Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Koga, D; Chian, A C-L; Hada, T; Rempel, E L
2008-02-13
Magnetohydrodynamic (MHD) turbulence is commonly observed in the solar wind. Nonlinear interactions among MHD waves are likely to produce finite correlation of the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in the quasi-linear theory) or have a finite coherence. Using a method based on the surrogate data technique, we analysed the GEOTAIL magnetic field data to evaluate the phase coherence in MHD turbulence in the Earth's foreshock region. The results demonstrate the existence of finite phase correlation, indicating that nonlinear wave-wave interactions are in progress.
Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.
Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander
2015-07-10
In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.
ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.
2014-01-01
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
Magnetohydrodynamic turbulence revisited
International Nuclear Information System (INIS)
Goldreich, P.; Sridhar, S.
1997-01-01
In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfvacute en wave packets. Recent work has generated some controversy over the nature of nonlinear couplings between colliding Alfvacute en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are the following: (1) in common with weak turbulent cascades, wave packets belonging to the inertial range are long-lived; (2) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (3) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (4) three-wave interactions dominate individual collisions between wave packets, but interactions of all orders n≥3 make comparable contributions to the intermediate turbulent energy cascade; (5) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (6) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers; (7) for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade. copyright 1997 The American Astronomical Society
Pulsar Magnetohydrodynamic Winds
Okamoto, Isao; Sigalo, Friday B.
2006-12-01
The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the equator, which drive electric current through the pulsar magnetosphere. Any ``current line'' must emanate from one terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface, SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along each field line of the asymptotic domain of \\varpaA2/\\varpi2 ≪ 1, where \\varpiA is the Alfvénic axial distance. The criticality condition at SF yields the Lorentz factor, γF = μ\\varepsilon1/3, and the angular momentum flux, β, as the eigenvalues in terms of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, μδ, which are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, μɛ, is related to μδ as μɛ = μδ[1-(α2\\varpiA2/c2)]-1, and both μɛ and \\varpiA2 are eigenvalues to be determined by the criticality condition at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a discrepancy between the wind theory and the Crab-nebula model. It is argued that the ``anti-collimation theorem'' holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance. The ``theorem'' combines with the ``current-closure condition'' as a global condition in the wind zone to produce a
INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.
2010-01-01
The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.
Turbulent magnetohydrodynamics in liquid metals
International Nuclear Information System (INIS)
Berhanu, Michael
2008-01-01
In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
MHD turbulence in the solar wind are described in §6, and a theory of ..... on plasmas are very difficult to perform, and so experimental verification was not forth- .... checks of self-consistency regarding the assumed weakness of the cascade.
Magnetohydrodynamic Turbulence and the Geodynamo
Shebalin, John V.
2014-01-01
The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence
Loureiro, Nuno F.; Boldyrev, Stanislav
2017-12-01
It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS
International Nuclear Information System (INIS)
Beresnyak, Andrey
2014-01-01
Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096 3 , which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics
Large eddy simulations of compressible magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Grete, Philipp
2016-01-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Large eddy simulations of compressible magnetohydrodynamic turbulence
Grete, Philipp
2017-02-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Large eddy simulations of compressible magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Grete, Philipp
2016-09-09
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
An empirical investigation of compressibility in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Spangler, Steven R.; Spitler, Laura G.
2004-01-01
The density fluctuations which occur in magnetohydrodynamic (MHD) turbulence are an important diagnostic of the turbulent dynamics, and serve as the basis of astrophysical remote sensing measurements. This paper is concerned with the relation between density fluctuations and fluctuations of the magnetic field and velocity. The approach is empirical, utilizing spacecraft observations of slow solar wind turbulence. Sixty-six data intervals of 1 h duration were chosen, in which the solar wind speed was less than 450 km/s, and in which the fluctuations in density and vector magnetic field appeared to be approximately stationary. The parameters of interest were the root-mean-square fluctuations of density and magnetic field, normalized by the respective mean values, ε N ≡ 2 > 0.5 /n 0 and ε B ≡ 2 > 0.5 /B 0 , respectively, where n 0 and B 0 are the mean plasma number density and magnetic field strength. The conclusions of this study are as follows: (1) Consistent with previous investigations, the dependence of the normalized density fluctuation on the normalized magnetic field fluctuation is found to be between linear (ε N =ε B ) and quadratic (ε N =ε B 2 ). (2) The value of R≡ε N /ε B shows a wide range from 4; the median value is 0.46 and the mean is 0.72. (3) Typical normalized fluctuation amplitudes (ε N and ε B ) for records of one hour length (maximum scale size of ≅1.6x10 6 km) are 0.03-0.08 for the density, and 0.04-0.21 for the magnetic field. (4) For most intervals, the magnitude of the perpendicular (to the large scale magnetic field) magnetic field fluctuations exceeds that of the parallel fluctuations by a factor of 3-4. This indicates that the turbulent magnetic field fluctuations are primarily transverse fluctuations. The implications of these results for theories of MHD turbulence, and for the remote sensing of turbulent plasmas such as the corona, the near-Sun solar wind, and the interstellar medium, are discussed
Nearly incompressible MHD turbulence in the solar wind
International Nuclear Information System (INIS)
Matthaeus, W.H.; Zhou, Y.
1989-01-01
Observational studies indicate that solar wind plasma and magnetic field fluctuations may be meaningfully viewed as an example of magnetohydrodynamic turbulence. This paper presents a brief summary of some relevant results of turbulence theory and reviews a turbulence style description of 'typical' solar wind conditions. Recent results, particularly those regarding the radial evolution of inertial range cross helicity, support the viewpoint that interplanetary turbulence is active and evolving with heliocentric distance. A number of observed properties can be understood by appeal to incompressible turbulence mechanisms. This connection may be understood by appeal to incompressible turbulence mechanisms. This connection may be understood in terms of theories of pseudosound density fluctuations and nearly incompressible magnetohydrodynamics, which are also reviewed here. Finally, we summarize a recent two-scale dynamical theory of the radial and temporal evolution of the turbulence, which may provide an additional framework for understanding the observations. (author). 49 refs
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar
Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence
International Nuclear Information System (INIS)
Bigot, Barbara; Galtier, Sebastien; Politano, Helene
2008-01-01
We investigate the influence of a uniform magnetic field B 0 =B 0 e parallel on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B 0 is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B 0 , with distinct power laws for energy decay of shear- and pseudo-Alfven waves. Numerical results from the kinetic equations of Alfven wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes
Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Yoshizawa, A.
1996-01-01
Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Vincenzo Carbone
2013-05-01
Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
Large-Eddy-Simulation of turbulent magnetohydrodynamic flows
Directory of Open Access Journals (Sweden)
Woelck Johannes
2017-01-01
Full Text Available A magnetohydrodynamic turbulent channel flow under the influence of a wallnormal magnetic field is investigated using the Large-Eddy-Simulation technique and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is implemented in the OpenFOAM CFD-Code. The temporal decay of an initial turbulent field for different magnetic parameters is investigated. The rms values of the averaged velocity fluctuations show a similar, trend for each coordinate direction. 80% of the fluctuations are damped out in the range between 0 < Ha < < 75 at Re = 6675. The trend can be approximated via an exponential of the form exp(−a·Ha, where a is a scaling parameter. At higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the results of this study show that it may be possible to construct a general law for the turbulence damping due to action of magnetic fields.
Broken ergodicity in two-dimensional homogeneous magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Shebalin, John V.
2010-01-01
Two-dimensional (2D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3D) homogeneous MHD turbulence. These features include several ideal (i.e., nondissipative) invariants along with the phenomenon of broken ergodicity (defined as nonergodic behavior over a very long time). Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo. Recently, the origin of broken ergodicity in 3D MHD turbulence that is manifest in the lowest wavenumbers was found. Here, we study the origin of broken ergodicity in 2D MHD turbulence. It will be seen that broken ergodicity in ideal 2D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions. The origins of broken ergodicity in an ideal 2D homogeneous MHD turbulence are found through an eigenanalysis of the covariance matrices of the probability density function and by an examination of the associated entropy functional. When the values of ideal invariants are kept fixed and grid size increases, it will be shown that the energy in a few large modes remains constant, while the energy in any other mode is inversely proportional to grid size. Also, as grid size increases, we find that broken ergodicity becomes manifest at more and more wavenumbers.
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Bruno Roberto
2005-09-01
Full Text Available In this review we will focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Ulysses’ high latitude observations and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
Directory of Open Access Journals (Sweden)
Jean Carlos Perez
2012-10-01
Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.
Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves
International Nuclear Information System (INIS)
Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.
2001-01-01
In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested
Wind energy impact of turbulence
Hölling, Michae; Ivanell, Stefan
2014-01-01
This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Yang, Liping; Zhang, Lei; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, 100190, Beijing (China); He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Li, Shengtai [Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Wang, Xin, E-mail: jshept@gmail.com [School of Space and Environment, Beihang University, 100191 Beijing (China)
2017-02-10
Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of the magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.
On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Galtier, Sebastien; Pouquet, Annick; Mangeney, Andre
2005-01-01
A heuristic model is given for anisotropic magnetohydrodynamics turbulence in the presence of a uniform external magnetic field B 0 e parallel . The model is valid for both moderate and strong B 0 and is able to describe both the strong and weak wave turbulence regimes as well as the transition between them. The main ingredient of the model is the assumption of constant ratio at all scales between the linear wave period and the nonlinear turnover time scale. Contrary to the model of critical balance introduced by Goldreich and Sridhar [Astrophys. J. 438, 763 (1995)], it is not assumed, in addition, that this ratio be equal to unity at all scales. This allows us to make use of the Iroshnikov-Kraichnan phenomenology; it is then possible to recover the widely observed anisotropic scaling law k parallel ∝k perpendicular 2/3 between parallel and perpendicular wave numbers (with reference to B 0 e parallel and to obtain for the total-energy spectrum E(k perpendicular ,k parallel )∼k perpendicular -α k parallel -β the universal prediction, 3α+2β=7. In particular, with such a prediction, the weak Alfven wave turbulence constant-flux solution is recovered and, for the first time, a possible explanation to its precursor found numerically by Galtier et al. [J. Plasma Phys. 63, 447 (2000)] is given.
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations
Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan
2018-05-01
Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.
Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet
Energy Technology Data Exchange (ETDEWEB)
Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2017-03-10
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.
Spacecraft observations of solar wind turbulence: an overview
International Nuclear Information System (INIS)
Horbury, T S; Forman, M A; Oughton, S
2005-01-01
Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic (MHD) turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and the presence of intermittency similar to that in neutral fluids. We also discuss the presence of anisotropy in wavevector space relative to the local magnetic field direction. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wavevectors either parallel to the magnetic field ('slab' fluctuations) or approximately perpendicular to it ('2D'). We review the existing evidence for such anisotropy, which has important consequences for the transport of energetic particles. Finally, we present the first results of a new analysis which provides the most accurate measurements to date of the wave-vector anisotropy of wavevector power in solar wind MHD turbulence
Wind effect in turbulence parametrization
Colombini, M.; Stocchino, A.
2005-09-01
The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
Energy Technology Data Exchange (ETDEWEB)
Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2017-09-10
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
International Nuclear Information System (INIS)
Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer
2017-01-01
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.
Turbulent Magnetic Relaxation in Pulsar Wind Nebulae
Energy Technology Data Exchange (ETDEWEB)
Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)
2017-09-20
We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.
Turbulent Magnetic Relaxation in Pulsar Wind Nebulae
Zrake, Jonathan; Arons, Jonathan
2017-09-01
We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.
Dynamical instabilities in magnetohydrodynamic wind-cloud interactions
Banda-Barragan, Wladimir Eduardo; Parkin, Elliot Ross; Crocker, Roland M.; Federrath, Christoph; Bicknell, Geoffrey Vincent
2015-08-01
We report the results from a comprehensive numerical study that investigates the role of dynamical instabilities in magnetohydrodynamic interactions between winds and spherical clouds in the interstellar medium. The growth of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities at interfaces between wind and cloud material is responsible for the disruption of clouds and the formation of filamentary tails. We show how different strengths and orientations of the initial magnetic field affect the development of unstable modes and the ultimate morphology of these filaments. In the weak field limit, for example, KH instabilities developing at the flanks of clouds are dominant, whilst they are suppressed when stronger fields are considered. On the other hand, perturbations that originate RT instabilities at the leading edge of clouds are enhanced when fields are locally stronger. The orientation of the field lines also plays an important role in the structure of filaments. Magnetic ropes are key features of systems in which fields are aligned with the wind velocity, whilst current sheets are favoured when the initial field is preferentially transverse to the wind velocity. We compare our findings with analytical predictions obtained from the linear theory of hydromagnetic stability and provide a classification of filamentary tails based on their morphology.
A study of shock-associated magnetohydrodynamic waves in the solar wind
Spangler, Steven R.
1992-01-01
Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.
Role of Turbulent Damping in Cosmic Ray Galactic Winds
Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen
2018-06-01
Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).
Field theory modelling of vortex tube entanglement in turbulent magnetohydrodynamics
International Nuclear Information System (INIS)
Moriconi, L.; Nobre, F.A. S.
2000-01-01
Full text follows: We study the dynamics of interacting closed vortex tubes in magnetohydrodynamics, in terms of a (1+1)-dimensional field theory derived within the context of the Martin-Siggia-Rose formalism. The fluid is stirred by large scale stochastic forces which affect smaller scales through foldings of the velocity and magnetic vortex tubes. Numerical computations are done by means of a length-preserving scheme, motivated by the usual self-induction approximation. In order to understand the origin of intermittency effects, we investigate the multifractal exponents for the equilibrium vortex tube configurations, as well as correlations developed between different tubes. (author)
Wind Turbine Power Curves Incorporating Turbulence Intensity
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
2014-01-01
. The model and method are parsimonious in the sense that only a single function (the zero-turbulence power curve) and a single auxiliary parameter (the equivalent turbulence factor) are needed to predict the mean power at any desired turbulence intensity. The method requires only ten minute statistics......The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...
EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav
2011-01-01
Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.
Magnetohydrodynamic flows and turbulence: a report on the Third Beer-Sheva Seminar
International Nuclear Information System (INIS)
Branover, H.; Mestel, A.J.; Moore, D.J.; Shercliff, J.A.
1981-01-01
This paper is a summary of the Third Beer-Sheva Seminar on magnetohydrodynamic (MHD) flows and turbulence, held in Israel in March 1981 with 67 participants from 9 countries. Reviews and research papers were presented on fundamental MHD and turbulence studies, both theoretical and experimental, including two-phase phenomena, and on applications of MHD to electrical generation (especially in two-phase systems), electromagnetic pumps, flow-couplers and flowmeters, thermonuclear fusion and a range of metallurgical problems, many involving free surfaces. (author)
MHD turbulence in the solar wind: evolution and anisotropy
International Nuclear Information System (INIS)
Horbury, T. S.; Forman, M. A.; Oughton, S.
2005-01-01
Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and intermittency similar to that in neutral fluids. The presence of a magnetic field leads to anisotropy of the fluctuations, which are predominantly perpendicular to this direction, as well as anisotropy of the spectrum. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wave vectors either parallel to the magnetic field (slab fluctuations) or approximately perpendicular to it (2D). We present results of a new, wavelet-based analysis of magnetic field fluctuations in the solar wind, and demonstrate that the 2D component has a spectral index near the Kolmogorov value of 5/3, while slab fluctuations have a spectral index near 2. We also estimate the relative power levels in slab and 2D fluctuations, as well as the level of compressive fluctuations. Deviations of the data from the simple slab/2D model suggest the presence of power in intermediate directions and we compare our data with critical balance models. (Author)
Program to determine space vehicle response to wind turbulence
Wilkening, H. D.
1972-01-01
Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.
Anisotropy of turbulence in wind turbine wakes
Energy Technology Data Exchange (ETDEWEB)
Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)
2005-10-01
This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.
ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)
2015-12-15
Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.
CHARACTERIZING MAGNETOHYDRODYNAMIC TURBULENCE IN THE SMALL MAGELLANIC CLOUD
International Nuclear Information System (INIS)
Burkhart, Blakesley; Stanimirovic, Snezana; Lazarian, A.; Kowal, Grzegorz
2010-01-01
We investigate the nature and spatial variations of turbulence in the Small Magellanic Cloud (SMC) by applying several statistical methods on the neutral hydrogen (H I) column density image of the SMC and a database of isothermal numerical simulations. By using the third and fourth statistical moments we derive the spatial distribution of the sonic Mach number (M s ) across the SMC. We find that about 90% of the H I in the SMC is subsonic or transonic. However, edges of the SMC 'bar' have M s ∼4 and may be tracing shearing or turbulent flows. Using numerical simulations we also investigate how the slope of the spatial power spectrum depends on both sonic and Alfven Mach numbers. This allows us to gauge the Alfven Mach number of the SMC and conclude that its hydrodynamic pressure dominates over the magnetic pressure. The trans-Alfvenic nature of the H I gas in the SMC is also highlighted by the bispectrum, a three-point correlation function which characterizes the level of non-Gaussianity in wave modes. We find that the bispectrum of the SMC H I column density displays similar large-scale correlations as numerical simulations; however, it has localized enhancements of correlations. In addition, we find a break in correlations at a scale of ∼160 pc. This may be caused by numerous expanding shells of a similar size.
Forward and inverse cascades in decaying two-dimensional electron magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Wareing, C. J.; Hollerbach, R.
2009-01-01
Electron magnetohydrodynamic (EMHD) turbulence in two dimensions is studied via high-resolution numerical simulations with a normal diffusivity. The resulting energy spectra asymptotically approach a k -5/2 law with increasing R B , the ratio of the nonlinear to linear time scales in the governing equation. No evidence is found of a dissipative cutoff, consistent with nonlocal spectral energy transfer. Dissipative cutoffs found in previous studies are explained as artificial effects of hyperdiffusivity. Relatively stationary structures are found to develop in time, rather than the variability found in ordinary or MHD turbulence. Further, EMHD turbulence displays scale-dependent anisotropy with reduced energy transfer in the direction parallel to the uniform background field, consistent with previous studies. Finally, the governing equation is found to yield an inverse cascade, at least partially transferring magnetic energy from small to large scales.
International Nuclear Information System (INIS)
Xu, Siyao; Yan, Huirong; Lazarian, A.
2016-01-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Effects of flow shear and Alfven waves on two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Douglas, Jamie; Kim, Eun-jin; Thyagaraja, A.
2008-01-01
The suppression of turbulent transport by large scale mean shear flows and uniform magnetic fields is investigated in two-dimensional magnetohydrodynamic turbulence driven by a small-scale forcing with finite correlation time. By numerical integration the turbulent magnetic diffusivity D T is shown to be significantly quenched, with a scaling D T ∝B -2 Ω 0 -5/4 , which is much more severe than in the case of a short or delta correlated forcing typified by white noise, studied in E. Kim and B. Dubrulle [Phys. Plasmas 8, 813 (2001)]. Here B and Ω 0 are magnetic field strength and flow shear rate, respectively. The forcing with finite correlation time also leads to much stronger suppression of momentum transport through the cancellation of the Reynolds stress by the Maxwell stress with a positive small value of turbulent viscosity, ν T >0. While fluctuating kinetic and magnetic energies are unaffected by the magnetic field just as in the case of a delta correlated forcing, they are much more severely quenched by flow shear than in that of a delta correlated forcing. Underlying physical mechanisms for the reduction of turbulent transport and turbulence level by flow shear and magnetic field are discussed
Lidar for Wind and Optical Turbulence Profiling
Directory of Open Access Journals (Sweden)
Fastig Shlomo
2018-01-01
Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.
A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)
2007-08-15
We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.
International Nuclear Information System (INIS)
Schaffner, D. A.; Brown, M. R.; Rock, A. B.
2016-01-01
The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which can then be compared to the behavior of the frequency spectrum.
Can Wind Lidars Measure Turbulence?
DEFF Research Database (Denmark)
Sathe, Ameya; Mann, Jakob; Gottschall, Julia
2011-01-01
Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...
Energy Technology Data Exchange (ETDEWEB)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.
International Nuclear Information System (INIS)
Kowal, Grzegorz; Lazarian, A.
2010-01-01
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Banerjee, Supratik; Kritsuk, Alexei G.
2018-02-01
Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
Structure of the electromagnetic field in three-dimensional Hall magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Dmitruk, Pablo; Matthaeus, W.H.
2006-01-01
Numerical simulations of freely evolving three-dimensional compressible magnetohydrodynamics (MHD) are performed, with and without the Hall term in Ohm's law. The parameter controlling the presence of the Hall term is the ratio of the ion skin depth to the macroscopic scale of the turbulence. The ion skin depth is set to be slightly larger than the dissipation length scale (controlled by the resistivity) for the Hall MHD simulations, while it is set to zero for non-Hall MHD simulations. Small initial cross helicity, hybrid helicity, and magnetic helicity are considered. The system is left to evolve for a few turbulent characteristic times and the magnetic field and electric field are analyzed in real and wavenumber space. Distributions (histograms) of the fields are also computed. It is found that the turbulent magnetic field (as well as the velocity field) is almost unaffected by the presence of the Hall term, while the electric field is affected at scales smaller than the ion skin depth, that is, close to the dissipation range in these simulations. The importance of each term in Ohm's law for the electric field is analyzed in wavenumber space. Furthermore, reconnection-like zones are identified, where the importance of each term in Ohm's law can be seen in real space. Reconnection-like zones with magnetic field B=0 (or small) and B≠0 are found within the turbulent state of the system
Magnetohydrodynamics turbulence
Indian Academy of Sciences (India)
Theoretical horizons correspondingly expanded in the 1980s, to accommodate ... too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. ... This very active area of research continues to be driven by astronomy.
Turbulent wind waves on a water current
Directory of Open Access Journals (Sweden)
M. V. Zavolgensky
2008-05-01
Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.
Energy Technology Data Exchange (ETDEWEB)
He, Jiansen; Tu, Chuanyi; Wang, Linghua; Pei, Zhongtian [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Chen, Christopher H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zhang, Lei [Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Salem, Chadi S.; Bale, Stuart D., E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)
2015-11-10
Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.
Hall-magnetohydrodynamic waves in flowing ideal incompressible solar-wind plasmas
International Nuclear Information System (INIS)
Zhelyazkov, I
2010-01-01
It is well established now that the solar atmosphere, from the photosphere to the corona and the solar wind, is a highly structured medium. Satellite observations have confirmed the presence of steady flows there. Here, we investigate the propagation of magnetohydrodynamic (MHD) eigenmodes (kink and sausage surface waves) travelling along an ideal incompressible flowing plasma cylinder (flux tube) surrounded by a flowing plasma environment in the framework of the Hall magnetohydrodynamics. The propagation characteristics of the waves are studied in a reference frame moving with the mass flow outside the tube. In general, the flows change the waves' phase velocities compared with their magnitudes in a static MHD flux tube and the Hall effect extends the number of the possible wave dispersion curves. It turns out that while the kink waves, considered in the context of the standard magnetohydrodynamics, are unstable against the Kelvin-Helmholtz instability, they become stable when the Hall term in the generalized Ohm's law is taken into account. The sausage waves are stable in both considerations. All results concerning the waves' propagation and their stability/instability status are obtained on the basis of the linearized Hall-magnetohydrodynamic equations and are applicable mainly to the solar wind plasmas.
Wind turbine wake in atmospheric turbulence
Energy Technology Data Exchange (ETDEWEB)
Rethore, P -E
2009-10-15
This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)
Wind turbine wake in atmospheric turbulence
Energy Technology Data Exchange (ETDEWEB)
Rethore, P.-E.
2009-10-15
This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)
Wind Turbine Wake in Atmospheric Turbulence
DEFF Research Database (Denmark)
Réthoré, Pierre-Elouan Mikael
to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-ε turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply......) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-ε model’s issues are investigated, of which none of them is found to be adequate. The mixing of the wake...
Mirror Instability in the Turbulent Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.
2017-01-01
Roč. 838, č. 2 (2017), č. článku 158. ISSN 0004-637X Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.533, year: 2016 http://iopscience.iop.org/article/10.3847/1538-4357/aa67e0
Laminar-Turbulent transition on Wind Turbines
DEFF Research Database (Denmark)
Martinez Hernandez, Gabriel Gerardo
The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...
Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea
Cranmer, Steven R.; Woolsey, Lauren N.
2015-10-01
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.
DRIVING SOLAR SPICULES AND JETS WITH MAGNETOHYDRODYNAMIC TURBULENCE: TESTING A PERSISTENT IDEA
International Nuclear Information System (INIS)
Cranmer, Steven R.; Woolsey, Lauren N.
2015-01-01
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules
DRIVING SOLAR SPICULES AND JETS WITH MAGNETOHYDRODYNAMIC TURBULENCE: TESTING A PERSISTENT IDEA
Energy Technology Data Exchange (ETDEWEB)
Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States); Woolsey, Lauren N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-10-10
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
International Nuclear Information System (INIS)
Hadid, L. Z.; Sahraoui, F.; Galtier, S.
2017-01-01
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
Energy Technology Data Exchange (ETDEWEB)
Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC Univ Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research University, F-91128 Palaiseau (France)
2017-03-20
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Turbulent Transport in a Three-dimensional Solar Wind
Energy Technology Data Exchange (ETDEWEB)
Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)
2017-03-01
Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.
On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes
Lignarolo, L.E.M.
2016-01-01
The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production
International Nuclear Information System (INIS)
Yoshimatsu, Katsunori; Kawahara, Yasuhiro; Schneider, Kai; Okamoto, Naoya; Farge, Marie
2011-01-01
Scale-dependent and geometrical statistics of three-dimensional incompressible homogeneous magnetohydrodynamic turbulence without mean magnetic field are examined by means of the orthogonal wavelet decomposition. The flow is computed by direct numerical simulation with a Fourier spectral method at resolution 512 3 and a unit magnetic Prandtl number. Scale-dependent second and higher order statistics of the velocity and magnetic fields allow to quantify their intermittency in terms of spatial fluctuations of the energy spectra, the flatness, and the probability distribution functions at different scales. Different scale-dependent relative helicities, e.g., kinetic, cross, and magnetic relative helicities, yield geometrical information on alignment between the different scale-dependent fields. At each scale, the alignment between the velocity and magnetic field is found to be more pronounced than the other alignments considered here, i.e., the scale-dependent alignment between the velocity and vorticity, the scale-dependent alignment between the magnetic field and its vector potential, and the scale-dependent alignment between the magnetic field and the current density. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian accelerations and the corresponding time-derivatives of the magnetic field are performed. It is found that the Lagrangian acceleration does not exhibit substantially stronger intermittency compared to the Eulerian acceleration, in contrast to hydrodynamic turbulence where the Lagrangian acceleration shows much stronger intermittency than the Eulerian acceleration. The Eulerian time-derivative of the magnetic field is more intermittent than the Lagrangian time-derivative of the magnetic field.
Park, Kiwan
2017-12-01
In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.
International Nuclear Information System (INIS)
Chapman, S. C.; Nicol, R. M.; Leonardis, E.; Kiyani, K.; Carbone, V.
2009-01-01
We perform statistical analysis of the fluctuating magnetic field observed in-situ by the Ulysses spacecraft, from the perspective of quantitative characterization of the evolving magnetohydrodynamic (MHD) turbulence. We focus on two successive polar passes around solar minimum which provide extended intervals of quiet, fast solar wind at a range of radial distances and latitudes: the south polar pass of 1994 and the north polar pass of 1995. Fully developed inertial range turbulence has a characteristic statistical similarity property of quantities that characterize the flow, such as the magnetic field components B k (t), so that the pth moment of fluctuations has power-law dependence on scale τ such that k (t + τ) - B k (t)| p > ∼ τ ζ(p) . We instead find a generalized similarity k (t + τ) - B k (t)| p > ∼ g(τ/τ 0 ) ζ(p) consistent with extended self-similarity; and in particular all of these Ulysses observations, from both polar passes, share the same single function g(τ/τ 0 ). If these observations are indeed characteristic of MHD turbulence evolving in-situ, then this quantifies for the first time a key aspect of the universal nature of evolving MHD turbulence in a system of finite size, with implications both for theoretical development, and for our understanding of the evolving solar wind.
Turbulence and turbulence-generated structural loading in wind turbine clusters
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs
2007-01-01
of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms......Turbulence - in terms of standard deviation of wind speed fluctuations - and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to “wind farm flow......”. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence...
Wind farm turbulence impacts on general aviation airports in Kansas.
2014-01-01
Wind turbines and wind farms have become popular in the State of Kansas. Some general aviation pilots have expressed a concern about the : turbulence that the spinning blades are creating. If a wind farm is built near an airport, does this affect the...
Model of wind shear conditional on turbulence and its impact on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.
2015-01-01
proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...
Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær
2014-01-01
In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient s...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics.......In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...
Energy Technology Data Exchange (ETDEWEB)
Wiengarten, T.; Kleimann, J.; Fichtner, H. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Kühl, P.; Kopp, A.; Heber, B. [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel (Germany); Kissmann, R. [Institut für Astro- und Teilchenphysik, Universität Innsbruck (Austria)
2014-06-10
The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.
Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars
Sathe, A.R.
2012-01-01
Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be
On Electron-Scale Whistler Turbulence in the Solar Wind
Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.
2016-01-01
For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.
Dissipation of Turbulence in the Wake of a Wind Turbine
Lundquist, J. K.; Bariteau, L.
2015-02-01
The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.
The influence of turbulence and vertical wind profile in wind turbine power curve
Energy Technology Data Exchange (ETDEWEB)
Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)
2012-07-01
To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)
Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.
2018-04-01
We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.
FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
DeForest, C. E. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States); Matthaeus, W. H. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Viall, N. M. [NASA/Goddard Space Flight Center, Mail Code 671, Greenbelt, MD 20771 (United States); Cranmer, S. R. [University of Colorado, Duane E226, Boulder, CO 80305 (United States)
2016-09-10
Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.
Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-01-01
Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.
3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges
DEFF Research Database (Denmark)
Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas
2017-01-01
WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated...... structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation...
Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid
Rumple, Christopher; Welch, Matthew; Naughton, Jonathan
2017-11-01
The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.
International Nuclear Information System (INIS)
Tanahashi, Takahiko; Miyoshi, Ichiro; Ara, Kuniaki; Ohira, Hiroaki
2004-08-01
Investigation of magnetohydrodynamic (MHD) turbulent model with Large Eddy Simulation (LES) method was started in FY15 to evaluate MHD turbulent behavior on the conditions of high Reynolds numbers and high magnetic Reynolds numbers. In FY15, the proposed Subgrid Scale (SGS) model for magnetic fields generated by direct current was formulated with GSMAC-FEM (Generalized Simplified Marker and Cell method for Finite Element Method) and the characteristic behavior of MHD turbulence studied theoretically. A Direct Numerical Simulation (DNS) method was also developed to verify the theoretical study and construct and advanced SGS model. The last purpose of this study is to analyze the realistic Electromagnetic Pump. In order to understand basic concept, analyses of small-scale Electromagnetic Pump was started with A-φ method. The following results were obtained from these studies: (1) Homogeneous turbulent flows in a conducting fluid which were exposed to uniform magnetic fields were examined through the Direct Numerical Simulation and the characteristics of energy distribution were shown in the MHD turbulence at low magnetic Reynolds numbers. (2) For the analysis of the realistic Electromagnetic Pump, the parallel scheme based on GSMAC-FEM was constructed. Effectiveness of the scheme for large-scale calculation was shown through the benchmark problem, three dimensional cavity flow. (3) A new Balancing Tensor Diffusivity (BTD) formulation for the magnetic fields was proposed in this study and the proposed SGS model in previous study was formulated with GSMAC-FEM. The FEM scheme for MHD turbulence at high magnetic Reynolds number was verified through homogeneous MHD turbulence. (4) An A-φ method formulated with GSMAC-FEM was applied to the analysis of small-scale Electromagnetic pump. The basic concepts for the analysis with B method were obtained through the results. (author)
3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges
Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.
2017-12-01
WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.
Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot
Martínez Lacasa, Daniel; Moreno Blanc, Javier; Tresánchez, Marcel; Clotet Bellmunt, Eduard; Jiménez-Soto, Juan M.; Magrans, Rudys; Pardo Martínez, Antonio; Marco Colás, Santiago; Palacín Roca, Jordi
2016-01-01
This paper presents themeasurement of gas concentration and wind intensity performed with amobile robot in a customturbulent wind tunnel designed for experimentation with customizable wind and gas leak sources.This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber...
Atmospheric turbulence affects wind turbine nacelle transfer functions
Directory of Open Access Journals (Sweden)
C. M. St. Martin
2017-06-01
Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence
Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade
Connell, J. R.; Morris, V. R.
1989-09-01
Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate.
On mean wind and turbulence profile measurements from ground-based wind lidars
DEFF Research Database (Denmark)
Mikkelsen, Torben
2009-01-01
Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...
Evolution of turbulence in the expanding solar wind, a numerical study
International Nuclear Information System (INIS)
Dong, Yue; Grappin, Roland; Verdini, Andrea
2014-01-01
We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k –1 , we observe a steepening toward a k –5/3 scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f –1 range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.
Adaptive control algorithm for improving power capture of wind turbines in turbulent winds
DEFF Research Database (Denmark)
Diaz-Guerra, Lluis; Adegas, Fabiano Daher; Stoustrup, Jakob
2012-01-01
, the complex and time-varying aerodynamics a WT face due to turbulent winds make their determination a hard task. The selected constant parameters may maximize energy for a particular, but not all, wind regime conditions. Adaptivity can modify the controller to increase power capture under variable wind...
MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI
International Nuclear Information System (INIS)
Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud; Contopoulos, Ioannis
2010-01-01
We present the two-dimensional ionization structure of self-similar magnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r) ∝ 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter ξ (or equivalently r) and the angle θ. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic ξ interval, dN H /dlog ξ, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) ∝ 1/r, the AMD is found to be independent of ξ, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, v ∼ 100-300 km s -1 (at log ξ ∼ 2-3) for Fe XVII and v ∼ 1000-4000 km s -1 (at log ξ ∼ 4-5) for Fe XXV, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate m-dot and the LOS angle θ. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing m-dot and increases steeply with the LOS inclination angle θ. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite properties of the parsec scale 'torii' invoked in AGN unification schemes. We indicate that a
Grib, S. A.; Leora, S. N.
2016-03-01
We use analytical methods of magnetohydrodynamics to describe the behavior of cosmic plasma. This approach makes it possible to describe different structural fields of disturbances in solar wind: shock waves, direction discontinuities, magnetic clouds and magnetic holes, and their interaction with each other and with the Earth's magnetosphere. We note that the wave problems of solar-terrestrial physics can be efficiently solved by the methods designed for solving classical problems of mathematical physics. We find that the generalized Riemann solution particularly simplifies the consideration of secondary waves in the magnetosheath and makes it possible to describe in detail the classical solutions of boundary value problems. We consider the appearance of a fast compression wave in the Earth's magnetosheath, which is reflected from the magnetosphere and can nonlinearly overturn to generate a back shock wave. We propose a new mechanism for the formation of a plateau with protons of increased density and a magnetic field trough in the magnetosheath due to slow secondary shock waves. Most of our findings are confirmed by direct observations conducted on spacecrafts (WIND, ACE, Geotail, Voyager-2, SDO and others).
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, A [Bell Labs., Murray Hill, NJ (USA)
1982-02-01
Theoretical treatments of turbulence in fluids and plasmas often assume that the turbulence is isotropic and homogeneous. It is also often considered that turbulence produces uniformly distributed chaos, even when starting with a coherent initial condition. Recently, however, phenomena which do not obey these classic concepts have emerged. For example, in two-dimensional Navier-Stokes turbulence, an organized flow or structure is found to appear even from a chaotic initial condition. The author attempts to review some of the recent developments of a phenomenon called self-organization in the field of hydrodynamics and plasma physics.
Turbulence and turbulence-generated structural loading in wind turbine clusters
Energy Technology Data Exchange (ETDEWEB)
Frandsen, Sten
2007-01-15
Turbulence, in terms of standard deviation of wind speed fluctuations, and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to 'wind farm flow'. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence and horizontal flow-shear also influence the dynamic response and thus fatigue loading. However, these parameters are typically negatively or positively correlated with the standard deviation of wind speed fluctuations, which therefore can, if need be, represent these other variables. Thus, models for spatially averaged turbulence intensity inside the wind farm and direct-wake turbulence intensity are being devised and a method to combine the different load situations is proposed. The combination of the load cases implies a weighting method involving the slope of the considered material's Woehler curve. In the context, this is novel and necessary to avoid excessive safety for fatigue estimation of the structure's steel components, and non-conservatism for fibreglass components. The proposed model offers significant reductions in computational efforts in the design process. The status for the implementation of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms are discussed. (au)
HEATING AND ACCELERATION OF THE FAST SOLAR WIND BY ALFVÉN WAVE TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Van Ballegooijen, A. A.; Asgari-Targhi, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2016-04-20
We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation and includes the effects of wave pressure on the solar wind outflow. Alfvén waves are launched at the coronal base and reflect at various heights owing to variations in Alfvén speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counterpropagating Alfvén waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfvén speed vary smoothly with height, resulting in minimal wave reflections and low-energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formula is proposed. In the second model we introduce additional density variations along the flux tube with a correlation length of 0.04 R {sub ⊙} and with relative amplitude of 10%. These density variations simulate the effects of compressive MHD waves on the Alfvén waves. We find that such variations significantly enhance the wave reflection and thereby the turbulent dissipation rates, producing enough heat to maintain the background atmosphere. We conclude that interactions between Alfvén and compressive waves may play an important role in the turbulent heating of the fast solar wind.
International Nuclear Information System (INIS)
Chandran, Benjamin D. G.; Hollweg, Joseph V.
2009-01-01
We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point-that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?
Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny
2018-01-01
We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.
Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak
Agarwal, Ashish; Irtaza, Hassan
2018-04-01
Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.
Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak
Agarwal, Ashish; Irtaza, Hassan
2018-06-01
Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.
Analysis of turbulent wake behind a wind turbine
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær
2013-01-01
The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome...
Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes
DEFF Research Database (Denmark)
Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels
2014-01-01
, superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large-eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully...
Directory of Open Access Journals (Sweden)
Chengwu Li
2016-05-01
Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.
Simulation of shear and turbulence impact on wind turbine performance
DEFF Research Database (Denmark)
Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.
Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case...... of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...
Turbulent Structure Under Short Fetch Wind Waves
2015-12-01
maximum 200 words ) Momentum transfer from wind forcing into the ocean is complicated by the presence of surface waves. Wind momentum and energy are...1,520 m from the mouth of the river to the deployment site ). Map created in Google Earth, October 12, 2015, http://www.google.com/earth/. 33...Doppler processing electronics for each transducer uses 14 bit analog to digital converter to digitize the 1.2 MHz acoustic frequency from the four
On Usage of Pareto curves to Select Wind Turbine Controller Tunings to the Wind Turbulence Level
DEFF Research Database (Denmark)
Odgaard, Peter Fogh
2015-01-01
Model predictive control has in recently publications shown its potential for lowering of cost of energy of modern wind turbines. Pareto curves can be used to evaluate performance of these controllers with multiple conflicting objectives of power and fatigue loads. In this paper an approach...... to update an model predictive wind turbine controller tuning as the wind turbulence increases, as increased turbulence levels results in higher loads for the same controller tuning. In this paper the Pareto curves are computed using an industrial high fidelity aero-elastic model. Simulations show...
Mirror Instability in the Turbulent Solar Wind
Energy Technology Data Exchange (ETDEWEB)
Hellinger, Petr [Astronomical Institute, CAS, Bocni II/1401,CZ-14100 Prague (Czech Republic); Landi, Simone; Verdini, Andrea; Franci, Luca [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo, E-mail: petr.hellinger@asu.cas.cz [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)
2017-04-01
The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.
TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)
2015-10-01
We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.
Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study
Directory of Open Access Journals (Sweden)
Leonardo P. Chamorro
2011-11-01
Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.
Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow
International Nuclear Information System (INIS)
Ravelet, F.
2005-09-01
We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)
Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance
Directory of Open Access Journals (Sweden)
S. Yahaya
2004-11-01
Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.
Mirror Instability in the Turbulent Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.
2017-01-01
Roč. 838, č. 2 (2017), 158/1-158/7 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : instabilities * solar wind * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016
Recent Successes of Wave/Turbulence Driven Models of Solar Wind Acceleration
Cranmer, S. R.; Hollweg, J. V.; Chandran, B. D.; van Ballegooijen, A. A.
2010-12-01
A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a first-principles understanding of coronal heating. Also, it is still unknown whether the solar wind is "fed" through flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy are input intermittently from closed loops into the open-field regions. In this presentation, we discuss self-consistent models that assume the energy comes from solar Alfven waves that are partially reflected, and then dissipated, by magnetohydrodynamic turbulence. These models have been found to reproduce many of the observed features of the fast and slow solar wind without the need for artificial "coronal heating functions" used by earlier models. For example, the models predict a variation with wind speed in commonly measured ratios of charge states and elemental abundances that agrees with observed trends. This contradicts a commonly held assertion that these ratios can only be produced by the injection of plasma from closed-field regions on the Sun. This presentation also reviews two recent comparisons between the models and empirical measurements: (1) The models successfully predict the amplitude and radial dependence of Faraday rotation fluctuations (FRFs) measured by the Helios probes for heliocentric distances between 2 and 15 solar radii. The FRFs are a particularly sensitive test of turbulence models because they depend not only on the plasma density and Alfven wave amplitude in the corona, but also on the turbulent correlation length. (2) The models predict the correct sense and magnitude of changes seen in the polar high-speed solar wind by Ulysses from the previous solar minimum (1996-1997) to the more recent peculiar minimum (2008-2009). By changing only the magnetic field along the polar magnetic flux tube, consistent with solar and heliospheric observations at the two epochs, the model correctly predicts that the
International Nuclear Information System (INIS)
Dey, Prasanta K.; Zikanov, Oleg
2012-01-01
Highlights: ► Turbulent passive scalar transport in an MHD flow in a channel is studied using DNS. ► Magnetic fields of wall-normal, spanwise, and streamwise orientations are considered. ► Magnetic fields suppress turbulent transport and modifies scalar distribution. ► The effect is particularly strong at wall-normal and spanwise magnetic fields. ► Decrease of Nusselt number is approximated by a linear function of magnetic interaction parameter. - Abstract: DNS of turbulent flow and passive scalar transport in a channel are conducted for the situation when the fluid is electrically conducting (for example, a liquid metal) and the flow is affected by an imposed magnetic field. The cases of wall-normal, spanwise, and streamwise orientation of the magnetic field are considered. As main results, we find that the magnetic fields, especially those in the wall-normal and spanwise directions, significantly reduce the turbulent scalar transport and modify the properties of the scalar distribution.
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan
2016-01-01
by a bound vorticity lifting line while the turbine wake vorticity and the turbulence vorticity are projected onto vortex particles. In the present work the rotor blades are stiff leaving aero-elastic interactions for future work. Inflow turbulence is generated with the model of Mann and converted to vortex......? Is it acceptable to neglect the influence of the wake and the wind turbine on the turbulent inflow? Is there evidence to justify the extra cost of a method capable of including these effects correctly? To this end, a unified vorticity representation of the flow is used: the wind turbine model is represented......A vortex particle representation of turbulent fields is devised in order to address the following questions: Does a wind turbine affect the statistics of the incoming turbulence? Should this imply a change in the way turbulence boxes are used in wind turbine aero-elastic simulations...
Kosovic, B.; Bryan, G. H.; Haupt, S. E.
2012-12-01
Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine
Large Eddy Simulation of Turbulent Flows in Wind Energy
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak
This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Kowal, G. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, São Paulo, SP 05508-090 (Brazil); Falceta-Gonçalves, D. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Nakwacki, M. S. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET (Argentina)
2014-02-01
The amplification of magnetic fields (MFs) in the intracluster medium (ICM) is attributed to turbulent dynamo (TD) action, which is generally derived in the collisional-MHD framework. However, this assumption is poorly justified a priori, since in the ICM the ion mean free path between collisions is of the order of the dynamical scales, thus requiring a collisionless MHD description. The present study uses an anisotropic plasma pressure that brings the plasma within a parametric space where collisionless instabilities take place. In this model, a relaxation term of the pressure anisotropy simulates the feedback of the mirror and firehose instabilities, in consistency with empirical studies. Our three-dimensional numerical simulations of forced transonic turbulence, aiming the modeling of the turbulent ICM, were performed for different initial values of the MF intensity and different relaxation rates of the pressure anisotropy. We found that in the high-β plasma regime corresponding to the ICM conditions, a fast anisotropy relaxation rate gives results that are similar to the collisional-MHD model, as far as the statistical properties of the turbulence are concerned. Also, the TD amplification of seed MFs was found to be similar to the collisional-MHD model. The simulations that do not employ the anisotropy relaxation deviate significantly from the collisional-MHD results and show more power at the small-scale fluctuations of both density and velocity as a result of the action of the instabilities. For these simulations, the large-scale fluctuations in the MF are mostly suppressed and the TD fails in amplifying seed MFs.
Decay of Solar Wind Turbulence behind Interplanetary Shocks
Energy Technology Data Exchange (ETDEWEB)
Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague, CZ-18000 (Czech Republic); Franci, Luca, E-mail: offelius@gmail.com [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, I-50125 Firenze (Italy)
2017-07-20
We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.
Decay of Solar Wind Turbulence behind Interplanetary Shocks
International Nuclear Information System (INIS)
Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk; Franci, Luca
2017-01-01
We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.
Turbulence and Waves as Sources for the Solar Wind
Cranmer, S. R.
2008-05-01
Gene Parker's insights from 50 years ago provided the key causal link between energy deposition in the solar corona and the acceleration of solar wind streams. However, the community is still far from agreement concerning the actual physical processes that give rise to this energy. It is still unknown whether the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy is input more intermittently from closed loops into the open-field regions. No matter the relative importance of reconnections and loop-openings, though, we do know that waves and turbulent motions are present everywhere from the photosphere to the heliosphere, and it is important to determine how they affect the mean state of the plasma. In this presentation, I will give a summary of wave/turbulence models that seem to succeed in explaining the time-steady properties of the corona (and the fast and slow solar wind). The coronal heating and solar wind acceleration in these models comes from anisotropic turbulent cascade, which is driven by the partial reflection of low-frequency Alfven waves propagating along the open magnetic flux tubes. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above Parker's critical point. As predicted by earlier studies, a larger coronal expansion factor gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. Finally, I will outline the types of future observations that would be most able to test and refine these ideas.
International Nuclear Information System (INIS)
Stahara, S.S.
1986-05-01
This is the final summary report by Resource Management Associates, Inc., of the first year's work under Contract No. NASW-4011 to the National Aeronautics and Space Administration. The work under this initial phase of the contract relates to the preliminary development of a global, 3-D magnetohydrodynamic computational model to quantitatively describe the detailed continuum field and plasma interaction process of the solar wind with cometary and planetary bodies throughout the solar system. The work extends a highly-successful, observationally-verified computational model previously developed by the author, and is appropriate for the global determination of supersonic, super-Alfvenic solar wind flows past planetary obstacles. This report provides a concise description of the problems studied, a summary of all the important research results, and copies of the publications
MODELLING OF TURBULENT WAKE FOR TWO WIND TURBINES
Directory of Open Access Journals (Sweden)
Arina S. Kryuchkova
2018-01-01
Full Text Available The construction of several large wind farms (The Ulyanovsk region, the Republic of Adygea, the Kaliningrad region, the North of the Russian Federation is planned on the territory of the Russian Federation in 2018–2020. The tasks, connected with the design of new wind farms, are currently important. One of the possible direction in the design is connected with mathematical modeling. Large eddy method (eddy-resolving simulation, developed within the Computational Fluid Dynamics, allows to reproduce unsteady structure of the flow in details and define various integrated characteristics for wind turbines. The mathematical model included the main equations of continuity and momentum equations for incompressible viscous flow. The large-scale vortex structures were calculated by means of integration the filtered equations. The calculation was carried out using lagrangian dynamic Smagorinsky’s model to define turbulent subgrid viscosity. The parallelepiped-shaped numerical domain and 3 different unstructured meshes (with 2,4,8 million cells were used for numerical simulation.The geometrical parameters of wind turbine were set proceeding to open sources for BlindTest 2–4 project from Internet. All physical values were defined at the center of computational cell. The approximation of items in the equations was performed with the second order of accuracy for time and space. The equations for coupling of velocity, pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values at each time step was equal 18. So, the resources of a high performance computer were required. As a result of flow simulation in the wake for two three-bladed wind turbines the average and instantaneous values of velocity, pressure, subgrid kinetic energy, turbulent viscosity, components of stress tensor were calculated. The received results qualitatively matching the known results of experiment and numerical simulation testify
3D Electric Waveforms of Solar Wind Turbulence
Kellogg, P. J.; Goetz, K.; Monson, S. J.
2018-01-01
Electric fields provide the major coupling between the turbulence of the solar wind and particles. A large part of the turbulent spectrum of fluctuations in the solar wind is thought to be kinetic Alfvén waves; however, whistlers have recently been found to be important. In this article, we attempt to determine the mode identification of individual waveforms using the three-dimensional antenna system of the SWaves experiments on the STEREO spacecraft. Samples are chosen using waveforms with an apparent periodic structure, selected visually. The short antennas of STEREO respond to density fluctuations and to electric fields. Measurement of four quantities using only three antennas presents a problem. Methods to overcome or to ignore this difficulty are presented. We attempt to decide whether the waveforms correspond to the whistler mode or the Alfvén mode by using the direction of rotation of the signal. Most of the waveforms are so oblique—nearly linearly polarized—that the direction cannot be determined. However, about one third of the waveforms can be identified, and whistlers and Alfvén waves are present in roughly equal numbers. The selected waveforms are very intense but intermittent and are orders of magnitude stronger than the average, yet their accumulated signal accounts for a large fraction of the average. The average, however, is supposed to be the result of a turbulent mixture of many waves, not short coherent events. This presents a puzzle for future work.
El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.
2012-01-01
We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.
Wind tunnel measurements of pollutant turbulent fluxes in urban intersections
Carpentieri, Matteo; Hayden, Paul; Robins, Alan G.
2012-01-01
Wind tunnel experiments have been carried out at the EnFlo laboratory to measure mean and turbulent tracer fluxes in geometries of real street canyon intersections. The work was part of the major DAPPLE project, focussing on the area surrounding the intersection between Marylebone Road and Gloucester Place in Central London, UK. Understanding flow and dispersion in urban streets is a very important issue for air quality management and planning, and turbulent mass exchange processes are important phenomena that are very often neglected in urban modelling studies. The adopted methodology involved the combined use of laser Doppler anemometry and tracer concentration measurements. This methodology was applied to quantify the mean and turbulent flow and dispersion fields within several street canyon intersections. Vertical profiles of turbulent tracer flux were also measured. The technique, despite a number of limitations, proved reliable and allowed tracer balance calculations to be undertaken in the selected street canyon intersections. The experience gained in this work will enable much more precise studies in the future as issues affecting the accuracy of the experimental technique have been identified and resolved.
Theoretical models for MHD turbulence in the solar wind
International Nuclear Information System (INIS)
Veltri, P.; Malara, F.
1997-01-01
The in situ measurements of velocity, magnetic field, density and temperature fluctuations performed in the solar wind have greatly improved our knowledge of MDH turbulence not only from the point of view of space physics but also from the more general point of view of plasma physics. These fluctuations which extend over a wide range of frequencies (about 5 decades), a fact which seems to be the signature of turbulent nonlinear energy cascade, display, mainly in the trailing edge of high-speed streams, a number of features characteristic of a self-organized situation: i) a high degree of correlation between magnetic and velocity field fluctuations, ii) a very low level of fluctuations in mass density and magnetic-field intensity, iii) a considerable anisotropy revealed by minimum variance analysis of the magnetic-field correlation tensor. Many fundamental processes in plasma physics, which were largely unknown or not understood before their observations in the solar wind, have been explained, by building up analytical models or performing numerical simulations. We discuss the most recent analytical theories and numerical simulations and outline the limits implicit in any analysis which consider the low-frequency solar-wind fluctuations as a superposition of linear modes. The characterization of low-frequency fluctuations during Alfvenic periods, which results from the models discussed, is finally presented
A new wind vane for the measurement of atmospheric turbulence
Energy Technology Data Exchange (ETDEWEB)
Parker, M.J.; Heverly, M.
1997-02-01
A Cooperative Research and Development Agreement (CRADA) between Met One Instruments, Incorporated (Met One) and Westinghouse Savannah River Company (WSRC) was created to develop a new wind vane that more accurately measures atmospheric turbulence. Through a process that had several phases, Met One created a prototype vane that was designed to attach to the existing Model 1585 Bi-Directional Wind Vane instrument structure. The prototype contained over 20% less mass to enhance responsiveness, which was also increased through the use of a teardrop-shaped fin structure. The prototype vane can be readily manufactured for commercial retail. Tests in wind tunnel of Building 735-7A, the Meteorological Engineering Facility, indicated that the new vane has a superior starting threshold of less than 0.14 meter per second, a delay distance of 0.72 meter, and a damping ratio of 0.4. The relative accuracy of less than one degree is unchanged from the previous design. The vane bias was acceptable at 0.8 degree for the horizontal wind angle, but was slightly high at 1.4 degree for the verticle wind angle. The high value of the verticle wind angle bias can most likely be reduced to the desired less than one degree value with standard manufacturing production techniques. The durability of the prototype vane was not tested in the field but is expected to be slightly less due to the use of hollow rather than foam-filled fins. However, the loss of some durability is more than compensated with increased sensitivity at low wind speeds. Field testing of the prototype is required to test for adequacy of durability.
Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot
Directory of Open Access Journals (Sweden)
Dani Martínez
2016-01-01
Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.
The Skipheia Wind Measurement Station. Instrumentation, Wind Speed Profiles and Turbulence Spectra
Energy Technology Data Exchange (ETDEWEB)
Aasen, S E
1995-10-01
This thesis describes the design of a measurement station for turbulent wind and presents results from an analysis of the collected data. The station is located at Skipheia near the south-west end of Froeya, an island off the coast of Mid-Norway. The station is unique for studies of turbulent winds because of the large numbers of sensors, which are located at various heights above ground up to 100 m, a sampling rate of 0.85 Hz and storage of the complete time series. The frequency of lightning and atmospheric discharges to the masts are quite high and much effort has gone into minimizing the damage caused by lightning activity. A major part of the thesis deals with data analysis and modelling. There are detailed discussions on the various types of wind sensors and their calibration, the data acquisition system and operating experiences with it, the database, data quality control, the wind speed profile and turbulence. 40 refs., 78 figs., 17 tabs.
Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.
Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.
2017-12-01
Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular
Structures and Intermittency in Small Scales Solar Wind Turbulence
International Nuclear Information System (INIS)
Sahraoui, Fouad; Goldstein, Melvyn
2010-01-01
Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to result from nonlinear interactions between the plasma modes, which depend strongly on their phase synchronization. Despite this important role of the phases in turbulence, very limited work has been devoted to study the phases as potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. The reason why the phases are seldom used is probably because they usually appear to be completely mixed (due to their dependence on an arbitrary time origin and to 2π periodicity). To handle the phases properly, a new method based on using surrogate data has been developed recently to detect coherent structures in magnetized plasmas [Sahraoui, PRE, 2008]. Here, we show new applications of the technique to study the nature (weak vs strong, self-similar vs intermittent) of the small scale turbulence in the solar wind using the Cluster observations.
Accounting for the effect of turbulence on wind turbine power curves
DEFF Research Database (Denmark)
Clifton, A.; Wagner, Rozenn
2014-01-01
in turbulence; the turbulence renormalization method cannot account for changes in shear other than by using the the equivalent wind speed, which is derived from wind speed data at multiple heights in the rotor disk. The machine learning method is best able to predict the power as conditions change, and could...
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi
2017-06-12
Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.
The influence of turbulence on the aero-elastic instability of wind turbines
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R.K.
2014-01-01
Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...
International Nuclear Information System (INIS)
Pendergast, M.M.; Gilhousen, D.B.
1980-01-01
The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours
Directory of Open Access Journals (Sweden)
Igor Esau
2012-01-01
Full Text Available This paper presents analysis of wind climate of the Kongsfjorden-Kongsvegen valley, Svalbard. The Kongsfjorden-Kongsvegen valley is relatively densely covered with meteorological observations, which facilitate joint statistical analysis of the turbulent surface layer structure and the structure of the higher atmospheric layers. Wind direction diagrams reveal strong wind channeled in the surface layer up to 300 m to 500 m. The probability analysis links strong wind channeling and cold temperature anomalies in the surface layer. To explain these links, previous studies suggested the katabatic wind flow mechanism as the leading driver responsible for the observed wind climatology. In this paper, idealized turbulence-resolving simulations are used to distinct between different wind driving mechanisms. The simulations were performed with the real surface topography at resolution of about 60 m. These simulations resolve the obstacle-induced turbulence and the turbulence in the non-stratified boundary layer core. The simulations suggest the leading roles of the thermal land-sea breeze circulation and the mechanical wind channeling in the modulation of the valley winds. The characteristic signatures of the developed down-slope gravity-accelerated flow, that is, the katabatic wind, were found to be of lesser significance under typical meteorological conditions in the valley.
Effects of normal and extreme turbulence spectral parameters on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob
2017-01-01
the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...... of design loads is investigated with a focus on the commonly used Mann turbulence model. Quantification of the Mann model parameters is made through wind measurements acquired from the Høvsøre site. The parameters of the Mann model fitted to site specific observations can differ significantly from...... and tower base loads under normal turbulence and extreme turbulence, whereby the change in operating extreme and fatigue design loads obtained through turbulence model parameter variations is compared with corresponding variations obtained from random seeds of turbulence. The investigations quantify...
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Vech, Daniel; Chen, Christopher H K
2016-01-01
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Vech, Daniel; Chen, Christopher H K, E-mail: dvech@umich.edu [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)
2016-11-20
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R{sub E}), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.
Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence
Gary, S. P.
2015-12-01
The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.
Experimental study of wind-turbine airfoil aerodynamics in high turbulence
Energy Technology Data Exchange (ETDEWEB)
Devinant, Ph.; Laverne, T.; Hureau, J. [Laboratoire de Mecanique et d' Energetique Ecole Superieure de l' Energie et des Materiaux Universite d' Orleans, rue Leonard de Vinci F-45072 , Cedex 2 Orleans (France)
2002-06-01
Wind turbines very often have to operate in high turbulence related, for example, with lower layers atmospheric turbulence or wakes of other wind turbines. Most available data on airfoil aerodynamics concerns mainly aeronautical applications, which are characterized by a low level of turbulence (generally less than 1%) and low angles of attack. This paper presents wind tunnel test data for the aerodynamic properties-lift, drag, pitching moment, pressure distributions-of an airfoil used on a wind turbine when subjected to incident flow turbulence levels of 0.5-16% and placed at angles of attack up to 90. The results show that the aerodynamic behavior of the airfoil can be strongly affected by the turbulence level both qualitatively and quantitatively. This effect is especially evidenced in the angle of attack range corresponding to airfoil stall, as the boundary layer separation point advances along the leeward surface of the airfoil.
Wind farm turbulence impacts on general aviation airports in Kansas : [technical summary].
2014-01-01
Wind turbines and wind farms have become popular in the State of Kansas. Some general aviation : pilots have expressed a concern about the turbulence that the spinning blades are creating. If a : wind farm is built near an airport, does this affect t...
Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow
Rolin, Vincent; Porté-Agel, Fernando
2015-04-01
Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.
Energy Technology Data Exchange (ETDEWEB)
Larsen, G.C.
1998-09-01
The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.
An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm
Evans, Joni K.
2013-01-01
The focal point of the study reported here was the definition and examination of turbulence, wind shear and thunderstorm in relation to aviation accidents. NASA project management desired this information regarding distinct subgroups of atmospheric hazards, in order to better focus their research portfolio. A seven category expansion of Kaplan's turbulence categories was developed, which included wake turbulence, mountain wave turbulence, clear air turbulence, cloud turbulence, convective turbulence, thunderstorm without mention of turbulence, and low altitude wind shear, microburst or turbulence (with no mention of thunderstorms).More than 800 accidents from flights based in the United States during 1987-2008 were selected from a National Transportation Safety Board (NTSB) database. Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor in the accident report, and each accident was assigned to only one hazard category. This report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time of the accident.
Relationship between velocity gradients and magnetic turbulence in the solar wind
International Nuclear Information System (INIS)
Garrett, H.B.
1974-01-01
The correlations among the time derivative of the solar-wind velocity, the magnitude of the interplanetary magnetic field (IMF), and the IMF turbulence level are examined to test the idea that interaction between two colliding solar-wind streams can generate turbulence in the solar wind and the IMF. Data obtained by Explorer 33 on the solar wind and IMF are described, and the analysis techniques are outlined. The results indicate that the IMF turbulence level, as measured by the variance, is correlated with the existence of positive velocity gradients in the solar wind. It is noted that while the variance is an increasing function of the field magnitude, it is also independently correlated with the solar-wind velocity gradient
Energy Technology Data Exchange (ETDEWEB)
Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)
2012-09-10
The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave
Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations
Czech Academy of Sciences Publication Activity Database
Franci, L.; Verdini, A.; Matteini, L.; Landi, S.; Hellinger, Petr
2015-01-01
Roč. 804, č. 2 (2015), L39/1-L39/5 ISSN 2041-8205 R&D Projects: GA ČR(CZ) GA15-10057S Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * plasmas * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015
Directory of Open Access Journals (Sweden)
Xiaolian Zhang
2016-11-01
Full Text Available Maximum power point tracking (MPPT plays an important role in increasing the efficiency of a wind energy conversion system (WECS. In this paper, three conventional MPPT methods are reviewed: power signal feedback (PSF control, decreased torque gain (DTG control, and adaptive torque gain (ATG control, and their potential challenges are investigated. It is found out that the conventional MPPT method ignores the effect of wind turbine inertia and wind speed fluctuations, which lowers WECS efficiency. Accordingly, an improved adaptive torque gain (IATG method is proposed, which customizes adaptive torque gains and enhances MPPT performances. Specifically, the IATG control considers wind farm turbulences and works out the relationship between the optimal torque gains and the wind speed characteristics, which has not been reported in the literature. The IATG control is promising, especially under the ongoing trend of building wind farms with large-scale wind turbines and at low and medium wind speed sites.
Magnetic intermittency of solar wind turbulence in the dissipation range
Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua
2016-04-01
The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.
Comparison of FPS-16 radar/jimsphere and NASA's 50-MHz radar wind profiler turbulence indicators
Susko, Michael
1993-01-01
Measurements of the wind and turbulent regions from the surface to 16 km by the FPS-11 radar/jimsphere system are reported with particular attention given to the use of these turbulence and wind assessments to validate the NASA 50-MHz radar wind profiler. Wind profile statistics were compared at 150-m wavelengths, a wavelength validated from 20 jimspheres, simultaneously tracked by FPS-16 and FPQ-14 radar, and the resulting analysis of auto spectra, cross-spectra, and coherence squared spectra of the wind profiles. Results demonstrate that the NASA prototype wind profiler is an excellent monitoring device illustrating the measurements of the winds within 1/2 hour of launch zero.
Tian, Lin-Lin; Zhao, Ning; Song, Yi-Lei; Zhu, Chun-Ling
2018-05-01
This work is devoted to perform systematic sensitivity analysis of different turbulence models and various inflow boundary conditions in predicting the wake flow behind a horizontal axis wind turbine represented by an actuator disc (AD). The tested turbulence models are the standard k-𝜀 model and the Reynolds Stress Model (RSM). A single wind turbine immersed in both uniform flows and in modeled atmospheric boundary layer (ABL) flows is studied. Simulation results are validated against the field experimental data in terms of wake velocity and turbulence intensity.
Che, H.; Goldstein, M. L.; Vinas, A. F.
2014-01-01
The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.
Three-dimensional density and compressible magnetic structure in solar wind turbulence
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-03-01
The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.
Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams
International Nuclear Information System (INIS)
Pizzo, V.J.
1982-01-01
The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream
Directory of Open Access Journals (Sweden)
Martin Felix Jørgensen
2014-04-01
Full Text Available This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind field, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Different turbulence levels are considered and the accumulated fatigue damage levels are compared. An example where the turbulence/fatigue sensitivity could be important, is in the middle of a big wind farm. Interior wind turbines in large wind farms will always operate in the wake of other wind turbines, causing increased turbulence and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced.
Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation
Directory of Open Access Journals (Sweden)
Šidlof Petr
2017-01-01
Full Text Available The paper reports on hot wire turbulence intensity measurements performed in the entry of a suction-type wind tunnel, used for investigation of flow-induced vibration of airfoils and slender structures. The airfoil is elastically supported with two degrees of freedom (pitch and plunge in the test section of the wind tunnel with lateral optical access for interferometric measurements, and free to oscillate. The turbulence intensity was measured for velocities up to M = 0.3 i with the airfoil blocked, ii with the airfoil self-oscillating. Measurements were performed for a free inlet and further with two different turbulence grids generating increased turbulence intensity levels. For the free inlet and static airfoil, the turbulence intensity lies below 0.4%. The turbulence grids G1 and G2 increase the turbulence level up to 1.8% and 2.6%, respectively. When the airfoil is free to oscillate due to fluid-structure interaction, its motion disturbs the surrounding flow field and increases the measured turbulence intensity levels up to 5%.
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas
International Nuclear Information System (INIS)
Dong, Yue
2014-01-01
This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling
Energy Technology Data Exchange (ETDEWEB)
Ravelet, F
2005-09-15
We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Barthelmie, Rebecca J.; Jensen, Leo E.
2012-01-01
unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase. Power deficit is a function of ambient turbulence intensity. The level...
The turbulent cascade and proton heating in the solar wind during solar minimum
International Nuclear Information System (INIS)
Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.
2013-01-01
Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.
Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea
Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.
2015-12-01
The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass
DEFF Research Database (Denmark)
Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge
2015-01-01
models that compensate for axial and tangential induction, approximated by blade element momentum theory, radial expansion of the inflow, rotor tilt, dynamic and skew inflow, tip loss, as well as braking and circulation of the flow local to the airfoil. The wind speeds measured on the rotating blades...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...
Fatigue reliability and effective turbulence models in wind farms
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.
2007-01-01
behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. In this paper the design code model in the wind turbine code IEC 61400-1 (2005) is evaluated from a probabilistic point of view, including the importance of modeling the SN-curve by linear...
Energy Technology Data Exchange (ETDEWEB)
Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Oughton, S. [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand); Engelbrecht, N. E. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)
2016-12-10
We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.
International Nuclear Information System (INIS)
Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K.; Oughton, S.; Engelbrecht, N. E.
2016-01-01
We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.
Modeling of 830 nm FSO Link Attenuation in Fog or Wind Turbulence
Czech Academy of Sciences Publication Activity Database
Pešek, J.; Fišer, Ondřej; Svoboda, Jaroslav; Schejbal, V.
2010-01-01
Roč. 19, č. 2 (2010), s. 237-241 ISSN 1210-2512 R&D Projects: GA ČR GA102/08/0851; GA MŠk OC09027 Institutional research plan: CEZ:AV0Z30420517 Keywords : Free space optics propagation * fog attenuation, * wind turbulence attenuation * turbulent energy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.503, year: 2010 http://www.radioeng.cz/fulltexts/2010/10_02_237_241.pdf
International Nuclear Information System (INIS)
Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun
2011-01-01
In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.
2011-01-01
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.
Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon
2017-11-01
The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.
Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis
Laituri, Tony R.
1988-01-01
Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.
DEFF Research Database (Denmark)
Gögmen, Tuhfe; Giebel, Gregor
2016-01-01
varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...
Free-stream turbulence effects on the flow around an S809 wind turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)
2012-07-01
Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)
Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind
International Nuclear Information System (INIS)
Woolsey, Lauren N.; Cranmer, Steven R.
2014-01-01
Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.
Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind
Energy Technology Data Exchange (ETDEWEB)
Woolsey, Lauren N.; Cranmer, Steven R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2014-06-01
Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.
Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU
International Nuclear Information System (INIS)
Fraternale, F; Gallana, L; Iovieno, M; Tordella, D; Opher, M; Richardson, J D
2016-01-01
Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between −2.1 and −1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency. (invited comment)
Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data
Perschke, C.; Narita, Y.
2012-12-01
Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.
Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie
Wang, H
2014-06-16
Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.
A time-localized response of wave growth process under turbulent winds
Directory of Open Access Journals (Sweden)
Z. Ge
2007-06-01
Full Text Available Very short time series (with lengths of approximately 40 s or 5~7 wave periods of wind velocity fluctuations and wave elevation were recorded simultaneously and investigated using the wavelet bispectral analysis. Rapid changes in the wave and wind spectra were detected, which were found to be intimately related to significant energy transfers through transient quadratic wind-wave and wave-wave interactions. A possible pattern of energy exchange between the wind and wave fields was further deduced. In particular, the generation and variation of the strong wave-induced perturbation velocity in the wind can be explained by the strengthening and diminishing of the associated quadratic interactions, which cannot be unveiled by linear theories. On small time scales, the wave-wave quadratic interactions were as active and effective in transferring energy as the wind-wave interactions. The results also showed that the wind turbulence was occasionally effective in transferring energy between the wind and the wave fields, so that the background turbulence in the wind cannot be completely neglected. Although these effects are all possibly significant over short times, the time-localized growth of the wave spectrum may not considerably affect the long-term process of wave development.
International Nuclear Information System (INIS)
Priest, E.R.
1982-01-01
The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)
Magnetohydrodynamic calculations on pulsar magnetospheres
International Nuclear Information System (INIS)
Brinkmann, W.
1976-01-01
In this paper, the relativistic magnetohydrodynamic is presented in covariant form and applied to some problems in the field of pulsar magnetospheres. In addition, numerical methods to solve the resulting equations of motion are investigated. The theory of relativistic magnetohydrodynamic presented here is valid in the framework of the theory of general relativity, describing the interaction of electromagnetic fields with an ideal fluid. In the two-dimensional case, a Lax-Wendroff method is studied which should be optimally stable with the operator splitting of Strang. In the framework of relativistic magnetohydrodynamic also the model of a stationary aequatorial stellar pulsar wind as well as the parallel rotator is investigated. (orig.) [de
Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind
Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.
2017-12-01
We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.
Directory of Open Access Journals (Sweden)
Kiran Bhaganagar
2014-09-01
Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.
Aly, Aly Mousaad
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.
Plasma turbulence and kinetic instabilities at ion scales in the expanding solar wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Verdini, A.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 811, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015 http://iopscience.iop.org/article/10.1088/2041-8205/811/2/L32/pdf
Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 812, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 R&D Projects: GA ČR GA15-10057S Grant - others:European Commission(XE) 284515 Institutional support: RVO:67985815 Keywords : instabilities * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
Irtaza, Hassan; Agarwal, Ashish
2018-02-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
Irtaza, Hassan; Agarwal, Ashish
2018-06-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine
Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah
2015-12-01
In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.
International Nuclear Information System (INIS)
Engels, W P; Subhani, S; Zafar, H; Savenije, F
2014-01-01
Extreme wind conditions can cause excessive loading on the turbine. This not only results in higher design loads, but when these conditions occur in practice, will also result in higher maintenance cost. Although there are already effective methods of dealing with gusts, other extreme conditions should also be examined. More specifically, extreme turbulence conditions (e.g. those specified by design load case 1.3 in IEC61400-1 ed. 3) require special attention as they can lead to design-driving extreme loads on blades, tower and other wind turbine components. This paper examines two methods to deal with extreme loads in a case of extreme turbulent wind. One method is derating the turbine, the other method is an individual pitch control (IPC) algorithm. Derating of the turbine can be achieved in two ways, one is changing the rated torque, the other is changing the rated rotor speed. The effect of these methods on fatigue loads and extreme loads is examined. Non-linear aero-elastic simulations using Phatas, show that reducing the rated rotor speed is far more effective at reducing the loads than reducing torque. Then, the IPC algorithm is proposed. This algorithm is a linear quadratic Gaussian (LQG) controller based on a time invariant model, defined in the fixed reference frame that includes the first tower and blade modes. Because this method takes the dynamics of the system into account more than conventional IPC control, it is expected that these loads dealt with more effectively, when they are particularly relevant. It is expected that in extreme turbulent the blade and tower dynamics are indeed more relevant. The effect of this algorithm on fatigue loads and pitch effort is examined and compared with the fatigue loads and pitch effort of reference IPC. Finally, the methods are compared in non-linear aero-elastic simulations with extreme turbulent wind
Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim
2018-01-01
We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.
3D turbulence measurements in inhomogeneous boundary layers with three wind LiDARs
Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando
2014-05-01
One of the most challenging tasks in atmospheric anemometry is obtaining reliable turbulence measurements of inhomogeneous boundary layers at heights or in locations where is not possible or convenient to install tower-based measurement systems, e.g. mountainous terrain, cities, wind farms, etc. Wind LiDARs are being extensively used for the measurement of averaged vertical wind profiles, but they can only successfully accomplish this task under the limiting conditions of flat terrain and horizontally homogeneous flow. Moreover, it has been shown that common scanning strategies introduce large systematic errors in turbulence measurements, regardless of the characteristics of the flow addressed. From the point of view of research, there exist a variety of techniques and scanning strategies to estimate different turbulence quantities but most of them rely in the combination of raw measurements with atmospheric models. Most of those models are only valid under the assumption of horizontal homogeneity. The limitations stated above can be overcome by a new triple LiDAR technique which uses simultaneous measurements from three intersecting Doppler wind LiDARs. It allows for the reconstruction of the three-dimensional velocity vector in time as well as local velocity gradients without the need of any turbulence model and with minimal assumptions [EGU2013-9670]. The triple LiDAR technique has been applied to the study of the flow over the campus of EPFL in Lausanne (Switzerland). The results show the potential of the technique for the measurement of turbulence in highly complex boundary layer flows. The technique is particularly useful for micrometeorology and wind engineering studies.
Simulation of shear and turbulence impact on wind turbine power performance
Energy Technology Data Exchange (ETDEWEB)
Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.
2010-01-15
Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)
Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation
Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.
1995-01-01
Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.
Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wei; Markfort, Corey D. [University of Minnesota, Saint Anthony Falls Laboratory, Department of Civil Engineering, Minneapolis, MN (United States); Porte-Agel, Fernando [Ecole Polytechnique Federale de Lausanne (EPFL), ENAC-IIE-WIRE, Wind Engineering and Renewable Energy Laboratory (WIRE), Lausanne (Switzerland)
2012-05-15
Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (x-z) and vertical span-wise planes (y-z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and
Xie, S.; Archer, C. L.
2013-12-01
In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Directory of Open Access Journals (Sweden)
J. F. Newman
2017-02-01
Full Text Available Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine
Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.
2012-01-01
Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and
Chang, Ouliang
The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific
Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes
International Nuclear Information System (INIS)
Chatelain, P; Duponcheel, M; Buffin, S; Caprace, D-G; Winckelmans, G; Bricteux, L; Zeoli, S
2017-01-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed. (paper)
Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes
Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.
2017-05-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
Magnetohydrodynamic cosmologies
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1991-01-01
We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)
DEFF Research Database (Denmark)
Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær
2014-01-01
This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind eld, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Dierent turbulence levels...... and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced)....
Yu, Kai; Dong, Changming; King, Gregory P.
2017-06-01
We investigate mesoscale turbulence (10-1000 km) in the ocean winds over the Kuroshio Extension (28°N-40°N, 140°E-180°E) using the QuikSCAT data set (November 1999 to October 2009). We calculate the second (Djj) and third-order structure functions (Djjj) and the spatial variance (Vj) as a function of scale r (j=L,T denotes, respectively, the longitudinal (divergent) and transverse (vortical) component). The most interesting results of the analysis follow. Although both Vj>(r>) and Djj>(r>) measure the turbulent kinetic energy (TKE), we find that Vj>(r>) is the more robust measure. The spatial variance density (dVj/dr) has a broad peak near 450 km (close to the midlatitude Rossby radius of deformation). On interannual time scales, TKE correlates well with the El Niño 3.4 index. According to turbulence theory, the kinetic energy cascades downscale (upscale) if DLLL>(r>) (also skewness SL=DLLL/DLL3/2) is negative (positive). Our results for the Kuroshio Extension are consistent with a downscale cascade (indicating convergence dominates). Furthermore, classical turbulence theory predicts that SL=-0.3 and independent of r; however, we find SL varies strongly with r, from -4 at small scales to -0.3 at large scales. This nonclassical behavior implies strong-scale interaction, which we attribute to the rapid, and sometimes explosive, growth of storms in the region through baroclinic instability. Finally, we find that ST (a measure of cyclonic/anticyclonic asymmetry) is positive (cyclonic) and also varies strongly with r, from 4 at small scales to 0.5 at large scales. New turbulence models are needed to explain these results, and that will benefit Weather Prediction and climate modeling.Plain Language SummaryThe turbulent winds near the ocean surface give rise to air-sea heat and momentum exchange. The turbulence is caused by convective processes - processes generated at weather fronts, in squalls, tropical disturbances and extra-tropical cyclones. In order to improve
Energy Technology Data Exchange (ETDEWEB)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
2016-03-25
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
International Nuclear Information System (INIS)
1980-01-01
The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)
Preliminary proposal for the study of the turbulence of the wind the roofs of the buildings
International Nuclear Information System (INIS)
Fariñas Wong, Ernesto Yoel; Cabeza Fereira, Javier Enrique; Baracaldo, Hector; Fleck, Brian; Fernandez Bonilla, Alexeis
2017-01-01
The research is aimed at identifying the best safety conditions, efficiency for the use of renewable technologies in urban environments, anemometers of vanes and sonic are applied near the edge and at low height of the floor in the highest building of the INETC in order to know Wind behavior close to the edge as well as vertical wind potentialities and turbulent wind behavior. The data obtained from 3D sonic anemometers and weather vane shall be extrapolated to relate it to the data base of the Davis reference meteorological station, located in the undisturbed stream. The wind data will be linked to the effort and load regime that will be recorded at the same time on solar panels and their support structure, which will be done by means of extensive gauges metric. The meteorological data and the load stresses will be related to three-dimensional numerical simulations obtained by computational fluid mechanics numerical tests. (author)
Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine
Energy Technology Data Exchange (ETDEWEB)
Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)
2012-07-01
An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)
NACA0015 measurements in LM wind tunnel and turbulence generated noise
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, Franck
2008-11-15
A NACA0015 airfoil section was instrumented with an array of highfrequency microphones mounted on its surface and measured in the wind tunnel at LM Glasfiber at various inflow speeds, angles of attack, and with different turbulent inflow conditions. The aim of this work is to analyze these measurement data, including the turbulent inflow characteristics. The airfoil surface pressure data are considered in the perspective of turbulent inflow noise in order to identify the potential for using these data to validate and possibly improve associated noise models from the literature. In addition, these data are further analyzed in the context of trailing edge noise modeling which is directly related to the surface pressure fluctuations in the vicinity of the trailing edge. (au)
Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer
DEFF Research Database (Denmark)
Mann, Jakob; Cariou, J.-P.; Courtney, Michael
2008-01-01
Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence mea...... measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the Mar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically.......Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...
Relevant Criteria for Testing the Quality of Models for Turbulent Wind Speed Fluctuations
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, John Dalsgaard
2008-01-01
Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approximately...... 10% smaller than the IEC model for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3 s and 10 s preaveraging of wind speed data are relevant for megawatt......-size wind turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60 m, the gust factor increases with wind speed. For heights larger than 60-80 m, present assumptions on the value of the gust factor are significantly...
DETAILED FIT OF 'CRITICAL BALANCE' THEORY TO SOLAR WIND TURBULENCE MEASUREMENTS
International Nuclear Information System (INIS)
Forman, Miriam A.; Wicks, Robert T.; Horbury, Timothy S.
2011-01-01
We derive the reduced spectrum of turbulent magnetic fluctuations at different frequencies f which would be observed by a single spacecraft in the solar wind when the magnetic field was at an angle θ B to the solar wind flow, if the wavevector spectrum in the solar wind frame were in anisotropic 'critical balance' (CB) as proposed by Goldreich and Sridhar in 1995 (GS95). The anisotropic power spectrum in the inertial range, P(f, θ B ), is scaled onto one curve with f- 5/3 behavior at θ B near 90 0 and f -2 behavior at small θ B . The transition between the two limiting spectra depends on the form of the GS95 wavevector spectrum and the CB scaling parameter L. Using wavelet analysis of Ulysses magnetic field data in three 30-day periods in the high-latitude solar wind in 1995, we verify that the scaling of power with angle and frequency is qualitatively consistent with GS95 theory. However, the scale length L required to fit the observed P(f, θ B ) to the original CB theory is rather less than the scale predicted by that theory for the solar wind. Part, possibly all, of this discrepancy is removed when the GS95 theory modified for imbalanced turbulence is used.
Solitary magnetohydrodynamic vortices
International Nuclear Information System (INIS)
Silaev, I.I.; Skvortsov, A.T.
1990-01-01
This paper reports on the analytical description of fluid flow by means of localized vortices which is traditional for hydrodynamics, oceanology, plasma physics. Recently it has been widely applied to different structure turbulence models. Considerable results involved have been presented where it was shown that in magnetohydrodynamics alongside with the well-known kinds of localized vortices (e.g. Hill's vortex), which are characterized by quite a weak decrease of disturbed velocity or magnetic field (as a power of the inverse distance from vortex center), the vortices with screening (or solitary vortices) may exist. All disturbed parameters either exponentially vanish or become identically zero in outer region in the latter case. (In a number of papers numerical simulations of such the vortices are presented). Solutions in a form of solitary vortices are of particular interest due to their uniformity and solitonlike behavior. On the basis of these properties one can believe for such structures to occur in real turbulent flows
Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.
Kiyani, Khurom H; Osman, Kareem T; Chapman, Sandra C
2015-05-13
The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Directory of Open Access Journals (Sweden)
A. A. Praskovsky
2004-11-01
Full Text Available The structure-function-based method (referred to as UCAR-STARS, a technique for estimating mean horizontal winds, variances of three turbulent velocity components and horizontal momentum flux was applied to the Middle and Upper atmosphere Radar (MUR operating in spaced antenna (SA profiling mode. The method is discussed and compared with the Holloway and Doviak (HAD correlation-function-based technique. Mean horizontal winds are estimated with the STARS and HAD techniques; the Doppler Beam Swinging (DBS method is used as a reference for evaluating the SA techniques. Reasonable agreement between SA and DBS techniques is found at heights from 5km to approximately 11km, where signal-to-noise ratio was rather high. The STARS and HAD produced variances of vertical turbulent velocity are found to be in fair agreement. They are affected by beam-broadening in a different way than the DBS-produced spectral width, and to a much lesser degree. Variances of horizontal turbulent velocity components and horizontal momentum flux are estimated with the STARS method, and strong anisotropy of turbulence is found. These characteristics cannot be estimated with correlation-function-based SA methods, which could make UCAR-STARS a useful alternative to traditional SA techniques.
Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico
Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.
2014-12-01
A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.
Extended MHD Turbulence and Its Applications to the Solar Wind
Abdelhamid, Hamdi M.; Lingam, Manasvi; Mahajan, Swadesh M.
2016-10-01
Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfvénic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal (k\\lt 1/{λ }I), Hall (1/{λ }I\\lt k\\lt 1/{λ }e), and electron inertia (k\\gt 1/{λ }e) regimes; k is the wavenumber and {λ }s=c/{ω }{ps} is the skin depth of species “s.” In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of -11/3 and -13/3 are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approximately -4 in this regime. It is thus plausible that these spectra may constitute a part of the (extended) inertial range, as opposed to the standard “dissipation” range paradigm.
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Relativistic magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)
2017-05-02
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Reduction of the Random Variables of the Turbulent Wind Field
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.
2012-01-01
.e. Importance Sampling (IS) or Subset Simulation (SS), will be deteriorated on problems with many random variables. The problem with PDEM is that a multidimensional integral has to be carried out over the space defined by the random variables of the system. The numerical procedure requires discretization......Applicability of the Probability Density Evolution Method (PDEM) for realizing evolution of the probability density for the wind turbines has rather strict bounds on the basic number of the random variables involved in the model. The efficiency of most of the Advanced Monte Carlo (AMC) methods, i...... of the integral domain; this becomes increasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency of the AMC methods is closely dependent on the design points of the problem. Presence of many random variables may increase the number of the design points, hence affects...
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Directory of Open Access Journals (Sweden)
J.-L. Caccia
2004-11-01
Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.
2004-11-01
The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Energy Technology Data Exchange (ETDEWEB)
Caccia, J.L.; Guenard, V. [LSEET, CNRS/Univ. de Toulon, La Garde (France); Benech, B.; Campistron, B. [CRA/LA, CNRS/Obs. Midi-Pyrenees, Campistrous (France); Drobinski, P. [IPSL/SA, CNRS/Univ. de Paris VI, Paris (France)
2004-07-01
The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhone-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhone-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (mesoscale alpine program) in autumn 1999, and ESCOMPTE (Experience sur Site pour COntraindre les Modeles de Pollution atmospheriques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhone valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of ''flow around'' and ''flow over'' mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with
Tijera, Manuel; Maqueda, Gregorio; Cano, José L.; López, Pilar; Yagüe, Carlos
2010-05-01
The wind velocity series of the atmospheric turbulent flow in the planetary boundary layer (PBL), in spite of being highly erratic, present a self-similarity structure (Frisch, 1995; Peitgen et., 2004; Falkovich et., 2006). So, the wind velocity can be seen as a fractal magnitude. We calculate the fractal dimension (Komolgorov capacity or box-counting dimension) of the wind perturbation series (u' = u- ) in the physical spaces (namely velocity-time). It has been studied the time evolution of the fractal dimension along different days and at three levels above the ground (5.8 m, 13.5 m, 32 m). The data analysed was recorded in the experimental campaign SABLES-98 (Cuxart et al., 2000) at the Research Centre for the Lower Atmosphere (CIBA) located in Valladolid (Spain). In this work the u, v and w components of wind velocity series have been measured by sonic anemometers (20 Hz sampling rate). The fractal dimension versus the integral length scales of the mean wind series have been studied, as well as the influence of different turbulent parameters. A method for estimating these integral scales is developed using the normalized autocorrelation function and a Gaussian fit. Finally, it will be analysed the variation of the fractal dimension versus stability parameters (as Richardson number) in order to explain some of the dominant features which are likely immersed in the fractal nature of these turbulent flows. References - Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilá J, Redondo JM, Cantalapiedra IR and Conangla L (2000) Stable atmospheric boundary-layer experiment in Spain (SABLES98): a report. Boundary- Layer Meteorol 96:337-370 - Falkovich G and Kattepalli R. Sreenivasan (2006) Lessons from Hidrodynamic Turbulence. Physics Today 59: 43-49 - Frisch U (1995) Turbulence the legacy of A.N. Kolmogorov Cambridge University Press 269pp - Peitgen H, Jürgens H and
International Nuclear Information System (INIS)
Gilhousen, D.B.
1979-01-01
Objective forecasts of many weather elements produced twice daily for about 230 US cities are made by applying the Model Output Statistics (MOS) technique (Glahn and Lowry, 1972). This technique relates by a statistical method the output of numerical models interpolated to a location (predictors) to a corresponding sample of observed local weather at that location (predictand). This study describes the development and testing of MOS wind forecasts for an instrumented TV tower located near the Savannah River Laboratory (SRL). If shown to be useful, these forecasts could serve as valuable guidance in case of a nuclear incident at the installation. This study introduces several new applications of the MOS technique. In addition to forecasts of wind speed and direction, forecasts of two turbulence parameters were developed and evaluated. These turbulence parameters were the standard deviations of both the azimuth and elevation of the wind. These quantities help to estimate the amount of plume and puff spread. Forecasts of all these elements were produced for several levels on the 335 m WJBF-TV tower. Tests were conducted to see if MOS forecasts of each element were capable of resolving differences between tower levels. MOS forecasts were compared to two other types of forecasts to determine their utility. Short range persistence forecasts served as one type of comparison since SRL uses the current observed winds in their diffusion models. Climatology forecasts served as the other comparison set
The small amplitude of density turbulence in the inner solar wind
Directory of Open Access Journals (Sweden)
S. R. Spangler
2003-01-01
Full Text Available Very Long Baseline Interferometer (VLBI observations were made of radio sources close to the Sun, whose lines of sight pass through the inner solar wind (impact parameters 16-26 RE. Power spectra were analyzed of the interferometer phase fluctuations due to the solar wind plasma. These power spectra provide information on the level of plasma density fluctuations on spatial scales of roughly one hundred to several thousand kilometers. By specifying an outer scale to the turbulence spectrum, we can estimate the root-mean-square (rms amplitude of the density fluctuations. The data indicate that the rms fluctuation in density is only about 10% of the mean density. This value is low, and consistent with extrapolated estimates from more distant parts of the solar wind. Physical speculations based on this result are presented.
Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power
DEFF Research Database (Denmark)
Fischer, Andreas
downstream of the nozzle contraction. We used two different hot wire probes: a dual sensor miniature wire probe (Dantec 55P61) and a triple sensor fiber film probe (Dantec 55R91). The turbulence intensity measured with the dual sensor probe in the empty tunnel section was significantly lower than the one...
Scaling forecast models for wind turbulence and wind turbine power intermittency
Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy
2017-04-01
The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.
''Reduced'' magnetohydrodynamics and minimum dissipation rates
International Nuclear Information System (INIS)
Montgomery, D.
1992-01-01
It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs
Magnetohydrodynamics of accretion disks
International Nuclear Information System (INIS)
Torkelsson, U.
1994-04-01
The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks
2016-12-22
Oceanogr., 46, 1377-1397 Cebeci, T. & P. Bradshaw, 1988: physical and computational aspects of convective heat transfer , Springer-Verlag, p.487...on surface properties and flow separation. Strongly-forced wind seas are characterized by enhanced group modulation , as significant additional...energy flux from the wind augments the hydrodynamic modulations . Using compact steep chirped wave packets, we investigated for the first time the
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud
2016-01-01
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France)
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.
Dissipation of Turbulence in the Solar Wind as Measured by Cluster
Goldstein, Melvyn
2012-01-01
Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.
KINETIC PLASMA TURBULENCE IN THE FAST SOLAR WIND MEASURED BY CLUSTER
International Nuclear Information System (INIS)
Roberts, O. W.; Li, X.; Li, B.
2013-01-01
The k-filtering technique and wave polarization analysis are applied to Cluster magnetic field data to study plasma turbulence at the scale of the ion gyroradius in the fast solar wind. Waves are found propagating in directions nearly perpendicular to the background magnetic field at such scales. The frequencies of these waves in the solar wind frame are much smaller than the proton gyrofrequency. After the wavevector k is determined at each spacecraft frequency f sc , wave polarization property is analyzed in the plane perpendicular to k. Magnetic fluctuations have δB > δB ∥ (here the ∥ and refer to the background magnetic field B 0 ). The wave magnetic field has right-handed polarization at propagation angles θ kB 90°. The magnetic field in the plane perpendicular to B 0 , however, has no clear sense of a dominant polarization but local rotations. We discuss the merits and limitations of linear kinetic Alfvén waves (KAWs) and coherent Alfvén vortices in the interpretation of the data. We suggest that the fast solar wind turbulence may be populated with KAWs, small-scale current sheets, and Alfvén vortices at ion kinetic scales.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow
Energy Technology Data Exchange (ETDEWEB)
Bermudez, L.; Velazquez, A.; Matesanz, A. [Thermal Engineering Area, Carlos III University of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)
2002-06-01
A Viscous-inviscid interaction method is presented that allows for the simulation of unsteady airfoil flow in the context of wind turbine applications. The method couples a 2-D external unsteady potential flow to a 2-D unsteady turbulent boundary layer. The separation point on the airfoil leeward side is determined in a self-consistent way from the boundary-layer equations, and the separated flow region is modelled independently. Wake shape and motion are also determined in a self-consistent way, while an unsteady Kutta condition is implemented. The method is able to deal with attached flow and light stall situations characterised by unsteady turbulent boundary-layer separation size up to 50% of the airfoil chord length. The results of the validation campaign show that the method could be used for industrial design purposes because of its numerical robustness, reasonable accuracy, and limited computational time demands.
TURBULENCE IN THE SUB-ALFVENIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVEN WAVES
International Nuclear Information System (INIS)
Verdini, A.; Velli, M.; Buchlin, E.
2009-01-01
We study the formation and evolution of a turbulent spectrum of Alfven waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvenic critical point. The background solar wind is assigned and two-dimensional shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of the reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves, respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore, reflection and reflection-driven turbulence are shown to play a key role in the acceleration of the fast solar wind and origin of the turbulent spectrum found at 0.3 AU in the heliosphere.
Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune
Chapman, Connie A.; Walker, Ian J.; Hesp, Patrick A.; Bauer, Bernard O.; Davidson-Arnott, Robin G. D.
2012-05-01
Recent research on quasi-instantaneous turbulent kinematic Reynolds stresses (RS, - u'w') and decomposed quadrant event activity (e.g., ejections and sweeps) over dunes in fluvial settings and in wind tunnels has shown that turbulent stresses at the toe of a dune often exceed time-averaged, streamwise shear stress (ρ u * 2) estimates. It is believed that semi-coherent turbulent structures are conveyed toward the bed along concave streamlines in this region and that impact of these structures cause fluctuations in local surface stresses that assist in grain entrainment. This has been hypothesized to explain how sand is supplied to the windward slope through a region of flow stagnation. Toward the crest, surface stress increases and becomes dominated by streamwise accelerations resulting from streamline compression and convexity that suppress vertical motions. High-frequency (32 Hz) measurements of turbulent wind flow from 3-D ultrasonic anemometers are analyzed for oblique onshore flow over a vegetated coastal foredune in Prince Edward Island, Canada. Reynolds stress and quadrant activity distributions varied with height (0.60 m and 1.66 m) and location over the dune. In general, quadrant 2 ejection (u' 0) and quadrant 4 sweep activity (u' > 0, w' 0, w' > 0) and quadrant 3 inward interaction (u' dune and may help to explain sand transport potential and dune maintenance. For example, areas with a high frequency of ejection and sweep activity may have higher rates of sediment entrainment and transport, whereas areas with lower ejection and sweep activity and an increase in outward and inward interactions, which contribute negatively to Reynolds stress generation, may experience a greater potential for deposition. Further research on associations between quadrant event activity and coincident sand transport is required to confirm this hypothesis and the resultant significance of the flow exuberance effect in aeolian dune morphodynamics.
Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices
Czech Academy of Sciences Publication Activity Database
Kuznetsov, Sergeii; Ribičić, Mihael; Pospíšil, Stanislav; Plut, Mihael; Trush, Arsenii; Kozmar, H.
2017-01-01
Roč. 41, č. 6 (2017), s. 643-661 ISSN 0732-8818 R&D Projects: GA ČR(CZ) GA14-12892S; GA MŠk(CZ) LO1219 Keywords : turbulent flow * atmospheric boundary layer * wind-tunnel simulation * castellated barrier wall * Counihan vortex generators * surface roughness elements * hot-wire measurements Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 0.932, year: 2016 https://link.springer.com/article/10.1007/s40799-017-0196-z
Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer
International Nuclear Information System (INIS)
Mann, J; Courtney, M S; Mikkelsen, T; Wagner, R; Lindeloew, P; Sjoeholm, M; Enevoldsen, K; Cariou, J-P; Parmentier, R
2008-01-01
Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the lidar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically
Alfvénic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?
Directory of Open Access Journals (Sweden)
B. Bavassano
2006-03-01
Full Text Available The mid-latitude phases of the Ulysses mission offer an excellent opportunity to investigate the solar wind originating near the coronal hole boundaries. Here we report on Alfvénic turbulence features, revealing a relevant presence of in-situ generated fluctuations, observed during the wind rarefaction phase that charaterizes the transition from fast to slow wind. Heavy-ion composition and magnetic field measurements indicate a strict time correspondence of the locally generated fluctuations with 1 the crossing of the interface between fast and slow wind and 2 the presence of strongly underwound magnetic field lines (with respect to the Parker spiral. Recent studies suggest that such underwound magnetic configurations correspond to fast wind magnetic lines that, due to footpoint motions at the Sun, have their inner leg transferred to slow wind and are stretched out by the velocity gradient. If this is a valid scenario, the existence of a magnetic connection across the fast-slow wind interface is a condition that, given the different state of the two kinds of wind, may favour the development of processes acting as local sources of turbulence. We suggest that heavy-ion effects could be responsible of the observed turbulence features.
International Nuclear Information System (INIS)
Hu Erbang; Vogt, S.
1986-08-01
During several days in November 1985 an international field experiment took place in the Swiss plateau region near the cities of Aarau, Olten. As indicated by the name of the project SIESTA (SF 6 International Experiments in Stagnant Air) its aim is to obtain knowledge of the general nature of turbulence advection and atmospheric dispersion processes in a cold pool with very low wind speed and undefined wind direction. An outline of the general concept of the project is followed by a more detailed description of a special research activity with Radar tracked tetroons. In the second part of the report it is shown how to determine the horizontal dispersion parameter from the trajectories of the tetroon flights. Two different methods are described and the results of the flights performed during SIESTA are presented. (orig.) [de
RADIAL EVOLUTION OF SOLAR WIND TURBULENCE DURING EARTH AND ULYSSES ALIGNMENT OF 2007 AUGUST
International Nuclear Information System (INIS)
D'Amicis, R.; Bruno, R.; Pallocchia, G.; Bavassano, B.; Telloni, D.; Carbone, V.; Balogh, A.
2010-01-01
At the end of 2007 August, during the minimum of solar cycle 23, a lineup of Earth and Ulysses occurred, giving the opportunity to analyze, for the first time, the same plasma sample at different observation points, namely at 1 and 1.4 AU. In particular, it allowed us to study the radial evolution of solar wind turbulence typical of fast wind streams as proposed in a Coordinated Investigation Programme for the International Heliophysical Year. This paper describes both the macrostructure and the fluctuations at small scales of this event. We find that soon after detecting the same fast stream, the Advanced Composition Explorer (ACE) observed a change of magnetic polarity being the interplanetary current sheet located between the orbits of the two spacecraft. Moreover, we observe that the compression region formed in front of the fast stream detected at ACE's location evolves in a fast forward shock at Ulysses' orbit. On the other hand, small-scale analysis shows that turbulence is evolving. The presence of a shift of the frequency break separating the injection range from the inertial range toward lower frequencies while distance increases is a clear indication that nonlinear interactions are at work. Moreover, we observe that intermittency, as measured by the flatness factor, increases with distance. This study confirms previous analyses performed using Helios observations of the same fast wind streams at different heliocentric distances, allowing us to relax about the hypothesis of the stationarity of the source regions adopted in previous studies. Consequently, any difference noticed in the solar wind parameters would be ascribed to radial (time) evolution.
Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.
Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.
2014-12-01
Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.
The most intense electric currents in turbulent high speed solar wind
Podesta, J. J.
2017-12-01
Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.
DEFF Research Database (Denmark)
Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard
2016-01-01
structural reliability are assessed when the extreme turbulence model is uncertain. The structural reliability is assessed for the wind turbine when three configurations of an industrial grade load alleviation control system of increasing complexity and performance are used. The load alleviation features......The wind energy industry is continuously researching better computational models of wind inflow and turbulence to predict extreme loading (the nature of randomness) and their corresponding probability of occurrence. Sophisticated load alleviation control systems are increasingly being designed...... and deployed to specifically reduce the adverse effects of extreme load events resulting in lighter structures. The main objective herein is to show that despite large uncertainty in the extreme turbulence models, advanced load alleviation control systems yield both a reduction in magnitude and scatter...
The Yaglom law in the expanding solar wind
International Nuclear Information System (INIS)
Gogoberidze, G.; Perri, S.; Carbone, V.
2013-01-01
We study the Yaglom law, which relates the mixed third-order structure function to the average dissipation rate of turbulence, in a uniformly expanding solar wind by using the two-scale expansion model of magnetohydrodynamic (MHD) turbulence. We show that due to the expansion of the solar wind, two new terms appear in the Yaglom law. The first term is related to the decay of the turbulent energy by nonlinear interactions, whereas the second term is related to the non-zero cross-correlation of the Elsässer fields. Using magnetic field and plasma data from WIND and Helios 2 spacecrafts, we show that at lower frequencies in the inertial range of MHD turbulence the new terms become comparable to Yaglom's third-order mixed moment, and therefore they cannot be neglected in the evaluation of the energy cascade rate in the solar wind.
Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao
2017-11-01
The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.
Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements
Ho, Y. K.; Liu, C. H.
2012-04-01
Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.
ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE
International Nuclear Information System (INIS)
Zaheer, S.; Yoon, P. H.
2013-01-01
A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f e ∼ v –α is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α average ∼ 6.69, according to observation
Correlations at large scales and the onset of turbulence in the fast solar wind
International Nuclear Information System (INIS)
Wicks, R. T.; Roberts, D. A.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Chen, C. H. K.
2013-01-01
We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and equipartitioned (residual energy ∼0) have steep structure functions reminiscent of 'turbulent' scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼–1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned magnetic and velocity vectors, have wide '1/f' ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus the onset scale for the turbulent cascade.
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Directory of Open Access Journals (Sweden)
J.-L. Caccia
2004-11-01
Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.
Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.
In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.
In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles
Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.
2013-09-01
Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.
International Nuclear Information System (INIS)
Smith, Craig M; Barthelmie, R J; Pryor, S C
2013-01-01
Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m. (letter)
Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.
2018-04-01
The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.
Owocki, Stanley P.; Sundqvist, Jon O.
2018-03-01
We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.
1990-01-01
The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.
Lee, J. T.
1984-01-01
As part of continuing research on aviation related weather hazards, numerous experiments were incorporated into the 1983 Spring Observation Program. This year's program was an abbreviated one because of commitments made to the development of the Next Generation Radar (NEXRAD) project. The National Oceanic and Atmospheric Administration's (NOAA) P-3 Orion and the National Aeronautics and Space Administration's (NASA) RB-57B and U-2 were the main aircraft involved in the studies of lightning, wind shear, turbulence, and storm structure. A total of 14 flights were made by these aircraft during the period of May 16 through June 5, 1983. Aircraft instrumentation experiments are described, and resultant data sets available for research are detailed. Aircraft instrumentation and Doppler radar characteristics are detailed.
Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.
2010-12-01
Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.
International Nuclear Information System (INIS)
Zimbardo, Gaetano
2005-01-01
Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, δB/B 0 , the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B 0 = B 0 e z and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B 0 . The energy density spectrum is a power law, and in k space it is described by the correlation lengths l x , l y , l z , which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R (δB/B 0 ) (l z /l x ). For small Kubo numbers, R 0 , or the ratio l z /l x , we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, δB/B 0 ≅ 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l z /l x ≤ 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l z /l x > 1 normal Gaussian diffusion is found. A possible expression for generalized double diffusion is discussed
Stirring turbulence with turbulence
Cekli, H.E.; Joosten, R.; van de Water, W.
2015-01-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the
International Nuclear Information System (INIS)
Zimbardo, G.
2005-01-01
Plasma transport in the presence of turbulence depends on a variety of parameters like the fluctuation level ? B/B0, the ratio between the particle Larmor radius and the turbulence correlation lengths, and the turbulence anisotropy. In this presentation, we review the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B0 = B0ez and a Fourier representation for magnetic fluctuations, with wavectors forming any angle with respect to B0. The energy density spectrum is a power law, and in k space the constant amplitude surfaces are ellipsoids, described by the correlation lengths lx, ly, lz, which quantify the anisotropy of turbulence. For magnetic field lines, we find that transport perpendicular to the background field depends on the Kubo number R = ? B B0 lz lx . For small Kubo numbers, R ? 1, we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which can be described as a Levy random walk. Increasing the Kubo number, i.e., the fluctuation level ? B/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field heavily depends on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, ? B/B0 ? 0.5 ?1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case lz/lx ? 1, with Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is
Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence
Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.
2018-03-01
The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.
A model for the response of vertical axis wind turbines to turbulent flow: Parts 1 and 2
Malcolm, D. R.
1988-07-01
This report describes a project intended to incorporate the effects of atmospheric turbulence into the structural response of Darrieus rotor, vertical axis wind turbines. The basis of the technique is the generation of a suitable time series of wind velocities, which are passed through a double multiple streamtube aerodynamic representation of the rotor. The aerodynamic loads are decomposed into components of the real eigenvectors of the rotor and subsequently into full-power and cross-spectral densities. These modal spectra are submitted as input to a modified NASTRAN random load analysis and the power spectra of selected responses are obtained. This procedure appears to be successful. Results at zero turbulence agree with alternative solutions, and when turbulence is included, the predicted stress spectra for the Indal 6400 rotor are in good agreement with field data. The model predicts that the effect of turbulence on harmonic frequency peaks and on all lead-lag bending will not be great. However, it appears that only 11 percent turbulence intensity can almost double the rms of cyclic flatwise blade bending.
Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.
Chandran, Benjamin D G
2018-02-01
In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .
Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies
Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.
2017-08-01
Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area
Kim, T. K.; Kryukov, I.; Pogorelov, N. V.; Elliott, H. A.; Zank, G. P.
2017-12-01
The outer heliosphere is an interesting region characterized by the interaction between the solar wind and the interstellar neutral atoms. Having accomplished the mission to Pluto in 2015 and currently on the way to the Kuiper Belt, the New Horizons spacecraft is following the footsteps of the two Voyager spacecraft that previously explored this region lying roughly beyond 30 AU from the Sun. We model the three-dimensional, time-dependent solar wind plasma flow to the outer heliosphere using our own software Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which, in addition to the thermal solar wind plasma, takes into account charge exchange of the solar wind protons with interstellar neutral atoms and treats nonthermal ions (i.e., pickup ions) born during this process as a separate fluid. Additionally, MS-FLUKSS allows us to model turbulence generated by pickup ions. We use MS-FLUKSS to investigate the evolution of plasma and turbulent fluctuations along the trajectory of the New Horizons spacecraft using plasma and turbulence parameters from OMNI data as time-dependent boundary conditions at 1 AU for the Reynolds-averaged MHD equations. We compare the model with in situ plasma observations by New Horizons, Voyager 2, and Ulysses. We also compare the model pickup proton parameters with those derived from the Ulysses-SWICS data.
Filamentary magnetohydrodynamic plasmas
International Nuclear Information System (INIS)
Kinney, R.; Tajima, T.; McWilliams, J.C.; Petviashvili, N.
1994-01-01
A filamentary construct of magnetohydrodynamical plasma dynamics based on the Elsaesser variables is developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to those based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected, the plasma vortex system is described by a Hamiltonian. A statistical treatment of a collection of discrete current-vorticity concentrations is given. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories, but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is presented as well, which is also Hamiltonian when the inductive force is neglected. A statistical calculation in the canonical ensemble and numerical simulations show that a nonzero large-scale magnetic field is statistically favored, and that the preferred shape of this field is a long, thin tube of flux. Possible applications to a variety of physical phenomena are suggested
Energy Technology Data Exchange (ETDEWEB)
Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent
2016-01-04
We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.
International Nuclear Information System (INIS)
Priest, E.R.
1982-01-01
Solar MHD is an important tool for understanding many solar phenomena. It also plays a crucial role in explaining the behaviour of more general cosmical magnetic fields and plasmas, since the Sun provides a natural laboratory in which such behaviour may be studied. While terrestrial experiments are invaluable in demonstrating general plasma properties, conclusions from them cannot be applied uncritically to solar plasmas and have in the past given rise to misconceptions about solar magnetic field behaviour. Important differences between a laboratory plasma on Earth and the Sun include the nature of boundary conditions, the energy balance, the effect of gravity and the size of the magnetic Reynolds number (generally of order unity on the Earth and very much larger on the Sun). The overall structure of the book is as follows. It begins with two introductory chapters on solar observations and the MHD equations. Then the fundamentals of MHD are developed in chapters on magnetostatics, waves, shocks, and instabilities. Finally, the theory is applied to the solar phenomena of atmospheric heating, sunspots, dynamos, flares, prominences, and the solar wind. (Auth.)
Bonifazi, C.; Moreno, G.; Russell, C. T.; Lazarus, A. J.; Sullivan, J. D.
1983-01-01
The interaction of the solar wind with ions backstreaming from the earth's bow shock is investigated using plasma and magnetic field measurements on ISEE 1 and 2 and IMP 8 at widely separated positions in the earth's foreshock. This technique separates temporal and spatial variations within the foreshock. It is found that the solar wind acceleration associated with backstreaming ions is correlated with the amplitude of the MHD turbulence, and that the largest decelerations are seen close to the bow shock. The density of the backstreaming ion beam is strongly correlated with distance from the shock, and decreases by about a factor of three in a distance of about 3R(e).
Czech Academy of Sciences Publication Activity Database
Bruno, R.; Carbone, V.; Vörös, Z.; D'Amicis, R.; Bavassano, B.; Cattaneo, M. B.; Mura, A.; Milillo, A.; Orsini, S.; Veltri, P.; Sorriso-Valvo, L.; Zhang, T. L.; Biernat, H.; Rucker, H.; Baumjohann, W.; Jankovičová, Dana; Kovács, B.
2009-01-01
Roč. 104, 1-4 (2009), s. 101-104 ISSN 0167-9295. [European General Assembly on International Heliophysics Year. Torino, 18.06.2007-22.06.2007] Institutional research plan: CEZ:AV0Z30420517 Keywords : Solar wind * MHD turbulence * Space plasma physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.655, year: 2009 http://www.springerlink.com/content/4368229757764645/fulltext.pdf
Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales
Directory of Open Access Journals (Sweden)
Y. Narita
2011-10-01
Full Text Available Using the four Cluster spacecraft, we have determined the three-dimensional wave-vector spectra of fluctuating magnetic fields in the solar wind. Three different solar wind intervals of Cluster data are investigated for this purpose, representing three different spatial scales: 10 000 km, 1000 km, and 100 km. The spectra are determined using the wave telescope technique (k-filtering technique without assuming the validity of Taylor's frozen-in-flow hypothesis nor are any assumptions made as to the symmetry properties of the fluctuations. We find that the spectra are anisotropic on all the three scales and the power is extended primarily in the directions perpendicular to the mean magnetic field, as might be expected of two-dimensional turbulence, however, the analyzed fluctuations are not axisymmetric. The lack of axisymmetry invalidates some earlier techniques using single spacecraft observations that were used to estimate the percentage of magnetic energy residing in quasi-two-dimensional power. However, the dominance of two-dimensional turbulence is consistent with the relatively long mean free paths of cosmic rays in observed in the heliosphere. On the other hand, the spectra also exhibit secondary extended structures oblique from the mean magnetic field direction. We discuss possible origins of anisotropy and asymmetry of solar wind turbulence spectra.
Dufresne, Nathaniel P.
An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.
International Nuclear Information System (INIS)
Roux, A.
1989-01-01
The interaction between the supersonic and super-Alfvenic solar wind plasma and the Earth's magnetic field leads to the formation of critical layers, such as the bow shock, the magnetopause, the polar cusp, and the inner and outer edge of the plasmasheet. The mean free path between binary colisions being much larger than the transverse scale of these layers, plasma turbulence must ensure the thermalization, the magnetic diffusion, the dissipation within these critical layers. We suggest the existence of small scale, presumably 2D structures, developing within these thin layers. The unambiguous characterization of these small-scale structures is, however, beyond the capabilities of existing spacecraft, which cannot spatially resolve them, nor disentangle spatial/temporal variations. We present a new mission concept: a cluster of four relatively simple spacecraft, which will make it possible (i) to disentangle spatial from temporal variations, (ii) to evaluate, by finite differences between spacecraft measurements, the gradients, divergences, curls of MHD parameters, and )iii) to characterize small-scale structures, via inter-spacecraft correlations. (author). 10 refs.; 10 figs
Attractors of magnetohydrodynamic flows in an Alfvenic state
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
VerHulst, Claire; Meneveau, Charles
2014-02-01
In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang
2017-10-18
To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.
Energy Technology Data Exchange (ETDEWEB)
Matteini, L.; Horbury, T. S.; Schwartz, S. J. [The Blackett Laboratory, Imperial College London, SW7 2AZ (United Kingdom); Pantellini, F. [LESIA, Observatoire de Paris, CNRS, UPMC, Universit Paris-Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, California (United States)
2015-03-20
We investigate the properties of plasma fluid motion in the large-amplitude, low-frequency fluctuations of highly Alfvénic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles which, due to their drift with respect to protons at about the Alfvén speed along the magnetic field, do not partake in the fluid low-frequency fluctuations. Using their velocity to transform the proton velocity into the frame of Alfvénic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfvénic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfvénic turbulence, is the origin of the observed constancy of the magnetic field; while the constant velocity corresponding to constant energy can only be observed in the frame of the fluctuations, the corresponding constant total magnetic field, invariant for Galilean transformations, remains the observational signature in the spacecraft frame of the constant total energy in the Alfvén turbulence frame.
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
DEFF Research Database (Denmark)
Berg, Jacob; Natarajan, Anand; Mann, Jakob
2016-01-01
taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...
Turbulence influence on optimum tip speed ratio for a 200 kW vertical axis wind turbine
Möllerström, E.; Eriksson, S.; Goude, A.; Ottermo, F.; Hylander, J.
2016-09-01
The influence of turbulence intensity (TI) on the tip speed ratio for maximum power coefficient, here called λCp_max, is studied for a 200 kW VAWT H-rotor using logged data from a 14 month period with the H-rotor operating in wind speeds up to 9 m/s. The TI - λCp_max relation is examined by dividing 10 min mean values in different turbulence intensity ranges and producing multiple CP(λ) curves. A clear positive relation between TI and λCp_max is shown and is further strengthened as possible secondary effects are examined and deemed non-essential. The established relation makes it possible to tune the control strategy to enhance the total efficiency of the turbine.
DEFF Research Database (Denmark)
Sessarego, Matias; Shen, Wen Zhong
2018-01-01
Modern wind turbine aero-structural blade design codes generally use a smaller fraction of the full design load base (DLB) or neglect turbulent inflow as defined by the International Electrotechnical Commission standards. The current article describes an automated blade design optimization method...... based on surrogate modeling that includes a very large number of design load cases (DLCs) including turbulence. In the present work, 325 DLCs representative of the full DLB are selected based on the message-passing-interface (MPI) limitations in Matlab. Other methods are currently being investigated, e.......g. a Python MPI implementation, to overcome the limitations in Matlab MPI and ultimately achieve a full DLB optimization framework. The reduced DLB and the annual energy production are computed using the state-of-the-art aero-servo-elastic tool HAWC2. Furthermore, some of the interior dimensions of the blade...
Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.
1981-06-01
The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.
Energy Technology Data Exchange (ETDEWEB)
Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.
2009-01-01
A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.
Inertial-range spectrum of whistler turbulence
Directory of Open Access Journals (Sweden)
Y. Narita
2010-02-01
Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.
Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie
Wang, H; Barthelmie, R J; Crippa, P; Doubrawa, P; Pryor, S C
2014-01-01
Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve
International Nuclear Information System (INIS)
Bonifazi, C.; Moreno, G.; Russell, C.T.; Lazarus, A.J.; Sullivan, J.D.
1983-01-01
The interaction of the solar wind with ions backstreaming from the earth's bow shock is investigated using plasma and magnetic field measurements on ISEE 1 and 2 and IMP 8 at widely separated positions in the earth's foreshock. This technique separates temporal and spatial variations within the foreshock. It is found that the solar wind acceleration associated with backstreaming ions is correlated with the amplitude of the MHD turbulence and that the largest decelerations are seen close to the bow shock. The density of the backstreaming ion beam is stronly correlated with distance from the shock and decreases by about a factor of 3 in a distance of about 3 R/sub E/
Magnetohydrodynamic cellular automata
Montgomery, David; Doolen, Gary D.
1987-01-01
A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.
International Nuclear Information System (INIS)
Le Roux, J. A.
2011-01-01
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.
Energy Technology Data Exchange (ETDEWEB)
Le Roux, J. A. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2011-12-10
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.
Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence
National Research Council Canada - National Science Library
Jaehne, Bernd
2000-01-01
The primary goal of this project was to advance the knowledge of small-scale air-sea interaction processes at the ocean surface, focussing on the dynamics of short waves, the surface flow field and the micro-turbulence...
Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars
International Nuclear Information System (INIS)
Mikkelsen, T; Mann, J; Courtney, M; Sjoeholm, M
2008-01-01
At RISOe DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.
2018-02-01
We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.
Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young
2014-12-01
The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, R. T.; Coops, N. C.; Parlange, M. B.
2017-08-01
Large-eddy simulations (LES) are used to gain insight into the effects of trees on turbulence, aerodynamic parameters, and momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighborhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Data from airborne light detection and ranging (LiDAR) are used to represent both buildings and vegetation at the LES resolution. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed including and excluding vegetation from the considered urban areas, varying wind direction and leaf area density. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI /λfb lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI / λfSUP>b = 0.74 , leaves-on LAI /λfb = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI / λfb increases, due in large part to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. LES and measurements both predict an increase in the ratio of turbulent to mean kinetic energy (TKE/MKE) at the tower sampling height going from winter to summer, and LES also show how including vegetation results in a more (positive) negatively skewed (horizontal) vertical velocity distribution - reflecting a more intermittent velocity field which favors sweep motions when compared to ejections. Within the urban canopy, the effects of trees are twofold: on one hand, they act
DEFF Research Database (Denmark)
Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre
2018-01-01
to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform...... coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear...
Hamiltonian formulation of reduced magnetohydrodynamics
International Nuclear Information System (INIS)
Morrison, P.J.; Hazeltine, R.D.
1983-07-01
Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD
On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence
Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua
2018-04-01
The power spectrum of magnetic fluctuations has a break at the high-frequency end of the inertial range. Beyond this break, the spectrum becomes steeper than the Kolmogorov law f ‑5/3. The break frequency was found to be associated with plasma beta (β). However, the full-range β dependence of the ion-scale spectral break has not been presented before in observational studies. Here we show the continuous variation of the break frequency on full-range β in the solar wind turbulence. By using measurements from the WIND and Ulysses spacecraft, we show the break frequency (f b ) normalized, respectively, by the frequencies corresponding to ion inertial length (f di ), ion gyroradius ({f}ρ i), and cyclotron resonance scale (f ri ) as a function of β for 1306 intervals. Their β values spread from 0.005 to 20, which nearly covers the full β range of the observed solar wind turbulence. It is found that {f}b/{f}{di} ({f}b/{f}ρ i) generally decreases (increases) with β, while {f}b/{f}{ri} is nearly a constant. We perform a linear fit on the statistical result, and obtain the empirical formulas {f}b/{f}{di}∼ {β }-1/4, {f}b/{f}ρ i∼ {β }1/4, and {f}b/{f}{ri}∼ 0.90 to describe the relation between f b and β. We also compare our observations with a numerical simulation and the prediction by ion cyclotron resonance theory. Our result favors the idea that the cyclotron resonance is an important mechanism for energy dissipation at the spectral break. When β ≪ 1 and β ≫ 1, the break at f di and {f}ρ i may also be associated with other processes.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Czech Academy of Sciences Publication Activity Database
Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr
2016-01-01
Roč. 833, č. 1 (2016), 91/1-91/7 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016
John M. Frank; William J. Massman; Brent E. Ewers
2016-01-01
Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
International Nuclear Information System (INIS)
Barnes, A.
1983-01-01
The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)
Magnetohydrodynamics in rectangular ducts
International Nuclear Information System (INIS)
Lenhart, L.
1994-04-01
Magnetohydrodynamic flow in straight ducts or bends is a key issue, which has to be investigated for developing self-cooled liquid metal blankets of fusion reactors. The code presented solves the full set of governing equations and simulates all phenomena of such flows, including inertial effects. The range of application is limited by computer storage only. (orig./WL)
2016-12-29
mixture of salt water aerosols, water soluble aerosols and dust aerosols in a size distribution similar to that shown in Figure 1. ANAM represents...sizes and refractive indices. ANAM mode 0 represents dust particles of continental origin, mode 1 represents water - soluble aerosols, whereas modes 2-4...provide data that may be used to generate a map of the turbulent air flow fields in the vicinity of aircraft and aircraft carriers and to
Energy Technology Data Exchange (ETDEWEB)
Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2016-04-10
We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.
Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)
2016-11-15
Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.
Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis
Ciccone, A. D.; Kawall, J. G.; Keffer, J. F.
A novel technique utilizing the basic principles of two-dimensional signal analysis and artificial intelligence/computer vision to reconstruct the Lagrangian particle trajectories from flow visualization images of macroparticle motions in a turbulent boundary layer is presented. Since, in most cases, the entire trajectory of a particle could not be viewed in one photographic frame (the particles were moving at a high velocity over a small field of view), a stochastic model was developed to complete the trajectories and obtain statistical data on particle velocities. The associated programs were implemented on a Cray supercomputer to optimize computational costs and time.
Czech Academy of Sciences Publication Activity Database
Kukačka, Libor; Nosek, Štěpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk
2012-01-01
Roč. 2012, č. 381357 (2012), s. 1-13 ISSN 1537-744X Institutional research plan: CEZ:AV0Z20760514 Keywords : air pollution * atmospheric boundary layer * wind tunnel modelling * contaminant spreading * street canyon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.730, year: 2012 http://www.tswj.com/2012/381357/
Testing and comparison of lidars for profile and turbulence measurements in wind energy
International Nuclear Information System (INIS)
Courtney, M; Wagner, R; Lindeloew, P
2008-01-01
Lidar profilers are beginning to gain a foothold in wind energy. Both of the currently available commercially systems have been extensively tested at the Hovsore facility in Denmark and valuable insights have been gained. The extensively instrumented facility will be described and some examples of the results given, illustrating the strength and weaknesses of the two contrasting profilers
Liquid metal magnetohydrodynamic convertor
International Nuclear Information System (INIS)
Aladiev, I.T.; Dzhamardzhashvili, V.A.
1981-01-01
This invention relates to the generation of electrical energy by direct conversion from thermal or electrical energy and notably to liquid metal magnetohydrodynamic convertors. The convertor described in this invention can be successfully used as a source of electrical energy for space vessels, for underwater vessels, for aeronautics and for the generation of electrical energy in thermal or atomic power plants. This liquid metal convertor consists of a heat source, a two phase nozzle, a separator, a steam diffuser and a condenser. These elements are connected together hydraulically in series. The condenser is connected hydraulically to a heat source, a liquid diffuser and a magnetohydrodynamic generator. These elements are interconnected hydraulically to the separator and heat source [fr
Magnetohydrodynamics cellular automata
International Nuclear Information System (INIS)
Hatori, Tadatsugu.
1990-02-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)
Magnetohydrodynamics and Plasma Cosmology
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas
2007-09-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
Magnetohydrodynamic cellular automata
Energy Technology Data Exchange (ETDEWEB)
Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)
1990-03-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).
Magnetohydrodynamic cellular automata
International Nuclear Information System (INIS)
Hatori, Tadatsugu
1990-01-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)
Magnetohydrodynamical processes near compact objects
International Nuclear Information System (INIS)
Bisnovatyi Kogan, G.S.
1979-01-01
Magnetohydrodynamical processes near compact objects are reviewed in this paper. First the accretion of the magnetized matter into a single black hole and spectra of radiation are considered. Then the magnetic-field phenomena in the disk accretion, when the black hole is in a pair are discussed. Furthermore, the magnetohydrodynamics phenomena during supernova explosion are considered. Finally the magnetohydrodynamics in the accretion of a neutron star is considered in connection With x-ray sources
Nandi, Tarak Nath
Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity. Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings. The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P
SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES
Energy Technology Data Exchange (ETDEWEB)
Kumar, Sanjay; Moon, Y.-J. [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr [Centre for Energy Studies, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016 (India)
2015-10-10
We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.
Capturing the journey of wind from the wind turbines (poster)
Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.
2015-01-01
Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence
Intermittency Statistics in the Expanding Solar Wind
Cuesta, M. E.; Parashar, T. N.; Matthaeus, W. H.
2017-12-01
The solar wind is observed to be turbulent. One of the open questions in solar wind research is how the turbulence evolves as the solar wind expands to great distances. Some studies have focused on evolution of the outer scale but not much has been done to understand how intermittency evolves in the expanding wind beyond 1 AU (see [1,2]). We use magnetic field data from Voyager I spacecraft from 1 to 10AU to study the evolution of statistics of magnetic discontinuities. We perform various statistical tests on these discontinuities and make connections to the physical processes occurring in the expanding wind.[1] Tsurutani, Bruce T., and Edward J. Smith. "Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU." Journal of Geophysical Research: Space Physics 84.A6 (1979): 2773-2787.[2] Greco, A., et al. "Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere." The Astrophysical Journal 749.2 (2012): 105.
Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence
Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.
2004-05-01
The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).
Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.
2016-12-01
When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.
Energy Technology Data Exchange (ETDEWEB)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Maruca, B. A. [University of Delaware, Newark, DE (United States); Fuselier, S. A.; Burch, J. L. [Southwest Research Institute, San Antonio, TX (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Moore, T. E.; Pollock, C. J.; Gershman, D. J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T.; Strangeway, R. J., E-mail: chasapis@udel.edu [University of California, Los Angeles, CA (United States)
2017-07-20
Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain very high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
Reduced magnetohydrodynamics and the Hasegawa-Mima equation
International Nuclear Information System (INIS)
Hazeltine, R.D.
1983-04-01
Reduced magnetohydrodynamics consists of a set of simplified fluid equations which has become a principal tool in the interpretation of plasma fluid motions in tokamak experiments. The Hasegawa-Mima equation is applied to the study of electrostatic fluctuations in turbulent plasmas. The relation between thee two nonlinear models is elucidated. It is shown tht both models can be obtained from appropriate limits of a third, inclusive, nonlinear system. The inclusive system is remarkably simple
Intermittency in Hall-magnetohydrodynamics with a strong guide field
Imazio, P. Rodriguez; Martin, L. N.; Dmitruk, P.; Mininni, P. D.
2013-01-01
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure funct...
Magnetohydrodynamic flow phenomena
International Nuclear Information System (INIS)
Gerbeth, G.; Mutschke, G.; Eckert, S.
1995-01-01
The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)
Magnetohydrodynamic energy conversion
International Nuclear Information System (INIS)
Rosa, R.J.
1987-01-01
The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references
Elements of magnetohydrodynamic stability theory
International Nuclear Information System (INIS)
Spies, G.O.
1976-11-01
The nonlinear equations of ideal magnetohydrodynamics are discussed along with the following topics: (1) static equilibrium, (2) strict linear theory, (3) stability of a system with one degree of freedom, (4) spectrum and variational principles in magnetohydrodynamics, (5) elementary proof of the modified energy principle, (6) sufficient stability criteria, (7) local stability, and (8) normal modes
Elsaesser variable analysis of fluctuations in the ion foreshock and undisturbed solar wind
Labelle, James; Treumann, Rudolf A.; Marsch, Eckart
1994-01-01
Magnetohydrodynamics (MHD) fluctuations in the solar wind have been investigated previously by use of Elsaesser variables. In this paper, we present a comparison of the spectra of Elsaesser variables in the undisturbed solar wind at 1 AU and in the ion foreshock in front of the Earth. Both observations take place under relatively strong solar wind flow speed conditions (approximately equal 600 km/s). In the undisturbed solar wind we find that outward propagating Alfven waves dominate, as reported by other observers. In the ion foreshock the situation is more complex, with neither outward nor inward propagation dominating over the entire range investigated (1-10 mHz). Measurements of the Poynting vectors associated with the fluctuations are consistent with the Elsaesser variable analysis. These results generally support interpretations of the Elsaesser variables which have been made based strictly on solar wind data and provide additional insight into the nature of the ion foreshock turbulence.
BEYOND THE MALTESE CROSS: GEOMETRY OF TURBULENCE BETWEEN 0.2 AND 1 au
Energy Technology Data Exchange (ETDEWEB)
Verdini, Andrea [Lesia, Observatoire de Paris, Muedon (France); LPP, Ecole Polytechnique, Palaiseau (France); Université Pierre et Marie Curie, Paris (France); Grappin, Roland [LPP, Ecole Polytechnique, Palaiseau (France)
2016-11-10
The spectral anisotropy of turbulent structures has been measured in the solar wind since 1990, relying on the assumption of axisymmetry about the mean magnetic field, B {sub 0}. However, several works indicate that this hypothesis might be partially wrong, thus raising two questions: (i) is it correct to interpret measurements at 1 au (the so-called Maltese cross) in term of a sum of slab and two-dimensional (2D) turbulence; and (ii) what information is really contained in the Maltese cross? We solve direct numerical simulations of the magnetohydrodynamic equations including the transverse stretching exerted by the solar wind flow and study the genuine 3D anisotropy of turbulence as well as that one resulting from the assumption of axisymmetry about B {sub 0}. We show that the evolution of the turbulent spectrum from 0.2 to 1 au depends strongly on its initial anisotropy. An axisymmetric spectrum with respect to B {sub 0} keeps its axisymmetry, i.e., resists stretching perpendicular to radial, while an isotropic spectrum becomes essentially axisymmetric with respect to the radial direction. We conclude that close to the Sun, slow-wind turbulence has a spectrum that is axisymmetric around B {sub 0} and the measured 2D component at 1 au describes the real shape of turbulent structures. In contrast, fast-wind turbulence has a more isotropic spectrum at the source and becomes radially symmetric at 1 au. Such structure is hidden by the symmetrization applied to the data that instead returns a slab geometry.
Magnetohydrodynamic process in solar activity
Directory of Open Access Journals (Sweden)
Jingxiu Wang
2014-01-01
Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.
Directory of Open Access Journals (Sweden)
S. Yahaya
2009-05-01
Full Text Available This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain. The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.
Magnetohydrodynamic generation method
International Nuclear Information System (INIS)
Masai, Tadahisa; Ishibashi, Eiichi; Kojima, Akihiro.
1967-01-01
The present invention relates to a magneto-hydrodynamic generation method which increases the conductivity of active gas and the generated energy. In the conventional method of open-cycle magnetohydrodynamic generation, the working fluid does not possess a favorable electric conductivity since the collision cross section is large when the combustion is carried out in a condition of excess oxygen. Furthermore, combustion under a condition of oxygen shortage is uncapable of completely converting the generated energy. The air preheater or boiler is not sufficient to collect the waste gas resulting in damage and other economic disadvantages. In the present invention, the combustion gas caused by excess fuel in the combuster is supplied to the generator as the working gas, to which air or fully oxidized air is added to be reheated. While incomplete gas used for heat collection is not adequate, the unburned damage may be eliminated by combusting again and increasing the gas temperature and heat collection rate. Furthermore, a diffuser is mounted at the rear side of the generator to decrease the gas combustion rate. Thus, even when directly absorbing the preheated fully oxidized air or the ordinary air, the boiler is free from damage caused by combustion delay or impulsive force. (M. Ishida)
Turbulence, selective decay, and merging in the SSX plasma wind tunnel
Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.
2012-10-01
A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s
Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.; Lee, Z. S.
2010-12-01
The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune (‘against’ the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that
Introduction to modern magnetohydrodynamics
Galtier, Sébastien
2016-01-01
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
Introduction to magnetohydrodynamics
Thompson, Ian
2016-01-01
Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.
Thermoacoustic magnetohydrodynamic electrical generator
International Nuclear Information System (INIS)
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid
Energy Technology Data Exchange (ETDEWEB)
Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)
2014-04-20
Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.
International Nuclear Information System (INIS)
Klein, Kristopher G.; Howes, Gregory G.; TenBarge, Jason M.; Podesta, John J.
2014-01-01
Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.
DEFF Research Database (Denmark)
Gilling, Lasse
of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence......Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...
RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH
Energy Technology Data Exchange (ETDEWEB)
Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
2016-02-01
Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.
RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH
International Nuclear Information System (INIS)
Airapetian, Vladimir S.; Usmanov, Arcadi V.
2016-01-01
Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Magnetohydrodynamic Augmented Propulsion Experiment
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Energy Technology Data Exchange (ETDEWEB)
Fortin, M.J.; Devanne, A.S. [Quebec Univ., Rimouski, PQ (Canada). Dept. Societes, Territoires et Developpement; Canada Research Chairs, Ottawa, ON (Canada); Le Floch, S. [Cemagref de Bordeaux (France)
2009-04-15
This article addressed the growing social concern regarding the development of major wind power projects in Quebec, particularly in the Gaspe and Bas-Saint-Laurent regions. It focused on the subjective dimensions of public perception and social acceptance of projects and emphasized the importance of cognitive and policy planning for dealing with major wind energy projects. Residents in close proximity to development projects are concerned with the dynamics of regional development; the relationship between residents and developer; and social impacts. The development of wind power in Quebec is in full expansion to meet renewable energy criteria. Several wind turbine arrays are in operation throughout the province and much progress has been made in terms of learning experience. From 1995 to 2007 several public hearings were held to allow residents to express their views regarding the construction of wind turbine arrays, their aesthetics, noise, impact on vegetation, and geographical proximity to habitat. With time, change was seen in both the public perception of energy development and the way of acting on it through different phases of the project. 19 refs., 2 figs.
Generalized reduced magnetohydrodynamic equations
International Nuclear Information System (INIS)
Kruger, S.E.
1999-01-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics
Magnetohydrodynamic power generation
International Nuclear Information System (INIS)
Sheindlin, A.E.; Jackson, W.D.; Brzozowski, W.S.; Rietjens, L.H.Th.
1979-01-01
The paper describes research and development in the field of magnetohydrodynamic power generation technology, based on discussions held in the Joint IAEA/UNESCO International Liaison Group on MHD electrical power generation. Research and development programmes on open cycle, closed cycle plasma and liquid-metal MHD are described. Open cycle MHD has now entered the engineering development stage. The paper reviews the results of cycle analyses and economic and environmental evaluations: substantial agreement has been reached on the expected overall performance and necessary component specifications. The achievement in the Soviet Union on the U-25 MHD pilot plant in obtaining full rated electrical power of 20.4 MW is described, as well as long duration testing of the integrated operation of MHD components. Work in the United States on coal-fired MHD generators has shown that, with slagging of the walls, a run time of about one hundred hours at the current density and electric field of a commercial MHD generator has been achieved. Progress obtained in closed cycle plasma and liquid metal MHD is reviewed. Electrical power densities of up to 140 MWe/m 3 and an enthalpy extraction as high as 24 per cent have been achieved in noble gas MHD generator experiments. (Auth.)
Adventures in magnetohydrodynamics
International Nuclear Information System (INIS)
Johnson, J.L.
1988-03-01
This material was presented in a set of three lectures on October 29 and 30, 1987 at Nagoya University. It was attempted to give an elementary survey of magnetohydrodynamic theory as it applies to toroidal confinement, emphasizing the concept and avoiding the detailed derivation, in hopes that the ideas will be useful for students and researchers just entering the field. In some places, the actual development should be described, so it was decided that it would be worthwhile to give some exact results. Thus the notes are uneven. The author hopes that everyone who looks at this will find something of interest. By a proper breakdown, this lecture consists of four sections: the section on the derivation and justification of the MHD equations, that on the equilibrium problem, that on linearized stability and some comments on nonlinear evolution, magnetic islands and transport. There is still the work to be done with these simple models. The move into some branch of plasma simulation or drift orbit formulation may be done, but this area is worth to spend a professional life, as the tasks are challenging, and the results are satisfying. (Kako, I.) 61 refs
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Three-dimensional simulations of turbulent spectra in the local interstellar medium
Directory of Open Access Journals (Sweden)
D. Shaikh
2007-07-01
Full Text Available Three-dimensional time dependent numerical simulations of compressible magnetohydrodynamic fluids describing super-Alfvénic, supersonic and strongly magnetized space and laboratory plasmas show a nonlinear relaxation towards a state of near incompressibility. The latter is characterized essentially by a subsonic turbulent Mach number. This transition is mediated dynamically by disparate spectral energy dissipation rates in compressible magnetosonic and shear Alfvénic modes. Nonlinear cascades lead to super-Alfvénic turbulent motions decaying to a sub-Alfvénic regime that couples weakly with (magnetoacoustic cascades. Consequently, the supersonic plasma motion is transformed into highly subsonic motion and density fluctuations experience a passive convection. This model provides a self-consistent explaination of the ubiquitous nature of incompressible magnetoplasma fluctuations in the solar wind and the interstellar medium.
Intermittency in Hall-magnetohydrodynamics with a strong guide field
International Nuclear Information System (INIS)
Rodriguez Imazio, P.; Martin, L. N.; Dmitruk, P.; Mininni, P. D.
2013-01-01
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit, we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling
Solar Flares: Magnetohydrodynamic Processes
Directory of Open Access Journals (Sweden)
Kazunari Shibata
2011-12-01
Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
Correlation Scales of the Turbulent Cascade at 1 au
Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.
2018-05-01
We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Directory of Open Access Journals (Sweden)
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
Directory of Open Access Journals (Sweden)
N. Singh
2008-11-01
Full Text Available The present study is specifically focused on the seasonal, annual and inter-annual variations of the refractive index structure parameter (Cn2 using three years of radar observations. Energy dissipation rates (ε during different seasons for a particular year are also computed over a tropical station, Pune. Doppler spectral width measurements made by the Wind Profiler, under various atmospheric conditions, are utilized to estimate the turbulence parameters. The refractive index structure parameter varies from 10−17.5 to 10−13 m−2/3 under clear air to precipitation conditions in the height region of 1.05 to 10.35 km. During the monsoon months, observed Cn2 values are up to 1–2 orders of magnitude higher than those during pre-monsoon and post-monsoon seasons. Spectral width correction for various non-turbulent spectral broadenings such as beam broadening and shear broadening are made in the observed spectral width for reliable estimation of ε under non-precipitating conditions. It is found that in the lower tropospheric height region, values of ε are in the range of 10−6 to 10−3 m2 s−3. In summer and monsoon seasons the observed values of ε are larger than those in post-monsoon and winter seasons in the lower troposphere. A comparison of Cn2 observed with the wind profiler and that estimated using Radio Sonde/Radio Wind (RS/RW data of nearby Met station Chikalthana has been made for the month of July 2003.
International Nuclear Information System (INIS)
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-01-01
To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V SW ) and analyze its orientation with respect to the local background magnetic field B 0,local . As an example, we take only measurements made in an outward magnetic sector. When B 0,local is quasi-perpendicular to V SW , we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B 0,local , a property that is characteristic of an oblique Alfvén wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B 0,local , thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle (θ kB ) increases toward 90°. Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B 0,local seems to indicate that oblique Alfvén/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.
Kinetic effects on magnetohydrodynamic phenomena
International Nuclear Information System (INIS)
Naito, Hiroshi; Matsumoto, Taro
2001-01-01
Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)
Magnetohydrodynamics of neutron star interiors
International Nuclear Information System (INIS)
Easson, I.; Pethick, C.J.
1979-01-01
Magnetohydrodynamic equations for the charged particles in the fluid interior of a neutron star are derived from the Landau-Boltzmann kinetic equations. It is assumed that the protons are normal and the neutrons are superfluid. The dissipative processes associated with the weak interactions are shown to be negligible except in very hot neutron stars; we neglect them here. Among the topics discussed are: the influence of the neutron-proton nuclear force (Fermi liquid corrections) on the magnetohydrodynamics; the effects of the magnetic field on the pressure, viscosity, and heat conductivity tensors; the plasma equation of state; and the form of the generalized Ohm's law
Institute of Scientific and Technical Information of China (English)
李仁年; 任鹏; 李德顺
2016-01-01
In order to study the influence of turbulence intensity on aerodynamic performance of horizontal axis wind turbine,a three-dimensionally numerical simulation of wind wheel model of 33 kW horizontal ax-is wind turbine under different working conditions of wind speed of incoming flow is conducted based on CFD software by comparing and analyzing aerodynamic performance of wind turbine when the turbulence intensity(Ⅰ)is 0.1%,14% and 25%.The results show that differential pressure on the surface of horizontal axis wind turbine blade decreases on a certain degree with the increase of turbulence intensity,which causes that torque of wind wheel of wind turbine decreases and wind power utilization efficiency of wind turbine is clearly reduced.%为了研究水平轴风力机气动性能随湍流强度的影响,基于CFD软件对不同来流风速工况下的33 kW水平轴风力机风轮模型进行三维数值模拟,对比分析风力机在湍流强度Ⅰ为0.1%、14%、25%时的气动性能.结果表明:随着来流湍流强度的增加,水平轴风力机叶片表面压差会有一定程度的减小,从而导致风力机风轮转矩减小,风力机风能利用效率明显降低.
Final report. [Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
Montgomery, D.C.
1998-01-01
This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant's lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the
International Nuclear Information System (INIS)
Martin, L. N.; Dmitruk, P.; Gomez, D. O.
2010-01-01
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.
INERTIAL RANGE TURBULENCE OF FAST AND SLOW SOLAR WIND AT 0.72 AU AND SOLAR MINIMUM
Energy Technology Data Exchange (ETDEWEB)
Teodorescu, Eliza; Echim, Marius; Munteanu, Costel [Institute for Space Sciences, Măgurele (Romania); Zhang, Tielong [Space Research Institute, Graz (Austria); Bruno, Roberto [INAF-IAPS, Istituto di Astrofizica e Planetologia Spaziali, Rome (Italy); Kovacs, Peter, E-mail: eliteo@spacescience.ro [Geological and Geophysical Institute of Hungary, Budapest (Hungary)
2015-05-10
We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s{sup −1}. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005–0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is −1.60 for fast solar wind and −1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.
International Nuclear Information System (INIS)
Eilek, J.A.
1989-01-01
Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs
DEFF Research Database (Denmark)
Rong, Li; Nielsen, P V; Zhang, Guo-Qiang
2009-01-01
Odor emissions from manure in livestock buildings are an important issue which concerns the human health and air quality as well as animals. Ammonia is one of the most important odors in pig houses. The objective of this paper is to investigate the influence of local velocity, turbulence intensit...
Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)
2003-01-01
Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.
International Nuclear Information System (INIS)
Breus, T.K.; Krymskij, A.M.
1990-01-01
This paper deals with the mass-loading near Venus. It is shown that heavy ions produced from neutral atmosphere upstream the shockfront of Venus do not change essentially solar wind (SW) parameters (in particular, Mach number). In the Venusian magnetosheath the number of heavy ions undergoing the acceleration in the large-scale field which can be the source of the asymmetry and of the nonhydrodynamic properties of plasma is a few percents of the total ion flux from the dayside to the downstream mantle. The most intensive mass-loading of the SW flow is near the ionopause. The plasma with two ion species will have hydrodynamical features due to the turbulence resulting from instabilities
Pierson, Willard J., Jr.; Sylvester, Winfield B.
1995-01-01
The research on model functions for ADEOS and ERS-1 are summarized and an analysis of the differences between the three kinds of models is provided in this final report. The success of the AMI on ERS-1 obtained at GSFC and NMC is highlighted. The problem of wind stress description is reviewed within and the scatterometer model being developed for high winds monitoring for the AMI on ERS-1 and ERS-2 is described.
Inertial range spectrum of field-aligned whistler turbulence
DEFF Research Database (Denmark)
Dwivedi, Navin Kumar; Singh, Shobhana
2017-01-01
the background magnetic field is exploited to derive the inertial range scaling laws corresponding to the electric field and magnetic field fluctuations. The model is based on the concept of Iroshnikov-Kraichnan inertial range magnetohydrodynamic turbulence. The present phenomenological turbulence scaling model...
Lappa, Marcello
2011-09-01
Rayleigh-Bénard convection in finite-size enclosures exhibits really intricate features when turbulent states are reached and thermal plumes play a crucial role in a number of them. This complex mechanism may be regarded as a "machine" containing many different working parts: boundary layers, mixing zones, jets, and a relatively free and isothermal central region. These parts are generally regarded as the constitutive "ingredients" whose interplay leads to the emergence of a macroscopic pattern with well-defined properties. Like the Lorenz model (but with the due differences) such a complex structure has a prevailing two-dimensional nature and can be oriented clockwise or anticlockwise (both configurations are equally likely to occur and the flow can exhibit occasional and irregular "reversals" from one to the other without a change in magnitude). It is usually referred to in the literature as "wind of turbulence" or "flywheel". The present article provides insights into the possible origin of such dynamics and related patterning behavior (supported by "ad hoc" novel numerical simulations carried out for Pr=15 and O(10)⩽Ra⩽O(10)) together with a short exposition of existing theories, also illustrating open points and future directions of research.
Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus
2018-03-01
Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.
Shishkina, Olga; Wagner, Sebastian; Horn, Susanne
2014-03-01
We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.
Beyhaghi, Saman
Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. Due to the development of a thin boundary layer over the ground surface, the modern commercial wind turbines have to be relatively large to be cost-effective. Because of the high manufacturing and transportation costs of the wind turbine components, it is necessary to evaluate the design and predict the performance of the turbine prior to shipping it to the site, where it is to be installed. Computational Fluid Dynamics (CFD) has proven to be a simple, cheap and yet relatively accurate tool for prediction of wind turbine performance, where the suitability of different designs can be evaluated at a low cost. High accuracy simulation methods such as Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) are developed and utilized in the past decades. Despite their superior importance in large fluid domains, they fail to make very accurate predictions near the solid surfaces. Therefore, in the present effort, the possibility of improving near-wall predictions of CFD simulations in the near-wall region by using a modified turbulence model is also thoroughly investigated. Algebraic Stress Model (ASM) is employed in conjunction with Detached Eddy Simulation (DES) to improve Reynolds stresses components, and consequently predictions of the near-wall velocities and surface pressure distributions. The proposed model shows a slightly better performance
On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence
Energy Technology Data Exchange (ETDEWEB)
Huang, S. Y.; Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China); Hadid, L. Z.; Sahraoui, F. [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Palaiseau (France); Deng, X. H., E-mail: shiyonghuang@whu.edu.cn [Institute of Space Science and Technology, Nanchang University, Nanchang (China)
2017-02-10
In the solar wind, power spectral density (PSD) of the magnetic field fluctuations generally follow the so-called Kolmogorov spectrum f {sup −5/3} in the inertial range, where the dynamics is thought to be dominated by nonlinear interactions between counter-propagating incompressible Alfvén wave parquets. These features are thought to be ubiquitous in space plasmas. The present study gives a new and more complex picture of magnetohydrodynamic (MHD) turbulence as observed in the terrestrial magnetosheath. The study uses three years of in situ data from the Cluster mission to explore the nature of the magnetic fluctuations at MHD scales in different locations within the magnetosheath, including flanks and subsolar regions. It is found that the magnetic field fluctuations at MHD scales generally have a PSD close to f {sup −1} (shallower than the Kolmogorov one f {sup −5/3}) down to the ion characteristic scale, which recalls the energy-containing scales of solar wind turbulence. The Kolmogorov spectrum is observed only away from the bow shock toward the flank and the magnetopause regions in 17% of the analyzed time intervals. Measuring the magnetic compressibility, it is shown that only a fraction (35%) of the observed Kolmogorov spectra was populated by shear Alfvénic fluctuations, whereas the majority of the events (65%) was found to be dominated by compressible magnetosonic-like fluctuations, which contrasts with well-known turbulence properties in the solar wind. This study gives a first comprehensive view of the origin of the f {sup −1} and the transition to the Kolmogorov inertial range; both questions remain controversial in solar wind turbulence.
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic
Energy Technology Data Exchange (ETDEWEB)
Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)
2012-05-15
We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.
Magnetohydrodynamics and the thermonuclear problem
Energy Technology Data Exchange (ETDEWEB)
Alfven, H [Department of Electronics, Royal Institute of Technology, Stockholm (Sweden)
1958-07-01
The importance of magnetohydrodynamics and plasma physics for the solution of thermonuclear problem is presented in the paper. Methods for capture of a plasma by a magnetic field are discussed. From the study it is concluded that in principle it is possible to shoot heated plasma into a magnetic field and capture it there. A possible method of capturing plasma which is shot into a magnetic field is illustrated. Magnetohydrodynamic research performed during the last decade in Stockholm is presented. Following a long series of investigations of relatively cool plasmas, it has been started a series of experimental investigations on hot plasmas, concentrating on the fundamental properties of the plasma. New ways of the approach to the thermonuclear problem are analysed. Experiments have been with discharges of a few hundred kiloamps to produce fast-moving magnetized plasmas, in order to investigate whether they could be captured by magnetic fields in the discussed way.
Energy Technology Data Exchange (ETDEWEB)
Hofbauer, T.
2003-07-01
In several aspects, the behaviour of aircraft wake vortices under situations of vertical wind shear is significantly different from non-shear scenarios and its operational real-time forcast is challenging. By means of numerical investigations of idealized scenarios, the influence of wind shear on the lateral and vertical transport of vortices is analysed both, phenomenologically as well as in the scope of a sensitivity study. The results allow for the verification of controversial views and the benchmark of modelling approaches. Case studies of turbulent shear flows focus on the persistence of vortices. A detailed analysis of the flow fields evidence that unequal vortex decay rates can be attributed to the asymmetric distribution of secondary vorticity structures. The results moreover suggest that extended vortex lifespans can be expected under situations of wind shear. The unusual vortex behaviour observed by means of a LIDAR measurement is reproduced by realistic simulations and permits to reveal potential causes. (orig.) [German] Das Wirbelschleppenverhalten unterscheidet sich in Situationen vertikaler Windscherung in mehrfacher Hinsicht signifikant von scherungsfreien Szenarien und stellt eine besondere Herausforderung fuer eine operationelle Echtzeitvorhersage dar. Mittels numerischer Untersuchungen idealisierter Szenarien wird zunaechst der Einfluss von Windscherung auf den lateralen und vertikalen Wirbeltransport sowohl phaenomenologisch als auch quantitativ im Rahmen einer Sensitivitaetsstudie analysiert. Anhand der gewonnenen Ergebnisse werden auseinandergehende Erklaerungsansaetze geprueft und Modellierungsansaetze bewertet. Fallstudien turbulenter Scherstroemungen zur Wirbelpersistenz stellen einen weiteren Schwerpunkt dieser Arbeit dar. Durch die ausfuehrliche Analyse der Stroemungsfelder wird der Nachweis erbracht, dass sich unterschiedliche Zerfallsraten der Wirbel auf die asymmetrische Verteilung von sekundaeren Vorticity-Strukturen zurueckfuehren
Offshore wind resources at Danish measurement sites
Energy Technology Data Exchange (ETDEWEB)
Barthelmie, R J; Courtney, M S; Lange, B; Nielsen, M; Sempreviva, A M [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J; Olsen, F [SEAS, Haslev (Denmark); Christensen, T [Elsamprojekt, Fredericia (Denmark)
1999-03-01
In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)
On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
Energy Technology Data Exchange (ETDEWEB)
Verscharen, Daniel [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Chen, Christopher H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk [Mullard Space Science Laboratory, University College London, London WC1E 6BT (United Kingdom)
2017-05-10
Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.
On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
International Nuclear Information System (INIS)
Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T.
2017-01-01
Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
International Nuclear Information System (INIS)
Cho, Jungyeon
2011-01-01
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
DEFF Research Database (Denmark)
Dyrbye, Claes; Hansen, Svend Ole
Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...
Magnetohydrodynamic instability in annular linear induction pump
International Nuclear Information System (INIS)
Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.
2006-01-01
In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
DEFF Research Database (Denmark)
Lundtang Petersen, Erik; Larsén, Xiaoli Guo; Larsen, Søren Ejling
chain and its use for computing the high resolution time series at every grid point which will be an important part of the final wind atlas database. The dataset then allows us to investigate one of the most crucial issues in the concept of the model chain namely that of linking the two...... correctly. We are further analyzing the impact of the frequent occurrence of cellular structures over Northern Europe in the atmospheric boundary layer on the spectral properties, following often cold polar outbreaks. Open cells have a tendency to fill up the spectral gap and as a consequence...
On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere
Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto
2018-01-01
The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.
The Magnetohydrodynamic Generator A Physics Olympiad Problem
Indian Academy of Sciences (India)
The Magnetohydrodynamic Generator A Physics Olympiad Problem (2001). Vijay A Singh ... Magnetohydrodynamics; generator; power; efficiency; Faraday's law; Physics Olympiad . Author Affiliations. Vijay A Singh1 Manish Kapoor2. Physics Department Indian Institute of Technology Kanpur 208016, India. MPE College ...
Variational integrators for reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Kraus, Michael, E-mail: michael.kraus@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85748 Garching (Germany); Tassi, Emanuele, E-mail: tassi@cpt.univ-mrs.fr [Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 163 avenue de Luminy, case 907, 13288 cedex 9 Marseille (France); Grasso, Daniela, E-mail: daniela.grasso@infm.polito.it [ISC-CNR and Politecnico di Torino, Dipartimento Energia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)
2016-09-15
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
Energy Technology Data Exchange (ETDEWEB)
Ye, Junye; Roux, Jakobus A. le; Arthur, Aaron D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2016-08-01
We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q -Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape ( q -value) and the standard deviation ( σ -value) of the q -Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.
Dandou, A.; Tombrou, M.; Kalogiros, J.; Bossioli, E.; Biskos, G.; Mihalopoulos, N.; Coe, H.
2017-08-01
The spatial structure of the marine atmospheric boundary layer (MABL) over the Aegean Sea is investigated using the Weather Research and Forecasting (WRF) mesoscale model. Two `first-order' non-local and five `1.5-order' local planetary boundary-layer (PBL) parametrization schemes are used. The predictions from the WRF model are evaluated against airborne observations obtained by the UK Facility for Airborne Atmospheric Measurements BAe-14 research aircraft during the Aegean-GAME field campaign. Statistical analysis shows good agreement between measurements and simulations especially at low altitude. Despite the differences between the predicted and measured wind speeds, they reach an agreement index of 0.76. The simulated wind-speed fields close to the surface differ substantially among the schemes (maximum values range from 13 to 18 m s^{-1} at 150-m height), but the differences become marginal at higher levels. In contrast, all schemes show similar spatial variation patterns in potential temperature fields. A warmer (1-2 K) and drier (2-3 g kg^{-1}) layer than is observed, is predicted by almost all schemes under stable conditions (eastern Aegean Sea), whereas a cooler (up to 2 K) and moister (1-2 g kg^{-1}) layer is simulated under near-neutral to nearly unstable conditions (western Aegean Sea). Almost all schemes reproduce the vertical structure of the PBL and the shallow MABL (up to 300 m) well, including the low-level jet in the eastern Aegean Sea, with non-local schemes being closer to observations. The simulated PBL depths diverge (up to 500 m) due to the different criteria applied by the schemes for their calculation. Under stable conditions, the observed MABL depth corresponds to the height above the sea surface where the simulated eddy viscosity reaches a minimum; under neutral to slightly unstable conditions this is close to the top of the simulated entrainment layer. The observed sensible heat fluxes vary from -40 to 25 W m^{-2}, while the simulated
Magnetohydrodynamic dynamos in the presence of fossil magnetic fields
International Nuclear Information System (INIS)
Boyer, D.W.
1982-01-01
A fossil magnetic field embedded in the radiative core of the Sun has been thought possible for some time now. However, such a fossil magnetic field has, a priori, not been considered a visible phenomenon due to the effects of turbulence in the solar convection zone. Since a well developed theory (referred to herein as magnetohydrodynamic dynamo theory) exists for describing the regeneration of magnetic fields in astrophysical objects like the Sun, it is possible to quantitatively evaluate the interaction of a fossil magnetic field with the magnetohydrodynamic dynamo operating in the solar convection zone. In this work, after a brief description of the basic dynamo equations, a spherical model calculation of the solar dynamo is introduced. First, the interaction of a fossil magnetic field with a dynamo in which the regeneration mechanisms of cyclonic convection and large-scale, nonuniform rotation are confined to spherical shells is calculated. It is argued that the amount of amplification or suppression of a fossil magnetic field will be smallest for a uniform distribution of cyclonic convection and nonuniform rotation, as expected in the Sun. Secondly, the interaction of a fossil magnetic field with a dynamo having a uniform distribution of cyclonic convection and large-scale, nonuniform rotation is calculated. It is found that the dipole or quadrupole moments of a fossil magnetic field are suppressed by factors of -0.35 and -0.37, respectively
Wu, Jian; Zha, Jinlin; Zhao, Deming; Yang, Qidong
2017-11-01
A significant slowdown in the near-surface wind speed (SWS) due to combined effects of the driving and drag forces of the atmosphere has been demonstrated in different regions in the globe. The drag force includes two sources: the friction force between the underlying surface and the bottom of the atmosphere, which is the external friction force (EFF), and the vertical exchange of the horizontal momentum induced by turbulent mixing, which is the turbulent friction force (TFF). In this paper, we propose a diagnostic method to separate the effects of the EFF and the TFF on long-term changes in the SWS over the Eastern China Plain (ECP) region from 1981 to 2010. The results show that the TFF could have caused an increase of 0.5 ± 0.2 m s- 1 in the SWS over the ECP region in the past 30 years and the TFF showed an increasing influence of 0.17 m s- 1 decade- 1. In contrast, the EFF distinctly decreased the SWS by an average of - 1.1 ± 0.4 m s- 1 and presented a significant decreasing trend of - 0.36 m s- 1 decade- 1. The effect of EFF is the main inducer of the observed regional long-term decrease of the SWS, which is in accordance with the distinct land use and cover change (LUCC) occurring in the ECP region in recent decades. Furthermore, the effects of the EFF and TFF on the changes in the SWS are more significant in large cities than those in small cities. The TFF effect can accelerate the SWS, with means of 0.5 ± 0.2 and 0.4 ± 0.2 m s- 1 in large and small cities, respectively. The EFF effect can decelerate the SWS, with means of - 1.2 ± 0.4 and - 0.7 ± 0.4 m s- 1 in large and small cities, respectively.
MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b
Energy Technology Data Exchange (ETDEWEB)
Rogers, T. M.; Showman, A. P., E-mail: tami@lpl.arizona.edu, E-mail: showman@lpl.arizona.edu [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)
2014-02-10
We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ∼10{sup 17} W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.
MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b
International Nuclear Information System (INIS)
Rogers, T. M.; Showman, A. P.
2014-01-01
We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ∼10 17 W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres
Self-organizing magnetohydrodynamic plasma
International Nuclear Information System (INIS)
Sato, T.; Horiuchi, R.; Watanabe, K.; Hayashi, T.; Kusano, K.
1990-09-01
In a resistive magnetohydrodynamic (MHD) plasma, both the magnetic energy and the magnetic helicity dissipate with the resistive time scale. When sufficiently large free magnetic energy does exist, however, an ideal current driven instability is excited whereby magnetic reconnection is driven at a converging point of induced plasma flows which does exist in a bounded compressible plasma. At a reconnection point excess free energy (entropy) is rapidly dissipated by ohmic heating and lost by radiation, while magnetic helicity is completely conserved. The magnetic topology is largely changed by reconnection and a new ordered structure with the same helicity is created. It is discussed that magnetic reconnection plays a key role in the MHD self-organization process. (author)
Center for Extended Magnetohydrodynamics Modeling
Energy Technology Data Exchange (ETDEWEB)
Ramos, Jesus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-02-14
This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification of the numerical codes. This activity was funded for twelve years.
Relativistic conformal magneto-hydrodynamics from holography
International Nuclear Information System (INIS)
Buchbinder, Evgeny I.; Buchel, Alex
2009-01-01
We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.
DEFF Research Database (Denmark)
Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars
Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...
Energy Technology Data Exchange (ETDEWEB)
Oran, R.; Van der Holst, B.; Landi, E.; Jin, M.; Sokolov, I. V.; Gombosi, T. I., E-mail: oran@umich.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48105 (United States)
2013-12-01
We describe, analyze, and validate the recently developed Alfvén Wave Solar Model, a three-dimensional global model starting from the top of the chromosphere and extending into interplanetary space (out to 1-2 AU). This model solves the extended, two-temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low-frequency Alfvén waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and to wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counterpropagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment in any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model; no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady state (in the corotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfvén waves, the perpendicular correlation length of the turbulence, and a pseudoreflection coefficient. We compare model results for Carrington rotation 2063 (2007 November-December) with remote observations in the extreme-ultraviolet and X-ray ranges from the Solar Terrestrial Relations Observatory, Solar and Heliospheric Observatory, and Hinode spacecraft and with in situ measurements by Ulysses. The results are in good agreement with observations. This is the first global simulation that is simultaneously consistent with observations of both the thermal structure of the lower corona and the wind structure beyond Earth's orbit.
The collapse of turbulence in the evening
Wiel, van de B.J.H.; Moene, A.F.; Jonker, H.J.J.; Baas, P.; Basu, S.; Sun, J.; Holtslag, A.A.M.
2012-01-01
A common experience in everyday weather is the fact that near-surface wind speeds tend to weaken in the evening, particularly in fair weather conditions. This cessation of wind usually coincides with the collapse of turbulence which leads to a quiet flow near the ground. As the absence of turbulent
De-trending of turbulence measurements
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2006-01-01
contribution to the wind speed turbulence intensity for a number of representative locations. A linear de-trending process has been implemented during indexing of the time-series. The observed de-trended turbulence intensities are reduced 3 – 15 % compared to the raw turbulence intensity. This reduction...... depends primarily on site characteristics and local mean wind speed variations. Reduced turbulence intensity will result in lower design fatigue loads. This aspect of de-trending is discussed by use of a simple heuristic load model. Finally an empirical model for de-trending wind resource data...
Two-fluid turbulence including electron inertia
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)
2014-12-15
We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.
Axisymmetric magnetohydrodynamic equilibria in local polar coordinates
International Nuclear Information System (INIS)
Clemente, R.A.
1982-01-01
The Grad--Shafranov equation for an ideal magnetohydrodynamic axisymmetric toroidal configuration is solved analytically in a local polar coordinate system using a novel method which produces solutions valid up to the second order in the inverse aspect ratio expansion
Nature of interstellar turbulence
International Nuclear Information System (INIS)
Altunin, V.
1981-01-01
A significant role in producing the pattern of interstellar scintillation observed in discrete radio sources may be played by the magnetoacoustic turbulence that will be generated as shock waves are propagated at velocity V/sub sh/roughly-equal 20--100 km/sec through the interstellar medium, as well as by irregularities in stellar wind emanating from type OB stars
Sustained turbulence and magnetic energy in non-rotating shear flows
DEFF Research Database (Denmark)
Nauman, Farrukh; Blackman, Eric G.
2017-01-01
From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Large eddy simulations of an airfoil in turbulent inflow
DEFF Research Database (Denmark)
Gilling, Lasse; Sørensen, Niels N.
2008-01-01
Wind turbines operate in the turbulent boundary layer of the atmosphere and due to the rotational sampling effect the blades experience a high level of turbulence [1]. In this project the effect of turbulence is investigated by large eddy simulations of the turbulent flow past a NACA 0015 airfoil...
Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling
Uzdensky, D. A.
2018-03-01
Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.
Particle acceleration by Alfven wave turbulence in radio galaxies
International Nuclear Information System (INIS)
Eilek, J.A.
1986-01-01
Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources
Results of investigation of magnetohydrodynamic flow round the magnetosphere
International Nuclear Information System (INIS)
Erkaev, N.V.
1988-01-01
Review of the main results of the study on the Earth magnetosphere quasi-stationary magnetohydrodynamic flow-around by the solar wind is given. The principle attenuation is paid to the problem of magnetic and electric fields calculation in the transition layer and at the magnetosphere boundary. Analysis of kinematic approximation and linear diffusion model is conducted. Existence condition for the magnetic barrier region, where kinematic approximation is inapplicable, is determined. Main properties of the solution - gasokinetic pressure decrease and magnetic pressure increase up to maximum at the numerical integration results of magnetohydrodynamic equations within the magnetic barrier range. Calculation problem of reconnection field at the magnetic barrier background is considered as the next step. It is shown, that the introduction of Petchek reconnection model into the problem solution general diagram allows to obtain at the magnetosphere boundary the values of electric and magnetic fields, compatible with the experiment. Problems, linked with choice of reconnection line direction and Petchek condition generalization for the case of the crossed field reconnection, are considered
Magnetohydrodynamic Models of Molecular Tornadoes
Au, Kelvin; Fiege, Jason D.
2017-07-01
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Review of magnetohydrodynamic pump applications
Directory of Open Access Journals (Sweden)
O.M. Al-Habahbeh
2016-06-01
Full Text Available Magneto-hydrodynamic (MHD principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps. In this work, the progress achieved in this field is surveyed and organized according to the type of application. The literature of the past 27 years is searched for the major developments of MHD applications. MHD seawater thrusters are promising for a variety of applications requiring high flow rates and velocity. MHD molten metal pump is important replacement to conventional pumps because their moving parts cannot stand the molten metal temperature. MHD molten salt pump is used for nuclear reactor coolants due to its no-moving-parts feature. Nanofluid MHD pumping is a promising technology especially for bioapplications. Advantages of MHD include silence due to no-moving-parts propulsion. Much progress has been made, but with MHD pump still not suitable for wider applications, this remains a fertile area for future research.
Magnetohydrodynamic Models of Molecular Tornadoes
Energy Technology Data Exchange (ETDEWEB)
Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba Winnipeg, MB R3T 2N2 (Canada)
2017-07-10
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Tenth ASME wind energy symposium
International Nuclear Information System (INIS)
Berg, D.E.; Veers, P.S.
1991-01-01
This book contains papers presented at the Fourteenth Annual Energy-Sources Technology Conference and Exhibition. Included are the following papers: Wind Power Farm Site Selection, Turbulence characterization for wind energy development, Effects of insect configuration on wind turbine airfoils, Power fluctuations from horizontal and vertical axis wind turbines, Power regulation by active yaw control for a teetered wind rotor, and economic aspects of wind energy
Self-consistent dynamo-like activity in turbulent plasmas
International Nuclear Information System (INIS)
Bhattacharjee, A.; Hameiri, E.
1986-05-01
The evolution of turbulent plasmas is investigated within the framework of resistive magnetohydrodynamics. The functional form of the mean electric field is derived for fluctuations generated by tearing and resistive interchange modes. It is shown that a bath of such local and global modes in pinches causes toroidal field-reversal with finite pressure gradients in the plasma
Transition to turbulence in the Hartmann boundary layer
Energy Technology Data Exchange (ETDEWEB)
Thess, A.; Krasnov, D.; Boeck, T.; Zienicke, E. [Dept. of Mechanical Engineering, Ilmenau Univ. of Tech. (Germany); Zikanov, O. [Dept. of Mechanical Engineering, Univ. of Michigan, Dearborn, MI (United States); Moresco, P. [School of Physics and Astronomy, The Univ. of Manchester (United Kingdom); Alboussiere, T. [Lab. de Geophysique Interne et Tectonophysique, Observatoire des Science de l' Univers de Grenoble, Univ. Joseph Fourier, Grenoble (France)
2007-07-01
The Hartmann boundary layer is a paradigm of magnetohydrodynamic (MHD) flows. Hartmann boundary layers develop when a liquid metal flows under the influence of a steady magnetic field. The present paper is an overview of recent successful attempts to understand the mechanisms by which the Hartmann layer undergoes a transition from laminar to turbulent flow. (orig.)
International Nuclear Information System (INIS)
Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.
2009-01-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Wind Tunnel Measurements at LM Wind Power
DEFF Research Database (Denmark)
Bertagnolio, Franck
2012-01-01
This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...
MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS
International Nuclear Information System (INIS)
Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.
2013-01-01
This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.
Extreme wind estimate for Hornsea wind farm
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo
The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...
Wind noise under a pine tree canopy.
Raspet, Richard; Webster, Jeremy
2015-02-01
It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.
Kinetic Physics of the Solar Corona and Solar Wind
Directory of Open Access Journals (Sweden)
Marsch Eckart
2006-07-01
Full Text Available Kinetic plasma physics of the solar corona and solar wind are reviewed with emphasis on the theoretical understanding of the in situ measurements of solar wind particles and waves, as well as on the remote-sensing observations of the solar corona made by means of ultraviolet spectroscopy and imaging. In order to explain coronal and interplanetary heating, the microphysics of the dissipation of various forms of mechanical, electric and magnetic energy at small scales (e.g., contained in plasma waves, turbulences or non-uniform flows must be addressed. We therefore scrutinise the basic assumptions underlying the classical transport theory and the related collisional heating rates, and also describe alternatives associated with wave-particle interactions. We elucidate the kinetic aspects of heating the solar corona and interplanetary plasma through Landau- and cyclotron-resonant damping of plasma waves, and analyse in detail wave absorption and micro instabilities. Important aspects (virtues and limitations of fluid models, either single- and multi-species or magnetohydrodynamic and multi-moment models, for coronal heating and solar wind acceleration are critically discussed. Also, kinetic model results which were recently obtained by numerically solving the Vlasov–Boltzmann equation in a coronal funnel and hole are presented. Promising areas and perspectives for future research are outlined finally.
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...
International Nuclear Information System (INIS)
Montgomery, D.C.
1986-01-01
We have explored numerical solutions of the three-dimensional magnetohydrodynamic equations and of the Strauss equations. In the former case, the emphasis has been on relaxation to force-free, field-reversed states in magnetofluids bounded by rigid conductors; in the latter case, the emphasis has been on disruptions. The competition between dynamic alignment of the velocity fields and magnetic fields and selective decay toward minimum energy states has been explored. Analytical expressions for density fluctuation spectra in MHD turbulence have been derived. Analytical expressions for turbulent MHD resistivities and viscosities have been derived
Energy Technology Data Exchange (ETDEWEB)
Gan, Zhaoming; Yuan, Feng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Hui; Li, Shengtai, E-mail: zmgan@shao.ac.cn, E-mail: fyuan@shao.ac.cn, E-mail: hli@lanl.gov, E-mail: sli@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-04-10
The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.
International Nuclear Information System (INIS)
Donnelly, R.J.
1988-01-01
Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs
Magnetohydrodynamic duct and channel flows at finite magnetic Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Bandaru, Vinodh Kumar
2015-11-27
Magnetohydrodynamic duct flows have so far been studied only in the limit of negligible magnetic Reynolds numbers (R{sub m}). When R{sub m} is finite, the secondary magnetic field becomes significant, leading to a fully coupled evolution of the magnetic field and the conducting flow. Characterization of such flows is essential in understanding wall-bounded magnetohydrodynamic turbulence at finite R{sub m} as well as in industrial applications like the design of electromagnetic pumps and measurement of transient flows using techniques such as Lorentz force velocimetry. This thesis presents the development of a numerical framework for direct numerical simulations (DNS) of magnetohydrodynamic flows in straight rectangular ducts at finite R{sub m}, which is subsequently used to study three specific problems. The thesis opens with a brief overview of MHD and a review of the existing state of art in duct and channel MHD flows. This is followed by a description of the physical model governing the problem of MHD duct flow with insulating walls and streamwise periodicity. In the main part of the thesis, a hybrid finite difference-boundary element computational procedure is developed that is used to solve the magnetic induction equation with boundary conditions that satisfy interior-exterior matching of the magnetic field at the domain wall boundaries. The numerical procedure is implemented into a code and a detailed verification of the same is performed in the limit of low R{sub m} by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. Following this, the effect of R{sub m} on the transient response of Lorentz force is studied using the problem of a strongly accelerated solid conducting bar in the presence of an imposed localized magnetic field. The response time of Lorentz force depends linearly on R{sub m} and shows a good agreement with the existing experiments. For sufficiently large values of R{sub m}, the peak
Energy Technology Data Exchange (ETDEWEB)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Turbulence measurement with a two-beam nacelle lidar
DEFF Research Database (Denmark)
Wagner, Rozenn; Sathe, Ameya; Mioullet, A.
The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal
Statistical analysis of anomalous transport in resistive interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1992-01-01
A new anomalous transport model for resistive interchange turbulence is derived from statistical analysis applying two-scale direct-interaction approximation to resistive magnetohydrodynamic equations with a gravity term. Our model is similar to the K-ε model for eddy viscosity of turbulent shear flows in that anomalous transport coefficients are expressed in terms of by the turbulent kinetic energy K and its dissipation rate ε while K and ε are determined by transport equations. This anomalous transport model can describe some nonlocal effects such as those from boundary conditions which cannot be treated by conventional models based on the transport coefficients represented by locally determined plasma parameters. (author)
Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm
DEFF Research Database (Denmark)
Barthelmie, Rebecca Jane; Jensen, L.E.
2010-01-01
Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine...... thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can...... be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under-estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due...
Magnetohydrodynamic studies of the strong Focus device
International Nuclear Information System (INIS)
Vezin, Robert
1971-01-01
The POTTER magnetohydrodynamic code is used. It consists of a two-dimensional fluid model with two temperatures Te, Ti and transverse transport coefficients for a fully ionized plasma. Applied to the FOCUS geometry used at Limeil, it gives temperatures consistent with the BENNETT law but much lower than those evaluated experimentally by the X-ray absorbing foils technique. (author) [fr
Magneto-hydrodynamical model for plasma
Liu, Ruikuan; Yang, Jiayan
2017-10-01
Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code
Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe
2017-09-01
Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.
Relativistic magnetohydrodynamics as a Hamiltonian system
International Nuclear Information System (INIS)
Holm, D.D.; Kupershmidt, A.
1985-01-01
The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr
On energy conservation in extended magnetohydrodynamics
International Nuclear Information System (INIS)
Kimura, Keiji; Morrison, P. J.
2014-01-01
A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy
Wang, X.; Tu, C. Y.; He, J.; Wang, L.
2017-12-01
The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.
International Nuclear Information System (INIS)
Groenaas, Sigbjoern
2005-01-01
The article presents a brief survey of the conditions for wind power production in Norway and points out that several areas should be well suited. A comparison to Danish climate is made. The wind variations, turbulence problems and regional conditions are discussed
Dupuis, HéLèNe; Taylor, Peter K.; Weill, Alain; Katsaros, K.
1997-09-01
The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence field. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be Cen × 103 = 2.79U10n-1 + 0.66 (U10n < 5.2 m/s), Cen × 103 = Chn × 103 = 1.2 (U10n ≥ 5.2 m/s), and Cdn × 103 = 11.710n-2 + 0.668 (U10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Energy Technology Data Exchange (ETDEWEB)
Baker, R.W. [Impact Weather, Washougal, WA (United States); McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)
1997-12-31
A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.
Far offshore wind conditions in scope of wind energy
Holtslag, M.C.
2016-01-01
Far offshore atmospheric conditions are favourable for wind energy purposes since mean wind speeds are relatively high (i.e., high power production) while turbulence levels are relatively low (i.e., less fatigue loads) compared to onshore conditions. Offshore wind energy, however, is still expensive
Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained
Zhang, Y.
2017-01-01
Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased
Siegel, Daniel M; Metzger, Brian D
2017-12-08
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
Cascade of circulations in fluid turbulence.
Eyink, Gregory L
2006-12-01
Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.
Generation of compressible modes in MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)
2005-05-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)
Directory of Open Access Journals (Sweden)
D. Vickers
2014-09-01
Full Text Available Observations of the scale-dependent turbulent fluxes, variances, and the bulk transfer parameterization for sensible heat above, within, and beneath a tall closed Douglas-fir canopy in very weak winds are examined. The daytime sub-canopy vertical velocity spectra exhibit a double-peak structure with peaks at timescales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime sub-canopy heat flux co-spectra. The daytime momentum flux co-spectra in the upper bole space and in the sub-canopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of the momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the sub-canopy contribute to upward transfer of momentum, consistent with the observed sub-canopy secondary wind speed maximum. For the smallest resolved scales in the canopy at nighttime, we find increasing vertical velocity variance with decreasing timescale, consistent with very small eddies possibly generated by wake shedding from the canopy elements that transport momentum, but not heat. Unusually large values of the velocity aspect ratio within the canopy were observed, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the very dense canopy. The flux–gradient approach for sensible heat flux is found to be valid for the sub-canopy and above-canopy layers when considered separately in spite of the very small fluxes on the order of a few W m−2 in the sub-canopy. However, single-source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the sub-canopy and above-canopy layers. While sub-canopy Stanton numbers agreed well with values
Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities
International Nuclear Information System (INIS)
Lai, S. H.; Ip, W.-H.
2011-01-01
Kelvin-Helmholtz instability (KHI) driven by velocity shear is a generator of waves found away from the vicinity of the velocity-shear layers since the fast-mode waves radiated from the surface perturbation can propagate away from the transition layer. Thus the nonlinear evolution associated with KHI is not confined near the velocity-shear layer. To understand the physical processes in multiple velocity-shear layers, the interactions between two KHIs at a pair of tangential discontinuities are studied by two-dimensional magnetohydrodynamic simulations. It is shown that the interactions between two neighboring velocity-shear layers are dominated by the propagation of the fast-mode waves radiated from KHIs in a nonuniform medium. That is, the fast-mode Mach number of the surface waves M Fy , a key factor of the nonlinear evolution of KHI, will vary with the nonuniform background plasma velocity due to the existence of two neighboring velocity-shear layers. As long as the M Fy observed in the plasma rest frame across the neighboring velocity-shear layer is larger than one, newly formed fast-mode Mach-cone-like (MCL) plane waves generated by the fast-mode waves can be found in this region. As results of the interactions of two KHIs, reflection and distortion of the MCL plane waves generate the turbulence and increase the plasma temperature, which provide possible mechanisms of heating and accelerating local plasma between two neighboring velocity-shear layers.
DEFF Research Database (Denmark)
Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.
2015-01-01
The dynamic wake meandering (DWM) model is an engineering wake model designed to physically model the wake deficit evolution and the unsteady meandering that occurs in wind turbine wakes. The present study aims at improving two features of the model: The effect of the atmospheric boundary layer s...
Magnetohydrodynamic generator and pump system
International Nuclear Information System (INIS)
Birzvalk, Yu.A.; Karasev, B.G.; Lavrentyev, I.V.; Semikov, G.T.
1983-01-01
The MHD generator-pump system, or MHD coupling, is designed to pump liquid-metal coolant in the primary circuit of a fast reactor. It contains a number of generator and pump channels placed one after another and forming a single electrical circuit, but hydraulically connected parallel to the second and first circuits of the reactor. All the generator and pump channels are located in a magnetic field created by the magnetic system with an excitation winding that is fed by a regulated direct current. In 500 to 2000 MW reactors, the flow rate of the coolant in each loop of the primary circuit is 3 to 6 m 3 /s and the hydraulic power is 2 to 4 MW. This paper examines the primary characteristics of an MHD generator-pump system with various dimensions and number of channels, wall thicknesses, coolant flow rates, and magnetic fields. It is shown that its efficiency may reach 60 to 70%. The operating principle of the MHD generator-pump system is explained in the referenced patent and involves the transfer of hydraulic power from generator channels to pump channels using a magnetic field and electrical circuit common to both channels. Variations of this system may be analyzed using an equivalent circuit. 7 refs., 5 figs
Gyrokinetic magnetohydrodynamics and the associated equilibria
Lee, W. W.; Hudson, S. R.; Ma, C. H.
2017-12-01
The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.
Multi-region relaxed magnetohydrodynamics with flow
Energy Technology Data Exchange (ETDEWEB)
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics
Früngel, Frank B A
1965-01-01
High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
International Nuclear Information System (INIS)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism
Nambu brackets in fluid mechanics and magnetohydrodynamics
International Nuclear Information System (INIS)
Salazar, Roberto; Kurgansky, Michael V
2010-01-01
Concrete examples of the construction of Nambu brackets for equations of motion (both 3D and 2D) of Boussinesq stratified fluids and also for magnetohydrodynamical equations are given. It serves a generalization of Hamiltonian formulation for the considered equations of motion. Two alternative Nambu formulations are proposed, first by using fluid dynamical (kinetic) helicity and/or enstrophy as constitutive elements and second, by using the existing conservation laws of the governing equation.
Ultimate loading of wind turbines
DEFF Research Database (Denmark)
Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans
1999-01-01
An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... a three parameter Weibull distribution to the measured on-shore and off-shore data for wind speed variations. Specific recommendations on off-shore design turbulence intensities are lacking in the presentIEC-code. Based on the present analysis of the off-shore wind climate on two shallow water sites...
Linear and nonlinear stability in resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Tasso, H.
1994-01-01
A sufficient stability condition with respect to purely growing modes is derived for resistive magnetohydrodynamics. Its open-quotes nearnessclose quotes to necessity is analysed. It is found that for physically reasonable approximations the condition is in some sense necessary and sufficient for stability against all modes. This, together with hermiticity makes its analytical and numerical evaluation worthwhile for the optimization of magnetic configurations. Physically motivated test functions are introduced. This leads to simplified versions of the stability functional, which makes its evaluation and minimization more tractable. In the case of special force-free fields the simplified functional reduces to a good approximation of the exact stability functional derived by other means. It turns out that in this case the condition is also sufficient for nonlinear stability. Nonlinear stability in hydrodynamics and magnetohydrodynamics is discussed especially in connection with open-quotes unconditionalclose quotes stability and with severe limitations on the Reynolds number. Two examples in magnetohydrodynamics show that the limitations on the Reynolds numbers can be removed but unconditional stability is preserved. Practical stability needs to be treated for limited levels of perturbations or for conditional stability. This implies some knowledge of the basin of attraction of the unperturbed solution, which is a very difficult problem. Finally, a special inertia-caused Hopf bifurcation is identified and the nature of the resulting attractors is discussed. 23 refs
Forest - added Turbulence: A parametric study on Turbulence intensity in and around forests
International Nuclear Information System (INIS)
Pedersen, Henrik Sundgaard; Langreder, Wiebke
2007-01-01
The scope of the investigation is to take on-site measured wind data from a number of sites inside and close to forests. From the collected on-site data the ambient turbulence intensity is calculated and analysed depending on the distance to the forest and height above the forest. From this forest turbulence intensity database it is possible to get an overview of the general behaviour of the turbulence above and down stream from the forest. The database currently consists of 65 measurements points from around the globe, and it will be continually updated as relevant sites are made available. Using the database a number of questions can be answered. How does the ambient turbulence intensity decay with height? What does the turbulence profile look like according to wind speed? Is it the general situation that high wind speeds are creating movement in the canopy tops, resulting in higher turbulence? How does the ambient turbulence intensity decay at different height as a function of distance to the forest? From the forest turbulence database it can be seen that in general, the majority of the turbulence intensity created by the forest is visible within a radius of 5 times the forest height in vertical and 500 meters downstream from the forest edge in horizontal direction. Outside these boundaries the ambient turbulence intensity is rapidly approaching normal values
Smart Wind Turbine : Analysis and Autonomous Flap
Bernhammer, L.O.
2015-01-01
Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,
Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration
Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.
2012-11-01
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks
McNally, Colin P.
2012-08-01
study. Nonetheless, how the test is posed circumvents the issues raised by tests starting from a sharp contact discontinuity yet it still shows the poor performance of Smoothed Particle Hydrodynamics. We then comment on the connection between this behavior and the underlying lack of zeroth-order consistency in Smoothed Particle Hydrodynamics interpolation. In astrophysical magnetohydrodynamics (MHD) and electrodynamics simulations, numerically enforcing the divergence free constraint on the magnetic field has been difficult. We observe that for point-based discretization, as used in finite-difference type and pseudo-spectral methods, the divergence free constraint can be satisfied entirely by a choice of interpolation used to define the derivatives of the magnetic field. As an example we demonstrate a new class of finite-difference type derivative operators on a regular grid which has the divergence free property. This principle clarifies the nature of magnetic monopole errors. The principles and techniques demonstrated in this chapter are particularly useful for the magnetic field, but can be applied to any vector field. Finally, we examine global zoom-in simulations of turbulent magnetorotationally unstable flow. We extract and analyze the high-current regions produced in the turbulent flow. Basic parameters of these regions are abstracted, and we build one dimensional models including non-ideal MHD, and radiative transfer. For sufficiently high temperatures, an instability resulting from the temperature dependence of the Ohmic resistivity is found. This instability concentrates current sheets, resulting in the possibility of rapid heating from temperatures on the order of 600 Kelvin to 2000 Kelvin in magnetorotationally turbulent regions of protoplanetary disks. This is a possible local mechanism for the melting of chondrules and the formation of other high-temperature materials in protoplanetary disks.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Wind Data from Kennedy Airport
National Research Council Canada - National Science Library
Abramson, Steve
1997-01-01
.... Although the original purpose for the anemometers was to track the lateral position of wake vortices, the measurements also provide a database of wind and turbulence that can be used for other purposes...
Wind Data from Memphis Airport
National Research Council Canada - National Science Library
Burnham, David
1997-01-01
.... Although the original purpose for the anemometers was to track the lateral position of wake vortices, the measurements also provide a database of wind and turbulence that can be used for other purposes...
LIDAR Wind Speed Measurements of Evolving Wind Fields
Energy Technology Data Exchange (ETDEWEB)
Simley, E.; Pao, L. Y.
2012-07-01
Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.
Non-Gaussian probability distributions of solar wind fluctuations
Directory of Open Access Journals (Sweden)
E. Marsch
Full Text Available The probability distributions of field differences ∆x(τ=x(t+τ-x(t, where the variable x(t may denote any solar wind scalar field or vector field component at time t, have been calculated from time series of Helios data obtained in 1976 at heliocentric distances near 0.3 AU. It is found that for comparatively long time lag τ, ranging from a few hours to 1 day, the differences are normally distributed according to a Gaussian. For shorter time lags, of less than ten minutes, significant changes in shape are observed. The distributions are often spikier and narrower than the equivalent Gaussian distribution with the same standard deviation, and they are enhanced for large, reduced for intermediate and enhanced for very small values of ∆x. This result is in accordance with fluid observations and numerical simulations. Hence statistical properties are dominated at small scale τ by large fluctuation amplitudes that are sparsely distributed, which is direct evidence for spatial intermittency of the fluctuations. This is in agreement with results from earlier analyses of the structure functions of ∆x. The non-Gaussian features are differently developed for the various types of fluctuations. The relevance of these observations to the interpretation and understanding of the nature of solar wind magnetohydrodynamic (MHD turbulence is pointed out, and contact is made with existing theoretical concepts of intermittency in fluid turbulence.
Turbulent Liquid Metal Dynamo Experiments
International Nuclear Information System (INIS)
Forest, Cary
2007-01-01
The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.
The acceleration and propagation of energetic particles in turbulent cosmic plasmas
International Nuclear Information System (INIS)
Achterberg, A.
1981-01-01
This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Pebble Accretion in Turbulent Protoplanetary Disks
Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.
2017-09-01
It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.