text Available Using detailed upwind and nacelle-based measurements from a General Electric (GE 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI as well as atmospheric stability parameters such as the bulk Richardson number (RB. We also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE National Wind Technology Center (NWTC. Similarly, power curves for different RB regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk.
Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.
2018-01-01
Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.
Wind reversals in turbulent Rayleigh-Bénard convection
Fontenele Araujo Junior, F.; Grossmann, Siegfried; Lohse, Detlef
2005-01-01
The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in turbulent Rayleigh-Be´nard convection is theoretically analyzed. The force and thermal balance on a single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose
Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind
Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.
2017-12-01
We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.
Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 812, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 R&D Projects: GA ČR GA15-10057S Grant - others:European Commission(XE) 284515 Institutional support: RVO:67985815 Keywords : instabilities * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015
Plasma turbulence and kinetic instabilities at ion scales in the expanding solar wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Verdini, A.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 811, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015 http://iopscience.iop.org/article/10.1088/2041-8205/811/2/L32/pdf
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140
The influence of wind speed on surface layer stability and turbulent ...
Indian Academy of Sciences (India)
The influence of wind speed on surface layer stability and turbulent fluxes over southern Indian peninsula station. M N Patil∗. , R T Waghmare, T Dharmaraj, G R Chinthalu,. Devendraa Siingh and G S Meena. Indian Institute of Tropical Meteorology, Dr Homi Bhabha Road, Pashan, Pune 411 008, India. ∗. Corresponding ...
Aly, Aly Mousaad
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.
Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer
DEFF Research Database (Denmark)
Mann, Jakob; Cariou, J.-P.; Courtney, Michael
2008-01-01
Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...
Timerman, David; Greene, David F; Urzay, Javier; Ackerman, Josef D
2014-12-06
In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind-stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
Irtaza, Hassan; Agarwal, Ashish
2018-02-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
Upper Meter Processes: Short Wind, Waves, Surface Flow and Turbulence
National Research Council Canada - National Science Library
Klinke, Jochen
2001-01-01
This work is an extension of the early works on measuring short wind waves that have been funded by ONR for seven years, During this seven-year period, we have collected the only available systematic...
Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim
2018-01-01
We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.
Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales
Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.
2006-01-01
The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.
Sahraoui, F.; Huang, S.
2017-12-01
Large surveys of power spectral density (PSD) of the magnetic fluctuations in the solar wind have reported different slopes distributions at MHD, sub-ion and sub-electron scales; the smaller the scale the broader the distribution. Several explanations of the variability the slopes at sub-ion scales have been proposed. Here, we present a new one that has been overlooked in the literature, which is based on the relative importance of the dispersive effects w.r.t. the Doppler shift due to the flow speed. We build a toy model based on a dispersion relation of a linear mode that matches at high frequency (ω ≳ ω ci) the Alfvén (resp. whistler) mode at high oblique (resp. quasi-parallel) propagation angles θ kB. Starting with double power-law spectrum of turbulence {k⊥}-1.66 in the inertial range and {k⊥}-2.8 at the sub-ion scales, the transformed spectrum (in frequency f) as it would be measured in the spacecraft frame shows a broad range of slopes at the sub-ion scales that depend both on the angle θ kB and the flow speed V. Varying θ kB in the range 10o-100o and V in the range 400-800 km/s, the resulting distribution of slopes at the sub-ion scales reproduces quite well the observed one in the solar wind. Fluctuations in the solar wind speed and the anisotropy of the turbulence may explain (or at least contribute to) the variability of the spectral slopes reported in the solar wind.
Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum
Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.
2016-06-01
Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Directory of Open Access Journals (Sweden)
J. F. Newman
2017-02-01
Full Text Available Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine
The influence of turbulence on the aero-elastic instability of wind turbines
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R.K.
2014-01-01
Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... aerodynamic damping. A 13-degree-of-freedom (13-DOF) wind turbine model is developed using Euler-Lagrange equations, which includes the couplings of the tower-blade-drivetrain vibration, the quasi-static aeroelasticity and a collective pitch controller. Numerical simulations are carried out using data...... turbine shifts from a stable state into an instable state, is determined in different cases. Results show that turbulence intensity has significant influence on the aeroelastic stability of high-performance wind turbines operating close to stall, and the stability of the wind turbine might be changed due...
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
Structural characterization of wind-sheared turbulent flow using self-organized mapping
Scott, Nicholas V.; Handler, Robert A.
2016-05-01
A nonlinear cluster analysis algorithm is used to characterize the spatial structure of a wind-sheared turbulent flow obtained from the direct numerical simulation (DNS) of the three-dimensional temperature and momentum fields. The application of self-organizing mapping to DNS data for data reduction is utilized because of the dimensional similitude in structure between DNS data and remotely sensed hyperspectral and multispectral data where the technique has been used extensively. For the three Reynolds numbers of 150, 180, and 220 used in the DNS, self-organized mapping is successful in the extraction of boundary layer streaky structures from the turbulent temperature and momentum fields. In addition, it preserves the cross-wind scale structure of the streaks exhibited in both fields which loosely scale with the inverse of the Reynolds number. Self-organizing mapping of the along wind component of the helicity density shows a layer of the turbulence field which is spotty suggesting significant direct coupling between the large and small-scale turbulent structures. The spatial correlation of the temperature and momentum fields allows for the possibility of the remote extrapolation of the momentum structure from thermal structure.
Yu, Kai; Dong, Changming; King, Gregory P.
2017-06-01
We investigate mesoscale turbulence (10-1000 km) in the ocean winds over the Kuroshio Extension (28°N-40°N, 140°E-180°E) using the QuikSCAT data set (November 1999 to October 2009). We calculate the second (Djj) and third-order structure functions (Djjj) and the spatial variance (Vj) as a function of scale r (j=L,T denotes, respectively, the longitudinal (divergent) and transverse (vortical) component). The most interesting results of the analysis follow. Although both Vj>(r>) and Djj>(r>) measure the turbulent kinetic energy (TKE), we find that Vj>(r>) is the more robust measure. The spatial variance density (dVj/dr) has a broad peak near 450 km (close to the midlatitude Rossby radius of deformation). On interannual time scales, TKE correlates well with the El Niño 3.4 index. According to turbulence theory, the kinetic energy cascades downscale (upscale) if DLLL>(r>) (also skewness SL=DLLL/DLL3/2) is negative (positive). Our results for the Kuroshio Extension are consistent with a downscale cascade (indicating convergence dominates). Furthermore, classical turbulence theory predicts that SL=-0.3 and independent of r; however, we find SL varies strongly with r, from -4 at small scales to -0.3 at large scales. This nonclassical behavior implies strong-scale interaction, which we attribute to the rapid, and sometimes explosive, growth of storms in the region through baroclinic instability. Finally, we find that ST (a measure of cyclonic/anticyclonic asymmetry) is positive (cyclonic) and also varies strongly with r, from 4 at small scales to 0.5 at large scales. New turbulence models are needed to explain these results, and that will benefit Weather Prediction and climate modeling.Plain Language SummaryThe turbulent winds near the ocean surface give rise to air-sea heat and momentum exchange. The turbulence is caused by convective processes - processes generated at weather fronts, in squalls, tropical disturbances and extra-tropical cyclones. In order to improve
Gliebe, P. R.; Kerschen, E. J.
1979-01-01
The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.
TSALLIS STATISTICS AS A TOOL FOR STUDYING INTERSTELLAR TURBULENCE
International Nuclear Information System (INIS)
Esquivel, A.; Lazarian, A.
2010-01-01
We used magnetohydrodynamic (MHD) simulations of interstellar turbulence to study the probability distribution functions (PDFs) of increments of density, velocity, and magnetic field. We found that the PDFs are well described by a Tsallis distribution, following the same general trends found in solar wind and electron MHD studies. We found that the PDFs of density are very different in subsonic and supersonic turbulence. In order to extend this work to ISM observations, we studied maps of column density obtained from three-dimensional MHD simulations. From the column density maps, we found the parameters that fit to Tsallis distributions and demonstrated that these parameters vary with the sonic and Alfven Mach numbers of turbulence. This opens avenues for using Tsallis distributions to study the dynamical and perhaps magnetic states of interstellar gas.
The Dissipation of Solar Wind Turbulent Fluctuations at Electron Scales
E. Camporeale (Enrico); D. Burgess
2011-01-01
textabstractWe present two-dimensional fully kinetic particle-in-cell simulations of decaying electromagnetic fluctuations. The computational box is such that wavelengths ranging from electron to ion gyroradii are resolved. The parameters used are realistic for the solar wind, and the
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Imaging the Breakup of Coronal Structure and the Onset of Turbulence in the Solar Wind
DeForest, C. E.
2016-12-01
The slow solar wind is dominated by gusty, variable structure that has been associated by many authors with turbulence. The slow wind is thought to arise from the vicinity of the coronal streamer belt, which is dominated by quasi-stationary, highly anisotropic, radially aligned density structure shaped by the solar magnetic field. Photometric analysis of the top of the streamers, in the range of apparent distances between roughly 4° and 24° from the Sun, reveals the ultimate fate of the streamers. In the range above 10° from the Sun, where the transition from low-plasma-beta to high-plasma-beta is thought to occur, we have imaged the fading and breakup of quiescent coronal streamers, pseudostreamers, and/or rays (together, "Striae"), and the textural transition at large scales from smooth background flow with sporadic ejecta, to turbulent and variable flow. The result constrains and illuminates turbulent theories of solar wind evolution, and highlights the need for better imaging measurements in this critical transition zone between corona and solar wind - the final unexplored frontier of the heliosphere.
Preliminary proposal for the study of the turbulence of the wind the roofs of the buildings
International Nuclear Information System (INIS)
Fariñas Wong, Ernesto Yoel; Cabeza Fereira, Javier Enrique; Baracaldo, Hector; Fleck, Brian; Fernandez Bonilla, Alexeis
2017-01-01
The research is aimed at identifying the best safety conditions, efficiency for the use of renewable technologies in urban environments, anemometers of vanes and sonic are applied near the edge and at low height of the floor in the highest building of the INETC in order to know Wind behavior close to the edge as well as vertical wind potentialities and turbulent wind behavior. The data obtained from 3D sonic anemometers and weather vane shall be extrapolated to relate it to the data base of the Davis reference meteorological station, located in the undisturbed stream. The wind data will be linked to the effort and load regime that will be recorded at the same time on solar panels and their support structure, which will be done by means of extensive gauges metric. The meteorological data and the load stresses will be related to three-dimensional numerical simulations obtained by computational fluid mechanics numerical tests. (author)
The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade
Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano; Turbulence Group Collaboration
2012-11-01
In the present research, a 2-D wind turbine blade section based on the S809 airfoil was manufactured and tested at Johns Hopkins University in the Stanley Corrsin wind tunnel facility. A free stream velocity of 10 m/s produced a Reynolds number based on blade chord of 2.08.x105. Free stream turbulence was generated using an active grid placed 5.5 m upstream of the blade which generated a turbulence intensity, Tu of up to 6.1% and an integral length scale, L∞ of about 0.15 m. The blade was pitched to a range of angles of attack, α from 0 to 18 degrees in order to study the effects of the integral length scales on the aerodynamic characteristics of the wind turbine under fully attached and separated flow conditions. Pressure measurements around the blade and wake velocity deficit measurements utilizing a hot-wire probe were acquired to compute the lift and drag coefficient. Results suggest that turbulence generally increases aerodynamic performance as measured by the lift to drag ratio, L / D except at 0 degrees angle of attack. A significant enhancement in L / D results with free stream turbulence at post-stall angles of attack of 16 and 18 degrees, where L / D increase from 2.49 to 5.43 and from 0.64 to 4.00 respectively. This is a consequence of delaying flow separation with turbulence (which is observed in the suction pressure distribution) which in turn reduces the momentum loss in the wake particularly at 18 degrees angle of attack.
Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping
2017-01-01
Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,52...
The role of turbulence in coronal heating and solar wind expansion.
Cranmer, Steven R; Asgari-Targhi, Mahboubeh; Miralles, Mari Paz; Raymond, John C; Strachan, Leonard; Tian, Hui; Woolsey, Lauren N
2015-05-13
Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
An improved k-ε model applied to a wind turbine wake in atmospheric turbulence
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2015-01-01
An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind...... turbine wake. The modified k-ε model is compared with the original k-ε eddy viscosity model, Large-Eddy Simulations and field measurements using eight test cases. The comparison shows that the velocity wake deficits, predicted by the proposed model are much closer to the ones calculated by the Large...
Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage
Salazar, Denise; Yuricich, Jillian
2014-01-01
In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.
DETAILED FIT OF 'CRITICAL BALANCE' THEORY TO SOLAR WIND TURBULENCE MEASUREMENTS
International Nuclear Information System (INIS)
Forman, Miriam A.; Wicks, Robert T.; Horbury, Timothy S.
2011-01-01
We derive the reduced spectrum of turbulent magnetic fluctuations at different frequencies f which would be observed by a single spacecraft in the solar wind when the magnetic field was at an angle θ B to the solar wind flow, if the wavevector spectrum in the solar wind frame were in anisotropic 'critical balance' (CB) as proposed by Goldreich and Sridhar in 1995 (GS95). The anisotropic power spectrum in the inertial range, P(f, θ B ), is scaled onto one curve with f- 5/3 behavior at θ B near 90 0 and f -2 behavior at small θ B . The transition between the two limiting spectra depends on the form of the GS95 wavevector spectrum and the CB scaling parameter L. Using wavelet analysis of Ulysses magnetic field data in three 30-day periods in the high-latitude solar wind in 1995, we verify that the scaling of power with angle and frequency is qualitatively consistent with GS95 theory. However, the scale length L required to fit the observed P(f, θ B ) to the original CB theory is rather less than the scale predicted by that theory for the solar wind. Part, possibly all, of this discrepancy is removed when the GS95 theory modified for imbalanced turbulence is used.
Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.
Kiyani, Khurom H; Osman, Kareem T; Chapman, Sandra C
2015-05-13
The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Turbulence descriptors for scaling fatigue loading spectra of wind turbine structural components
Energy Technology Data Exchange (ETDEWEB)
Kelley, N D
1994-07-01
The challenge for the designer in developing a new wind turbine is to incorporate sufficient strength in its components to safely achieve a 20- or 30-year service life. To accomplish this, the designer must understand the load and stress distributions (in a statistical sense at least) that the turbine is likely to encounter during its operating life. Sources of loads found in the normal operating environment include start/stop cycles, emergency shutdowns, the turbulence environment associated with the specific site and turbine location, and extreme or ``rare`` events that can challenge the turbine short-term survivability. Extreme events can result from an operational problem (e.g., controller failure) or violent atmospheric phenomena (tornadic circulations, strong gust fronts). For the majority of the operating time, however, the character of the turbulent inflow is the dominant source of the alternating stress distributions experienced by the structural components. Methods of characterizing or scaling the severity of the loading spectra (or the rate of fatigue damage accumulation) must be applicable to a wide range of turbulent inflow environments -- from solitary isolation to the complex flows associated with multi-row wind farms. The metrics chosen must be related to the properties of the turbulent inflow and independent of the nature of local terrain features.
Reduction of the Random Variables of the Turbulent Wind Field
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.
2012-01-01
Applicability of the Probability Density Evolution Method (PDEM) for realizing evolution of the probability density for the wind turbines has rather strict bounds on the basic number of the random variables involved in the model. The efficiency of most of the Advanced Monte Carlo (AMC) methods, i...... of the integral domain; this becomes increasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency of the AMC methods is closely dependent on the design points of the problem. Presence of many random variables may increase the number of the design points, hence affects.......e. Importance Sampling (IS) or Subset Simulation (SS), will be deteriorated on problems with many random variables. The problem with PDEM is that a multidimensional integral has to be carried out over the space defined by the random variables of the system. The numerical procedure requires discretization...
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Directory of Open Access Journals (Sweden)
J.-L. Caccia
2004-11-01
Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the
Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence
Ng, Chung-Sang; Dennis, T.
2016-10-01
We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.
International Nuclear Information System (INIS)
Gilhousen, D.B.
1979-01-01
Objective forecasts of many weather elements produced twice daily for about 230 US cities are made by applying the Model Output Statistics (MOS) technique (Glahn and Lowry, 1972). This technique relates by a statistical method the output of numerical models interpolated to a location (predictors) to a corresponding sample of observed local weather at that location (predictand). This study describes the development and testing of MOS wind forecasts for an instrumented TV tower located near the Savannah River Laboratory (SRL). If shown to be useful, these forecasts could serve as valuable guidance in case of a nuclear incident at the installation. This study introduces several new applications of the MOS technique. In addition to forecasts of wind speed and direction, forecasts of two turbulence parameters were developed and evaluated. These turbulence parameters were the standard deviations of both the azimuth and elevation of the wind. These quantities help to estimate the amount of plume and puff spread. Forecasts of all these elements were produced for several levels on the 335 m WJBF-TV tower. Tests were conducted to see if MOS forecasts of each element were capable of resolving differences between tower levels. MOS forecasts were compared to two other types of forecasts to determine their utility. Short range persistence forecasts served as one type of comparison since SRL uses the current observed winds in their diffusion models. Climatology forecasts served as the other comparison set
Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence
Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.
2018-01-01
The spectral break (fb) of magnetic fluctuations at the ion scale in the solar wind is considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable two are related respectively to proton thermal gyroradius ρi and proton inertial length di. The corresponding frequencies of them are fρi=VSW/(2πρi) and fdi=VSW/(2πdi), respectively, where VSW is the solar wind speed. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar value when plasma beta β ˜ 1. Here we do a statistical study to see if the two ratios fb/fρi and fb/fdi have different dependence on β in the solar wind turbulence with 0.1 fdi is statistically not dependent on β, and the average value of it is 0.48 ± 0.06. However, fb/fρi increases with increasing β clearly and is significantly smaller than fb/fdi when β fdi, and the influence of β could be negligible in the studied β range. It indicates a preference of the dissipation mechanism associated with di in the solar wind with 0.1 < β < 0.8. Further theoretical studies are needed to give detailed explanation.
Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media
Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.
2016-08-01
Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.
Scaling forecast models for wind turbulence and wind turbine power intermittency
Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy
2017-04-01
The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.
Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-09-01
Above the top of the solar corona, the young, slow solar wind transitions from low-β, magnetically structured flow dominated by radial structures to high-β, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.
FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND
International Nuclear Information System (INIS)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-01-01
Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.
Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-01-01
Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.
DEFF Research Database (Denmark)
Cardoso, J. F.; Delabrouille, J.; Ganga, K.
2015-01-01
Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over...... the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated...... of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti...
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
2016-12-22
mean wind profile, and a minor reduction in the form drag fraction. This supports recent theoretical perspectives that propose very differing... turnover times. For the results, wind and pressure fields are made dimensionless by (u*, u* 2 ) and all lengths are made dimensionless by where... turnover times (~ 50) owing to the reduction in the timestep on the fine grid. We found the fine mesh runs were similar in character to the coarse mesh
Dissipation of Turbulence in the Solar Wind as Measured by Cluster
Goldstein, Melvyn
2012-01-01
Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.
Turbulent cascade in the solar wind at kinetic scales and quasi-parallel whistler waves
Alexandrova, O.; Lacombe, C.; Mangeney, A.; Grappin, R.; Maksimovic, M.; Matteini, L.; Santolik, O.; Cornilleau-Wehrlin, N.; de Conchy, Y.
2014-12-01
The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies 1-400 Hz, during five years (2001-2005) when Cluster was in the free solar wind, i.e. not magnetically connected to the Earth's bow-shock.In most of the analyzed time intervals, the fluctuations are non-polarized and they have a general spectral shape between the ion scales and a fraction of electron scales. The intensity of these spectra is well correlated to the ion thermal pressure. These non-polarized fluctuations seem to have a negligible frequency in the solar wind frame, and a wavevector anisotropy kperp>>k||. In the rest ~10% of the selected data, we observe narrow-band, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The life time of such waves varies between a few seconds and several hours. We analyze in details the long-lived whistler waves, i.e. with a life time longer than five minutes. We find several conditions for the appearance of such waves: (1) a low level of the background turbulence; (2) a low ion thermal pressure; (3) a slow solar wind speed; (4) an electron heat flux Qe>4μW/m2; (5) an electron mean free path larger than 0.5 AU, i.e., a low collisional frequency; (6) a change in the magnetic field direction. When the level of the background turbulence is high, we cannot affirm that whistler waves do not exist: they can be just masked by the turbulence. The six above conditions for the presence of parallel whistlers in the free solar wind are necessary but are not sufficient. When the electron parallel beta factor βe is larger than 3, the whistler waves are seen along the heat flux
Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices
Czech Academy of Sciences Publication Activity Database
Kuznetsov, Sergeii; Ribičić, Mihael; Pospíšil, Stanislav; Plut, Mihael; Trush, Arsenii; Kozmar, H.
2017-01-01
Roč. 41, č. 6 (2017), s. 643-661 ISSN 0732-8818 R&D Projects: GA ČR(CZ) GA14-12892S; GA MŠk(CZ) LO1219 Keywords : turbulent flow * atmospheric boundary layer * wind-tunnel simulation * castellated barrier wall * Counihan vortex generators * surface roughness elements * hot-wire measurements Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 0.932, year: 2016 https://link.springer.com/article/10.1007/s40799-017-0196-z
Alfvénic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?
Directory of Open Access Journals (Sweden)
B. Bavassano
2006-03-01
Full Text Available The mid-latitude phases of the Ulysses mission offer an excellent opportunity to investigate the solar wind originating near the coronal hole boundaries. Here we report on Alfvénic turbulence features, revealing a relevant presence of in-situ generated fluctuations, observed during the wind rarefaction phase that charaterizes the transition from fast to slow wind. Heavy-ion composition and magnetic field measurements indicate a strict time correspondence of the locally generated fluctuations with 1 the crossing of the interface between fast and slow wind and 2 the presence of strongly underwound magnetic field lines (with respect to the Parker spiral. Recent studies suggest that such underwound magnetic configurations correspond to fast wind magnetic lines that, due to footpoint motions at the Sun, have their inner leg transferred to slow wind and are stretched out by the velocity gradient. If this is a valid scenario, the existence of a magnetic connection across the fast-slow wind interface is a condition that, given the different state of the two kinds of wind, may favour the development of processes acting as local sources of turbulence. We suggest that heavy-ion effects could be responsible of the observed turbulence features.
Energy Technology Data Exchange (ETDEWEB)
Kelley, N.D.
1992-11-01
We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers's original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.
Energy Technology Data Exchange (ETDEWEB)
Kelley, N.D.
1992-11-01
We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers`s original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.
International Nuclear Information System (INIS)
Hu Erbang; Vogt, S.
1986-08-01
During several days in November 1985 an international field experiment took place in the Swiss plateau region near the cities of Aarau, Olten. As indicated by the name of the project SIESTA (SF 6 International Experiments in Stagnant Air) its aim is to obtain knowledge of the general nature of turbulence advection and atmospheric dispersion processes in a cold pool with very low wind speed and undefined wind direction. An outline of the general concept of the project is followed by a more detailed description of a special research activity with Radar tracked tetroons. In the second part of the report it is shown how to determine the horizontal dispersion parameter from the trajectories of the tetroon flights. Two different methods are described and the results of the flights performed during SIESTA are presented. (orig.) [de
RADIAL EVOLUTION OF SOLAR WIND TURBULENCE DURING EARTH AND ULYSSES ALIGNMENT OF 2007 AUGUST
International Nuclear Information System (INIS)
D'Amicis, R.; Bruno, R.; Pallocchia, G.; Bavassano, B.; Telloni, D.; Carbone, V.; Balogh, A.
2010-01-01
At the end of 2007 August, during the minimum of solar cycle 23, a lineup of Earth and Ulysses occurred, giving the opportunity to analyze, for the first time, the same plasma sample at different observation points, namely at 1 and 1.4 AU. In particular, it allowed us to study the radial evolution of solar wind turbulence typical of fast wind streams as proposed in a Coordinated Investigation Programme for the International Heliophysical Year. This paper describes both the macrostructure and the fluctuations at small scales of this event. We find that soon after detecting the same fast stream, the Advanced Composition Explorer (ACE) observed a change of magnetic polarity being the interplanetary current sheet located between the orbits of the two spacecraft. Moreover, we observe that the compression region formed in front of the fast stream detected at ACE's location evolves in a fast forward shock at Ulysses' orbit. On the other hand, small-scale analysis shows that turbulence is evolving. The presence of a shift of the frequency break separating the injection range from the inertial range toward lower frequencies while distance increases is a clear indication that nonlinear interactions are at work. Moreover, we observe that intermittency, as measured by the flatness factor, increases with distance. This study confirms previous analyses performed using Helios observations of the same fast wind streams at different heliocentric distances, allowing us to relax about the hypothesis of the stationarity of the source regions adopted in previous studies. Consequently, any difference noticed in the solar wind parameters would be ascribed to radial (time) evolution.
The most intense electric currents in turbulent high speed solar wind
Podesta, J. J.
2017-12-01
Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.
Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao
2017-11-01
The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.
Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Nagy, A. F.; Brain, D. A.; Najib, D.
2012-12-01
The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered great interest in recent years. Among the large number of topics in this research area, the investigation of ion escape rates has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3D Mars neutral atmosphere profiles from the well-regarded Mars Thermospheric Global Circulation Model (M-TGCM) and one-way couple it with the 3D BATS-R-US Mars multi-fluid MHD model that solves separate momentum equations for each ion species. The M-TGCM model takes into account the effects of the solar cycle (solar minimum: F10.7=70 and solar maximum: F10.7=200 with equinox condition: Ls=0), allowing us to investigate the effects of the solar cycle on the Mars upper atmosphere ion escape by using a one-way coupling, i.e., the M-TGCM model outputs are used as inputs for the multi-fluid MHD model. A case for solar maximum with extremely high solar wind parameters is also investigated to estimate how high the escape flux can be for such an extreme case. Moreover, the ion escape flux along a satellite trajectory will be studied. This has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN mission (2012-2016). In order to make the code run more efficiently, we adopt a more appropriate grid structure compared to the one used previously. This new grid structure will benefit us to investigate the effects of some dynamic events (such as CME and dust storm) on the ion escape flux.
ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE
International Nuclear Information System (INIS)
Zaheer, S.; Yoon, P. H.
2013-01-01
A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f e ∼ v –α is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α average ∼ 6.69, according to observation
DEFF Research Database (Denmark)
Xu, Chang; Han, Xingxing; Wang, Xin
2015-01-01
This paper presented an improved computational fluid dynamics (CFD) model for simulating a horizontal-axis wind turbine wake. The model used the actuator disk model to simplify the wind turbine effect on the aerodynamic field by adding an extra momentum source and an improved term to correct...... the underestimation issue of the wind speed deficit when applying the STD k-ε model. In addition, the model also introduced a radial distribution function to assess the non-uniform load on the actuator disk and a coefficient C4ε of the turbulent source. To validate the model, the wind turbines of Nibe `B' and Dawin...
Correlations at large scales and the onset of turbulence in the fast solar wind
International Nuclear Information System (INIS)
Wicks, R. T.; Roberts, D. A.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Chen, C. H. K.
2013-01-01
We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and equipartitioned (residual energy ∼0) have steep structure functions reminiscent of 'turbulent' scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼–1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned magnetic and velocity vectors, have wide '1/f' ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus the onset scale for the turbulent cascade.
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Directory of Open Access Journals (Sweden)
J.-L. Caccia
2004-11-01
Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.
Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.
In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.
Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units
Ruiz, M. E.; Dasso, S.; Matthaeus, W. H.; Weygand, J. M.
2014-10-01
The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [ λ], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. We study the probability distribution function (PDF) of the magnetic-autocorrelation lengths observed in the solar wind at different distances from the Sun. We used observations from the Helios, ACE, and Ulysses spacecraft. We distinguished between the usual solar wind and one of its transient components (interplanetary coronal mass ejections, ICMEs), and also studied solar-wind samples with low and high proton beta [βp]. We find that in the last three regimes the PDF of λ is a log-normal function, consistent with the multiplicative and nonlinear processes that take place in the solar wind, the initial λ (before the Alfvénic point) being larger in ICMEs.
A weakened cascade model for turbulence in astrophysical plasmas
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-01-01
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
A weakened cascade model for turbulence in astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom); TenBarge, J. M. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Dorland, W. [Department of Physics, University of Maryland, College Park, Maryland 20742-3511 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom)
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.
2018-04-01
The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.
Owocki, Stanley P.; Sundqvist, Jon O.
2018-03-01
We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.
Lundquist, J. K.; Handschy, M.
2013-12-01
During the year 2012, the cumulative wind power capacity installed in the United States could provide roughly 4.4% of electricity demand. Although the wind resource can provide many times over the entire US electrical needs, and costs for onshore wind deployment are continually dropping, the variability of the wind represents one of the greatest remaining barriers to wide-scale wind deployment. This study focuses on the nature of this variability. We quantify the axiom 'geographic diversity reduces variability' (of wind generation) by relating resource variability characteristics to the well-understood physical phenomena of turbulence in the Earth's atmosphere. Many existing studies focus on datasets of a few years' duration in a particular geographic area; such results are difficult to generalize. Our approach builds on the fundamental nonlinear characteristics of turbulence in the atmosphere to characterize wind speed and power generation correlations between wind plants from local to continental scales. The resulting general principles enable estimation of the benefits of geographic aggregation absent detailed site-specific historical data, thereby enabling more efficient transmission grid models, expediting transmission plans, and providing a framework for evaluating the requirements and benefits of electric storage at higher wind penetrations. To validate these general principles, we compare them to observed inter-station correlations in a number of wind-speed data sets, including a 40-year Canadian dataset that spans the continent of North America, as well as shorter-duration datasets in smaller regions within the United States. This presentation will present general rules for the dependence of correlation between wind turbines on separation and time scale. We suggest these general rules could help shift renewable integration planning from simulation towards optimization.
Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles
2015-01-01
We use the recently introduced coupled wake boundary layer (CWBL) model to predict the e ect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a \\top-down" approach to get improved predictions for the power output compared to a stand-alone
Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.
2010-12-01
Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.
Coherent structures, dissipation and intermittency in plasma turbulence
Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T.; Shay, M. A.; Karimabadi, H.; Wu, P.
2015-12-01
The nature of collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been hotly debated recently. Here we report results from high resolution, fully kinetic simulations of plasmas turbulence in both two and three dimensions. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. Results from particle-in-cell (PIC) simulations are also compared with MHD simulations in terms of coherent structures, dissipation and intermittency. An important conclusion, for all simulations examined, is that the dissipation is concentrated in very small volumes, reminiscent of the scenario that motivates the Kolmogorov refined similarity hypothesis in hydrodynamic turbulence. Extrapolated to large heliospheric system sizes, this leads to the expectation of significant departures from heating processes that operate uniformly in space. Results from latest 3D driven PIC simulations, as well as the connection to solar wind observations, will also be discussed.
On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
International Nuclear Information System (INIS)
Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T.
2017-01-01
Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.
Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence
Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.
2018-03-01
The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.
Advanced energy utilization MHD power generation
International Nuclear Information System (INIS)
2008-01-01
The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)
Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping
2017-12-04
Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,520,231 high quality sequence reads and 74,842 OTUs were obtained in all samples with α-proteobacteria, γ-proteobacteria and Actinobacteria being the most dominant taxa. The diversity and structure of bacterioplankton communities varied during the experiment, but were highly similar based on the same time of sampling, suggesting that bacterioplankton communities are insensitive to wind wave turbulence in the lake. This stability could be associated with the traits associated with bacteria. In particular, turbulence favored the growth of bacterioplankton, which enhanced biogeochemical cycling of nutrients in the lake. This study provides a better understanding of bacterioplankton communities in lake ecosystems exposed to natural mixing/disturbances.
Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.
Chandran, Benjamin D G
2018-02-01
In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .
Energy Technology Data Exchange (ETDEWEB)
Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent
2016-01-04
We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.
Energy Technology Data Exchange (ETDEWEB)
Kelly, N D; Wright, A D
1991-10-01
This paper assesses the accuracy of simulated wind fields for both the natural flow and that within a wind park environment. The simulated fields are compared with the observed ones in both the time and frequency domains. Actual measurements of the wind fields and the derived kinematic scaling parameters upwind and downwind of a large San Gorgonio Pass wind park are used. The deviations in the modeled wind field from the observed are discussed. 10 refs., 6 figs., 2 tabs.
Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales
Directory of Open Access Journals (Sweden)
Y. Narita
2011-10-01
Full Text Available Using the four Cluster spacecraft, we have determined the three-dimensional wave-vector spectra of fluctuating magnetic fields in the solar wind. Three different solar wind intervals of Cluster data are investigated for this purpose, representing three different spatial scales: 10 000 km, 1000 km, and 100 km. The spectra are determined using the wave telescope technique (k-filtering technique without assuming the validity of Taylor's frozen-in-flow hypothesis nor are any assumptions made as to the symmetry properties of the fluctuations. We find that the spectra are anisotropic on all the three scales and the power is extended primarily in the directions perpendicular to the mean magnetic field, as might be expected of two-dimensional turbulence, however, the analyzed fluctuations are not axisymmetric. The lack of axisymmetry invalidates some earlier techniques using single spacecraft observations that were used to estimate the percentage of magnetic energy residing in quasi-two-dimensional power. However, the dominance of two-dimensional turbulence is consistent with the relatively long mean free paths of cosmic rays in observed in the heliosphere. On the other hand, the spectra also exhibit secondary extended structures oblique from the mean magnetic field direction. We discuss possible origins of anisotropy and asymmetry of solar wind turbulence spectra.
Urzay, Javier; Llewellyn Smith, Stefan G; Thompson, Elinor; Glover, Beverley J
2009-08-21
Plant reproduction depends on pollen dispersal. For anemophilous (wind-pollinated) species, such as grasses and many trees, shedding pollen from the anther must be accomplished by physical mechanisms. The unknown nature of this process has led to its description as the 'paradox of pollen liberation'. A simple scaling analysis, supported by experimental measurements on typical wind-pollinated plant species, is used to estimate the suitability of previous resolutions of this paradox based on wind-gust aerodynamic models of fungal-spore liberation. According to this scaling analysis, the steady Stokes drag force is found to be large enough to liberate anemophilous pollen grains, and unsteady boundary-layer forces produced by wind gusts are found to be mostly ineffective since the ratio of the characteristic viscous time scale to the inertial time scale of acceleration of the wind stream is a small parameter for typical anemophilous species. A hypothetical model of a stochastic aeroelastic mechanism, initiated by the atmospheric turbulence typical of the micrometeorological conditions in the vicinity of the plant, is proposed to contribute to wind pollination.
Measurement of rotor centre flow direction and turbulence in wind farm environment
DEFF Research Database (Denmark)
Friis Pedersen, Troels; Demurtas, Giorgio; Sommer, A.
2014-01-01
The measurement of inflow to a wind turbine rotor was made with a spinner anemometer on a 2 MW wind turbine in a wind farm of eight wind turbines. The wind speed, yaw misalignment and flow inclination angle was measured during a five months measurement campaign. Angular measurements were calibrat...
Phenomenology of non-Alfvenic turbulence in a uniformly expanding medium
Matthaeus, W. H.; Zank, G. P.
1995-01-01
Transport and decay of magnetohydrodynamic (MHD) turbulence in a weakly inhomogeneous uniformly expanding medium involves a fairly complex formalism, even for the case where no spectral information is required. Here we argue that the phenomenology for decay simplifies greatly if: (1) the cross helicity (Alfvenicity) is small, (2) the dynamical influence of the large scale magnetic field is negligible either because of spectral anisotropy or because the expansion speed is much greater than the corresponding Alfven speed, and (3) the ratio of kinetic energy to magnetic energy for the fluctuations is either unity or some other constant. These conditions are acceptable as an approximation to solar wind turbulence in the outer heliosphere. In these circumstances a reasonable MHD energy-containing phenomenology is essentially that of locally homogeneous Kolmogoroff turbulence in a uniformly expanding medium. Analytical solutions for this model are presented for both undriven and driven cases.
Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9-20 R ⊙
Sasikumar Raja, K.; Subramanian, Prasad; Ramesh, R.; Vourlidas, Angelos; Ingale, Madhusudan
2017-12-01
We obtain scatter-broadened images of the Crab Nebula at 80 MHz as it transits through the inner solar wind in 2017 and 2016 June. These images are anisotropic, with the major axis oriented perpendicular to the radially outward coronal magnetic field. Using these data, we deduce that the density modulation index (δ {N}e/{N}e) caused by turbulent density fluctuations in the solar wind ranges from 1.9× {10}-3 to 7.7× {10}-3 between 9 and 20 R ⊙. We also find that the heating rate of solar wind protons at these distances ranges from 2.2× {10}-13 to 1.0× {10}-11 {erg} {{cm}}-3 {{{s}}}-1. On two occasions, the line of sight intercepted a coronal streamer. We find that the presence of the streamer approximately doubles the thickness of the scattering screen.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang
2017-10-18
To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.
Implications of Navier-Stokes turbulence theory for plasma turbulence
International Nuclear Information System (INIS)
Montgomery, David
1977-01-01
A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)
Energy Technology Data Exchange (ETDEWEB)
Matteini, L.; Horbury, T. S.; Schwartz, S. J. [The Blackett Laboratory, Imperial College London, SW7 2AZ (United Kingdom); Pantellini, F. [LESIA, Observatoire de Paris, CNRS, UPMC, Universit Paris-Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, California (United States)
2015-03-20
We investigate the properties of plasma fluid motion in the large-amplitude, low-frequency fluctuations of highly Alfvénic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles which, due to their drift with respect to protons at about the Alfvén speed along the magnetic field, do not partake in the fluid low-frequency fluctuations. Using their velocity to transform the proton velocity into the frame of Alfvénic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfvénic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfvénic turbulence, is the origin of the observed constancy of the magnetic field; while the constant velocity corresponding to constant energy can only be observed in the frame of the fluctuations, the corresponding constant total magnetic field, invariant for Galilean transformations, remains the observational signature in the spacecraft frame of the constant total energy in the Alfvén turbulence frame.
Magnetohydrodynamic (MHD) power generation
International Nuclear Information System (INIS)
Chandra, Avinash
1980-01-01
The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
DEFF Research Database (Denmark)
Berg, Jacob; Natarajan, Anand; Mann, Jakob
2016-01-01
taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...
Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.
2011-12-01
Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single
DEFF Research Database (Denmark)
Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge
2015-01-01
This paper describes a new method to estimate the undisturbed inflow field of a wind turbine based on measurements obtained from one or more five-hole pitot tubes mounted directly on the blades. Based on the measurements, the disturbance caused by the wind turbine is estimated using aerodymanic m...
Energy Technology Data Exchange (ETDEWEB)
Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.
2009-01-01
A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.
Khabarova, O.
2017-12-01
Despite the existence of main sources of accelerated particles in the solar wind such as flares and shocks, turbulence and associated coherent structures may be responsible for heating and particle energization throughout the heliosphere. Recent studies convincingly link turbulence, intermittency and magnetic reconnection and show the necessity of a complex approach to investigation of these phenomena. Observations of energetic particle enhancements in turbulent wakes of interplanetary shocks, near reconnecting current sheets and within magnetic cavities filled with magnetic islands support theoretical expectations of particle energization in the presence of coherent structures in the solar wind. It has been shown that such energetic particle enhancements may be as intense as ordinary solar energetic particle events. Therefore, the investigation of all possible manifestations of turbulence is essential for better understanding of local processes of particle acceleration in the solar wind. General characteristics of turbulence in the solar wind plasma are usually studied via the analysis of the power spectrum of magnetic and plasma fluctuations, and more detailed studies suggest using the partial variance of increments method. Such studies are predominantly undertaken at 1 AU, and there has been only a limited number of attempts of understanding the spatial evolution of intermittency from in situ observations of magnetic and plasma fluctuations. We report first results of the "Current Sheets, Turbulence, Structures and Particle Acceleration in the Heliosphere" project (ISSI team 405) on the evolution of intermittent turbulence with heliocentric distance and latitude, up to 5.4 AU (http://www.issibern.ch/teams/structpartaccel/). The role of current sheets, magnetic reconnection and processes in the turbulent neighborhood of reconnecting current sheets in initial and secondary particle acceleration throughout the heliosphere is discussed.
PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Hellinger, Petr; Trávnícek, Pavel M. [Astronomical Institute, CAS, Bocni II/1401, CZ-14100 Prague (Czech Republic); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Landi, Simone; Verdini, Andrea; Franci, Luca, E-mail: petr.hellinger@asu.cas.cz [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy)
2015-10-01
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.
Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars
International Nuclear Information System (INIS)
Mikkelsen, T; Mann, J; Courtney, M; Sjoeholm, M
2008-01-01
At RISOe DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed
Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, R. T.; Coops, N. C.; Parlange, M. B.
2017-08-01
Large-eddy simulations (LES) are used to gain insight into the effects of trees on turbulence, aerodynamic parameters, and momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighborhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Data from airborne light detection and ranging (LiDAR) are used to represent both buildings and vegetation at the LES resolution. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed including and excluding vegetation from the considered urban areas, varying wind direction and leaf area density. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI /λfb lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI / λfSUP>b = 0.74 , leaves-on LAI /λfb = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI / λfb increases, due in large part to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. LES and measurements both predict an increase in the ratio of turbulent to mean kinetic energy (TKE/MKE) at the tower sampling height going from winter to summer, and LES also show how including vegetation results in a more (positive) negatively skewed (horizontal) vertical velocity distribution - reflecting a more intermittent velocity field which favors sweep motions when compared to ejections. Within the urban canopy, the effects of trees are twofold: on one hand, they act
High Field Side MHD Activity During Local Helicity Injection
Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.
2017-10-01
MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
National Research Council Canada - National Science Library
Bityurin, Valentin A
2006-01-01
...) processes for advancement of flight. Among the areas of interest is the utilization of MHD as a means for enhancing the speed and range of scramjets through a concept known as MHD energy bypass. Currently...
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
International Nuclear Information System (INIS)
Pfirsch, D.
1978-01-01
The first part of this lecture discusses the influence of current profiles and noncircular cross-sections on the maximum β obtainable in a Tokamak from the MHD equilibrium point of view. The second part treats limitations on such MHD equilibria resulting from various MHD instabilities like external and internal kinks, localized and nonlocalized modes- and axisymmetric instabilities
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar
Letizia, Stefano; Puccioni, Matteo; Zhan, Lu; Viola, Francesco; Camarri, Simone; Iungo, Giacomo Valerio
2017-11-01
Numerical simulations of wakes produced by utility-scale wind turbines still present challenges related to the variability of the atmospheric conditions and, in the most of the cases, the lack of information about the geometry and aerodynamic performance of the wind turbine blades. In order to overcome the mentioned difficulties, we propose a RANS solver for which turbine aerodynamic forcing and turbulence closure are calibrated through LiDAR and SCADA data acquired for an onshore wind farm. The wind farm under examination is located in North Texas over a relatively flat terrain. The experimental data are leveraged to maximize accuracy of the RANS predictions in terms of wake velocity field and power capture for different atmospheric stability conditions and settings of the wind turbines. The optimization of the RANS parameters is performed through an adjoint-RANS formulation and a gradient-based procedure. The optimally-tuned aerodynamic forcing and turbulence closure are then analyzed in order to investigate effects of the atmospheric stability on the evolution of wind turbine wakes and power performance. The proposed RANS solver has low computational costs comparable to those of wake engineering models, which make it a compelling tool for wind farm control and optimization. Acknowledgments: NSF I/UCRC WindSTAR IIP 1362033 and TACC.
Influence of the control system on wind turbine reliability in extreme turbulence
DEFF Research Database (Denmark)
Abdallah, Imad; Natarajan, Anand; Sørensen, J. D.
2014-01-01
alleviation control features. It is shown that large uncertainties in inflow conditions and turbulence can be significantly reduced while maintaining an acceptable structural reliability through the use of advanced structural load alleviation control features. However, that comes at a cost of increased...... controller complexity and loss in annual energy production....
Czech Academy of Sciences Publication Activity Database
Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr
2016-01-01
Roč. 833, č. 1 (2016), 91/1-91/7 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016
Directory of Open Access Journals (Sweden)
S. A. Dubyanskiy
2014-01-01
Full Text Available The method of detecting of wind shear at low height and atmospheric turbulence on take-off and landing runways with the use of parametric register arrangements on microwave and optics beams are considered. The results of the research of register arrangements response when these beams are being used.
John M. Frank; William J. Massman; Brent E. Ewers
2016-01-01
Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...
Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind
International Nuclear Information System (INIS)
Woolsey, Lauren N.; Cranmer, Steven R.
2014-01-01
Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.
MHD energy fluxes for late type dwarfs
Rosner, R.; Musielak, Z. E.
1987-01-01
The efficiency of MHD wave generation by turbulent motions in stratified stellar atmospheres with embedded uniform magnetic fields is calculated. In contradiction with previous results, it is shown that there is no significant increase in the efficiency of wave generation because of the presence of magnetic fields, at least within the theory's limits of applicability. It is shown that MHD energy fluxes for late-type stars are less than those obtained for acoustic waves in a magnetic-field-free atmosphere, and do not vary enough for a given spectral type in order to explain observed UV and X-ray fluxes. Thus, the results show that MHD energy fluxes obtained if stellar surface magnetic fields are uniform cannot explain the observed stellar coronal emissions.
On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence
Energy Technology Data Exchange (ETDEWEB)
Huang, S. Y.; Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China); Hadid, L. Z.; Sahraoui, F. [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Palaiseau (France); Deng, X. H., E-mail: shiyonghuang@whu.edu.cn [Institute of Space Science and Technology, Nanchang University, Nanchang (China)
2017-02-10
In the solar wind, power spectral density (PSD) of the magnetic field fluctuations generally follow the so-called Kolmogorov spectrum f {sup −5/3} in the inertial range, where the dynamics is thought to be dominated by nonlinear interactions between counter-propagating incompressible Alfvén wave parquets. These features are thought to be ubiquitous in space plasmas. The present study gives a new and more complex picture of magnetohydrodynamic (MHD) turbulence as observed in the terrestrial magnetosheath. The study uses three years of in situ data from the Cluster mission to explore the nature of the magnetic fluctuations at MHD scales in different locations within the magnetosheath, including flanks and subsolar regions. It is found that the magnetic field fluctuations at MHD scales generally have a PSD close to f {sup −1} (shallower than the Kolmogorov one f {sup −5/3}) down to the ion characteristic scale, which recalls the energy-containing scales of solar wind turbulence. The Kolmogorov spectrum is observed only away from the bow shock toward the flank and the magnetopause regions in 17% of the analyzed time intervals. Measuring the magnetic compressibility, it is shown that only a fraction (35%) of the observed Kolmogorov spectra was populated by shear Alfvénic fluctuations, whereas the majority of the events (65%) was found to be dominated by compressible magnetosonic-like fluctuations, which contrasts with well-known turbulence properties in the solar wind. This study gives a first comprehensive view of the origin of the f {sup −1} and the transition to the Kolmogorov inertial range; both questions remain controversial in solar wind turbulence.
Development of a High Energy Amplifier for an Airborne Coherent Wind Turbulence Lidar Sensor Project
National Aeronautics and Space Administration — The capacity of coherent LIDAR systems to produce a continuous, real-time, 3D scan of wind velocities via detection of backscatter of atmospheric aerosols in...
Absorption lines from magnetically driven winds in X-ray binaries
Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.
2016-05-01
Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be
1992-12-01
traveling from space to Earth are distorted when they pass through the Earth’s atmosphere. This distortion gives rise to the well known twinkling...same point in space at all times. Such an approach requires knowledge of the quantity being measured, therefore the variance of the intersection will...IEEE, 66:651-697 (June 1978). 9. Kolmogoroff , A. N. "The Local Structure of Turbulence in Incompressible Viscous Fluids for Very Large Reynolds
Evolution of the MHD sheet pinch
International Nuclear Information System (INIS)
Matthaeus, W.H.; Montgomery, D.
1979-01-01
A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table
Intermittency and local heating in the solar wind.
Osman, K T; Matthaeus, W H; Wan, M; Rappazzo, A F
2012-06-29
Evidence for nonuniform heating in the solar wind plasma near current sheets dynamically generated by magnetohydrodynamic (MHD) turbulence is obtained using measurements from the ACE spacecraft. These coherent structures only constitute 19% of the data, but contribute 50% of the total plasma internal energy. Intermittent heating manifests as elevations in proton temperature near current sheets, resulting in regional heating and temperature enhancements extending over several hours. The number density of non-Gaussian structures is found to be proportional to the mean proton temperature and solar wind speed. These results suggest magnetofluid turbulence drives intermittent dissipation through a hierarchy of coherent structures, which collectively could be a significant source of coronal and solar wind heating.
Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)
2016-11-15
Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.
Energy Technology Data Exchange (ETDEWEB)
Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2016-04-10
We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis
Ciccone, A. D.; Kawall, J. G.; Keffer, J. F.
A novel technique utilizing the basic principles of two-dimensional signal analysis and artificial intelligence/computer vision to reconstruct the Lagrangian particle trajectories from flow visualization images of macroparticle motions in a turbulent boundary layer is presented. Since, in most cases, the entire trajectory of a particle could not be viewed in one photographic frame (the particles were moving at a high velocity over a small field of view), a stochastic model was developed to complete the trajectories and obtain statistical data on particle velocities. The associated programs were implemented on a Cray supercomputer to optimize computational costs and time.
Czech Academy of Sciences Publication Activity Database
Kukačka, Libor; Nosek, Štěpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk
2012-01-01
Roč. 2012, č. 381357 (2012), s. 1-13 ISSN 1537-744X Institutional research plan: CEZ:AV0Z20760514 Keywords : air pollution * atmospheric boundary layer * wind tunnel modelling * contaminant spreading * street canyon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.730, year: 2012 http://www.tswj.com/2012/381357/
Perry, B., III
1981-01-01
Comparisons are presented analytically predicted and experimental turbulence responses of a wind tunnel model of a DC-10 derivative wing equipped with an active control system. The active control system was designed for the purpose of flutter suppression, but it had additional benefit of alleviating gust loads (wing bending moment) by about 25%. Comparisions of various wing responses are presented for variations in active control system parameters and tunnel speed. The analytical turbulence responses were obtained using DYLOFLEX, a computer program for dynamic loads analyses of flexible airplanes with active controls. In general, the analytical predictions agreed reasonably well with the experimental data.
Multi-Spacecraft Turbulence Analysis Methods
Horbury, Tim S.; Osman, Kareem T.
analyse; and, most important of all, the solar wind speed, V SW , is much higher than the local MHD wave speeds. This means that a spacecraft time series is essentially a "snapshot" spatial sample of the plasma along the flow direction, so we can consider measurements at a set of times ti to be at a set of locations in the plasma given by xi = VSW. This approximation,known as Taylor's hypothesis, greatly simplifies the analysis of the data. In contrast, in the magnetosheath the flow speed is lower than the wave speed and therefore temporal changes at the spacecraft are due to a complex combination of the plasma moving over the spacecraft and the turbulent fluctuations propagating in the plasma frame. This is also the case for ion and electron kinetic scale turbulence in the solar wind and dramatically complicates the analysis of the data. As a result, the application of multi-spacecraft techniques such as k filtering to Cluster data (see Chapter 5, which make it possible to disentangle the effects of flow and wave propagation, have probably resulted in the greatest increase in our understanding of magnetosheath turbulence rather than in the solar wind. We can therefore summarise the key advantages for plasma turbulence analysis of multi-spacecraft data sets such as those from Cluster, compared to single spacecraft data. Multiple sampling points allow us to measure how the turbulence varies in many directions, and on a range of scales, simultaneously, enabling the study of anisotropy in ways that have not previously been possible. They also allow us to distinguish between the motion of fluctuations in the plasma and motion of the plasma itself, enabling the study of turbulence in highly disturbed environments such as the magnetosheath. A number of authors have studied turbulence with Cluster data, using different techniques, the choice of which is motivated by the characteristics of the plasma environment in which they are interested. The complexity of both the Cluster
Directory of Open Access Journals (Sweden)
J. Bartl
2017-02-01
Full Text Available This is a summary of the results of the fourth blind test workshop that was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at the wind tunnel of the Norwegian University of Science and Technology (NTNU. A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within computational fluid dynamics (CFD were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development with nine rotor diameters downstream at three different turbulent inflow conditions. Aside from a spatially uniform inflow field of very low-turbulence intensity (TI = 0.23 % and high-turbulence intensity (TI = 10.0 %, the turbines are exposed to a grid-generated highly turbulent shear flow (TI = 10.1 %.Five different research groups contributed their predictions using a variety of simulation models, ranging from fully resolved Reynolds-averaged Navier–Stokes (RANS models to large eddy simulations (LESs. For the three inlet conditions, the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. Prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (improved delayed detached eddy simulation model, however
Numerical simulation of the kinetic effects in the solar wind
Sokolov, I.; Toth, G.; Gombosi, T. I.
2017-12-01
Global numerical simulations of the solar wind are usually based on the ideal or resistive MagnetoHydroDynamics (MHD) equations. Within a framework of MHD the electric field is assumed to vanish in the co-moving frame of reference (ideal MHD) or to obey a simple and non-physical scalar Ohm's law (resistive MHD). The Maxwellian distribution functions are assumed, the electron and ion temperatures may be different. Non-disversive MHD waves can be present in this numerical model. The averaged equations for MHD turbulence may be included as well as the energy and momentum exchange between the turbulent and regular motion. With the use of explicit numerical scheme, the time step is controlled by the MHD wave propagtion time across the numerical cell (the CFL condition) More refined approach includes the Hall effect vie the generalized Ohm's law. The Lorentz force acting on light electrons is assumed to vanish, which gives the expression for local electric field in terms of the total electric current, the ion current as well as the electron pressure gradient and magnetic field. The waves (whistlers, ion-cyclotron waves etc) aquire dispersion and the short-wavelength perturbations propagate with elevated speed thus strengthening the CFL condition. If the grid size is sufficiently small to resolve ion skindepth scale, then the timestep is much shorter than the ion gyration period. The next natural step is to use hybrid code to resolve the ion kinetic effects. The hybrid numerical scheme employs the same generalized Ohm's law as Hall MHD and suffers from the same constraint on the time step while solving evolution of the electromagnetic field. The important distiction, however, is that by sloving particle motion for ions we can achieve more detailed description of the kinetic effect without significant degrade in the computational efficiency, because the time-step is sufficient to resolve the particle gyration. We present the fisrt numerical results from coupled BATS
Nandi, Tarak Nath
Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity. Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings. The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud
2016-01-01
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.
POLARIMETRIC STUDIES OF MAGNETIC TURBULENCE WITH AN INTERFEROMETER
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyeseung; Cho, Jungyeon [Department of Astronomy and Space Science, Chungnam National University, Deajeon (Korea, Republic of); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison (United States)
2016-11-01
We study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence. We use both synthetic and MHD turbulence simulation data for our studies. We obtain the spatial spectrum and its derivative with respect to the wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation fluctuations. In particular, we investigate how the spectrum changes with frequency. We find that our simulations agree with the theoretical predication in Lazarian and Pogosyan. We conclude that the spectrum of synchrotron polarization and its derivative can be very informative tools to obtain detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization. They are especially useful for recovering the statistics of a turbulent magnetic field as well as the turbulent density of electrons. We also simulate interferometric observations that incorporate the effects of noise and finite telescope beam size, and demonstrate how we recover statistics of underlying MHD turbulence.
Capturing the journey of wind from the wind turbines (poster)
Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.
2015-01-01
Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence
Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.
2016-12-01
When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.
Energy Technology Data Exchange (ETDEWEB)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Maruca, B. A. [University of Delaware, Newark, DE (United States); Fuselier, S. A.; Burch, J. L. [Southwest Research Institute, San Antonio, TX (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Moore, T. E.; Pollock, C. J.; Gershman, D. J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T.; Strangeway, R. J., E-mail: chasapis@udel.edu [University of California, Los Angeles, CA (United States)
2017-07-20
Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain very high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.
Directory of Open Access Journals (Sweden)
S. Yahaya
2009-05-01
Full Text Available This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain. The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.
Nakayama, H.; Takemi, T.; Nagai, H.
2015-06-01
A significant amount of radioactive material was accidentally discharged into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant from 12 March 2011, which produced high contaminated areas over a wide region in Japan. In conducting regional-scale atmospheric dispersion simulations, the computer-based nuclear emergency response system WSPEEDI-II developed by Japan Atomic Energy Agency was used. Because this system is driven by a meso-scale meteorological (MM) model, it is difficult to reproduce small-scale wind fluctuations due to the effects of local terrain variability and buildings within a nuclear facility that are not explicitly represented in MM models. In this study, we propose a computational approach to couple an LES-based CFD model with a MM model for detailed simulations of turbulent winds with buoyancy effects under real meteorological conditions using turbulent inflow technique. Compared to the simple measurement data, especially, the 10 min averaged wind directions of the LES differ by more than 30 degrees during some period of time. However, distribution patterns of wind speeds, directions, and potential temperature are similar to the MM data. This implies that our coupling technique has potential performance to provide detailed data on contaminated area in the nuclear accidents.
Turbulence, selective decay, and merging in the SSX plasma wind tunnel
Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.
2012-10-01
A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s
Nonlinear MHD dynamo operating at equipartition
DEFF Research Database (Denmark)
Archontis, V.; Dorch, Bertil; Nordlund, Åke
2007-01-01
Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...
2006-09-01
used in this analysis is based on the full 2D time-dependent Navier - Stocks equations coupled with 2D electrodynamics equation in the low magnetic...includes the treatment of chemical reacting flows on the base of full Navier - Stockes approach, chemical kinetics model, and MHD effects model...code family, PlasmAero based on full Navier -Stokes 8 equations, MHD approximation of Maxwell equations, and plasma-chemical kinetics equations is an
Alfvénic fluctuations in "newborn"' polar solar wind
Directory of Open Access Journals (Sweden)
B. Bavassano
2005-06-01
Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence
Energy Technology Data Exchange (ETDEWEB)
Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)
2014-04-20
Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.
Woodham, Lloyd D.; Wicks, Robert T.; Verscharen, Daniel; Owen, Christopher J.
2018-03-01
We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI “noise-floor” using tail-lobe crossings of the Earth’s magnetosphere during early 2004. We utilize Taylor’s hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton cyclotron resonance scale, 1/k c , rather than the proton inertial length, d i , or proton gyroscale, ρ i . This agreement is strongest when we consider periods where β i,\\perp ∼ 1, and is consistent with a spectral break at d i for β i,\\perp ≪1 and at ρ i for β i,\\perp ≫1. We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/k c , and its absolute value reaches a maximum at ρ i . These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.
Statistical properties of transport in plasma turbulence
DEFF Research Database (Denmark)
Naulin, V.; Garcia, O.E.; Nielsen, A.H.
2004-01-01
The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...
Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.
2013-12-01
The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.
le Roux, J. A.
2017-12-01
We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Large Scale GPU Accelerated PPMLR-MHD Simulations for Space Weather Forecast
Guo, Xiangyu; Tang, Binbin; Tao, Jian; Huang, Zhaohui; Du, Zhihui
2016-01-01
PPMLR-MHD is a new magnetohydrodynamics (MHD) model used to simulate the interactions of the solar wind with the magnetosphere, which has been proved to be the key element of the space weather cause-and-effect chain process from the Sun to Earth. Compared to existing MHD methods, PPMLR-MHD achieves the advantage of high order spatial accuracy and low numerical dissipation. However, the accuracy comes at a cost. On one hand, this method requires more intensive computation. On the other hand, m...
Study of Fractal Features of Geomagnetic Activity Through an MHD Shell Model
Dominguez, M.; Nigro, G.; Munoz, V.; Carbone, V.
2013-12-01
Studies on complexity have been of great interest in plasma physics, because they provide new insights and reveal possible universalities on issues such as geomagnetic activity, turbulence in laboratory plasmas, physics of the solar wind, etc. [1, 2]. In particular, various studies have discussed the relationship between the fractal dimension, as a measure of complexity, and physical processes in magnetized plasmas such as the Sun's surface, the solar wind and the Earth's magnetosphere, including the possibility of forecasting geomagnetic activity [3, 4, 5]. Shell models are low dimensional dynamical models describing the main statistical properties of magnetohydrodynamic (MHD) turbulence [6]. These models allow us to describe extreme parameter conditions hence reaching very high Reynolds (Re) numbers. In this work a MHD shell model is used to describe the dissipative events which are taking place in the Earth's magnetosphere and causing geomagnetic storms. The box-counting fractal dimension (D) [7] is calculated for the time series of the magnetic energy dissipation rate obtained in this MHD shell model. We analyze the correlation between D and the energy dissipation rate in order to make a comparison with the same analysis made on the geomagnetic data. We show that, depending on the values of the viscosity and the diffusivity, the fractal dimension and the occurrence of bursts exhibit correlations similar as those observed in geomagnetic and solar data, [8] suggesting that the latter parameters could play a fundamental role in these processes. References [1] R. O. Dendy, S. C. Chapman, and M. Paczuski, Plasma Phys. Controlled Fusion 49, A95 (2007). [2] T. Chang and C. C. Wu, Phys. Rev. E 77, 045401 (2008). [3] R. T. J. McAteer, P. T. Gallagher, and J. Ireland, Astrophys. J. 631, 628 (2005). [4] V. M. Uritsky, A. J. Klimas, and D. Vassiliadis, Adv. Space Res. 37, 539 (2006). [5] S. C. Chapman, B. Hnat, and K. Kiyani, Nonlinear Proc. Geophys. 15, 445 (2008). [6] G
Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; L. Larson, E. J.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.
2017-04-01
The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.
On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere
Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto
2018-01-01
The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Direct numerical simulation of MHD flow with electrically conducting wall
International Nuclear Information System (INIS)
Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.
2006-01-01
The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget
Generalized reduced MHD equations
International Nuclear Information System (INIS)
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1998-07-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson
Retallick, F. D.
1980-10-01
Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.
Test-field method for mean-field coefficients with MHD background
Rheinhardt, M.; Brandenburg, A.
2010-01-01
Aims: The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to the regime with a magnetohydrodynamic (MHD) background. Methods: A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By employing an additional set of auxiliary equations, we obtain linear equations describing the response of the system to a set of prescribed test fields. Purely magnetic and MHD backgro...
Proceedings of the workshop on nonlinear MHD and extended MHD
International Nuclear Information System (INIS)
1998-01-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
Proceedings of the workshop on nonlinear MHD and extended MHD
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
MHD dynamo action in space plasmas
International Nuclear Information System (INIS)
Faelthammar, C.G.
1984-05-01
Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)
DEFF Research Database (Denmark)
Rong, Li; Nielsen, P V; Zhang, Guo-Qiang
2009-01-01
Odor emissions from manure in livestock buildings are an important issue which concerns the human health and air quality as well as animals. Ammonia is one of the most important odors in pig houses. The objective of this paper is to investigate the influence of local velocity, turbulence intensit...
International Nuclear Information System (INIS)
Gundersen, R.M.
1983-01-01
A plane MHD shock wave of arbitrary strength meets a slender body moving at super-true-sonic speed in the opposite direction. The interaction between the given shock wave and the weak shock attached to the slender body is studied for aligned fields for axisymmetrical flow and for both aligned and transverse fields in the two-dimensional case. Formal solutions for the linearized flow in the interaction region are obtained by the use of integral transforms. (author)
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Chhiber, Rohit; Usmanov, Arcadi V.; DeForest, Craig E.; Matthaeus, William H.; Parashar, Tulasi N.; Goldstein, Melvyn L.
2018-04-01
Recent analysis of Solar-Terrestrial Relations Observatory (STEREO) imaging observations have described the early stages of the development of turbulence in the young solar wind in solar minimum conditions. Here we extend this analysis to a global magnetohydrodynamic (MHD) simulation of the corona and solar wind based on inner boundary conditions, either dipole or magnetogram type, that emulate solar minimum. The simulations have been calibrated using Ulysses and 1 au observations, and allow, within a well-understood context, a precise determination of the location of the Alfvén critical surfaces and the first plasma beta equals unity surfaces. The compatibility of the the STEREO observations and the simulations is revealed by direct comparisons. Computation of the radial evolution of second-order magnetic field structure functions in the simulations indicates a shift toward more isotropic conditions at scales of a few Gm, as seen in the STEREO observations in the range 40–60 R ⊙. We affirm that the isotropization occurs in the vicinity of the first beta unity surface. The interpretation based on early stages of in situ solar wind turbulence evolution is further elaborated, emphasizing the relationship of the observed length scales to the much smaller scales that eventually become the familiar turbulence inertial range cascade. We argue that the observed dynamics is the very early manifestation of large-scale in situ nonlinear couplings that drive turbulence and heating in the solar wind.
DEFF Research Database (Denmark)
Cheynet, Etienne; Jakobsen, Jasna B.; Snæbjörnsson, Jónas
2017-01-01
lidar data with point-measurement to reduce the uncertainties linked to the atmospheric stability and the spatial averaging of the lidar probe volume. The measured lateral coherence was associated with a decay coefficient larger than expected for the along-wind component, with a value around 21...... for a mean wind velocity bounded between 10m·s-1 and 14m·s-1, which may be related to a stable atmospheric stratification....
Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.
1983-01-01
A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.
Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus
2018-03-01
Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.
Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling
Uzdensky, D. A.
2018-03-01
Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.
Turbulence in the Heliospheric Jets
Drake, J. F.; Swisdak, M.; Opher, M.; Hassam, A.; Ohia, O.
2016-12-01
The conventional picture of the heliosphere is that of a comet-shaped structure with an extended tail produced by the relative motion of the sun through the local interstellar medium (LISM). Recent MHD simulations of the global heliosphere have revealed, however, that the heliosphere drives magnetized jets to the North and South similar to those driven by the Crab Nebula and other astrophysical objects. These simulations reveal that the jets become turbulent with scale lengths as large as 100AU [1,2]. An important question is what drives this large-scale turbulence, what are the implications for mixing of interstellar and heliospheric plasma and does this turbulence drive energetic particles? An analytic model of the heliospheric jets in the simple limit in which the interstellar flow and magnetic field are neglected yields an equilibrium state that can be analyzed to explore potential instabilities [3]. Calculations suggest that because the axial magnetic field within the jets is small, the dominant instability is the sausage mode, driven by the azimuthal solar magnetic field. Other drive mechanisms, including Kelvin Helmholtz, are also being explored. 3D MHD and Hall MHD simulations are being carried out to explore the development of this turbulence, its impact on the mixing of interstellar and heliosheath plasma and the production of energetic particles. [1] Opher et al ApJ Lett. 800, L28, 2015[2] Pogorelov et al ApJ Lett. 812,L6, 2015[3] Drake et al ApJ Lett. 808, L44, 2015
Beyhaghi, Saman
Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. Due to the development of a thin boundary layer over the ground surface, the modern commercial wind turbines have to be relatively large to be cost-effective. Because of the high manufacturing and transportation costs of the wind turbine components, it is necessary to evaluate the design and predict the performance of the turbine prior to shipping it to the site, where it is to be installed. Computational Fluid Dynamics (CFD) has proven to be a simple, cheap and yet relatively accurate tool for prediction of wind turbine performance, where the suitability of different designs can be evaluated at a low cost. High accuracy simulation methods such as Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) are developed and utilized in the past decades. Despite their superior importance in large fluid domains, they fail to make very accurate predictions near the solid surfaces. Therefore, in the present effort, the possibility of improving near-wall predictions of CFD simulations in the near-wall region by using a modified turbulence model is also thoroughly investigated. Algebraic Stress Model (ASM) is employed in conjunction with Detached Eddy Simulation (DES) to improve Reynolds stresses components, and consequently predictions of the near-wall velocities and surface pressure distributions. The proposed model shows a slightly better performance
Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.
2018-02-01
We propose a novel one-dimensional model that includes both shock and turbulence heating and qualify how these processes contribute to heating the corona and driving the solar wind. Compressible MHD simulations allow us to automatically consider shock formation and dissipation, while turbulent dissipation is modeled via a one-point closure based on Alfvén wave turbulence. Numerical simulations were conducted with different photospheric perpendicular correlation lengths {λ }0, which is a critical parameter of Alfvén wave turbulence, and different root-mean-square photospheric transverse-wave amplitudes δ {v}0. For the various {λ }0, we obtain a low-temperature chromosphere, high-temperature corona, and supersonic solar wind. Our analysis shows that turbulence heating is always dominant when {λ }0≲ 1 {Mm}. This result does not mean that we can ignore the compressibility because the analysis indicates that the compressible waves and their associated density fluctuations enhance the Alfvén wave reflection and therefore the turbulence heating. The density fluctuation and the cross-helicity are strongly affected by {λ }0, while the coronal temperature and mass-loss rate depend weakly on {λ }0.
Energy Technology Data Exchange (ETDEWEB)
Retallick, F.D.
1978-04-01
This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.
Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.
2000-01-01
Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.
Energy Technology Data Exchange (ETDEWEB)
Hofbauer, T.
2003-07-01
In several aspects, the behaviour of aircraft wake vortices under situations of vertical wind shear is significantly different from non-shear scenarios and its operational real-time forcast is challenging. By means of numerical investigations of idealized scenarios, the influence of wind shear on the lateral and vertical transport of vortices is analysed both, phenomenologically as well as in the scope of a sensitivity study. The results allow for the verification of controversial views and the benchmark of modelling approaches. Case studies of turbulent shear flows focus on the persistence of vortices. A detailed analysis of the flow fields evidence that unequal vortex decay rates can be attributed to the asymmetric distribution of secondary vorticity structures. The results moreover suggest that extended vortex lifespans can be expected under situations of wind shear. The unusual vortex behaviour observed by means of a LIDAR measurement is reproduced by realistic simulations and permits to reveal potential causes. (orig.) [German] Das Wirbelschleppenverhalten unterscheidet sich in Situationen vertikaler Windscherung in mehrfacher Hinsicht signifikant von scherungsfreien Szenarien und stellt eine besondere Herausforderung fuer eine operationelle Echtzeitvorhersage dar. Mittels numerischer Untersuchungen idealisierter Szenarien wird zunaechst der Einfluss von Windscherung auf den lateralen und vertikalen Wirbeltransport sowohl phaenomenologisch als auch quantitativ im Rahmen einer Sensitivitaetsstudie analysiert. Anhand der gewonnenen Ergebnisse werden auseinandergehende Erklaerungsansaetze geprueft und Modellierungsansaetze bewertet. Fallstudien turbulenter Scherstroemungen zur Wirbelpersistenz stellen einen weiteren Schwerpunkt dieser Arbeit dar. Durch die ausfuehrliche Analyse der Stroemungsfelder wird der Nachweis erbracht, dass sich unterschiedliche Zerfallsraten der Wirbel auf die asymmetrische Verteilung von sekundaeren Vorticity-Strukturen zurueckfuehren
Directory of Open Access Journals (Sweden)
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
Offshore wind resources at Danish measurement sites
Energy Technology Data Exchange (ETDEWEB)
Barthelmie, R.J.; Courtney, M.S.; Lange, B.; Nielsen, M.; Sempreviva, A.M. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J.; Olsen, F. [SEAS, Haslev (Denmark); Christensen, T. [Elsamprojekt, Fredericia (Denmark)
1999-03-01
In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-03-01
TRES4 is a software package that works with the MSC/NASTRAN finite element analysis code to conduct random vibration analysis of vertical-axis wind turbines. The loads on the turbine are calculated in the time domain to retain the nonlinearities of stalled aerodynamic loadings. The loads are transformed into modal coordinates to reduce the number of degrees of freedom. Power spectra and cross spectra of the loads are calculated in the modal coordinate system. These loads are written in NASTRAN Bulk Data format to be read and applied in a random vibration analysis by NASTRAN. The resulting response is then transformed back to physical coordinates to facilitate user interpretation.
Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion
Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon
2016-01-01
We test a new technique of studying magnetohydrodynamic (MHD) turbulence suggested by Lazarian \\& Pogosyan, using synthetic synchrotron polarization observations. This paper focuses on a one-point statistics, which is termed the polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of wavelengths along a single line of sight. We adopt a ratio $\\eta$ of the standard deviation of the line-of-sight turbulent magnetic field to the...
Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Yoshizawa, A.
1996-01-01
Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics
Parhi, Shyamsundar; Suess, Steven T.; Sulkanen, Martin E.
1998-01-01
During its south polar passage in 1994, Ulysses sampled the solar wind emerging from the south polar coronal hole. In analysing these data two types of density fluctuations lasting a few hours have been reported, one characterized by fluctuations in velocity gradients ("microstreams") and the other by magnetic plus thermal-pressure balance structures ("PBS"). Microstreams were both temporal and spatial in nature. At higher frequencies, MHD turbulence was observed and found to be less evolved than in the ecliptic, but essentially independent of heliographic latitude. It is argued here that microstreams, PBS, and MHD turbulence could all be the remnant of shears associated with plumes and other filamentary structures ("jets") which have been reported to exist in coronal holes. The shear between a jet and its ambient can become unstable to the MHD Kelvin-Helmholtz ("KH') instability at 5-10 solar radius and the propagating instability can cause fluctuations like those seen by Ulysses. This motivates us to simulate coronal jets using a 3D MHD ZEUS code. The first 2D results have just started to come and are promising. To study the KH instability the jet is perturbed at the boundary with a linear amplitude and fixed frequency. The jet seems to pass through various distinct phases, one of which Is apparently dominated by KH instabilities. These instabilities drive oblique shocks into the jet as the turbulent eddies contact the jet surface. It is known that KH instabilities and internal shock waves are partially suppressed by magnetic field tension. Hence, in simulating far along the jet the Instability is expected to produce Alfvenic fluctuations like those seen near 1 AU.
Steady-state magnetohydrodynamic clump turbulence
International Nuclear Information System (INIS)
Tetreault, D.J.
1989-01-01
The turbulent steady state of the magnetohydrodynamic (MHD) clump instability [Phys. Fluids 31, 2122 (1988)] is investigated. The steady state is determined by the balance between clump growth by turbulent mixing and clump decay by field line stochasticity. The turbulent fields driving the mixing are generated self-consistently from Ampere's law and conserve the magnetic helicity. In the steady state, the mean current and magnetic field satisfy J 0 = μB 0 , where μ depends on the mean-square fluctuation level. Above this critical point (J 0 >μB 0 ), the plasma is MHD clump unstable. MHD clump instability is a dynamical route to the force-free, Taylor state. For the steady state to exist, μ must exceed a threshold on the order of that required for B 0 /sub z/ field reversal. Steady-state MHD clump turbulence corresponds to field reversed Taylor states. From the μ threshold condition, the steady-state fluctuation spectrum (δB/sub rms//B) is calculated and shown to increase with mean driving current as θ 3 , where θ is the pinch parameter
DEFF Research Database (Denmark)
Lundtang Petersen, Erik; Larsén, Xiaoli Guo; Larsen, Søren Ejling
chain and its use for computing the high resolution time series at every grid point which will be an important part of the final wind atlas database. The dataset then allows us to investigate one of the most crucial issues in the concept of the model chain namely that of linking the two...... correctly. We are further analyzing the impact of the frequent occurrence of cellular structures over Northern Europe in the atmospheric boundary layer on the spectral properties, following often cold polar outbreaks. Open cells have a tendency to fill up the spectral gap and as a consequence...
Magnetic levitation and MHD propulsion
International Nuclear Information System (INIS)
Tixador, P.
1994-01-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)
Shyamsundar, Parhi; Suess, Steven T.; Sulkanen, Martin E.
1998-01-01
The long high latitude sampling of Ulysses provides the opportunity to study fine structures. At latitudes poleward of approx. -60 deg, the solar wind had fluctuations in velocity gradients which were attributed to "microstreams". The data also suggested fluctuations characterized by magnetic plus thermal pressure balance structures ("PBS"). At higher frequencies, MHD turbulence was observed and found to be less evolved than in the ecliptic, but essentially independent of heliographic latitude. It is argued here that microstreams, PBS, and MHD turbulence could all be the remnants of mixing due to shear instabilities associated with plumes and other filamentarystructures ("jets") in coronal holes. To show this we simulate a plume-like jet in the presence of an ambient magnetic field. We find the presence of the ambient field reduces the growth rate of the instability, but the shear between a jet and its ambient still becomes unstable to the MHD Kelvin-Helmholtz ("KH") instability when the shear speed is larger than the largest local magnetosonic speed - a condition probably satisfied for plumes.
Parhi, S.; Suess, S. T.; Sulkanen, M.
1999-01-01
The long high-latitude sampling of Ulysses provides the opportunity to study fine structures. At latitudes poleward of about -60 degrees the solar wind had fluctuations in velocity gradients which were attributed to "microstreams." The data also suggested fluctuations characterized by magnetic plus thermal pressure balance structures ('PBS'). At higher frequencies, MHD turbulence was observed and found to be less evolved than it is in the ecliptic but essentially independent of heliographic latitude. It is argued here that microstreams, PBS, and MHD turbulence could all be the remnants of mixing due to shear instabilities associated with plumes and other filamentary structures ("jets") in coronal holes. To show this, we simulate a plume-like jet in the presence of an ambient magnetic field. We find that the presence of the ambient field reduces the growth rate of the instability, but the shear between a jet and its ambient still becomes unstable to the MHD Kelvin-Helmholtz instability when the shear speed is larger than the largest local magnetosonic speed, a condition probably satisfied for plumes.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
DEFF Research Database (Denmark)
Dyrbye, Claes; Hansen, Svend Ole
Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...
Dissipation range turbulent cascades in plasmas
International Nuclear Information System (INIS)
Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.
2012-01-01
Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.
Toward the Theory of Turbulence in Magnetized Plasmas
International Nuclear Information System (INIS)
Boldyrev, Stanislav
2013-01-01
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model
Global Plasma Turbulence Simulations of q=3 Sawtoothlike Events in the RTP Tokamak
de Baar, M. R.; Thyagaraja, A.; Hogeweij, G. M.; Knight, P. J.; Min, E.
2005-01-01
A two-fluid computer model of electromagnetic tokamak turbulence, CUTIE, is used to study the dynamic structure and turbulent transport in the Rijnhuizen Tokamak Project tokamak. A discharge with dominant, off-axis electron cyclotron heating is the main focus of the simulations which were extended over several resistive diffusion times. CUTIE reproduces the turbulent transport and MHD phenomena of the experiment. The noninductive components of the current density profile, viz., the dynamo current and the bootstrap current, are identified as key players in the turbulent transport and its suppression and in off-axis MHD events.
Nonadiabatic interaction between a charged particle and an MHD pulse
Directory of Open Access Journals (Sweden)
Y. Kuramitsu
2008-03-01
Full Text Available Interaction between a magnetohydrodynamic~(MHD pulse and a charged particle is discussed both numerically and theoretically. Charged particles can be accelerated efficiently in the presence of spatially correlated MHD waves, such as short large amplitude magnetic structures, by successive mirror reflection (Fermi process. In order to understand this process, we study the reflection probability of particles by the MHD pulses, focusing on the adiabaticity on the particle motion. When the particle velocity is small (adiabatic regime, the probability that the particle is reflected by the MHD pulse is essentially determined only by the pitch angle, independent from the velocity. On the other hand, in the non-adiabatic regime, the reflection probability is inversely proportional to the square root of the normalized velocity. We discuss our numerical as well as analytical results of the interaction process with various pulse amplitude, pulse shape, and the pulse winding number. The reflection probability is universally represented as a power law function independent from above pulse properties.
Wu, Jian; Zha, Jinlin; Zhao, Deming; Yang, Qidong
2017-11-01
A significant slowdown in the near-surface wind speed (SWS) due to combined effects of the driving and drag forces of the atmosphere has been demonstrated in different regions in the globe. The drag force includes two sources: the friction force between the underlying surface and the bottom of the atmosphere, which is the external friction force (EFF), and the vertical exchange of the horizontal momentum induced by turbulent mixing, which is the turbulent friction force (TFF). In this paper, we propose a diagnostic method to separate the effects of the EFF and the TFF on long-term changes in the SWS over the Eastern China Plain (ECP) region from 1981 to 2010. The results show that the TFF could have caused an increase of 0.5 ± 0.2 m s- 1 in the SWS over the ECP region in the past 30 years and the TFF showed an increasing influence of 0.17 m s- 1 decade- 1. In contrast, the EFF distinctly decreased the SWS by an average of - 1.1 ± 0.4 m s- 1 and presented a significant decreasing trend of - 0.36 m s- 1 decade- 1. The effect of EFF is the main inducer of the observed regional long-term decrease of the SWS, which is in accordance with the distinct land use and cover change (LUCC) occurring in the ECP region in recent decades. Furthermore, the effects of the EFF and TFF on the changes in the SWS are more significant in large cities than those in small cities. The TFF effect can accelerate the SWS, with means of 0.5 ± 0.2 and 0.4 ± 0.2 m s- 1 in large and small cities, respectively. The EFF effect can decelerate the SWS, with means of - 1.2 ± 0.4 and - 0.7 ± 0.4 m s- 1 in large and small cities, respectively.
Multi-scale-nonlinear interactions among micro-turbulence, magnetic islands, and zonal flows
International Nuclear Information System (INIS)
Ishizawa, A.; Nakajima, N.; Okamoto, M.; Ramos, J.J.
2006-10-01
We investigate multi-scale-nonlinear interactions among micro-instabilities, macro-scale tearing instabilities and zonal flows, by solving reduced two-fluid equations numerically. We find that the nonlinear interactions of these instabilities trigger macro-scale MHD activity after an equilibrium is formed by a balance between the micro-turbulence and zonal flow. This MHD activity breaks magnetic surfaces then this breaking spreads the micro-turbulence over the plasma. These multi-scale-nonlinear interactions can explain the evolution of fluctuation observed in torus plasma experiments because micro-turbulence and MHD instabilities usually appear in the plasma at the same time, in spite of the fact that effects of micro-turbulence and MHD instabilities on plasma confinement have been investigated separately. For instance, MHD activities are observed in reversed shear tokamak plasmas with a transport barrier related to zonal flows and micro-turbulence, and micro-turbulence is observed in Large Helical Device plasmas that usually exhibit MHD activities. (author)
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
The collapse of turbulence in the evening
Wiel, van de B.J.H.; Moene, A.F.; Jonker, H.J.J.; Baas, P.; Basu, S.; Sun, J.; Holtslag, A.A.M.
2012-01-01
A common experience in everyday weather is the fact that near-surface wind speeds tend to weaken in the evening, particularly in fair weather conditions. This cessation of wind usually coincides with the collapse of turbulence which leads to a quiet flow near the ground. As the absence of turbulent
MHD Integrated Topping Cycle Project
Energy Technology Data Exchange (ETDEWEB)
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Linear ideal MHD stability calculations for ITER
International Nuclear Information System (INIS)
Hogan, J.T.
1988-01-01
A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs
High Order Filter Methods for the Non-ideal Compressible MHD Equations
Yee, H. C.; Sjoegreen, Bjoern
2003-01-01
The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain non-ideal MHD test cases, divergence free preservation of the magnetic fields has been achieved.
Divergence Free High Order Filter Methods for the Compressible MHD Equations
Yea, H. C.; Sjoegreen, Bjoern
2003-01-01
The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.
Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification
International Nuclear Information System (INIS)
Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.
1981-01-01
This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs
DEFF Research Database (Denmark)
Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars
Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...
Directory of Open Access Journals (Sweden)
C. Nabert
2017-05-01
Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.
Turbulent dispersion of many particles
Pratt, J.; Busse, A.; Muller, W. C.
2017-12-01
We demonstrate the utility of the convex hull to analyze dispersion of groups of many Lagrangian tracer particles in turbulence. We examine dispersion in turbulent flows driven by convection, relevant to geophysical flows and the spread of contaminants in the atmosphere, and in turbulent flows affected by magnetic fields, relevant to stellar winds and stellar interiors. Convex hull analysis can provide new information about local dispersion, in the form of the surface area and volume for a cluster of particles. We use dispersive information to examine the local anisotropy that occurs in these turbulent settings, and to understand fundamental characteristics of heat transfer and the small-scale dynamo.
Gaussian free turbulence: structures and relaxation in plasma models
International Nuclear Information System (INIS)
Gruzinov, A.V.
1993-01-01
Free-turbulent relaxation in two-dimensional MHD, the degenerate Hasegawa-Mima equation and a two-dimensional microtearing model are studied. The Gibbs distributions of these three systems can be completely analyzed, due to the special structure of their invariants and due to the existence of ultraviolet catastrophe. The free-turbulent field is seen to be a sum of a certain coherent structure (statistical attractor) and Gaussian random noise. Two-dimensional current layers are shown to be statistical attractors in 2D MHD. (author)
Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence
Lynn, Jacob William
We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no
Kinetic Simulation of the Dissipation of a Turbulent Cascade
Roberts, D. A.; Roytershteyn, V.; Wicks, R. T.
2015-12-01
The solar wind fluctuations undergo a turbulent cascade that presumably results, in some unknown fashion, in the deposition of energy into randomized motions, i.e. "heating." The observed evolution of spectra, cross-helicity, and non-adiabatic thermal properties of the plasma provide strong evidence for a nonlinear cascade, but the currently available temporal/spatial resolution of (mostly) single spacecraft measurments leaves many questions open. Large-scale particle-in-cell simulations allow us to explore the fate of cascading energy from "MHD" scales to the scales where wave-particle interactions become important. Simulations to date have shown a number of characteristics similar to that of solar wind plasma, including steeper magnetic spectra parallel to the mean magnetic field than perpendicular to it, a spectral break near the ion inertial length, and bounded anisotropic temperatures. Detailed analysis has revealed "magnetic holes" and nonthermal particle distributions. We are in the process of analyzing a variety of initial conditions as well as looking in more detail at issues such as nonlinear vs linear dynamics, and of how distribution functions vary with conditions in the plasma. This paper will report latest results on these and other issues.
Numerical computation of MHD equilibria
International Nuclear Information System (INIS)
Atanasiu, C.V.
1982-10-01
A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)
Neoclassical MHD equations for tokamaks
International Nuclear Information System (INIS)
Callen, J.D.; Shaing, K.C.
1986-03-01
The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion
MHD stability of tandem mirrors
International Nuclear Information System (INIS)
Poulsen, P.; Molvik, A.; Shearer, J.
1982-01-01
The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration
Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury
Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.
2011-01-01
We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.
Chemical reaction in MHD flow past a vertical plate with mass ...
African Journals Online (AJOL)
applications, experiments in hypersonic wind tunnels, MHD-oriented power generation are in superior phase these days and near ... y every for,. ,. ,0. ,0. :0. 2. 0. 0... (5). The symbols used are as under u - fluid velocity along x- direction, w - fluid velocity along z - direction, m - the Hall parameter, g - gravity, β - vol. coeff.
Satellite sensing of submerged fossil turbulence and zombie turbulence
Gibson, Carl H.
2004-11-01
Surface brightness anomalies from a submerged municipal wastewater outfall trapped by buoyancy in an area 0.1 km^2 are surprisingly detected from space satellites in areas > 200 km^2. How is this possible? Microstructure measurements near the outfall diffuser reveal enhanced turbulence and temperature dissipation rates above the 50 m trapping depth. Near-vertical radiation of internal waves by fossil and zombie turbulence microstructure patches produce wind ripple smoothing with 30-50 m internal wave patterns in surface Fourier brightness anomalies near the outfall. Detections at 10-14 km distances are at 100-220 m bottom boundary layer (BBL) fossil turbulence scales. Advected outfall fossils form zombie turbulence patches in internal wave patterns as they extract energy, vorticity, turbulence and ambient vertical internal wavelength information as their density gradients are tilted by the waves. As the zombies fossilize, patterned energy radiates near-vertically to produce the detected Fourier anomalies. Zombie turbulence patches beam extracted energy in a preferred direction with a special frequency, like energized metastable molecules in a chemical maser. Thus, kilowatts to produce the submerged field of advected fossil outfall turbulence patches are amplified by beamed zombie turbulence maser action (BZTMA) into megawatts of turbulence dissipation to affect sea surface brightness on wide surface areas using gigawatts of BBL fossil turbulence wave energy available.
AGN Winds and Blazar Phenomenology
Kazanas, Demos
2012-01-01
The launch of {\\em Fermi} produced a significant number of AGN detections to allow statistical treatment of their properties. One of the first such systematics was the "Blazar Divide" in FSRQs and BL Lacs according to their gamma-ray spectral index and luminosity. Further data accumulation indicated this separation to be less clear than thought before. An MHD wind model which can model successfully the Seyfert X-ray absorber properties provides the vestiges of an account of the observed blazar classification. We propose to employ this model to model in detail the broad band blazar spectra and their statistical properties in terms of the physical parameters of these MHD winds.
SHOCKFIND - an algorithm to identify magnetohydrodynamic shock waves in turbulent clouds
Lehmann, Andrew; Federrath, Christoph; Wardle, Mark
2016-11-01
The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetized turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks - fast, intermediate and slow - distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here, we introduce the publicly available algorithm, SHOCKFIND, to extract and characterize the mixture of shock families in MHD turbulence. The algorithm is applied to a three-dimensional simulation of a magnetized turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of sonic and Alfvénic Mach numbers. Using subgrid one-dimensional models of MHD shocks we estimate that ˜0.03 per cent of the volume of a typical molecular cloud in the Milky Way will be shock heated above 50 K, at any time during the lifetime of the cloud. We discuss the impact of this shock heating on the dynamical evolution of molecular clouds.
Magnetic levitation and MHD propulsion
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
Wind Tunnel Measurements at LM Wind Power
DEFF Research Database (Denmark)
Bertagnolio, Franck
2012-01-01
This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...
A simplified technique for determining the boundary layer voltage loss in MHD generators
International Nuclear Information System (INIS)
Dolson, R.C.; Biblarz, O.
1977-01-01
MHD generator performance predictions require an accurate determination of the voltage losses in the channel; however, most techniques for determining these losses need substantial calculations and/or computer storage space. This paper proposes a simplified method for calculating the ohmic boundary layer contribution to the overall voltage losses. Voltage drop regions are discussed and a description of the turbulent boundary layer contribution is derived. Appropriate simplifying assumptions on the basic transport and MHD concepts are used to express the conductivity as a function of temperature only. Weighting functions for averaging the resistivity in turbulent boundary layers are determined and the nature of these functions is presented. The results are compared with more precise descriptions and with experimental results. (author)
Directory of Open Access Journals (Sweden)
S. Dastgeer
2005-01-01
Full Text Available Interstellar scintillation and angular radio wave broadening measurements show that interstellar and solar wind (electron density fluctuations exhibit a Kolmogorov-like k-5/3 power spectrum extending over many decades in wavenumber space. The ubiquity of the Kolmogorov-like interstellar medium (ISM density spectrum led to an explanation based on coupling incompressible magnetohydrodynamic (MHD fluctuations to density fluctuations through a 'pseudosound' relation within the context of 'nearly incompressible' (NI hydrodynamics (HD and MHD models. The NI theory provides a fundamentally different explanation for the observed ISM density spectrum in that the density fluctuations can be a consequence of passive scalar convection due to background incompressible fluctuations. The theory further predicts generation of long-scale structures and various correlations between the density, temperature and the (magneto acoustic as well as convective pressure fluctuations in the compressible ISM fluids in different thermal regimes that are determined purely by the thermal fluctuation level. In this paper, we present the results of our two dimensional nonlinear fluid simulations, exploring various nonlinear aspects that lead to inertial range ISM turbulence within the context of a NI hydrodymanics model. In qualitative agreement with the NI predictions and the in-situ observations, we find that i the density fluctuations exhibit a Kolmogorov-like spectrum via a passive convection in the field of the background incompressible fluctuations, ii the compressible ISM fluctuations form long scale flows and structures, and iii the density and the temperature fluctuations are anti-correlated.
Wind noise under a pine tree canopy.
Raspet, Richard; Webster, Jeremy
2015-02-01
It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.
Solar wind heating by an embedded quasi-isothermal pick-up ion fluid
Directory of Open Access Journals (Sweden)
H. J. Fahr
Full Text Available It is well known that the solar wind plasma consists of primary ions of solar coronal origin and secondary ions of interstellar origin. Interstellar H-atoms penetrate into the inner heliosphere and when ionized there are converted into secondary ions. These are implanted into the magnetized solar wind flow and are essentially enforced to co-move with this flow. By nonlinear interactions with wind-entrained Alfvén waves the latter are processed in the co-moving velocity space. This pick-up process, however, also causes actions back upon the original solar wind flow, leading to a deceleration, as well as a heating of the solar wind plasma. The resulting deceleration is not only due to the loading effect, but also due to the action of the pressure gradient. To calculate the latter, it is important to take into account the stochastic acceleration that suffers at their convection out of the inner heliosphere by the quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in terms of the current, most likely values of interstellar gas parameters. In a consistent view of the thermodynamics of the solar wind plasma, which is composed of secondary ions and solar wind protons, we also derive that the latter are globally heated at their motion to larger solar distances. The arising heat transfer is due to the action of suprathermal ions which drive MHD waves that are partially absorbed by solar wind protons and thereby establish their observed quasi-polytropy. We obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic behaviour with a decreasing polytropic index at increasing distances, as has been observed by the VOYAGERS. This also allows one to calculate the average percentage of the intitial energy
Solar wind heating by an embedded quasi-isothermal pick-up ion fluid
Directory of Open Access Journals (Sweden)
H. J. Fahr
2002-10-01
Full Text Available It is well known that the solar wind plasma consists of primary ions of solar coronal origin and secondary ions of interstellar origin. Interstellar H-atoms penetrate into the inner heliosphere and when ionized there are converted into secondary ions. These are implanted into the magnetized solar wind flow and are essentially enforced to co-move with this flow. By nonlinear interactions with wind-entrained Alfvén waves the latter are processed in the co-moving velocity space. This pick-up process, however, also causes actions back upon the original solar wind flow, leading to a deceleration, as well as a heating of the solar wind plasma. The resulting deceleration is not only due to the loading effect, but also due to the action of the pressure gradient. To calculate the latter, it is important to take into account the stochastic acceleration that suffers at their convection out of the inner heliosphere by the quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in terms of the current, most likely values of interstellar gas parameters. In a consistent view of the thermodynamics of the solar wind plasma, which is composed of secondary ions and solar wind protons, we also derive that the latter are globally heated at their motion to larger solar distances. The arising heat transfer is due to the action of suprathermal ions which drive MHD waves that are partially absorbed by solar wind protons and thereby establish their observed quasi-polytropy. We obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic behaviour with a decreasing polytropic index at increasing distances, as has been observed by the VOYAGERS. This also allows one to calculate the average percentage of the intitial energy
Scale-locality of magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Aluie, Hussein [Los Alamos National Laboratory; Eyink, Gregory L [JOHNS HOPKINS UNIV.
2009-01-01
We investigate the scale-locality of cascades of conserved invariants at high kinetic and magnetic Reynolds numbers in the 'inertial-inductive range' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross-helicity - or, equivalently, fluxes of Elsaesser energies - are dominated by the contributions of local triads. Corresponding spectral transfers are also scale-local when defined using octave wavenumber bands. Flux and transfer of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term also may be dominated by non-local triads but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion non locally between disparate scales. We present supporting data from a 1024{sup 3} simulation of forced MHD turbulence.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
International Nuclear Information System (INIS)
Yvars, M.
1979-10-01
The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr
Extreme wind estimate for Hornsea wind farm
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo
The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...
Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy
Lebiga, O.; Santos-Lima, R.; Yan, H.
2018-02-01
The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲ 100 GeV) in the interstellar and intracluster medium of galaxies (ISM and ICM) has been showed in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasilinear theory (QLT). Our results support the applicability of the QLT for modeling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.
Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy
Lebiga, O.; Santos-Lima, R.; Yan, H.
2018-05-01
The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.
Energy Technology Data Exchange (ETDEWEB)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Transition to turbulence in the Hartmann boundary layer
Energy Technology Data Exchange (ETDEWEB)
Thess, A.; Krasnov, D.; Boeck, T.; Zienicke, E. [Dept. of Mechanical Engineering, Ilmenau Univ. of Tech. (Germany); Zikanov, O. [Dept. of Mechanical Engineering, Univ. of Michigan, Dearborn, MI (United States); Moresco, P. [School of Physics and Astronomy, The Univ. of Manchester (United Kingdom); Alboussiere, T. [Lab. de Geophysique Interne et Tectonophysique, Observatoire des Science de l' Univers de Grenoble, Univ. Joseph Fourier, Grenoble (France)
2007-07-01
The Hartmann boundary layer is a paradigm of magnetohydrodynamic (MHD) flows. Hartmann boundary layers develop when a liquid metal flows under the influence of a steady magnetic field. The present paper is an overview of recent successful attempts to understand the mechanisms by which the Hartmann layer undergoes a transition from laminar to turbulent flow. (orig.)
Turbulence measurement with a two-beam nacelle lidar
DEFF Research Database (Denmark)
Wagner, Rozenn; Sathe, Ameya; Mioullet, A.
The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...
Long-term Evolution of Decaying Magnetohydrodynamic Turbulence in the Multiphase Interstellar Medium
Kim, Chang-Goo; Basu, Shantanu
2013-12-01
Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of Evpropt -1 and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (~0.2E 0) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.
Stellar winds, dead zones, and coronal mass ejections
Keppens, R.; Goedbloed, J. P.
2000-01-01
Axisymmetric stellar wind solutions are presented that were obtained by numerically solving the ideal magnetohydrodynamic (MHD) equations. Stationary solutions are critically analyzed using the knowledge of the flux functions. These flux functions enter in the general variational principle governing
Wang, X.; Tu, C. Y.; He, J.; Wang, L.
2017-12-01
The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.
International Nuclear Information System (INIS)
Branover, H.; Lykoudis, P.S.; Yakhot, A.
1983-01-01
The papers contained in this volume provide an overview of the present status of studies in liquid-metal MHD flows, including some related problems of MHD of a general kind and different applications of these flows. The topics discussed include fundamental studies in MHD and turbulence MHD generation and electromagnetic flowmeters electromagnetic pumps, flow couplers, fission and fusion applications and metallurgical magnetohydrodynamics. Papers are presented on a finite-element analysis of two-dimensional MHD flows, electromagnetic stirring in the coreless induction furnace, liquid-solid separation in a molten metal by a stationary electromagnetic field, and magnetic levitation of liquid metals. No individual items are abstracted in this volume
Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm
DEFF Research Database (Denmark)
Barthelmie, Rebecca Jane; Jensen, L.E.
2010-01-01
be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under-estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due......Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine...... thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can...
International Nuclear Information System (INIS)
Groenaas, Sigbjoern
2005-01-01
The article presents a brief survey of the conditions for wind power production in Norway and points out that several areas should be well suited. A comparison to Danish climate is made. The wind variations, turbulence problems and regional conditions are discussed
Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers
Grabbe, Crockett L.; Cairns, Iver H.
1995-01-01
A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a
SCMS-1, Superconducting Magnet System for an MHD generator
International Nuclear Information System (INIS)
Zenkevich, V.B.; Kirenin, I.A.; Tovma, V.A.
1977-01-01
The research and development effort connected with the building of the superconducting magnet systems for MHD generators at the Institute for High Temperatures of the U.S.S.R. Academy of Sciences included the designing, fabrication and testing of the superconducting magnet system for an MHD generator (SCMS-1), producing a magnetic field up to 4 Tesla in a warm bore tube 300 mm in diameter and 1000 mm long (the nonuniformity of the magnetic field in the warm bore did not exceed +-5%. The superconducting magnet system is described. The design selected consisted of a dipole, saddle-form coil, wound around a tube. The cooling of the coils is of the external type with helium access to each layer of the winding. For winding of the superconducting magnet system a 49-strand cable was used consisting of 42 composition conductors, having a diameter of 0.3 mm each, containing six superconducting strands with a niobium-titanium alloy base (the superconducting strands were 70 microns in diameter), and seven copper conductors of the same diameter as the composite conductors. The cable is made monolithic with high purity indium and insulated with lavsan fiber. The cable diameter with insulation is 3.5 mm
Far offshore wind conditions in scope of wind energy
Holtslag, M.C.
2016-01-01
Far offshore atmospheric conditions are favourable for wind energy purposes since mean wind speeds are relatively high (i.e., high power production) while turbulence levels are relatively low (i.e., less fatigue loads) compared to onshore conditions. Offshore wind energy, however, is still expensive
Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained
Zhang, Y.
2017-01-01
Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased
Turbulence in Natural Environments
Banerjee, Tirtha
used in related dispersion studies and coupled land atmosphere interaction models. For other more complex biosphere atmosphere interactions such as greenhouse gas emissions from wetlands, the interplay between air and water, often in presence of flexible aquatic vegetation, controls turbulence in water, which in turn affect the gas transfer processes. This process of wind shear induced wave-turbulent-vegetation interaction is studied for the first time in the laboratory and the state of turbulence as well as the bulk flow is found to be highly sensitive to environmental controls such as water height, wind speed, vegetation density and flexibility. This dissertation describes and gradually develops these concepts in an increasing order of complexity of boundary conditions. The first three chapters address the neutral and thermally stratified boundary layers and the last two chapters address the canopy edge problem and the air-water-vegetation experiments respectively.
Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations
Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.
2013-12-01
There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.
A study of shock-associated magnetohydrodynamic waves in the solar wind
Spangler, Steven R.
1992-01-01
Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal
MHD (Magnetohydrodynamics) recovery and regeneration
Energy Technology Data Exchange (ETDEWEB)
McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)
1988-10-01
A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.
Feasibility of MHD submarine propulsion
Energy Technology Data Exchange (ETDEWEB)
Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
DEFF Research Database (Denmark)
Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.
2015-01-01
The dynamic wake meandering (DWM) model is an engineering wake model designed to physically model the wake deficit evolution and the unsteady meandering that occurs in wind turbine wakes. The present study aims at improving two features of the model: The effect of the atmospheric boundary layer s...
Matthaeus, W. H.; Yang, Y.; Servidio, S.; Parashar, T.; Chasapis, A.; Roytershteyn, V.
2017-12-01
Turbulence cascade transfers energy from large scale to small scale but what happens once kinetic scales are reached? In a collisional medium, viscosity and resistivity remove fluctuation energy in favor of heat. In the weakly collisional solar wind, (or corona, m-sheath, etc.), the sequence of events must be different. Heating occurs, but through what mechanisms? In standard approaches, dissipation occurs though linear wave modes or instabilities and one seeks to identify them. A complementary view is that cascade leads to several channels of energy conversion, interchange and spatial rearrangement that collectively leads to production of internal energy. Channels may be described using compressible MHD & multispecies Vlasov Maxwell formulations. Key steps are: Conservative rearrangement of energy in space; Parallel incompressible and compressible cascades - conservative rearrangment in scale; electromagnetic work on particles that drives flows, both macroscopic and microscopic; and pressure-stress interactions, both compressive and shear-like, that produces internal energy. Examples given from MHD, PIC simulations and MMS observations. A more subtle issue is how entropy is related to this degeneration (or, "dissipation") of macroscopic, fluid-scale fluctuations. We discuss this in terms of Boltzmann and thermodynamic entropies, and velocity space effects of collisions.
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Okuzumi, Satoshi, E-mail: yasuhiro@caltech.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan)
2017-08-10
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Widmer, F., E-mail: widmer@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Büchner, J. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Yokoi, N. [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)
2016-04-15
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysical plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τ{sub t}. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τ{sub t} decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. .... to ˆz is called the Alfvén wave, and the other orthogonal component is called the Slow. (magnetosonic) ...... advanced in the text suffices for our phenomenological account in this review. [46] A Beresnyak ...
Adaptive Numerical Dissipation Control in High Order Schemes for Multi-D Non-Ideal MHD
Yee, H. C.; Sjoegreen, B.
2005-01-01
The required type and amount of numerical dissipation/filter to accurately resolve all relevant multiscales of complex MHD unsteady high-speed shock/shear/turbulence/combustion problems are not only physical problem dependent, but also vary from one flow region to another. In addition, proper and efficient control of the divergence of the magnetic field (Div(B)) numerical error for high order shock-capturing methods poses extra requirements for the considered type of CPU intensive computations. The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multiresolution wavelets (WAV) (for the above types of flow feature). These filters also provide a natural and efficient way for the minimization of Div(B) numerical error.
MAGNETIC NESTED-WIND SCENARIOS FOR BIPOLAR OUTFLOWS: PREPLANETARY AND YSO NEBULAR SHAPING
International Nuclear Information System (INIS)
Dennis, Timothy J.; Frank, Adam; Blackman, Eric G.; DeMarco, Orsola; Balick, Bruce; Mitran, Sorin
2009-01-01
We present results of a series of magnetohydrodynamic (MHD) and hydrodynamic (HD) 2.5 dimensional simulations of the morphology of outflows driven by nested wide-angle winds, i.e., winds that emanate from a central star as well as from an orbiting accretion disk. While our results are broadly relevant to nested-wind systems, we have tuned the parameters of the simulations to touch on issues in both young stellar objects and planetary nebula (PN) studies. In particular, our studies connect to open issues in the early evolution of PNs. We find that nested MHD winds exhibit marked morphological differences from the single MHD wind case along both dimensions of the flow. Nested HD winds, on the other hand, give rise mainly to geometric distortions of an outflow that is topologically similar to the flow arising from a single stellar HD wind. Our MHD results are insensitive to changes in ambient temperature between ionized and un-ionized circumstellar environments. The results are sensitive to the relative mass-loss rates and the relative speeds of the stellar and disk winds. We also present synthetic emission maps of both nested MHD and HD simulations. We find that nested MHD winds show knots of emission appearing on-axis that do not appear in the HD case.
Wind Climate Parameters for Wind Turbine Fatigue Load Assessment
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang
2016-01-01
established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...
Cosmological AMR MHD with Enzo
Energy Technology Data Exchange (ETDEWEB)
Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
MHD phenomena at ASDEX Upgrade
International Nuclear Information System (INIS)
Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, M.
2001-01-01
The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25 %. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)
MHD phenomena at ASDEX Upgrade
International Nuclear Information System (INIS)
Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, H.
1999-01-01
The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25%. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)
Liquid metal MHD generator systems
International Nuclear Information System (INIS)
Satyamurthy, P.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.
1985-01-01
Liquid Metal MHD (LMMHD) Generator Systems are becoming increasingly important in space and terrestrial applications due to their compactness and versatility. This report gives the current status and economic viability of LMMHD generators coupled to solar collectors, fast breeder reactors, low grade heat sources and conventional high grade heat sources. The various thermodynamic cycles in the temperatures range of 100degC-2000degC have been examined. The report also discusses the present understanding of various loss mechanisms inherent in LMMHD systems and the techniques for overcoming these losses. A small mercury-air LMMHD experimental facility being set up in Plasma Physics Division along with proposals for future development of this new technology is also presented in this report. (author)
MHD stability properties of Extrap
International Nuclear Information System (INIS)
Ring, R.
1986-01-01
Stability properties of an Extrap with N conductors are investigated. The plasma is described by the ideal MHD model, the surface current model is used and the noncircularity is assumed to be weak. The investigation is carried out to second order in a small parameter /EPSILON/ that is a measure of the noncircularity of the cross section. As expected it turns out that the degeneracy present in the circular case is removed to first order in /EPSILON/ for m=N/2 and to second order for m=N, m beeing the azimuthal mode number. For other m values the degeneracy prevails but the eigenfrequences are shifted. It is also found that the sausage modes are stabilized for wave- lengths longer than the circumference of the pinch, that some other modes are stabilized for short waves and that the non- circularity causes resonant coupling between certain modes
Turbulence compressibility corrections
Coakley, T. J.; Horstman, C. C.; Marvin, J. G.; Viegas, J. R.; Bardina, J. E.; Huang, P. G.; Kussoy, M. I.
1994-01-01
The basic objective of this research was to identify, develop and recommend turbulence models which could be incorporated into CFD codes used in the design of the National AeroSpace Plane vehicles. To accomplish this goal, a combined effort consisting of experimental and theoretical phases was undertaken. The experimental phase consisted of a literature survey to collect and assess a database of well documented experimental flows, with emphasis on high speed or hypersonic flows, which could be used to validate turbulence models. Since it was anticipated that this database would be incomplete and would need supplementing, additional experiments in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel (HWT) were also undertaken. The theoretical phase consisted of identifying promising turbulence models through applications to simple flows, and then investigating more promising models in applications to complex flows. The complex flows were selected from the database developed in the first phase of the study. For these flows it was anticipated that model performance would not be entirely satisfactory, so that model improvements or corrections would be required. The primary goals of the investigation were essentially achieved. A large database of flows was collected and assessed, a number of additional hypersonic experiments were conducted in the Ames HWT, and two turbulence models (kappa-epsilon and kappa-omega models with corrections) were determined which gave superior performance for most of the flows studied and are now recommended for NASP applications.
Characteristics of laminar MHD fluid hammer in pipe
International Nuclear Information System (INIS)
Huang, Z.Y.; Liu, Y.J.
2016-01-01
As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.
Smart Wind Turbine : Analysis and Autonomous Flap
Bernhammer, L.O.
2015-01-01
Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
De-trending of turbulence measurements
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2006-01-01
depends primarily on site characteristics and local mean wind speed variations. Reduced turbulence intensity will result in lower design fatigue loads. This aspect of de-trending is discussed by use of a simple heuristic load model. Finally an empirical model for de-trending wind resource data......The paper presents the results of a comparison between long term raw and de-trended turbulence intensity values recorded at offshore and coastal sites under different weather systems. Within the traditional framework of turbulence interpretation, where turbulence is considered as a stationary...... measurements usually include statistics of ten-minute mean and standard deviation, and it is not possible to calculate the trend contribution afterwards, because this requires access to the time-series. A huge amount of time-series, stored in the database WindData.com, are used to calculate the trend...
Influence of atmospheric stability on wind turbine loads
DEFF Research Database (Denmark)
Sathe, Ameya; Mann, Jakob; Barlas, Thanasis K.
2013-01-01
at the turbine hub height. The loads are quantified as the cumulative sum of the damage equivalent load for different wind speeds that are weighted according to the wind speed and stability distribution. Four sites with a different wind speed and stability distribution are used for comparison. The turbulence...... turbulent energy. The tower base loads are mainly influenced by diabatic turbulence, whereas the rotor loads are influenced by diabatic wind profiles. The blade loads are influenced by both, diabatic wind profile and turbulence, that leads to nullifying the contrasting influences on the loads...
Wind Data from Kennedy Airport
National Research Council Canada - National Science Library
Abramson, Steve
1997-01-01
.... Although the original purpose for the anemometers was to track the lateral position of wake vortices, the measurements also provide a database of wind and turbulence that can be used for other purposes...
Wind Data from Memphis Airport
National Research Council Canada - National Science Library
Burnham, David
1997-01-01
.... Although the original purpose for the anemometers was to track the lateral position of wake vortices, the measurements also provide a database of wind and turbulence that can be used for other purposes...
International Nuclear Information System (INIS)
Dunn, P.F.
1978-01-01
The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser
MHD stability analysis of helical system plasmas
International Nuclear Information System (INIS)
Nakamura, Yuji
2000-01-01
Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)
LIDAR Wind Speed Measurements of Evolving Wind Fields
Energy Technology Data Exchange (ETDEWEB)
Simley, E.; Pao, L. Y.
2012-07-01
Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.
MHD heat and seed recovery technology project
Energy Technology Data Exchange (ETDEWEB)
Petrick, M.; Johnson, T. R.
1980-08-01
The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facility, which will be a 20-MW pilot plant of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as 1) NO/sub x/ behavior in the radiant boiler and secondary combustor; 2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed slag separation; 3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; 4) formation, growth, and deposition of seed-slag particles, 5) character of the combustion gas effluents, and 6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is reported.
A new method for solving the MHD equations in the magnetosheath
Directory of Open Access Journals (Sweden)
C. Nabert
2013-03-01
Full Text Available We present a new analytical method to derive steady-state magnetohydrodynamic (MHD solutions of the magnetosheath in different levels of approximation. With this method, we calculate the magnetosheath's density, velocity, and magnetic field distribution as well as its geometry. Thereby, the solution depends on the geomagnetic dipole moment and solar wind conditions only. To simplify the representation, we restrict our model to northward IMF with the solar wind flow along the stagnation streamline. The sheath's geometry, with its boundaries, bow shock and magnetopause, is determined self-consistently. Our model is stationary and time relaxation has not to be considered as in global MHD simulations. Our method uses series expansion to transfer the MHD equations into a new set of ordinary differential equations. The number of equations is related to the level of approximation considered including different physical processes. These equations can be solved numerically; however, an analytical approach for the lowest-order approximation is also presented. This yields explicit expressions, not only for the flow and field variations but also for the magnetosheath thickness, depending on the solar wind parameters. Results are compared to THEMIS data and offer a detailed explanation of, e.g., the pile-up process and the corresponding plasma depletion layer, the bow shock and magnetopause geometry, the magnetosheath thickness, and the flow deceleration.
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Preliminary analysis of the dynamic heliosphere by MHD simulations
International Nuclear Information System (INIS)
Washimi, H.; Zank, G. P.; Tanaka, T.
2006-01-01
A preliminary analysis of the dynamic heliosphere to estimate the termination shock (TS) distance from the sun around the time when Voyager 1 passed the termination shock at December 16, 2004 is performed by using MHD simulations. For input to this simulation, we use the Voyager 2 solar-wind data. We first find a stationary solution of the 3-D outer heliosphere by assigning a set of LISM parameters as our outer boundary conditions and then the dynamical analysis is performed. The model TS crossing is within 6 months of the observed date. The TS is pushed outward every time a high ram-pressure solar wind pulse arrives. After the end of the high ram-pressure wind, the TS shock shrinks inward. When the last Halloween event passed through the TS at DOY 250, 2004, the TS began to shrink inward very quickly and the TS crossed V1. The highest inward speed of the TS is over 400 km/s. The high ram-pressure solar wind transmitted through the TS becomes a high thermal-pressure plasma in the heliosheath, acting to push the TS inward. This suggests that the position of the TS is determined not only by the steady-state pressure balance condition between the solar wind ram-pressure and the LISM pressure, but by the dynamical ram pressure too. The period when the high ram-pressure solar wind arrives at the TS shock seems to correspond to the period of the TS particle event (Stone et al, 2005, Decker et al., 2005). The TS crossing date will be revised in future simulations using a more appropriate set of parameters for the LISM. This will enable us to undertake a detailed comparison of the simulation results with the TS particle events
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)
2007-08-15
We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.
Reduced Models for Gyrokinetic Turbulence
Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne
2009-09-01
Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma is essentially determined by the turbulent heat conduction across the equilibrium magnetic field. It has long been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-type gyrokinetic equations. Although the kinetic description is more accurate than fluid models (Magnetohydrodynamics (MHD), gyro-fluid), because among other things it takes into account nonlinear resonant wave-particle interaction, kinetic modeling has the drawback of a huge demand on computer resources. A unifying approach consists in considering water-bag-like weak solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a result this exact reduction induces a multi-fluid numerical resolution cost. Therefore, finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of the gyro-water-bag model. This model is suitable for studying linear and nonlinear low-frequency micro-instabilities and the associated anomalous transport in magnetically confined plasmas. Here we present the derivation of nonlinear gyro-water-bag models and their numerical approximations by backward Runge-Kutta semi-Lagrangian methods and forward Runge-Kutta discontinuous Galerkin schemes.
Limits on the ions temperature anisotropy in turbulent intracluster medium
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy
2016-05-15
Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.
Introduction to the theory of fluid and magnetofluid turbulence
International Nuclear Information System (INIS)
Montgomery, D.
1984-03-01
This set of notes was transcribed from the tape recording of three lectures given at the Institute of Plasma Physics, Nagoya University, in June, 1983. The lectures were intended to provide an introduction to the theory of magnetofluid turbulence which is a relatively new branch of plasma physics. It is related more closely to classic fluid dynamics than to the nonlinear theory of plasma oscillation. For this reason, fluid turbulence theory was reviewed as the background of the subject. The first lecture is on the origins of fluid and magnetofluid turbulence. The universal transition to turbulence takes place at sufficiently high Reynolds number, well above the critical threshold. The second lecture is on closures, attempt on dynamical theories. The Navier-Stokes case is discussed, and the attempt to reduce the number of the degrees of freedom, the importance of helicity in MHD, the direct interaction approximation (DIA) and others are explained. The third lecture is on the cascade and inverse cascade in fluid and magnetofluid. The idea of cascade was introduced into the theory of Navier-Stokes turbulence around 1941. The calculation of a form for inertial range energy spectra, the relation with dissipation rate, the tendency of migrating to long wavelength, the simulation of decaying turbulence, the numbers characterizing MHD and others are discussed. (Kako, I.)
Magnetosheath electrostatic turbulence
International Nuclear Information System (INIS)
Rodriguez, P.
1979-01-01
By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath
Wind loads on flat plate photovoltaic array fields (nonsteady winds)
Miller, R. D.; Zimmerman, D. K.
1981-01-01
Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.
Wind energy renewable energy and the environment
Nelson, Vaughn
2013-01-01
As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind
MHD stability, operational limits and disruptions
International Nuclear Information System (INIS)
1999-01-01
The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and
Energy transfer in compressible magnetohydrodynamic turbulence
Grete, Philipp; O'Shea, Brian W.; Beckwith, Kris; Schmidt, Wolfram; Christlieb, Andrew
2017-09-01
Magnetic fields, compressibility, and turbulence are important factors in many terrestrial and astrophysical processes. While energy dynamics, i.e., how energy is transferred within and between kinetic and magnetic reservoirs, has been previously studied in the context of incompressible magnetohydrodynamic (MHD) turbulence, we extend shell-to-shell energy transfer analysis to the compressible regime. We derive four new transfer functions specifically capturing compressibility effects in the kinetic and magnetic cascade, and capturing energy exchange via magnetic pressure. To illustrate their viability, we perform and analyze four simulations of driven isothermal MHD turbulence in the sub- and supersonic regime with two different codes. On the one hand, our analysis reveals robust characteristics across regime and numerical method. For example, energy transfer between individual scales is local and forward for both cascades with the magnetic cascade being stronger than the kinetic one. Magnetic tension and magnetic pressure related transfers are less local and weaker than the cascades. We find no evidence for significant nonlocal transfer. On the other hand, we show that certain functions, e.g., the compressive component of the magnetic energy cascade, exhibit a more complex behavior that varies both with regime and numerical method. Having established a basis for the analysis in the compressible regime, the method can now be applied to study a broader parameter space.
Toward Better Understanding of Turbulence Effects on Bridge Aerodynamics
Directory of Open Access Journals (Sweden)
Shuyang Cao
2017-12-01
Full Text Available With the trend of variable cross-sections for long-span bridges from truss-stiffened to quasi-streamlined, and then to multiple-box cross-section geometries, the importance of aeroelastic performance is becoming increasingly significant in wind-resistant design. This article shows that there is clearly insufficient qualitative as well as quantitative understanding of turbulence effects on bridge aerodynamics, particularly the mechanisms behind them. Although turbulence might help the stabilization of long-span bridges, and is thus not a conclusive parameter in wind-resistant design, turbulence effects on the aerodynamic and aeroelastic behaviors of a bridge need to be better understood because interaction between a bridge and turbulence always exists. This article also briefly introduces a newly developed multiple-fan wind tunnel that is designed to control turbulence to assist the study of turbulence effects.
Disturbances of three cometary magnetospheres as explained by an MHD simulation
Kozuka, Y.; Saito, T.; Konno, Ichishiro; Oki, T.
Outstanding disturbances of the plasma tails were observed in 1989 in three comets, Brorsen-Metcalf, Okazaki-Levy-Rudenko, and Aarseth-Brewington. Time variations of the tails were obtained from photographs provided by many astronomers. A 2-D MHD simulation was performed varying the speed and the direction of the solar wind flow. The simulation agreed quite well with the observations. Solar flares were identified as the sources of these disturbances. It was found that the sudden change in direction of the plasma tail axis occurs when the comet crosses a discontinuity surface of the solar wind structure accompanied by solar flares.
Turbulence for different background conditions using fuzzy logic and clustering
Directory of Open Access Journals (Sweden)
K. Satheesan
2010-08-01
Full Text Available Wind and turbulence estimated from MST radar observations in Kiruna, in Arctic Sweden are used to characterize turbulence in the free troposphere using data clustering and fuzzy logic. The root mean square velocity, νfca, a diagnostic of turbulence is clustered in terms of hourly wind speed, direction, vertical wind speed, and altitude of the radar observations, which are the predictors. The predictors are graded over an interval of zero to one through an input membership function. Subtractive data clustering has been applied to classify νfca depending on its homogeneity. Fuzzy rules are applied to the clustered dataset to establish a relationship between predictors and the predictant. The accuracy of the predicted turbulence shows that this method gives very good prediction of turbulence in the troposphere. Using this method, the behaviour of νfca for different wind conditions at different altitudes is studied.
MHD waveguides in space plasma
International Nuclear Information System (INIS)
Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.
2010-01-01
The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.
Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor
2017-04-01
As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Magnetized Disk Winds in NGC 3783
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis
2018-01-01
We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.
International Nuclear Information System (INIS)
Chandran, Benjamin D. G.
2000-01-01
Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it
Wind Tunnel Measurements at LM Wind Power
DEFF Research Database (Denmark)
Bertagnolio, Franck
2012-01-01
The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (R ij -ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
Nonequilibrium fluctuations in micro-MHD effects on electrodeposition
International Nuclear Information System (INIS)
Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki
2010-01-01
In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.
CFD analysis of a Darrieus wind turbine
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
On the distribution of energy versus Alfvénic correlation for polar wind fluctuations
Directory of Open Access Journals (Sweden)
B. Bavassano
2006-11-01
Full Text Available Previous analyses have shown that polar wind fluctuations at MHD scales appear as a mixture of Alfvénic fluctuations and variations with an energy imbalance in favour of the magnetic term. In the present study, by separately examining the behaviour of kinetic and magnetic energies versus the Alfvénic correlation level, we unambiguously confirm that the second population is essentially related to a large increase of the magnetic energy with respect to that of the Alfvénic population. The relevant new result is that this magnetic population, though of secondary importance in terms of occurrence frequency, corresponds to a primary peak in the distribution of total energy. The fact that this holds in the case of polar wind, which is the least structured type of interplanetary plasma flow and with the slowest evolving Alfvénic turbulence, strongly suggests the general conclusion that magnetic structures cannot be neglected when modeling fluctuations for all kinds of wind regime.
Observations of Thin Current Sheets in the Solar Wind and Their Role in Magnetic Energy Dissipation
Perri, S.; Goldstein, M. L.; Dorelli, J.; Sahraoui, F.; Gurgiolo, C. A.; Karimabadi, H.; Mozer, F.; Wendel, D. E.; TenBarge, J.; Roytershteyn, V.
2013-12-01
A recent analysis of 450 vec/s resolution data from the STAFF search-coil magnetometer on board Cluster has revealed, for the first time, the presence of thin current sheets and discontinuities from the proton Larmor scale down to the electron Larmor scale in the solar wind. This is in the range of scales where a cascade of energy consistent with highly oblique kinetic Alfvénic fluctuations (KAW), eventually dissipated by electron Landau damping, has been detected. The current sheets have been found to have a size between 20-200 km, indicating that they are very localized. We will compare the observations with results coming from 2D Hall MHD, Gyrokinetic, and full Particle-in-Cell turbulence simulations. Preliminary work has highlighted promising qualitative agreement between the properties of the structures observed in the Cluster data and the current sheets generated in the simulations. With the aim of investigating the role played by those structures in dissipating the magnetic energy in the solar wind, E●J has been computed within each magnetic discontinuity. This has been made possible via a combined analysis of both STAFF-SC magnetic field data and the electric field data from the Electric Fields and Wave instrument (EFW). We describe procedures used to reduce the noise in the EFW data. The results obtained represent an effort to clarify the processes involved in the dissipation of magnetic energy in the solar wind.
Stochastic method for turbulence estimation from Doppler lidar measurements
Rottner, Lucie; Baehr, Christophe; Dabas, Alain; Hammoud, Linda
2017-10-01
The Doppler lidar technology is known for its ability to measure accurate winds with fine time and space resolutions. The derivation of turbulence parameters from lidar wind measurement has been attempted by several authors. All of them relate the turbulence parameters to long-time series (several tens of minutes) of wind measurements. The method presented here retrieves estimations of the atmospheric turbulence at much finer time scales. The technique is based on a wind reconstruction method applied to a five-beam wind Doppler lidar (namely the WindCube model by Leosphere). The method relies on a particle filter. The suggested reconstruction algorithm links the lidar observations to numerical particles to obtain turbulence estimations every time new observations are available. The high frequency of the estimations is an innovation and is detailed and discussed here. Moreover, the presented algorithm enables reconstruction of the wind in three dimensions in the observed volume. Thus, we locally have access to the spatial variability of the turbulent atmosphere. The suggested algorithm is applied to a set of real observations. The results show that the estimation of the turbulent parameters is significantly improved. They open the way to the use of lidars for scientific and industrial purposes such as site studies for wind farms.
Energy Technology Data Exchange (ETDEWEB)
Gurnett, D.A.; Ma, T.Z.; Anderson, R.R.; Bauer, O.H.; Haerendel, G.; Haeusler, B.; Paschmann, G.; Treumann, R.A.; Koons, H.C.; Holzworth, R.
1986-02-01
During the Active Magnetospheric Particle Tracer Explorers (AMPTE) solar wind lithium release on September 11, 1984, and again on September 20, 1984, an intense burst of electrostatic noise was observed near the upstream edge of the ion cloud. Comparisons with measurements by the IMP 6 and ISEE 1 spacecraft show that the spectrum and overall features of this noise are very similar to electrostatic noise observed at the earth's bow shock. A stability analysis using realistic parameters shows that the electrostatic noise can be accounted for by an ion beam-plasma instability caused by the solar wind proton beam streaming through the nearly stationary lithium cloud. The growth rate of this instability is largest when the ion density and solar wind proton density are similar, which explains why the noise only occurs near the outer edge of the ion cloud. The similarity to the noise in the earth's bow shock suggests that a shock may exist in the solar wind plasma flow upstream of the ion cloud. If the noise is associated with a shock, then it must be an electrostatic shock, since the ion cyclotron radii are too small for the existence of a MHD shock. Since the electrostatic instability occurs at phase velocities near the lithium thermal velocity, the electrostatic turbulence may play a role in heating the lithium ions and transferring momentum from the solar wind to the ion cloud. The noise may also play a role in the pitch angle scattering and diffusion of energetic electrons observed in the vicinity of the ion cloud. Because of the similarity to the solar wind interaction with the gaseous envelope of a comet, it is expected that similar types of wave-particle effects may occur upstream of comets.
Numerical study of MHD supersonic flow control
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
MHD equilibrium and stability of the spheromak
Energy Technology Data Exchange (ETDEWEB)
Okabayashi, M.; Todd, A.M.M.
1979-08-01
The MHD stability of spheromak type equilibria from the classical spheromak configuration to the diffuse pinch limit are analyzed numerically. It is found that oblate configurations of ellipticity 0.5 have the optimum stability properties with regard to internal MHD modes and can be stabilized up to an engineering ..beta.. of 15% (defined with respect to the applied external field strength for equilibrium). Stability to global modes requires that a conducting shell surround the plasma. The location of the shell is dependent on geometry and the current profile, but realistic configurations that are stable to all ideal MHD modes have been found with the shell located at approx. 1.2 minor radii.