WorldWideScience

Sample records for wind machine performance

  1. Performance analysis of a composite dual-winding reluctance machine

    International Nuclear Information System (INIS)

    Anih, Linus U.; Obe, Emeka S.

    2009-01-01

    The electromagnetic energy conversion process of a composite dual-winding asynchronous reluctance machine is presented. The mechanism of torque production is explained using the magnetic fields distributions. The dynamic model developed in dq-rotor reference frame from first principles depicts the machine operation and response to sudden load change. The device is self-starting in the absence of rotor conductors and its starting current is lower than that of a conventional induction machine. Although the machine possesses salient pole rotors, it is clearly shown that its performance is that of an induction motor operating at half the synchronous speed. Hence the device produces synchronous torque while operating asynchronously. Simple tests were conducted on a prototype demonstration machine and the results obtained are seen to be in tune with the theory and the steady-state calculations.

  2. Superconductor Armature Winding for High Performance Electrical Machines

    Science.gov (United States)

    2016-12-05

    secured using dental floss . Figure 6.20. Ninety, reacted MgB2 triplets mounted to the outer surface of a G-10 cylinder in preparation for... substrate . Key characteristic parameters of the field winding are summarized in Table 2.6. A 2 mm wide conductor is operated at 48% of its critical...on specially textured, high aspect ratio metallic substrates . YBCO tapes are typically on order of 0.1 mm thick and between 4 mm and 12 mm wide

  3. Unconventional wind machine

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1979-01-01

    It is the purpose of this paper to introduce an unconventional wind machine which has economics comparable with nuclear power and is already available in the public market place. Specifically, up to about 17 MWE could be saved for other uses such as sale in most 1000 MWE plants of any type - nuclear, oil, gas, peat, or wood - which use conventional electrically driven fans in their cooling towers. 10 refs

  4. Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding

    Directory of Open Access Journals (Sweden)

    Mohamed Nabil Fathy Ibrahim

    2017-09-01

    Full Text Available This paper compares four prototype Synchronous Reluctance Motors (SynRMs having an identical geometry of iron lamination stacks in the stator and rotor. Two different stator winding layouts are employed: a conventional three-phase star connection and a combined star–delta winding. In addition, two rotors are considered: a conventional rotor without magnets and a rotor with ferrite magnets. The performance of the four SynRMs is evaluated using a two-dimensional (2D Finite Element Model (FEM. For the same copper volume and current, the combined star–delta-connected stator with Permanent Magnets (PMs in the rotor corresponds to an approximately 22% increase in the output torque at rated current and speed compared to the conventional machine. This improvement is mainly thanks to adding ferrite PMs in the rotor as well as to the improved winding factor of the combined star–delta winding. The torque gain increases up to 150% for low current. Moreover, the rated efficiency is 93.60% compared to 92.10% for the conventional machine. On the other hand, the impact on the power factor and losses of SynRM when using the star–delta windings instead of the star windings is merely negligible. The theoretical results are experimentally validated using four identical prototype machines with identical lamination stacks but different rotors and winding layouts.

  5. A high speed vertical axis wind machine

    National Research Council Canada - National Science Library

    South, P

    1976-01-01

    The operational feasibility of vertical axis wind machines was investigated at the National Aeronautical Establishment in Ottawa through use of a wind tunnel and a rotor with blades curved in a skipping rope shape...

  6. An automated coil winding machine for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Kamiya, S.; Iwase, T.; Inoue, I.; Fukui, I.; Ishida, K.; Kashiwagi, S.; Sato, Y.; Yoshihara, T.; Yamamoto, S.; Johnson, E.; Gibson, C.

    1990-01-01

    The authors have finished the preliminary design of a fully automated coil winding machine that can be used to manufacture the large number of SSC dipole magnets. The machine aims to perform all coil winding operations including coil parts inserting without human operators at a high productive rate. The machine is composed of five industrial robots. In order to verify the design, they built a small winding machine using an industrial robot and successfully wound a 1 meter long coil using SSC dipole magnet wire. The basic design for the full length coil and the robot winding technique are described in this paper. A fully automated coil winding machine using standard industrial components would be very useful if duplicate production lines are used. 5 figs., 1 tab

  7. Development of electric machines with superconducting windings

    International Nuclear Information System (INIS)

    Glebov, I.A.; Novitskij, V.G.

    1977-01-01

    Some studies are discussed performed in the USSR with the aim to develop the most promising electrical machines with superconducting windings, i.e. powerful (more than 1 MW) cryoturbogenerators for power heat and nuclear plants, electric motors of more than 10,000 kW, reverse systems of an electric driver and unipolar generators for electrolysis industry. The design and performances of the simulator of a 1500 kW cryoturbogenerator are given. Problems of coooling and oscillations of the simulator rotor are considered

  8. Study of the AC machines winding having fractional q

    Science.gov (United States)

    Bespalov, V. Y.; Sidorov, A. O.

    2018-02-01

    The winding schemes with a fractional numbers of slots per pole and phase q have been known and used for a long time. However, in the literature on the low-noise machines design there are not recommended to use. Nevertheless, fractional q windings have been realized in many applications of special AC electrical machines, allowing to improve their performance, including vibroacoustic one. This paper deals with harmonic analysis of windings having integer and fractional q in permanent magnet synchronous motors, a comparison of their characteristics is performed, frequencies of subharmonics are revealed. Optimal winding pitch design is found giving reduce the amplitudes of subharmonics. Distribution factors for subharmonics, fractional and high-order harmonics are calculated, results analysis is represented, allowing for giving recommendations how to calculate distribution factors for different harmonics when q is fractional.

  9. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  10. MACHINE-TRANSFORMER UNITS FOR WIND TURBINES

    Directory of Open Access Journals (Sweden)

    V.I. Panchenko

    2016-03-01

    Full Text Available Background. Electric generators of wind turbines must meet the following requirements: they must be multi-pole; to have a minimum size and weight; to be non-contact, but controlled; to ensure the maximum possible output voltage when working on the power supply system. Multipole and contactless are relatively simply realized in the synchronous generator with permanent magnet excitation and synchronous inductor generator with electromagnetic excitation; moreover the first one has a disadvantage that there is no possibility to control the output voltage, and the second one has a low magnetic leakage coefficient with the appropriate consequences. Purpose. To compare machine dimensions and weight of the transformer unit with induction generators and is an opportunity to prove their application for systems with low RMS-growth rotation. Methodology. A new design of the electric inductor machine called in technical literature as machine-transformer unit (MTU is presented. A ratio for estimated capacity determination of such units is obtained. Results. In a specific example it is shown that estimated power of MTU may exceed the same one for traditional synchronous machines at the same dimensions. The MTU design allows placement of stator coil at some distance from the rotating parts of the machine, namely, in a closed container filled with insulating liquid. This will increase capacity by means of more efficient cooling of coil, as well as to increase the output voltage of the MTU as a generator to a level of 35 kV or more. The recommendations on the certain parameters selection of the MTU stator winding are presented. The formulas for copper cost calculating on the MTU field winding and synchronous salient-pole generator are developed. In a specific example it is shown that such costs in synchronous generator exceed 2.5 times the similar ones in the MTU.

  11. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes...... an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified...... with the best performance. Consequently, a new method for prediction intervals formulation based on theELMand the pairs bootstrap is developed.Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results...

  12. Multi-winding homopolar electric machine

    Science.gov (United States)

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  13. Optimization of electrical parameters of windings used in axial flux electrical machines

    International Nuclear Information System (INIS)

    Uhrik, M.

    2012-01-01

    This paper deals with shape optimization of windings used in electrical machines with disc type construction. These machines have short axial length what makes them suitable for use in small wind-power turbines or in-wheel traction drives. Disc type construction of stator offers more possibilities for winding arrangements than are available in classical machines with cylindrical construction. To find out the best winding arrangement for the novel disc type machine construction a series of analytical calculations, simulations and experimental measurements were performed. (Authors)

  14. Virtual machine performance benchmarking.

    Science.gov (United States)

    Langer, Steve G; French, Todd

    2011-10-01

    The attractions of virtual computing are many: reduced costs, reduced resources and simplified maintenance. Any one of these would be compelling for a medical imaging professional attempting to support a complex practice on limited resources in an era of ever tightened reimbursement. In particular, the ability to run multiple operating systems optimized for different tasks (computational image processing on Linux versus office tasks on Microsoft operating systems) on a single physical machine is compelling. However, there are also potential drawbacks. High performance requirements need to be carefully considered if they are to be executed in an environment where the running software has to execute through multiple layers of device drivers before reaching the real disk or network interface. Our lab has attempted to gain insight into the impact of virtualization on performance by benchmarking the following metrics on both physical and virtual platforms: local memory and disk bandwidth, network bandwidth, and integer and floating point performance. The virtual performance metrics are compared to baseline performance on "bare metal." The results are complex, and indeed somewhat surprising.

  15. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    performance of the wind pump. One year wind speed data collected at 10 m height was extrapolated to the wind pump hub height using wind shear coefficient. The model assumed balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. The theoretical model estimated the average ...

  16. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  17. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  18. Performance of spanish wind turbines

    International Nuclear Information System (INIS)

    Lago, C.

    1995-01-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1994, going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author)

  19. Day-Ahead Wind Speed Forecasting Using Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Guoqiang Sun

    2014-01-01

    Full Text Available With the development of wind power technology, the security of the power system, power quality, and stable operation will meet new challenges. So, in this paper, we propose a recently developed machine learning technique, relevance vector machine (RVM, for day-ahead wind speed forecasting. We combine Gaussian kernel function and polynomial kernel function to get mixed kernel for RVM. Then, RVM is compared with back propagation neural network (BP and support vector machine (SVM for wind speed forecasting in four seasons in precision and velocity; the forecast results demonstrate that the proposed method is reasonable and effective.

  20. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  1. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  2. Machine for winding under tension a prestressing wire

    International Nuclear Information System (INIS)

    Perez, M.A.; Thillet, Georges.

    1975-01-01

    This invention concerns a machine for winding under tension a prestressing wire or cable. It is used in the wrapping of cylindrical structures, particularly concrete vessels, for the purpose of achieving radial prestressing in them [fr

  3. Control of the doubly-fed induction machine for wind turbine applications

    NARCIS (Netherlands)

    Nguyen Tien, H.

    2017-01-01

    The linear control of doubly-fed induction machines in wind power systems normally encounters the problems in variations of the rotor mechanical angular speed and other time-varying parameters. However, better performance requirements against changes in the machine parameters and exogenous inputs

  4. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...

  5. Guide to commercially available wind machines

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-03

    Wind Energy Conversion Systems (WECS) commercially available in the United States are described. The terms used to describe these wind systems are defined and their significance discussed. Lists of manufacturers and distributors, subsystem components and suppliers, and references are provided.

  6. Winding machine and tools for the ISR Superconducting Quadrupole Prototype

    CERN Multimedia

    1975-01-01

    The picture shows the rotating and rocking winding machine with its "light" clamping system to keep the conductor turns in place during winding.At the back left one sees the conductor spool with its electromagnetic brake and the "heavy" clamping system used during curing. See also 7510217X, 7702690X.

  7. Permanent magnet machine with windings having strand transposition

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  8. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    Keywords: Wind pump, Windmill, Performance testing, Pump efficiency, Pump discharge,. Ethiopia. 1. INTRODUCTION. Energy demand .... Control/safety system. Mechanical control (by hand) .... important when irrigation is an issue. Daily water flow capacity is probably the best overall performance indicator of a wind pump.

  9. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei

    2015-01-01

    Highlights: • A hybrid architecture is proposed for the wind speed forecasting. • Four algorithms are used for the wind speed multi-scale decomposition. • The extreme learning machines are employed for the wind speed forecasting. • All the proposed hybrid models can generate the accurate results. - Abstract: Realization of accurate wind speed forecasting is important to guarantee the safety of wind power utilization. In this paper, a new hybrid forecasting architecture is proposed to realize the wind speed accurate forecasting. In this architecture, four different hybrid models are presented by combining four signal decomposing algorithms (e.g., Wavelet Decomposition/Wavelet Packet Decomposition/Empirical Mode Decomposition/Fast Ensemble Empirical Mode Decomposition) and Extreme Learning Machines. The originality of the study is to investigate the promoted percentages of the Extreme Learning Machines by those mainstream signal decomposing algorithms in the multiple step wind speed forecasting. The results of two forecasting experiments indicate that: (1) the method of Extreme Learning Machines is suitable for the wind speed forecasting; (2) by utilizing the decomposing algorithms, all the proposed hybrid algorithms have better performance than the single Extreme Learning Machines; (3) in the comparisons of the decomposing algorithms in the proposed hybrid architecture, the Fast Ensemble Empirical Mode Decomposition has the best performance in the three-step forecasting results while the Wavelet Packet Decomposition has the best performance in the one and two step forecasting results. At the same time, the Wavelet Packet Decomposition and the Fast Ensemble Empirical Mode Decomposition are better than the Wavelet Decomposition and the Empirical Mode Decomposition in all the step predictions, respectively; and (4) the proposed algorithms are effective in the wind speed accurate predictions

  10. Classification of Solar Wind With Machine Learning

    Science.gov (United States)

    Camporeale, Enrico; Carè, Algo; Borovsky, Joseph E.

    2017-11-01

    We present a four-category classification algorithm for the solar wind, based on Gaussian Process. The four categories are the ones previously adopted in Xu and Borovsky (2015): ejecta, coronal hole origin plasma, streamer belt origin plasma, and sector reversal origin plasma. The algorithm is trained and tested on a labeled portion of the OMNI data set. It uses seven inputs: the solar wind speed Vsw, the temperature standard deviation σT, the sunspot number R, the F10.7 index, the Alfven speed vA, the proton specific entropy Sp, and the proton temperature Tp compared to a velocity-dependent expected temperature. The output of the Gaussian Process classifier is a four-element vector containing the probabilities that an event (one reading from the hourly averaged OMNI database) belongs to each category. The probabilistic nature of the prediction allows for a more informative and flexible interpretation of the results, for instance, being able to classify events as "undecided." The new method has a median accuracy larger than 90% for all categories, even using a small set of data for training. The Receiver Operating Characteristic curve and the reliability diagram also demonstrate the excellent quality of this new method. Finally, we use the algorithm to classify a large portion of the OMNI data set, and we present for the first time transition probabilities between different solar wind categories. Such probabilities represent the "climatological" statistics that determine the solar wind baseline.

  11. Inrush Current Simulation of Two Windings Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure

    Science.gov (United States)

    Tokunaga, Yoshitaka; Kubota, Kunihiro

    This paper presents estimation techniques of machine parameters for two windings power transformer using design procedure of winding structure. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by design procedure of winding structure and simulation results were reproduced measured waveforms.

  12. Armature reaction effects on HTS field winding in HTS machine

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS feld winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  13. Analysis of induction machines with combined stator windings

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2015-01-01

    Roč. 60, č. 2 (2015), s. 155-171 ISSN 0001-7043 R&D Projects: GA ČR GA13-35370S Institutional support: RVO:61388998 Keywords : induction machines * symmetrical components * combined stator winding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  15. Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data

    Directory of Open Access Journals (Sweden)

    Laura Cornejo-Bueno

    2017-11-01

    Full Text Available Wind Power Ramp Events (WPREs are large fluctuations of wind power in a short time interval, which lead to strong, undesirable variations in the electric power produced by a wind farm. Its accurate prediction is important in the effort of efficiently integrating wind energy in the electric system, without affecting considerably its stability, robustness and resilience. In this paper, we tackle the problem of predicting WPREs by applying Machine Learning (ML regression techniques. Our approach consists of using variables from atmospheric reanalysis data as predictive inputs for the learning machine, which opens the possibility of hybridizing numerical-physical weather models with ML techniques for WPREs prediction in real systems. Specifically, we have explored the feasibility of a number of state-of-the-art ML regression techniques, such as support vector regression, artificial neural networks (multi-layer perceptrons and extreme learning machines and Gaussian processes to solve the problem. Furthermore, the ERA-Interim reanalysis from the European Center for Medium-Range Weather Forecasts is the one used in this paper because of its accuracy and high resolution (in both spatial and temporal domains. Aiming at validating the feasibility of our predicting approach, we have carried out an extensive experimental work using real data from three wind farms in Spain, discussing the performance of the different ML regression tested in this wind power ramp event prediction problem.

  16. Application of fractional slot concentrated windings to synchronous reluctance machines.

    OpenAIRE

    Spargo, C.M.; Mecrow, B.C.; Widmer, J.D.

    2013-01-01

    Due to the advancement of electric vehicles, the desire for high torque density electric motors for traction applications is steadily increasing. It is advantageous to design such a motor with little or no rare earth permanent magnet (PM) material due to the associated environmental, political and economic challenges with its extraction and processing. This paper explores a novel synchronous reluctance machine (RSM), with fractional slot concentrated windings (cRSM) as an alternative to PM, i...

  17. Winding Losses in High-Speed Machines using Form-Wound Windings

    Science.gov (United States)

    Zhang, Wanjun

    Understanding the ac loss phenomena in form-wound windings is critical for achieving high efficiency in ac machines that employ this type of winding. Accurate calculation of these losses using finite element (FE) analysis typically requires a fine mesh size in the conductors and small time steps, requiring considerable computational resources to accomplish. This research program presents the development of a closed-form 2D analytical model that is capable of calculating the ac losses in form-wound windings with promising accuracy and short computation times. This model is valuable for carrying out rapid assessments of the ac losses in machines for a wide range of operating conditions, making it practical to evaluate large numbers of candidate designs. Significant attention is devoted to exploring alternative approaches for reducing these ac losses that are influenced by many winding design factors including the conductor locations and thicknesses, number of conductors per slot, and phase arrangement. In addition, experimental tests have been carried out using three identical stators with form-wound, "pseudo" Litz and true Litz windings, all configured with the same winding function. The availability of these stators makes it possible to experimentally segregate the winding losses, explore winding losses under different operating conditions, and, finally, build confidence in the proposed model. The results of this investigation highlight the advantages of form-wound windings for low-frequency operation while also clearly demonstrating the risks that they present for unacceptably high ac losses at elevated frequencies. This work also demonstrates that careful attention to the design details of form-wound windings can lead to promising reductions of the ac winding losses under demanding operating conditions associated with high-speed operation.

  18. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    CERN Document Server

    Cazzaniga, R; D’Urzo, C

    2005-01-01

    The successfull construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this fiel...

  19. Performance of spanish wind turbines. Year 1996

    International Nuclear Information System (INIS)

    Lago, C.

    1998-01-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1996 going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author) 4 refs

  20. Performance of spanish wind turbines. Year 1995

    International Nuclear Information System (INIS)

    Lago, C.

    1997-01-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1995 going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author)

  1. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  2. The differential induction machine: Theory and performance

    Indian Academy of Sciences (India)

    differential mode. This paper presents the construction of the above machine and performance of the same based on experimental results from a laboratory prototype. The equivalent circuit of the motor has been presented and verified experimentally. Keywords. Differential drive; electric vehicle drive; induction machine. 1.

  3. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    binned wind speed data to determine the linear fit function. The linear fit function was then used .... was assumed to be quadratic and the wind regime was assumed to be characterized by the. Rayleigh distribution. ..... Assessment and Identification of Wind Resource for Rural Application in Geba. Catchment. Proceedings of ...

  4. Fine tuning support vector machines for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Zhou Junyi; Shi Jing; Li Gong

    2011-01-01

    Research highlights: → A systematic approach to tuning SVM models for wind speed prediction is proposed. → Multiple kernel functions and a wide range of tuning parameters are evaluated, and optimal parameters for each kernel function are obtained. → It is found that the forecasting performance of SVM is closely related to the dynamic characteristics of wind speed. → Under the optimal combination of parameters, different kernels give comparable forecasting accuracy. -- Abstract: Accurate forecasting of wind speed is critical to the effective harvesting of wind energy and the integration of wind power into the existing electric power grid. Least-squares support vector machines (LS-SVM), a powerful technique that is widely applied in a variety of classification and function estimation problems, carries great potential for the application of short-term wind speed forecasting. In this case, tuning the model parameters for optimal forecasting accuracy is a fundamental issue. This paper, for the first time, presents a systematic study on fine tuning of LS-SVM model parameters for one-step ahead wind speed forecasting. Three SVM kernels, namely linear, Gaussian, and polynomial kernels, are implemented. The SVM parameters considered include the training sample size, SVM order, regularization parameter, and kernel parameters. The results show that (1) the performance of LS-SVM is closely related to the dynamic characteristics of wind speed; (2) all parameters investigated greatly affect the performance of LS-SVM models; (3) under the optimal combination of parameters after fine tuning, the three kernels give comparable forecasting accuracy; (4) the performance of linear kernel is worse than the other two kernels when the training sample size or SVM order is small. In addition, LS-SVMs are compared against the persistence approach, and it is found that they can outperform the persistence model in the majority of cases.

  5. Advanced Backstepping controller for induction generator using multi-scalar machine model for wind power purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nemmour, A.L.; Khezzar, A.; Hacil, M.; Louze, L. [Laboratoire d' Electrotechnique LEC, Universite Mentouri, Constantine (Algeria); Mehazzem, F. [Groupe ESIEE, Paris Est University (France); Abdessemed, R. [Laboratoire d' Electrotechnique LEB, Universite El Hadj Lakhdar, Batna (Algeria)

    2010-10-15

    This paper presents a new non-linear control Algorithm based on the Backstepping approach for an isolated induction generator (IG) driven by a wind turbine. For this purpose and in order to reduce the complexity of the real induction machine mathematical model, the multi-scalar machine model is exploited. The machine delivers an active power to the load via a converter connected to a single capacitor on the dc-side. So, during the voltage build-up process, the necessary stator currents references to be injected by the converter are calculated from the desired active power to be sent to the load and the rotor flux magnitude. Simulation results show that the proposed control provides perfect tracking performances of the DC-bus voltage and the rotor flux magnitude to their reference trajectories. (author)

  6. Design and realization on function of pre-forming and continuous winding for HT-7U special winding machine

    International Nuclear Information System (INIS)

    Yu Jie; Gao Daming; Wen Jun; Zhu Wenhua; Cheng Leping; Tao Yuming

    2000-05-01

    The winding machine is one of the critical facilities for R and D of HT-7U construction. The machine mainly consists of five parts, CICC pay-off spool, a four-rollers straightening assembly, a four-roller forming/bending assembly, continuous winding structure and CNC control system with three-axis CNC control. The facility is needed for CICC magnet fabrication of HT-7U. The main requirements of the winding machine are: continuous winding to reduce number of joints inside the coils; pre-forming CICC conductor to avoid winding with tension; suitable for all TF and PF coils within the scope of various coil shape and dimension limit; improving the configuration tolerance, specially flatness of the CICC conductor. The author emphasizes on the design and realization on function of Pre-forming and Continuous Winding for HT-7U special winding machine. The winding machine with high accuracy has just been developed and applied to the construction of HT-7U model coils

  7. Fault diagnosis of direct-drive wind turbine based on support vector machine

    International Nuclear Information System (INIS)

    An, X L; Jiang, D X; Li, S H; Chen, J

    2011-01-01

    A fault diagnosis method of direct-drive wind turbine based on support vector machine (SVM) and feature selection is presented. The time-domain feature parameters of main shaft vibration signal in the horizontal and vertical directions are considered in the method. Firstly, in laboratory scale five experiments of direct-drive wind turbine with normal condition, wind wheel mass imbalance fault, wind wheel aerodynamic imbalance fault, yaw fault and blade airfoil change fault are carried out. The features of five experiments are analyzed. Secondly, the sensitive time-domain feature parameters in the horizontal and vertical directions of vibration signal in the five conditions are selected and used as feature samples. By training, the mapping relation between feature parameters and fault types are established in SVM model. Finally, the performance of the proposed method is verified through experimental data. The results show that the proposed method is effective in identifying the fault of wind turbine. It has good classification ability and robustness to diagnose the fault of direct-drive wind turbine.

  8. An improved excitation control technique of three-phase induction machine operating as dual winding generator for micro-wind domestic application

    International Nuclear Information System (INIS)

    Chatterjee, Arunava; Chatterjee, Debashis

    2015-01-01

    Highlights: • A three-phase induction machine working as single phase generator is studied. • The generator is assisted by an inverter and photovoltaic panel for excitation. • Proposed control involves operating the machine as balanced two-phase generator. • Torque pulsations associated with unbalanced phase currents are minimized. • The generator can be used for grid-isolated micro-wind power generation. - Abstract: Single-phase generation schemes are widely utilized for harnessing wind power in remote and grid secluded applications. This paper presents a novel control methodology for a three-phase induction machine working as a single-phase dual winding induction generator. Three-phase induction machines providing single-phase output with proper control strategy can be beneficial in grid secluded micro-wind energy conversion systems compared to single-phase induction generators. Three-phase induction machines operating in single-phase mode are mostly excited asymmetrically to provide single-phase power leading to unbalanced current flow in the stator windings causing heating and insulation breakdown. The asymmetrical excitation also initiates torque pulsations which results in additional stress and vibration at the machine shaft and bearings degrading the machine performance. The proposed control is chiefly aimed to minimize this unbalance. The variable excitation required for the proposed generator is provided through a single-phase inverter with photovoltaic panels. The suitability for such a generator along with its control is tested with appropriate simulations and experimental results. The induction generator with the proposed control strategy is expected to be useful in remote and grid isolated households as a standalone source of single-phase electrical power

  9. Characterization of sound emitted by wind machines used for frost control

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, V.; Gambino, T. [Aercoustics Engineering Ltd., Toronto, ON (Canada); Fraser, H.W. [Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland, ON (Canada)

    2007-07-01

    Wind machines are used in Niagara-on-the-Lake to protect cold-sensitive crops against cold injury during winter's extreme cold temperatures,spring's late frosts and autumn's early frosts. The number of wind machines in Ontario has about doubled annually from only a few in the late 1990's, to more than 425 in 2006. They are not used for generating power. Noise complaints have multiplied as the number of wind machines has increased. The objective of this study was to characterize the sound produced by wind machines; learn why residents are annoyed by wind machine noise; and suggest ways to possibly reduce sound emissions. One part of the study explored acoustic emission characteristics, the sonic differences of units made by different manufacturers, sound propagation properties under typical use atmospheric conditions and low frequency noise impact potential. Tests were conducted with a calibrated Larson Davis 2900B portable spectrum analyzer. Sound was measured with a microphone whose frequency response covered the range 4 Hz to 20 kHz. The study examined and found several unique acoustic properties that are characteristic of wind machines. It was determined that noise from wind machines is due to both aerodynamic and mechanical effects, but aerodynamic sounds were found to be the most significant. It was concluded that full range or broadband sounds manifest themselves as noise components that extend throughout the audible frequency range from the bladepass frequency to upwards of 1000 Hz. The sound spectrum of a wind machine is full natural tones and impulses that give it a readily identifiable acoustic character. Atmospheric conditions including temperature, lapse rate, relative humidity, mild winds, gradients and atmospheric turbulence all play a significant role in the long range outdoor propagation of sound from wind machines. 6 refs., 6 figs.

  10. Machine Learning for Wind Turbine Blades Maintenance Management

    Directory of Open Access Journals (Sweden)

    Alfredo Arcos Jiménez

    2017-12-01

    Full Text Available Delamination in Wind Turbine Blades (WTB is a common structural problem that can generate large costs. Delamination is the separation of layers of a composite material, which produces points of stress concentration. These points suffer greater traction and compression forces in working conditions, and they can trigger cracks, and partial or total breakage of the blade. Early detection of delamination is crucial for the prevention of breakages and downtime. The main novelty presented in this paper has been to apply an approach for detecting and diagnosing the delamination WTB. The approach is based on signal processing of guided waves, and multiclass pattern recognition using machine learning. Delamination was induced in the WTB to check the accuracy of the approach. The signal is denoised by wavelet transform. The autoregressive Yule–Walker model is employed for feature extraction, and Akaike’s information criterion method for feature selection. The classifiers are quadratic discriminant analysis, k-nearest neighbors, decision trees, and neural network multilayer perceptron. The confusion matrix is employed to evaluate the classification, especially the receiver operating characteristic analysis by: recall, specificity, precision, and F-score.

  11. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach

    International Nuclear Information System (INIS)

    Salcedo-Sanz, S.; Pastor-Sánchez, A.; Prieto, L.; Blanco-Aguilera, A.; García-Herrera, R.

    2014-01-01

    Highlights: • A novel approach for short-term wind speed prediction is presented. • The system is formed by a coral reefs optimization algorithm and an extreme learning machine. • Feature selection is carried out with the CRO to improve the ELM performance. • The method is tested in real wind farm data in USA, for the period 2007–2008. - Abstract: This paper presents a novel approach for short-term wind speed prediction based on a Coral Reefs Optimization algorithm (CRO) and an Extreme Learning Machine (ELM), using meteorological predictive variables from a physical model (the Weather Research and Forecast model, WRF). The approach is based on a Feature Selection Problem (FSP) carried out with the CRO, that must obtain a reduced number of predictive variables out of the total available from the WRF. This set of features will be the input of an ELM, that finally provides the wind speed prediction. The CRO is a novel bio-inspired approach, based on the simulation of reef formation and coral reproduction, able to obtain excellent results in optimization problems. On the other hand, the ELM is a new paradigm in neural networks’ training, that provides a robust and extremely fast training of the network. Together, these algorithms are able to successfully solve this problem of feature selection in short-term wind speed prediction. Experiments in a real wind farm in the USA show the excellent performance of the CRO–ELM approach in this FSP wind speed prediction problem

  12. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  13. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  14. Performance of a Folded-Strip Toroidally Wound Induction Machine

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...

  15. Estimation of the wind turbine yaw error by support vector machines

    DEFF Research Database (Denmark)

    Sheibat-Othman, Nida; Othman, Sami; Tayari, Raoaa

    2015-01-01

    Wind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology...... is data-based, simulated data from a high fidelity aero-elastic model is used for learning. The model simulates a variable speed horizontal-axis wind turbine composed of three blades and a full converter. Both partial load (blade angles fixed at 0 deg) and full load zones (active pitch actuators...

  16. Data mining techniques for performance analysis of onshore wind farms

    International Nuclear Information System (INIS)

    Astolfi, Davide; Castellani, Francesco; Garinei, Alberto; Terzi, Ludovico

    2015-01-01

    Highlights: • Indicators are formulated for monitoring quality of wind turbines performances. • State dynamics is processed for formulation of two Malfunctioning Indexes. • Power curve analysis is revisited. • A novel definition of polar efficiency is formulated and its consistency is checked. • Mechanical effects of wakes are analyzed as nacelle stationarity and misalignment. - Abstract: Wind turbines are an energy conversion system having a low density on the territory, and therefore needing accurate condition monitoring in the operative phase. Supervisory Control And Data Acquisition (SCADA) control systems have become ubiquitous in wind energy technology and they pose the challenge of extracting from them simple and explanatory information on goodness of operation and performance. In the present work, post processing methods are applied on the SCADA measurements of two onshore wind farms sited in southern Italy. Innovative and meaningful indicators of goodness of performance are formulated. The philosophy is a climax in the granularity of the analysis: first, Malfunctioning Indexes are proposed, which quantify goodness of merely operational behavior of the machine, irrespective of the quality of output. Subsequently the focus is shifted to the analysis of the farms in the productive phase: dependency of farm efficiency on wind direction is investigated through the polar plot, which is revisited in a novel way in order to make it consistent for onshore wind farms. Finally, the inability of the nacelle to optimally follow meandering wind due to wakes is analysed through a Stationarity Index and a Misalignment Index, which are shown to capture the relation between mechanical behavior of the turbine and degradation of the power output

  17. Performance comparison of wind park configurations

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this report, layouts of various large-scale wind parks, both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. In addition, a study of the suitability of various DC/DC-converters is made. Three DC/DC-converters, Boost, Full Bridge and Full Bridge Isolated Boost, are found to be interesting candidates as the 'transformer' component in potential DC-based wind parks. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km.

  18. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    International Nuclear Information System (INIS)

    Gündoğdu, Tayfun; Kömürgöz, Güven

    2012-01-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted. - Highlights: ► Importance of the design of electrical machines and the determination of criteria are emphasized. ► Machines were investigated in terms of efficiency, weight and maintenance requirements. ► An

  19. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    International Nuclear Information System (INIS)

    Veronesi, F; Grassi, S

    2016-01-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners. (paper)

  20. Performance and portability of the SciBy virtual machine

    DEFF Research Database (Denmark)

    Andersen, Rasmus; Vinter, Brian

    2010-01-01

    The Scientific Bytecode Virtual Machine is a virtual machine designed specifically for performance, security, and portability of scientific applications deployed in a Grid environment. The performance overhead normally incurred by virtual machines is mitigated using native optimized scientific...... libraries, security is obtained by sandboxing techniques. Lastly, by executing platform-independent bytecodes, the machine is highly portable. To evaluate the machine, we demonstrate several use-case scenarios from some of the intended application domains. Further, we show the ease of porting the machine...

  1. Hierarchical machining materials and their performance

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny

    2016-01-01

    Machining is an important technological process in many areas of industry. The efficiency of machining determines the quality of many industrial products. Machining efficiency and cost depend on the properties, strength, and microstructure of the machining materials. One of the promising ways...... to increase the reliability and wear resistance of machining tools is the development and use of hierarchical machining materials. In the area of machining materials, designed typically as binder/reinforcement composites, hierarchical structures are realized as lower-scale secondary reinforcements (such...... as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...

  2. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise...... the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear...... condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter...

  3. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  4. Wind generator based on cascade connection of two asynchronized synchronous machines

    International Nuclear Information System (INIS)

    Dzhagarov, N.; Dzhagarova, Yu.

    2000-01-01

    A model of a wind generator with two asynchronized synchronous machines presented and different regimes are investigated. The analysis shows that the suggested scheme of a brushless generator works and has more advantages (reliability, easy for operation) in comparison with the known ones

  5. Analysis of Properties of Induction Machine with Combined Parallel Star-Delta Stator Winding

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2017-01-01

    Roč. 113, č. 1 (2017), s. 147-153 ISSN 0239-3646 R&D Projects: GA ČR(CZ) GA16-07795S Institutional support: RVO:61388998 Keywords : induction machine * parallel combined stator winding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering

  6. Dynamic Performances of Asynchronous Machines | Ubeku ...

    African Journals Online (AJOL)

    The per-phase parameters of a 1.5 hp, 380 V, 50 Hz, 4 poles, 3 phase asynchronous machine used in the simulation were computed with reading obtained from a dc, no-load and blocked rotor tests carried out on the machine in the laboratory. The results obtained from the computer simulations confirmed the capabilities ...

  7. Dynamic modeling and performance evaluation of axial flux PMSG based wind turbine system with MPPT control

    Directory of Open Access Journals (Sweden)

    Vahid Behjat

    2014-12-01

    Full Text Available This research work develops dynamic model of a gearless small scale wind power generation system based on a direct driven single sided outer rotor AFPMSG with coreless armature winding. Dynamic modeling of the AFPMSG based wind turbine requires machine parameters. To this end, a 3D FEM model of the generator is developed and from magnetostatic and transient analysis of the FEM model, machine parameters are calculated and utilized in dynamic modeling of the system. A maximum power point tracking (MPPT-based FOC control approach is used to obtain maximum power from the variable wind speed. The simulation results show the proper performance of the developed dynamic model of the AFPMSG, control approach and power generation system.

  8. 380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results

    Science.gov (United States)

    Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.

    2002-08-01

    Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.

  9. A flux-mnemonic permanent magnet brushless machine for wind power generation

    Science.gov (United States)

    Yu, Chuang; Chau, K. T.; Jiang, J. Z.

    2009-04-01

    In this paper, the concept of flux mnemonics is newly extended to the wind power generator. By incorporating a small magnetizing winding into an outer-rotor doubly salient AlNiCo permanent magnet (PM) machine, a new flux-mnemonic PM brushless wind power generator is proposed and implemented. This generator can offer effective and efficient air-gap flux control. First, the characteristics of the proposed generator are analyzed by using the finite element method. Second, the closed-loop flux control is devised to achieve a constant generated voltage under time-varying wind speeds. Finally, the experimental results are given to verify the validity of the proposed generator and control system.

  10. Design of an Electric Commutated Frog-Leg Winding Permanent-Magnet DC Machine

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2014-03-01

    Full Text Available An electric commutated frog-leg winding permanent-magnet (PM DC machine is proposed in this paper. It has a semi-closed slotted stator with a classical type of mesh winding introduced from the conventional brushed DC machine and a polyphase electric commutation besides a PM excitation rotor and a circular arrayed Hall position sensor. Under the cooperation between the position sensor and the electric commutation, the proposed machine is basically operated on the same principle of the brushed one. Because of its simplex frog-leg winding, the combination between poles and slots is designed as 4/22, and the number of phases is set as 11. By applying an exact analytical method, which is verified comparable with the finite element analyses (FEA, to the prediction of its instantaneous magnetic field, electromotive force (EMF, cogging torque and output torque, it is well designed with a series of parameters in dimension aiming at the lowest cogging torque. A 230 W, 4-pole, and 22-slot new machine is prototyped and tested to verify the analysis.

  11. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where many...... Reluctance Wind Generator (SRWG) based on Extreme Learning Machine (ELM) which could build a nonlinear mapping between flux linkage-current and rotor position. The learning data are derived from magnetization curves of the SRWG which are obtained from Finite Element Analysis (FEA) of an SRG with 8/6 stator...

  12. Machine Learning meets Mathematical Optimization to predict the optimal production of offshore wind parks

    DEFF Research Database (Denmark)

    Fischetti, Martina; Fraccaro, Marco

    2018-01-01

    instances. In this paper we will focus on a specific application: the offshore wind farm layout optimization problem. Mixed Integer Programming models and other state-of-the-art optimization techniques, have been developed to solve this problem. Given the complexity of the problem and the big difference...... company in the energy sector, our model was trained on real-world data. Our results show that Machine Learning is able to efficiently estimate the value of optimized instances for the offshore wind farm layout problem...

  13. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    Science.gov (United States)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  14. Final Report - Certifying the Performance of Small Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Larry [Small Wind Certification Council, Clifton Park, NY (United States)

    2015-08-28

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  15. Armature reaction effects on a high temperature superconducting field winding of an synchronous machine: experimental results

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2014-01-01

    This paper presents experimental results from the Superwind laboratory setup. Particular focus in the paper has been placed on describing and quantifying the influence of armature reaction on performance of the HTS filed winding. Presented experimental results have confirmed the HTS field winding...

  16. Dynamoelectric machine with a superconductive field winding that can operate in either a synchronous or an asynchronous mode

    International Nuclear Information System (INIS)

    Mole, C.J.; Haller, H.E. III.

    1977-01-01

    Two parallel magnetic flux paths are provided in a dynamoelectric machine having a superconductive field winding. A first, or main, magnetic flux path includes at least one area of nonferromagnetic or diamagnetic material. A second, or shunt, magnetic flux path prevents the relatively low frequency ac flux present during starting or asynchronous operation of the machine, when used as an ac motor, from penetrating the superconductive winding

  17. Kinematic performance analysis of a parallel-chain hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Jing Song; Jong-I Mou; Calvin King

    1998-05-18

    Inverse and forward kinematic models were derived to analyze the performance of a parallel-chain hexapod machine. Analytical models were constructed for both ideal and real structures. Performance assessment and enhancement algorithms were developed to determine the strut lengths for both ideal and real structures. The strut lengths determined from both cases can be used to analyze the effect of structural imperfections on machine performance. In an open-architecture control environment, strut length errors can be fed back to the controller to compensate for the displacement errors and thus improve the machine's accuracy in production.

  18. Performance evaluation of 'conversional' X-ray machines in Tanzania

    International Nuclear Information System (INIS)

    Mwalongo, D.A.; Ngaile, J.E.; Sungita, Y.Y.

    2008-01-01

    Full text: Without periodic performance tests of the X-ray machines, optimal performance cannot be achieved. The aim of this study was therefore to evaluate the performance of the X-ray machine in order to check non-compliance with performance standards that may result in degradation of image quality or increase of unnecessary radiation doses to patients undergoing X-ray examinations in Tanzania. A total of 890 periodical performance tests were evaluated from 400 X-ray facilities conducted between 2000 and 2006.The performance tests were evaluated in terms of beam alignment and collimation using RMI test tools, kV accuracy and reproducibility, timer accuracy and reproducibility, output linearity, beam quality (HVL) using Victoreen non invasive test x-ray test device model 4000 M+ and tube leakage using Berthold ion chamber. In addition, dark room for each X-ray facility was evaluated in terms of film fog, film storage and cleanliness. The results showed that 86 % of the x-ray machine tested had beam alignment and collimation tests within the tolerance limits of 3 o and ± 2 % of focus detector distance; respectively; while 88 % of the machines tested had kV and timer reproducibility and accuracy tests within the tolerance limits of 4% and ± 10% respectively. The results further showed that 95 % of the machines tested had output linearity within tolerance limits of 10%, while HVL tests for all machines were above the minimum recommended limits. In addition the results showed that about 70% of the dark room facilities were adequate. The good performance of most X-ray machines were largely attributed to installation of new X-ray machines to all mainland districts, regions and referral hospitals through a joint project between the governments of Tanzania and the Netherlands. In view of the above, it is evident that most X-ray machines were within the recommended tolerance limits and hence optimum equipment performance. (author)

  19. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  20. Economic performance indicators of wind energy based on wind speed stochastic modeling

    International Nuclear Information System (INIS)

    D’Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2015-01-01

    Highlights: • We propose a new and different wind energy production indicator. • We compute financial profitability of potential wind power sites. • The wind speed process is modeled as an indexed semi-Markov chain. • We check if the wind energy is a good investment with and without incentives. - Abstract: We propose the computation of different wind energy production indicators and financial profitability of potential wind power sites. The computation is performed by modeling the wind speed process as an indexed semi-Markov chain to predict and simulate the wind speed dynamics. We demonstrate that the indexed semi-Markov chain approach enables reproducing the indicators calculated on real data. Two different time horizons of 15 and 30 years are analyzed. In the first case we consider the government incentives on the energy price now present in Italy, while in the second case the incentives have not been taken into account

  1. Numeric-modeling sensitivity analysis of the performance of wind turbine arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lissaman, P.B.S.; Gyatt, G.W.; Zalay, A.D.

    1982-06-01

    An evaluation of the numerical model created by Lissaman for predicting the performance of wind turbine arrays has been made. Model predictions of the wake parameters have been compared with both full-scale and wind tunnel measurements. Only limited, full-scale data were available, while wind tunnel studies showed difficulties in representing real meteorological conditions. Nevertheless, several modifications and additions have been made to the model using both theoretical and empirical techniques and the new model shows good correlation with experiment. The larger wake growth rate and shorter near wake length predicted by the new model lead to reduced interference effects on downstream turbines and hence greater array efficiencies. The array model has also been re-examined and now incorporates the ability to show the effects of real meteorological conditions such as variations in wind speed and unsteady winds. The resulting computer code has been run to show the sensitivity of array performance to meteorological, machine, and array parameters. Ambient turbulence and windwise spacing are shown to dominate, while hub height ratio is seen to be relatively unimportant. Finally, a detailed analysis of the Goodnoe Hills wind farm in Washington has been made to show how power output can be expected to vary with ambient turbulence, wind speed, and wind direction.

  2. Power Performance Test Report for the SWIFT Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  3. Thermodynamic performance assessment of wind energy systems: An application

    International Nuclear Information System (INIS)

    Redha, Adel Mohammed; Dincer, Ibrahim; Gadalla, Mohamed

    2011-01-01

    In this paper, the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. The thermodynamic characteristics of wind through energy and exergy analyses are considered and both energetic and exergetic efficiencies are studied. Wind speed is affected by air temperature and pressure and has a subsequent effect on wind turbine performance based on wind reference temperature and Bernoulli's equation. VESTAS V52 wind turbine is selected for (Sharjah/UAE). Energy and exergy efficiency equations for wind energy systems are further developed for practical applications. The results show that there are noticeable differences between energy and exergy efficiencies and that exergetic efficiency reflects the right/actual performance. Finally, exergy analysis has been proven to be the right tool used in design, simulation, and performance evaluation of all renewable energy systems. -- Highlights: → In this research the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. → Energy and exergy equations for wind energy systems are further developed for practical applications. → Thermodynamic characteristics of wind turbine systems through energetic and exergetic efficiencies are evaluated from January till March 2010. → Exergy efficiency describes the system irreversibility and the minimum irreversibility exists when the wind speed reaches 11 m/s. → The power production during March was about 17% higher than the month of February and 66% higher than January.

  4. Model for Investigation of Operational Wind Power Plant Regimes with Doubly–Fed Asynchronous Machine in Power System

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2012-01-01

    Full Text Available The paper presents methodology for mathematical modeling of power system (its part when jointly operated with wind power plants (stations that contain asynchronous doubly-fed machines used as generators. The essence and advantage of the methodology is that it allows efficiently to mate equations of doubly-fed asynchronous machines, written in the axes that rotate with the machine rotor speed with the equations of external electric power system, written in synchronously rotating axes.

  5. A Case Study Regarding Influence of Solvers in Matlab/Simulink for Induction Machine Model in Wind Turbine Simulations

    DEFF Research Database (Denmark)

    Iov, F.; Blaabjerg, Frede; Hansen, A.D.

    2002-01-01

    In the last years Matlab/Simulink® has become the most used software for modelling and simulation of dynamic systems. Wind energy conversion systems are for example such systems because they contain parts with different range for the time constant: wind, turbine, generator, power electronics...... the different implementations of induction machine model, influence of the solvers from Simulink and how the simulation speed can be increase for a wind turbine....

  6. Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine

    International Nuclear Information System (INIS)

    Maganhar, A.L.

    2015-01-01

    In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)

  7. Fractional Slot Concentrated Windings: A New Method to Manage the Mutual Inductance between Phases in Three-Phase Electrical Machines and Multi-Star Electrical Machines

    Directory of Open Access Journals (Sweden)

    Olivier Barre

    2015-06-01

    Full Text Available Mutual inductance is a phenomenon caused by the circulation of the magnetic flux in the core of an electrical machine. It is the result of the effect of the current flowing in one phase on the other phases. In conventional three-phase machines, such an effect has no influence on the electrical behaviour of the device. Although these machines are powered by power inverters, no problem should occur. The result is not the same for multi-star machines. If these machines are using a conventional winding structure, namely distributed windings, and are powered by voltage source converters, current ripples appear in the power supply lines. These current ripples are related to magnetic couplings between the stars. Designers should check these current ripples in order to stay within the limits imposed by the specifications. These electric current disturbances also provide torque ripples. With concentrated windings, a new degree of freedom appears; the configuration—number of slots/number of poles—can have a positive impact. The circulation of the magnetic flux is the initial phenomenon that produces the mutual inductance. The main goal of this discussion is to describe a design method that is able to produce not only a machine with low mutual inductance between phases, but also a multi-star machine where the stars and the phases are magnetically decoupled or less coupled. This discussion only takes into account the machines that use permanent magnets mounted on the rotor surface. This article is part of a study aimed at designing a high efficiency generator using fractional-slot concentrated-windings (FSCW.

  8. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2017-05-01

    Full Text Available Dual rotor permanent magnet (DRPM wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF, cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA. The results show that the slot and pole number combinations have an important impact on the generator properties.

  9. Performance Verification of Impact Machines for Testing Plastics

    Science.gov (United States)

    Siewert, T. A.; Vigliotti, D. P.; Dirling, L. B.; McCowan, C. N.

    1999-01-01

    Valid comparison of impact test energies reported by various organizations and over time depends on consistent performance of impact test machines. This paper investigates the influence of various specimen and test parameters on impact energies in the 1 J to 2 J range for both Charpy V-notch and Izod procedures, leading toward the identification of a suitable material for use in a program to verify machine performance. We investigated the influences on the absorbed energy of machine design, test material, specimen cross sectional area, and machine energy range. For comparison to published round robin data on common plastics, this study used some common metallic alloys, including those used in the international verification program for metals impact machines and in informal calibration programs of tensile machines. The alloys that were evaluated include AISI type 4340 steel, and five aluminum alloys: 2014-T6, 2024-T351, 2219-T87, 6061-T6, and 7075-T6. We found that certain metallic alloys have coefficients of variation comparable to those of the best plastics that are reported in the literature. Also, we found that the differences in absorbed energy between two designs of machines are smaller than the differences that can be attributed to the specimens alone.

  10. Performance Analysis of NACA2420 as Wind Turbine Propeller Blade

    Directory of Open Access Journals (Sweden)

    Sulaeman Mustafa

    2017-03-01

    Full Text Available Wind is one of the popular renewable energy sources which is abundantly available either in land or at sea. The wind energy can be converted into electrical energy using wind turbines or wind energy conversion systems. However, the exploration and utilization of wind energy potential in Indonesia is not optimal yet. Therefore, in the present study, the performance of a NACA2420 airfoil as wind turbine blade is evaluated. The main objective of the present research is to determine the optimum angle of the propeller blade that can deliver the most optimum performance. In order to achieve the objectives, the wind turbine blade model was tested using a wind tunnel at wind speeds varying from 2 to 9 m/s. From this research, it is demonstrated that the tunnel has helped to increase the wind speed. The maximum wind speed was generated from the tunnel when the fan distance was 1.1 m. In addition, the experiment was also carried out by varying the pitch angles to be 00, 50, 80, 150, and 300. From the test measurements, it was found that the pitch angle of 50 produces the most optimal power which was at 221.039 watts with 0.401 of power coefficient.

  11. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2018-01-01

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.

  12. Advanced induction machine model in phase coordinates for wind turbine applications

    DEFF Research Database (Denmark)

    Fajardo, L.A.; Iov, F.; Hansen, Anca Daniela

    2007-01-01

    and the proposed ABC/abc phase coordinate with varying parameters model, in the presence of external faults. The results are promising for protection and control applications of fixed speed active stall controlled wind turbines. This new approach is useful to support control and planning of wind turbines......In this paper an advanced phase coordinates squirrel cage induction machine model with time varying electrical parameters affected by magnetic saturation and rotor deep bar effects, is presented. The model uses standard data sheet for characterization of the electrical parameters, it is developed...... in C-code and interfaced with Matlab/Simulink through an S-Function. The investigation is conducted in the way to study the ride through capability of Squirrel Cage Induction Generators and compares the behavior of the classical DQ0 model, ABC/abc model in phase coordinate with constant parameters...

  13. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    Science.gov (United States)

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  14. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    Directory of Open Access Journals (Sweden)

    Gia Thinh Bui

    2016-06-01

    Full Text Available This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT. The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF. Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  15. Development and Performance Evaluation of Fluted Pumpkin Seed Dehulling Machine

    Directory of Open Access Journals (Sweden)

    M. M. Odewole

    2017-08-01

    Full Text Available A machine for dehulling fluted pumpkin seed (Telfairia occidentalis was developed. The main objective of developing the machine was to provide a better substitute to traditional methods of dehulling the seed which contains edible oil of high medicinal and nutritional values. Traditional methods are full of drudgery, slow, injury prone and would lead to low and poor outputs in terms of quantity and quality of dehulled products. The machine is made of five major parts: the feed hopper (for holding the seeds to be dehulled before getting into the dehulling chamber, dehulling chamber (the part of the machine that impacts forces on seeds thereby causing fractures and opening of seeds coats for the delivery of the oily kernels, discharge unit (exit for oily kernels and seed coats after dehulling, the frame (for structural support and stability of all parts of the machine and electric motor (power source of the machine.The development process involved design of major components (shaft diameter (20 mm, machine velocity (7.59 m/s, power requirement (3hp single phase electric motor and structural support of mild steel angle iron, selection of construction materials and fabrication. ANSYS R14.5 machine design computer software was used to design the shaft and structural support; while other components were designed with conventional design method of using design equations. The machine works on the principle of centrifugal and impact forces. Performance evaluation was carried out after fabrication and 87.26%, 2.83g/s, 8.9% and 3.84%were obtained for dehulling efficiency, throughput capacity, percentage partially dehulled and percentage undehulled respectively.

  16. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    Science.gov (United States)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  17. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    International Nuclear Information System (INIS)

    Mohammed, K G; Ramli, A Q; Amirulddin, U A U

    2013-01-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  18. IMPER: Characterization of the wind field over a large wind turbine rotor - final report; Improved performance

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt Paulsen, U.; Wagner, R.

    2012-01-15

    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization. The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of this project. (Author)

  19. Comparison of wind mill cluster performance: A multicriteria approach

    Energy Technology Data Exchange (ETDEWEB)

    Rajakumar, D.G.; Nagesha, N. [Visvesvaraya Technological Univ., Karnataka (India)

    2012-07-01

    Energy is a crucial input for the economic and social development of any nation. Both renewable and non-renewable energy contribute in meeting the total requirement of the economy. As an affordable and clean energy source, wind energy is amongst the world's fastest growing renewable energy forms. Though there are several wind-mill clusters producing energy in different geographical locations, evaluating their performance is a complex task and not much of literature is available in this area. In this backdrop, an attempt is made in the current paper to estimate the performance of a wind-mill cluster through an index called Cluster Performance Index (CPI) adopting a multi-criteria approach. The proposed CPI comprises four criteria viz., Technical Performance Indicators (TePI), Economic Performance Indicators (EcPI), Environmental Performance Indicators (EnPI), and Sociological Performance Indicators (SoPI). Under each performance criterion a total of ten parameters are considered with five subjective and five objective oriented responses. The methodology is implemented by collecting empirical data from three wind-mill clusters located at Chitradurga, Davangere, and Gadag in the southern Indian State of Karnataka. Totally fifteen different stake holders are consulted through a set of structured researcher administered questionnaire to collect the relevant data in each wind farm. Stake holders involved engineers working in wind farms, wind farm developers, Government officials from energy department and a few selected residential people near the wind farms. The results of the study revealed that Chitradurga wind farm performed much better with a CPI of 45.267 as compared to Gadag (CPI of 28.362) and Davangere (CPI of 19.040) wind farms. (Author)

  20. Mechanical and Thermal Performance of Transverse Flux Machines

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hasan, Iftekhar [University of Akron; Husain, Tausif [University of Akron; Sozer, Yilmaz [University of Akron; Husain, Iqbal [North Carolina State University

    2017-11-07

    This research examines the vibration and thermal characteristics of double-sided flux concentrating Transverse Flux Machines (TFM), designed for direct drive application. Two TFM prototypes with different stator cores, one with Quasi U-Core and the other with E-Core, has been used for the study. 3D Finite Element Analysis (FEA) has been carried out to determine the no-load and with load performance of the TFMs along with their fluctuating axial electromagnetic force densities acting on the stator teeth. The deformation response of the stator cores was observed in the static structural analysis. Thermal analysis for the TFM was performed through FEA based on copper and iron losses in the machine to examine the temperature rise in different parts of the machine structure. Acceleration and noise measurements were experimentally obtained to characterize the vibrational performance of the prototypes.

  1. Wind Plant Performance Prediction (WP3) Project

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anna [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-26

    The methods for analysis of operational wind plant data are highly variable across the wind industry, leading to high uncertainties in the validation and bias-correction of preconstruction energy estimation methods. Lack of credibility in the preconstruction energy estimates leads to significant impacts on project financing and therefore the final levelized cost of energy for the plant. In this work, the variation in the evaluation of a wind plant's operational energy production as a result of variations in the processing methods applied to the operational data is examined. Preliminary results indicate that selection of the filters applied to the data and the filter parameters can have significant impacts in the final computed assessment metrics.

  2. Hardware Implementation and a New Adaptation in the Winding Scheme of Standard Three Phase Induction Machine to Utilize for Multifunctional Operation: A New Multifunctional Induction Machine

    Directory of Open Access Journals (Sweden)

    Mahajan Sagar Bhaskar

    2017-11-01

    Full Text Available In this article a new distinct winding scheme is articulated to utilize three phase induction machines for multifunctional operation. Because of their rugged construction and reduced maintenance induction machines are very popular and well-accepted for agricultural as well as industrial purposes. The proposed winding scheme is used in a three phase induction machine to utilize the machine for multifunctional operation. It can be used as a three-phase induction motor, welding transformer and phase converter. The proposed machine design also works as a single phase induction motor at the same time it works as a three-phase to single phase converter. This new design does not need any kind of special arrangement and can be constructed with small modifications to any standard three-phase induction motor. This modified induction machine is thoroughly tested to determine its efficiency and other parameters and also hardware implementation results are provided in the article, which validate the design and construction.

  3. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The last...... two models investigated use a combination of shell and solid elements. The results from the numerical investigations are compared with measurements from testing of a section of a full-scale wind turbine blade. It is found that only the combined shell/solid models give reliable results in torsion. Both...

  4. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  5. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  6. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  7. Investigation of blade performance of horizontal axis wind turbine ...

    African Journals Online (AJOL)

    The shape of rotor blade plays an important role in determining the overall aerodynamic performance of a horizontal axis wind turbine. In this work, blade is designed for a 5KW horizontal axis wind turbine which is already in market. For designing blade, blade element momentum theory (BEMT) is used and a computer ...

  8. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...

  9. Fabrication and Performance Evaluation of a Thevetia Nut Cracking Machine

    Directory of Open Access Journals (Sweden)

    M. M. Odewole

    2015-06-01

    Full Text Available Thevetia seed contains about 64 percent of non-edible oil in its oily kernel and this oil can be used for various purposes such as biofuel and bio-oil; making of paints, insecticides, cosmetics, lubricants and cooling oil in electrical transformers. The cakes obtained after oil extraction are incorporated on the field as manure. In order to get quality oil kernels from the hard nuts, there is need to properly crack them; this process of cracking is still a great challenge. As result of the aforementioned problem, this work focused on the design, fabrication and performance evaluation of a thevetia nut cracking machine. The machine works based on the principle of attrition force. Some of the parts designed for were diameter of shaft (13 mm solid shaft and length of belt (A55, power required to operate the machine (2.5 hp, speed of operation (9.14 m/s and the appropriate dimension of angle iron bar of 45 mm × 45 mm × 3 mm was used for the structural support. The fabrication was done systematically followed by the performance evaluation of the machine. The result of the overall cracking efficiency and throughput capacity of the machine were evaluated to be 96.65 % and 510 g⁄min respectively.

  10. Alternative methods of estimating hub-height wind speed for small wind turbine performance evaluation

    Science.gov (United States)

    Ziter, Brett

    Current industry standards for evaluating wind turbine power performance require erecting a meteorological mast on site to obtain reference measurements of hub-height wind speed. New considerations for small wind turbines (SWTs) offer the alternative of using an anemometer extending from a lower elevation on the turbine tower. In either case, SWT owners face questions and impracticalities when applying this standard in-situ. Alternative methods of predicting hub-height wind speed for SWT performance evaluation have been assessed experimentally using a Bergey XL.1 SWT collocated with a meteorological mast. Findings indicate that vertical extrapolation can increase the accuracy of tower-mounted anemometry for predicting hub-height wind speed. It is recommended to use concurrent wind speed measurements from anemometers at two elevations to develop site-specific wind shear parameters. Three-dimensional wind speed data from a sonic anemometer were used alongside a theoretical model to determine the optimal location for the topmost anemometer but results were inconclusive.

  11. Application of rare-earth magnets in high-performance electric machines

    International Nuclear Information System (INIS)

    Ramsden, V.S.

    1998-01-01

    Some state of the art developments of high-performance machines using rare-earth magnets are reviewed with particular examples drawn from a number of novel machine designs developed jointly by the Faculty of Engineering, University of Technology, Sydney (UTS) and CSIRO Telecommunications and Industrial Physics. These designs include an 1800 W, 1060 rev/min, 98% efficient solar car in-wheel motor using a Halbach magnet array, axial flux, and ironless winding; a 1200 W, 3000 rev/min, 91% efficient solar-powered, water-filled, submersible, bore-hole pump motor using a surface magnet rotor; a 500 W, 10000 rev/min, 87% efficient, oil-filled, oil-well tractor motor using a 2-pole cylindrical magnet rotor and slotless winding; a 75 kW, 48000 rev/min, 97% efficient, high-speed compressor drive with 2-pole cylindrical magnet rotor, slotted stator, and refrigerant cooling; and a 20 kW, 211 rev/min, 87% efficient, direct-drive generator for wind turbines with very low starting torque using an outer rotor with surface magnets and a slotted stator. (orig.)

  12. Boxing headguard performance in punch machine tests.

    Science.gov (United States)

    McIntosh, Andrew S; Patton, Declan A

    2015-09-01

    The paper presents a novel laboratory method for assessing boxing headguard impact performance. The method is applied to examine the effects of headguards on head impact dynamics and injury risk. A linear impactor was developed, and a range of impacts was delivered to an instrumented Hybrid III head and neck system both with and without an AIBA (Association Internationale de Boxe Amateur)-approved headguard. Impacts at selected speeds between 4.1 and 8.3 m/s were undertaken. The impactor mass was approximately 4 kg and an interface comprising a semirigid 'fist' with a glove was used. The peak contact forces were in the range 1.9-5.9 kN. Differences in head impact responses between the Top Ten AIBA-approved headguard and bare headform in the lateral and forehead tests were large and/or significant. In the 8.3 m/s fist-glove impacts, the mean peak resultant headform accelerations for bare headform tests was approximately 130 g compared with approximately 85 g in the forehead impacts. In the 6.85 m/s bare headform impacts, mean peak resultant angular head accelerations were in the range of 5200-5600 rad/s(2) and almost halved by the headguard. Linear and angular accelerations in 45° forehead and 60° jaw impacts were reduced by the headguard. The data support the opinion that current AIBA headguards can play an important role in reducing the risk of concussion and superficial injury in boxing competition and training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Semantic Processing Performance of Internet Machine Translation Systems.

    Science.gov (United States)

    Watters, Paul A.; Patel, Malti

    1999-01-01

    Discusses the performance of automatic direct machine translation systems available through the Internet and examines semantic processing errors that result in confusion when the intended meaning of sentences is not correctly translated. Suggests the need for Web-based translation systems that have an explicit cross-linguistic representation of…

  14. Investigations of Cutting Fluid Performance Using Different Machining Operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    2002-01-01

    will get the same performance ranking for different metalworking fluids no matter what machining test is used, when the fluids are of the same type. Results show that this is mostly true for the water-based fluids on austenitic stainless steel while ranking did change depending on the test with straight...

  15. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  16. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  17. Wind turbine power performance verification in complex terrain and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Gjerding, S.; Ingham, P.; Enevoldsen, P.; Kjaer Hansen, J.; Kanstrup Joergensen, H.

    2002-04-01

    The IEC/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard will be divided into four documents. The first one of these is more or less a revision of the existing document on power performance measurements on individual wind turbines. The second one is a power performance verification procedure for individual wind turbines. The third is a power performance measurement procedure of whole wind farms, and the fourth is a power performance measurement procedure for non-grid (small) wind turbines. This report presents work that was made to support the basis for this standardisation work. The work addressed experience from several national and international research projects and contractual and field experience gained within the wind energy community on this matter. The work was wide ranging and addressed 'grey' areas of knowledge regarding existing methodologies, which has then been investigated in more detail. The work has given rise to a range of conclusions and recommendations regarding: guaranties on power curves in complex terrain; investors and bankers experience with verification of power curves; power performance in relation to regional correction curves for Denmark; anemometry and the influence of inclined flow. (au)

  18. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    Science.gov (United States)

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  19. Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Yang

    2016-05-01

    Full Text Available Reliable and quick response fault diagnosis is crucial for the wind turbine generator system (WTGS to avoid unplanned interruption and to reduce the maintenance cost. However, the conditional data generated from WTGS operating in a tough environment is always dynamical and high-dimensional. To address these challenges, we propose a new fault diagnosis scheme which is composed of multiple extreme learning machines (ELM in a hierarchical structure, where a forwarding list of ELM layers is concatenated and each of them is processed independently for its corresponding role. The framework enables both representational feature learning and fault classification. The multi-layered ELM based representational learning covers functions including data preprocessing, feature extraction and dimension reduction. An ELM based autoencoder is trained to generate a hidden layer output weight matrix, which is then used to transform the input dataset into a new feature representation. Compared with the traditional feature extraction methods which may empirically wipe off some “insignificant’ feature information that in fact conveys certain undiscovered important knowledge, the introduced representational learning method could overcome the loss of information content. The computed output weight matrix projects the high dimensional input vector into a compressed and orthogonally weighted distribution. The last single layer of ELM is applied for fault classification. Unlike the greedy layer wise learning method adopted in back propagation based deep learning (DL, the proposed framework does not need iterative fine-tuning of parameters. To evaluate its experimental performance, comparison tests are carried out on a wind turbine generator simulator. The results show that the proposed diagnostic framework achieves the best performance among the compared approaches in terms of accuracy and efficiency in multiple faults detection of wind turbines.

  20. Screening of epoxy systems for high performance filament winding applications

    Science.gov (United States)

    Chiao, T. T.; Jessop, E. S.; Penn, L.

    1975-01-01

    Several promising epoxy systems for high performance filament winding applications are described. Viscosities, gel times, and cast resin tensile behavior are given, as well as heat deflection under load and water absorption measurements.

  1. A Performance Survey on Stack-based and Register-based Virtual Machines

    OpenAIRE

    Fang, Ruijie; Liu, Siqi

    2016-01-01

    Virtual machines have been widely adapted for high-level programming language implementations and for providing a degree of platform neutrality. As the overall use and adaptation of virtual machines grow, the overall performance of virtual machines has become a widely-discussed topic. In this paper, we present a survey on the performance differences of the two most widely adapted types of virtual machines - the stack-based virtual machine and the register-based virtual machine - using various...

  2. Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2016-01-01

    Full Text Available Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD, which reduces the effect of noise on the wind speed data; (II artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM model are optimized by the cuckoo search (CS algorithm; (III parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.

  3. Finite Element Analysis and Experimental Validation of Eddy Current Losses in Permanent Magnet Machines with Fractional-Slot Concentrated Windings

    NARCIS (Netherlands)

    Wang, X.; Liu, D.; Lahaye, D.J.P.; Polinder, H.; Ferreira, J.A.

    2016-01-01

    Permanent-magnet machines with fractional slot concentrated windings are easy to manufacture. Their popularity therefore is steadily increasing. Without a proper design, however, the induced eddy-current losses in the solid rotor get rather high. The modeling and the prediction of eddy-current

  4. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  5. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-01-01

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  6. Impact of equalizing currents on losses and torque ripples in electrical machines with fractional slot concentrated windings

    Science.gov (United States)

    Toporkov, D. M.; Vialcev, G. B.

    2017-10-01

    The implementation of parallel branches is a commonly used manufacturing method of the realizing of fractional slot concentrated windings in electrical machines. If the rotor eccentricity is enabled in a machine with parallel branches, the equalizing currents can arise. The simulation approach of the equalizing currents in parallel branches of an electrical machine winding based on magnetic field calculation by using Finite Elements Method is discussed in the paper. The high accuracy of the model is provided by the dynamic improvement of the inductances in the differential equation system describing a machine. The pre-computed table flux linkage functions are used for that. The functions are the dependences of the flux linkage of parallel branches on the branches currents and rotor position angle. The functions permit to calculate self-inductances and mutual inductances by partial derivative. The calculated results obtained for the electric machine specimen are presented. The results received show that the adverse combination of design solutions and the rotor eccentricity leads to a high value of the equalizing currents and windings heating. Additional torque ripples also arise. The additional ripples harmonic content is not similar to the cogging torque or ripples caused by the rotor eccentricity.

  7. Tribological advancements for reliable wind turbine performance.

    Science.gov (United States)

    Kotzalas, Michael N; Doll, Gary L

    2010-10-28

    Wind turbines have had various limitations to their mechanical system reliability owing to tribological problems over the past few decades. While several studies show that turbines are becoming more reliable, it is still not at an overall acceptable level to the operators based on their current business models. Data show that the electrical components are the most problematic; however, the parts are small, thus easy and inexpensive to replace in the nacelle, on top of the tower. It is the tribological issues that receive the most attention as they have higher costs associated with repair or replacement. These include the blade pitch systems, nacelle yaw systems, main shaft bearings, gearboxes and generator bearings, which are the focus of this review paper. The major tribological issues in wind turbines and the technological developments to understand and solve them are discussed within. The study starts with an overview of fretting corrosion, rolling contact fatigue, and frictional torque of the blade pitch and nacelle yaw bearings, and references to some of the recent design approaches applied to solve them. Also included is a brief overview into lubricant contamination issues in the gearbox and electric current discharge or arcing damage of the generator bearings. The primary focus of this review is the detailed examination of main shaft spherical roller bearing micropitting and gearbox bearing scuffing, micropitting and the newer phenomenon of white-etch area flaking. The main shaft and gearbox are integrally related and are the most commonly referred to items involving expensive repair costs and downtime. As such, the latest research and developments related to the cause of the wear and damage modes and the technologies used or proposed to solve them are presented.

  8. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  9. Performance evaluation of coherent Ising machines against classical neural networks

    Science.gov (United States)

    Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa

    2017-12-01

    The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.

  10. Performance of a multistage depressed collector with machined titanium electrodes

    Science.gov (United States)

    Ramins, Peter; Ebihara, Ben T.

    1989-01-01

    The performance of a multistage depressed collector (MDC) with machined titanium electrodes was evaluated in conjunction with an 800-W, 8- to 18-GHz travelling-wave tube (TWT) and was compared with the performances of geometrically identical copper and isotropic graphite electrode MDC's operated with the same TWT. The titanium electrode MDC produced a modest (about 3 percent) improvement in the MDC and the TWT overall efficiencies as compared with the copper electrode MDC, but its performance was substantially lower than that of the isotropic graphite electrode MDC.

  11. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  12. Design Performance Standards for Large Scale Wind Farms

    DEFF Research Database (Denmark)

    Gordon, Mark

    2009-01-01

    This document presents, discusses and provides a general guide on electrical performance standard requirements for connection of large scale onshore wind farms into HV transmission networks. Experiences presented here refer mainly to technical requirements and issues encountered during the process...... of connection into the Eastern Australian power system under the Rules and guidelines set out by AEMC and NEMMCO (AEMO). Where applicable some international practices are also mentioned. Standards are designed to serve as a technical envelope under which wind farm proponents design the plant and maintain...... ongoing technical compliance of the plant during its operational lifetime. This report is designed to provide general technical information for the wind farm connection engineer to be aware of during the process of connection, registration and operation of wind power plants interconnected into the HV TSO...

  13. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    DEFF Research Database (Denmark)

    Hunter, R.; Friis Pedersen, Troels; Dunbabin, P.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard forwind turbine power performance testing...... standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support offundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle...

  14. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  15. Pavement Subgrade Performance Study in the Danish Road Testing Machine

    DEFF Research Database (Denmark)

    Ullidtz, Per; Ertman Larsen, Hans Jørgen

    1997-01-01

    Most existing pavement subgrade criteria are based on the AASHO Road Test, where only one material was tested and for only one climatic condition. To study the validity of these criteria and to refine the criteria a co-operative research program entitled the "International Pavement Subgrade...... Performance Study" was sponsored by the FHWA with American, Finnish and Danish partners. This paper describes the first test series which was carried out in the Danish Road Testing Machine (RTM).The first step in this program is a full scale test on an instrumented pavement in the Danish Road Testing Machine....... Pressure gauges and strain cells were installed in the upper part of the subgrade, for measuring stresses and strains in all three directions. During and after construction FWD testing was carried out to evaluate the elastic parameters of the materials. These parameters were then used with the theory...

  16. Detection of Wind Turbine Power Performance Abnormalities Using Eigenvalue Analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Sweeney, Christian Walsted; Marhadi, Kun Saptohartyadi

    2014-01-01

    Condition monitoring of wind turbines is a field of continu- ous research and development as new turbine configurations enter into the market and new failure modes appear. Systems utilising well established techniques from the energy and in- dustry sector, such as vibration analysis......, are commercially available and functioning successfully in fixed speed and vari- able speed turbines. Power performance analysis is a method specifically applicable to wind turbines for the detection of power generation changes due to external factors, such as ic- ing, internal factors, such as controller...... malfunction, or delib- erate actions, such as power de-rating. In this paper, power performance analysis is performed by sliding a time-power window and calculating the two eigenvalues corresponding to the two dimensional wind speed - power generation dis- tribution. The power is classified into five bins...

  17. Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission

    Science.gov (United States)

    Xu, Duo; Offner, Stella S. R.

    2017-12-01

    Stellar feedback created by radiation and winds from massive stars plays a significant role in both physical and chemical evolution of molecular clouds. This energy and momentum leaves an identifiable signature (“bubbles”) that affects the dynamics and structure of the cloud. Most bubble searches are performed “by eye,” which is usually time-consuming, subjective, and difficult to calibrate. Automatic classifications based on machine learning make it possible to perform systematic, quantifiable, and repeatable searches for bubbles. We employ a previously developed machine learning algorithm, Brut, and quantitatively evaluate its performance in identifying bubbles using synthetic dust observations. We adopt magnetohydrodynamics simulations, which model stellar winds launching within turbulent molecular clouds, as an input to generate synthetic images. We use a publicly available three-dimensional dust continuum Monte Carlo radiative transfer code, HYPERION, to generate synthetic images of bubbles in three Spitzer bands (4.5, 8, and 24 μm). We designate half of our synthetic bubbles as a training set, which we use to train Brut along with citizen-science data from the Milky Way Project (MWP). We then assess Brut’s accuracy using the remaining synthetic observations. We find that Brut’s performance after retraining increases significantly, and it is able to identify yellow bubbles, which are likely associated with B-type stars. Brut continues to perform well on previously identified high-score bubbles, and over 10% of the MWP bubbles are reclassified as high-confidence bubbles, which were previously marginal or ambiguous detections in the MWP data. We also investigate the influence of the size of the training set, dust model, evolutionary stage, and background noise on bubble identification.

  18. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods

    International Nuclear Information System (INIS)

    Zhang, Yachao; Liu, Kaipei; Qin, Liang; An, Xueli

    2016-01-01

    Highlights: • Variational mode decomposition is adopted to process original wind power series. • A novel combined model based on machine learning methods is established. • An improved differential evolution algorithm is proposed for weight adjustment. • Probabilistic interval prediction is performed by quantile regression averaging. - Abstract: Due to the increasingly significant energy crisis nowadays, the exploitation and utilization of new clean energy gains more and more attention. As an important category of renewable energy, wind power generation has become the most rapidly growing renewable energy in China. However, the intermittency and volatility of wind power has restricted the large-scale integration of wind turbines into power systems. High-precision wind power forecasting is an effective measure to alleviate the negative influence of wind power generation on the power systems. In this paper, a novel combined model is proposed to improve the prediction performance for the short-term wind power forecasting. Variational mode decomposition is firstly adopted to handle the instability of the raw wind power series, and the subseries can be reconstructed by measuring sample entropy of the decomposed modes. Then the base models can be established for each subseries respectively. On this basis, the combined model is developed based on the optimal virtual prediction scheme, the weight matrix of which is dynamically adjusted by a self-adaptive multi-strategy differential evolution algorithm. Besides, a probabilistic interval prediction model based on quantile regression averaging and variational mode decomposition-based hybrid models is presented to quantify the potential risks of the wind power series. The simulation results indicate that: (1) the normalized mean absolute errors of the proposed combined model from one-step to three-step forecasting are 4.34%, 6.49% and 7.76%, respectively, which are much lower than those of the base models and the hybrid

  19. Effects of structure flexibility on horizontal axis wind turbine performances

    Science.gov (United States)

    Coiro, D. P.; Daniele, E.; Scherillo, F.

    2013-10-01

    This work illustrates the effects of flexibility of rotor blades and turbine tower on the performances of an horizontal axis wind turbine (HAWT) designed by our ADAG research group, by means of several example applied on a recent project for a active pitch controlled upwind 60 kW HAWT. The influence of structural flexibility for blade only, tower only and blade coupled with tower configuration is investigated using an aero-elastic computer-aided engineering (CAE) tool for horizontal axis wind turbines named FAST developed at National Renewable Energy Laboratory (NREL) of USA. For unsteady inflow conditions in front of the isolated HAWT the performances in rigid and flexible operation mode are computed and compared in order to illustrate the limitation included within a classical rigid body approach to wind turbine simulation.

  20. Machine Learing Applications on a Radar Wind Profiler Deployment During the ARM GoAmazon2014/5 Campaign

    Science.gov (United States)

    Giangrande, S. E.; WANG, D.; Hardin, J. C.; Mitchell, J.

    2017-12-01

    As part of the 2 year Department of Energy Atmospheric Radiation Measurement (ARM) Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, the ARM Mobile Facility (AMF) collected a unique set of observations in a region of strong climatic significance near Manacapuru, Brazil. An important example for the beneficial observational record obtained by ARM during this campaign was that of the Radar Wind Profiler (RWP). This dataset has been previously documented for providing critical convective cloud vertical air velocity retrievals and precipitation properties (e.g., calibrated reflectivity factor Z, rainfall rates) under a wide variety of atmospheric conditions. Vertical air motion estimates to within deep convective cores such as those available from this RWP system have been previously identified as critical constraints for ongoing global climate modeling activities and deep convective cloud process studies. As an extended deployment within this `green ocean' region, the RWP site and collocated AMF surface gauge instrumentation experienced a unique hybrid of tropical and continental precipitation conditions, including multiple wet and dry season precipitation regimes, convective and organized stratiform storm dynamics and contributions to rainfall accumulation, pristine aerosol conditions of the locale, as well as the effects of the Manaus, Brazil, mega city pollution plume. For hydrological applications and potential ARM products, machine learning methods developed using this dataset are explored to demonstrate advantages in geophysical retrievals when compared to traditional methods. Emphasis is on performance improvements when providing additional information on storm structure and regime or echo type classifications. Since deep convective cloud dynamic insights (core updraft/downdraft properties) are difficult to obtain directly by conventional radars that also observe radar reflectivity factor profiles similar to RWP systems, we also

  1. Demonstration of short-range wind lidar in a high-performance wind tunnel

    OpenAIRE

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm; Harris, Michael; Mikkelsen, Torben

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good cor...

  2. Efficiency of lung ventilation for people performing wind instruments

    Directory of Open Access Journals (Sweden)

    Anna Brzęk

    2016-08-01

    Full Text Available Background: Wind instruments musicians are particularly prone to excessive respiratory efforts. Prolonged wind instruments performing may lead to changes in respiratory tracts and thus to respiratory muscles overload. It may result in decreasing lung tissue pliability and, as a consequence, in emphysema. Aim of the research has been to describe basic spirometric parameters for wind players and causes of potential changes. Material and Methods: Slow and forced spirometry with the use of Micro Lab Viasys (Micro Medical, Great Britain was conducted on 31 wind musicians (group A. A survey concerning playing time and frequency, weight of instruments, and education on diaphragmatic breathing was conducted. The control group included 34 healthy persons at similar age (group B. The results were statistically described using Excel and Statistica programmes. Results: The respiratory parameters were within the range of physiological norms and forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC exceeded in both groups the values of 100%. Forced vital capacity and expiratory vital capacity (EVC values were significantly lower in the group of musicians than in the control group (p < 0.001. In 45% the group A used diaphragmatic breathing, in 31% of examinees mixed respiratory tract was observed. The significant discrepancy of individual parameters was obtained regarding age and the length of time when performing wind instrument. Conclusions: Spirometric parameters relative to standards may prove a good respiratory capacity. Peak expiratory flow (PEF and FEV1 may indicate that a proper technique of respiration during performance was acquired. The length of time when performing wind instrument may influence parameters of dynamic spirometry. Med Pr 2016;67(4:427–433

  3. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  4. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  5. Development of a representative model of a wind turbine in order to study the installation of several machines on a wind park

    International Nuclear Information System (INIS)

    Jourieh, M.

    2007-12-01

    This thesis is devoted to the study of aerodynamics in wind turbines. It is divided into two main parts, one is experimental, and the other deals with modelling and numerical simulation. The velocity field downstream from a three-bladed wind turbine with a horizontal axis is explored in the wind tunnel at ENSAM-Paris. Two measurement techniques are used: hot wire anemometry and Particle Image Velocimetry (PIV). Experimental work gives a clear idea of the structure of the near wake and provides useful data to validate the numerical simulations and the hybrid models which are studied in this thesis. In the work concerning numerical simulation, two hybrid models are defined and implemented: a model of actuator disc and a model of actuator cylinder, coupled with a simulation based on the numerical resolution of the Navier-Stokes equations. These models are validated by the power of the wind turbine and on the velocity field in the near wake of the rotor. The numerical results are compared with the experimental data resulting from the tests carried out by the NREL for NREL phase II and VI cases. The experimental and numerical velocity fields are also compared in the wake of a wind turbine Rutland 503. In both validation cases, power and wake, the experimental data are in accordance with the results provided by the hybrid models. After this validation, the interaction between several wind turbines is studied and quantified. The tested hybrid models are also used to study the interaction between identical wind turbines placed one behind the other. The obtained results highlight the effect of spacing between the machines as well as the effect of free stream velocity. (author)

  6. Employment of kernel methods on wind turbine power performance assessment

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Sweeney, Christian Walsted; Marhadi, Kun S.

    2015-01-01

    A power performance assessment technique is developed for the detection of power production discrepancies in wind turbines. The method employs a widely used nonparametric pattern recognition technique, the kernel methods. The evaluation is based on the trending of an extracted feature from...

  7. Optimizing small wind turbine performance in battery charging applications

    Science.gov (United States)

    Drouilhet, Stephen; Muljadi, Eduard; Holz, Richard; Gevorgian, Vahan

    1995-05-01

    Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

  8. Steady-state Performance Analysis of Collector System Designs for Large-scale Offshore Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Quinonez-Varela, G.; Ault, G.W.; McDonald, J.R. [Institute for Energy and Environment, University of Strathclyde, 204 George St., Glasgow G1 1XW, Scotland (United Kingdom)

    2006-07-01

    This paper presents a comparative analysis of the steady-state performance of various designs for the electrical collector system of offshore wind farms and discusses the advantages and disadvantages of each of these designs and their application within large-scale offshore developments. A series of power systems studies were carried out for a proposed 1 GW wind farm off the northeast coast of Scotland, with the plant set to generate at a range of power outputs in order to investigate the impact on the loading and losses of the collector system. The impact on voltage level changes on the busbars within the wind farm under various conditions of reactive power demand, i.e. considering both typical squirrel-cage machines (with typically low lagging power factors) and modern doubly-fed generators (with capability to vary power factor in lagging/leading ranges), was also investigated. In addition, for collector system designs with redundant cables, contingency conditions of losing one of the cables to the hub end were investigated. The overall results have lead to consider the application of 'single-sided ring' designs for large-scale offshore wind farms since it achieves fewer losses and also provides greater adequacy and reliability. Finally, the authors introduce an alternative design based on 'single-sided ring' arrangement which seems a more suitable option taking into account potential economic barriers from the original one-to-one design.

  9. Effect of high wind conditions on AHX performance for PFBR

    International Nuclear Information System (INIS)

    Goyal, P.; Datta, Anu; Verma, Vishnu; Singh, R.K.

    2013-05-01

    In case of normal shut down or station blackout condition the core decay heat is removed by Safety Grade Decay Heat Removal System (SGDHRS) in PFBR. The Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. SGDHRS remove decay heat from the core and dissipate it into the environment with the help of Air Heat Exchanger (AHX). SGDHRS consists of four redundant numbers of totally independent circuits capable of removing decay heat from the hot pool through natural convection in the primary and intermediate sodium sides as well as in the air side. Each circuit consists of a sodium to sodium heat exchanger (DHX) and a sodium to AHX connected to intermediate sodium circuit, AHX is located at a higher elevation compared to DHX. AHX is serpentine type finned tube compact heat exchanger with sodium in the tube side and air flowing over finned tubes. A tall stack provides the driving force for the natural convection of air flow through the AHX, when the dampers are opened. The AHX is placed outside of Reactor Control Building (RCB), on the roof of Steam Generator Building. Due to the presence of nearby buildings around the stack, the AHX performance under high wind condition may be affected. A CFD simulation using CFD-ACE+ code has been carried in which effect of high wind condition and nearby building on AHX performance have been studied. For high wind condition various orientation of wind movement was considered for parametric studies. AHX performance for all the cases were compared with the results that obtained for the absence of nearby buildings. A comparative table was prepared to understand how the AHX performance is effected with the high wind condition for various direction and with the presence of nearby building. It was observed that AHX performance is influenced by high wind conditions in most of the cases for with and without presence of nearby building. Hence to ensure the optimal performance of the AHX under high wind conditions its

  10. Performance Prediction of Wind Power Turbine by CAD Analysis

    International Nuclear Information System (INIS)

    Kim, Jongho; Kim, Jongbong; Oh, Younglok

    2013-01-01

    The performance of a vertical-type wind power generator system was predicted by CAD analysis. In the analysis, the reaction torque was calculated for a given rotational speed of the blades. The blade torque of a wind power system was obtained for various rotational speeds, and the generation power was calculated using the obtained torque and the rotational speed. The optimum generator specification, therefore, could be decided using the relationship between the generated power and the rotational speeds. The effects of the number of blades and blade shapes on the generation power were also investigated. Finally, the analysis results were compared with the experimental results

  11. Performance assessment of Portuguese wind farms: Ownership and managerial efficiency

    International Nuclear Information System (INIS)

    Pestana Barros, Carlos; Sequeira Antunes, Olinda

    2011-01-01

    This paper analyzes ownership and unobserved managerial ability as factors affecting the performance of a representative sample of Portuguese wind farms by means of frontier models. These farms are ranked according to their technical efficiency during the period 2004-2008 and homogenous and heterogeneous variables are disentangled in the cost function, which leads us to advise the implementation of common policies as well as policies by segments. Economic implications arising from the study are also considered. - Research highlights: → Wind farms are heterogeneous displaying distinct ownership and managerial characteristics that affect efficiency. → Managerial practices has a positive impact on the efficiency. → Ownership has a positive impact on the efficiency. Large wind farms are more efficient.

  12. A kernel plus method for quantifying wind turbine performance upgrades

    KAUST Repository

    Lee, Giwhyun

    2014-04-21

    Power curves are commonly estimated using the binning method recommended by the International Electrotechnical Commission, which primarily incorporates wind speed information. When such power curves are used to quantify a turbine\\'s upgrade, the results may not be accurate because many other environmental factors in addition to wind speed, such as temperature, air pressure, turbulence intensity, wind shear and humidity, all potentially affect the turbine\\'s power output. Wind industry practitioners are aware of the need to filter out effects from environmental conditions. Toward that objective, we developed a kernel plus method that allows incorporation of multivariate environmental factors in a power curve model, thereby controlling the effects from environmental factors while comparing power outputs. We demonstrate that the kernel plus method can serve as a useful tool for quantifying a turbine\\'s upgrade because it is sensitive to small and moderate changes caused by certain turbine upgrades. Although we demonstrate the utility of the kernel plus method in this specific application, the resulting method is a general, multivariate model that can connect other physical factors, as long as their measurements are available, with a turbine\\'s power output, which may allow us to explore new physical properties associated with wind turbine performance. © 2014 John Wiley & Sons, Ltd.

  13. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  14. Performance evaluation of fractional-slot tubular permanent magnet machines with low space harmonics

    Directory of Open Access Journals (Sweden)

    Wang Jiabin

    2015-12-01

    Full Text Available This paper evaluates the perforamnce of fractional-slot per pole winding configurations for tubular permanent magnet (PM machines that can effectively eliminate the most undesirable space harmonics in a simple and cost-effective manner. The benefits of the proposed machine topology winding configurations are illustrated through comparison with 9-slot, 10-pole tubular PM machine developed for a free piston energy converter under the same specification and volumetric constraints. It has been shown that the proposed machine topology results in more than 7 times reduction in the eddy current loss in the mover magnets and supporting tube, and hence avoids potential problem of excessive mover temperature and risk of demagnetization.

  15. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  16. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    Science.gov (United States)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  17. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    International Nuclear Information System (INIS)

    Shaharun, M A; Yusoff, A R; Reza, M S; Jalal, K A

    2012-01-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  18. Comparative Performance Analysis of Machine Learning Techniques for Software Bug Detection

    OpenAIRE

    Saiqa Aleem; Luiz Fernando Capretz; Faheem Ahmed

    2015-01-01

    Machine learning techniques can be used to analyse data from different perspectives and enable developers to retrieve useful information. Machine learning techniques are proven to be useful in terms of software bug prediction. In this paper, a comparative performance analysis of different machine learning techniques is explored f or software bug prediction on public available data sets. Results showed most of the mac ...

  19. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...

  20. Setting Organizational Key Performance Indicators in the Precision Machine Industry

    Directory of Open Access Journals (Sweden)

    Mei-Hsiu Hong

    2015-11-01

    Full Text Available The aim of this research is to define (or set organizational key performance indicators (KPIs in the precision machine industry using the concept of core competence and the supply chain operations reference (SCOR model. The research is conducted in three steps. In the first step, a benchmarking study is conducted to collect major items of core competence and to group them into main categories in order to form a foundation for the research. In the second step, a case company questionnaire and interviews are conducted to identify the key factors of core competence in the precision machine industry. The analysis is conducted based on four dimensions and hence several analysis rounds are completed. Questionnaire data is analyzed with grey relational analysis (GRA and resulted in 5–6 key factors in each dimension or sub-dimension. Based on the conducted interviews, 13 of these identified key factors are separated into one organization objective, five key factors of core competence and seven key factors of core ability. In the final step, organizational KPIs are defined (or set for the five identified key factors of core competence. The most competitive core abilities for each of the five key factors are established. After that, organizational KPIs are set based on the core abilities within 3 main categories of KPIs (departmental, office grade and hierarchal for each key factor. The developed KPI system based on organizational objectives, core competences, and core abilities allow enterprises to handle dynamic market demand and business environments, as well as changes in overall corporate objectives.

  1. CFD Analysis On The Performance Of Wind Turbine With Nozzles

    Directory of Open Access Journals (Sweden)

    Chunkyraj Kh

    2015-08-01

    Full Text Available In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and pressure distribution across the nozzle will be studied. Experiments were conducted on the Wind turbine with nozzles and the corresponding power output at different air speed and different size of nozzles were calculated. Different shapes and dimensions with special contours and profiles of nozzles were studied. It was observed that the special contour nozzles have superior outlet velocity and low pressure at nozzle exit the design has maximum Kinetic energy. These indicators conclude that the contraction designed with the new profile is a good enhancing of the nozzle performance.

  2. Effect of Blade Roughness on Transition and Wind Turbine Performance.

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, Robert S. [Texas A & M Univ., College Station, TX (United States); White, E. B. [Texas A & M Univ., College Station, TX (United States)

    2015-09-01

    The real-world effect of accumulated surface roughness on wind-turbine power production is not well understood. To isolate specific blade roughness features and test their effect, field measurements of turbine-blade roughness were made and simulated on a NACA 633-418 airfoil in a wind tunnel. Insect roughness, paint chips, and erosion were characterized then manufactured. In the tests, these roughness configurations were recreated as distributed roughness, a forward-facing step, and an eroded leading edge. Distributed roughness was tested in three heights and five densities. Chord Reynolds number was varied between 0:8 to 4:8 × 106. Measurements included lift, drag, pitching moment, and boundary-layer transition location. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, the lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, natural transition is replaced by bypass transition. The critical roughness Reynolds number varies between 178 to 318, within the historical range. At a chord Reynolds number of 3:2 × 106, the maximum lift-to-drag ratio decreases 40% for 140 μm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss of an in-service wind turbine.

  3. Performance evaluation of a five-phase modular external rotor PM machine with different rotor poles

    Directory of Open Access Journals (Sweden)

    A.S. Abdel-Khalik

    2012-12-01

    Full Text Available The performance of fault-tolerant modular permanent magnet (PM machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low order harmonics in the stator magneto motive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole (SPP ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional phase model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.

  4. Aerodynamic performance of wind turbine under different yaw angles

    DEFF Research Database (Denmark)

    Shi, Yali; Zuo, Hongmei; Yang, Hua

    2015-01-01

    reduced. When the yaw angle is within 30°, the relative error of axial load coefficients is in the range of ±5% and the relative error of tangential load coefficients is in the range of ±15%. CFD method is higher than BEM (blade element momentum) method in forecasting accuracy of dynamic load calculation......A typical dynamic characteristic of horizontal axis wind turbine shows up under yaw condition. Prediction accuracy is low for momentum-blade element theory and related engineering prediction model. In order to improve the prediction accuracy of dynamic load characteristics, the whole wind turbine......×10-6 m to ensure the first dimensionless size near the wall Y+load on the airfoil in the 60% section of blades, which respectively are 6 572 451 and 2 961 385. The aerodynamic performance of models under rated condition...

  5. Simple, parallel, high-performance virtual machines for extreme computations

    International Nuclear Information System (INIS)

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  6. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    Science.gov (United States)

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  7. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  8. Reference Manual for the System Advisor Model's Wind Power Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  9. Performance Comparison of Two Topologies Double-Fed Brushless Machine with 36 Slots for Low-Speed Applications

    Directory of Open Access Journals (Sweden)

    Yue Hao

    2014-12-01

    Full Text Available The performances of two topologies of low-speed double-fed brushless machine (DFBM with fractional slot windings are quantitatively compared and analyzed using two-dimensional (2-D finite element method (FEM. To fairly compare the torque capability and power efficiency of different DFBMs, the investigated DFBMs have the same outer diameter, the same axial stack length and the same iron core materials, and some comparison rules are presented. In order to maximize the torque density, several important structure parameters are optimized. The results of this paper reveal the torque density levels and power density levels of two kinds of DFBMs.

  10. Evaluating the impact of electrical grid connection on the wind turbine performance for Hofa wind farm scheme in Jordan

    International Nuclear Information System (INIS)

    Abderrazzaq, M.H.; Aloquili, O.

    2008-01-01

    The growth of wind energy is attributed to the development of turbine size and the increase in number of units in each wind farm. The current modern design of large wind turbines (WT) is directed towards producing efficient, sensitive and reliable units. To achieve this goal, modern turbines are equipped with several devices which are operated with highly advanced electronic circuits. Sensing instruments, measuring devices and control processes of major systems and subsystems are based on various types of electronic apparatus and boards. These boards are very sensitive to the voltage variations caused by abnormal conditions in both the turbine itself and the electric grid to which the wind farm is connected. This paper evaluates wind farm records and proposes a number of methods to overcome such obstacles associated with the design of large wind turbines. Several cases of grid abnormality such as sudden feeder interruption due to the short circuit, network disconnection, voltage variation and circuit breaker opening affecting wind turbines operation and availability are classified and presented. The weight of such impact is determined for each type of disturbances associated with electronic problems in the wind turbine. Wind turbine performance at Hofa wind farm scheme in Jordan is taken as a case study

  11. Performance of spanish wind turbines; Estadisticas de produccion de parques eolicos en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Lago, C.

    1995-07-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1994, going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author)

  12. Performance of a Horizontal Triple Cylinder Type Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2011-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Pulping process usually uses a machine which constructed by wood or metal materials. A horizontal single cylinder type of fresh coffee cherries pulping machine is the most popular machine in coffee processing. One of the weaknesses of a horizontal single cylinder type of fresh coffee cherries pulping machine is higher in broken beans. Broken bean is one of mayor aspects in defect system that contribute to low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type of fresh coffee cherries pulping machine which resulted in 12.6—21.4% of broken beans. To reduce percentage of broken beans, Indonesian Coffee and Cocoa Research Institute has developed and tested a horizontal triple cylinder type of fresh coffee cherries pulping machine. Material tested was fresh mature Robusta coffee cherries, 60—65% (wet basis moisture content; has classified on 3 levels i.e. unsorted, small and medium, and clean from metal and foreign materials. The result showed that the machine produced 6,340 kg/h in optimal capacity for operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 55.5% whole parchment coffee, 3.66% broken beans, and 1% beans in wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  13. A Study on the Optimization Performance of Fireworks and Cuckoo Search Algorithms in Laser Machining Processes

    Science.gov (United States)

    Goswami, D.; Chakraborty, S.

    2014-11-01

    Laser machining is a promising non-contact process for effective machining of difficult-to-process advanced engineering materials. Increasing interest in the use of lasers for various machining operations can be attributed to its several unique advantages, like high productivity, non-contact processing, elimination of finishing operations, adaptability to automation, reduced processing cost, improved product quality, greater material utilization, minimum heat-affected zone and green manufacturing. To achieve the best desired machining performance and high quality characteristics of the machined components, it is extremely important to determine the optimal values of the laser machining process parameters. In this paper, fireworks algorithm and cuckoo search (CS) algorithm are applied for single as well as multi-response optimization of two laser machining processes. It is observed that although almost similar solutions are obtained for both these algorithms, CS algorithm outperforms fireworks algorithm with respect to average computation time, convergence rate and performance consistency.

  14. Non-conventional rule of making a periodically varying different-pole magnetic field in low-power alternating current electrical machines with using ring coils in multiphase armature winding

    Science.gov (United States)

    Plastun, A. T.; Tikhonova, O. V.; Malygin, I. V.

    2018-02-01

    The paper presents methods of making a periodically varying different-pole magnetic field in low-power electrical machines. Authors consider classical designs of electrical machines and machines with ring windings in armature, structural features and calculated parameters of magnetic circuit for these machines.

  15. An offshore wind farm with dc grid connection and its performance under power system transients

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2011-01-01

    The continuous increase in wind power penetration level brings new requirements for wind turbine integration into the network. The grid code requires that after clearance of an external short-circuit fault, grid-connected wind turbines should restore their normal operation without power loss caused...... by disconnections. This paper presents a transient performance study of an offshore wind farm with HVDC transmission for grid connection, where the wind turbines in the offshore wind farm are also connected with dc collection network. A power-reduction control strategy (PRCS) for transient performance improvement...... is proposed for the offshore wind farm that allows it to withstand severe voltage dips. A simulation model of a 400 MW offshore wind farm developed in PSCAD/EMTDC is presented. The transient performance of the offshore wind farm is studied, and the results show the effectiveness of the proposed control...

  16. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    Science.gov (United States)

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  17. Application of Machine Learning Algorithms for the Query Performance Prediction

    Directory of Open Access Journals (Sweden)

    MILICEVIC, M.

    2015-08-01

    Full Text Available This paper analyzes the relationship between the system load/throughput and the query response time in a real Online transaction processing (OLTP system environment. Although OLTP systems are characterized by short transactions, which normally entail high availability and consistent short response times, the need for operational reporting may jeopardize these objectives. We suggest a new approach to performance prediction for concurrent database workloads, based on the system state vector which consists of 36 attributes. There is no bias to the importance of certain attributes, but the machine learning methods are used to determine which attributes better describe the behavior of the particular database server and how to model that system. During the learning phase, the system's profile is created using multiple reference queries, which are selected to represent frequent business processes. The possibility of the accurate response time prediction may be a foundation for automated decision-making for database (DB query scheduling. Possible applications of the proposed method include adaptive resource allocation, quality of service (QoS management or real-time dynamic query scheduling (e.g. estimation of the optimal moment for a complex query execution.

  18. The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy

    Science.gov (United States)

    Kaynak, Yusuf; Karaca, Haluk E.; Noebe, Ronald D.; Jawahir, I. S.

    2015-06-01

    Poor machinability with conventional machining processes is a major shortcoming that limits the manufacture of NiTi components. To better understand the effects of phase state on the machining performance of NiTi alloys, cutting temperature, tool-wear behavior, cutting force components, tool-chip contact length, chip thickness, and machined surface quality data were generated from a NiTi alloy using precooled cryogenic, dry, minimum quantity lubrication (MQL), and preheated machining conditions. Findings reveal that machining NiTi in the martensite phase, which was achieved through precooled cryogenic machining, profoundly improved the machining performance by reducing cutting force components, notch wear, and surface roughness. Machining in the austenite state, achieved through preheating, did not provide any benefit over dry and MQL machining, and these processes were, in general, inferior to cryogenic machining in terms of machining performance, particularly at higher cutting speeds.

  19. Power Performance Verification of a Wind Farm Using the Friedman's Test.

    Science.gov (United States)

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L

    2016-06-03

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.

  20. Power Performance Verification of a Wind Farm Using the Friedman’s Test

    Science.gov (United States)

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.

    2016-01-01

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628

  1. Power Performance Verification of a Wind Farm Using the Friedman’s Test

    Directory of Open Access Journals (Sweden)

    Wilmar Hernandez

    2016-06-01

    Full Text Available In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.

  2. Enhancing Radio Access Network Performance over LTE-A for Machine-to-Machine Communications under Massive Access

    Directory of Open Access Journals (Sweden)

    Fatemah Alsewaidi

    2016-01-01

    Full Text Available The expected tremendous growth of machine-to-machine (M2M devices will require solutions to improve random access channel (RACH performance. Recent studies have shown that radio access network (RAN performance is degraded under the high density of devices. In this paper, we propose three methods to enhance RAN performance for M2M communications over the LTE-A standard. The first method employs a different value for the physical RACH configuration index to increase random access opportunities. The second method addresses a heterogeneous network by using a number of picocells to increase resources and offload control traffic from the macro base station. The third method involves aggregation points and addresses their effect on RAN performance. Based on evaluation results, our methods improved RACH performance in terms of the access success probability and average access delay.

  3. Wind data for wind driven plant. [site selection for optimal performance

    Science.gov (United States)

    Stodhart, A. H.

    1973-01-01

    Simple, averaged wind velocity data provide information on energy availability, facilitate generator site selection and enable appropriate operating ranges to be established for windpowered plants. They also provide a basis for the prediction of extreme wind speeds.

  4. Performance Analysis of an Island Power System Including Wind Turbines Operating under Random Wind Speed

    OpenAIRE

    Meng-Jen Chen; Yu-Chi Wu; Guo-Tsai Liu; Sen-Feng Lin

    2013-01-01

    With continuous rise of oil price, how to develop alternative energy source has become a hot topic around the world. This study discussed the dynamic characteristics of an island power system operating under random wind speed lower than nominal wind speeds of wind turbines. The system primarily consists of three diesel engine power generation systems, three constant-speed variable-pitch wind turbines, a small hydraulic induction generation system, and lumped static loads. Detailed models b...

  5. Performance of Cooled Cone Grinding Machine in Cocoa Cake Processing

    Directory of Open Access Journals (Sweden)

    Hendy Firmanto

    2015-08-01

    Full Text Available The process of cocoa paste pressing has a function to separate the fatty component of cocoa from its cake. Cocoa paste is further processed into cocoa powder using grinding machine for cocoa cake. The cooled cone type of cocoa grinding machine is used to solve the problem of plug in the maschine caused by melting of fat in cocoa cake due to hot effect as a result of friction in the grinding machine. Grinding machine of cocoa has conical form of cylinder for grinding and stator wall wrapped by source of cold and closed with jacket wool. Research was conducted at Kaliwining Experimental Garden of Indonesian Coffee and Cocoa Research Institute (ICCRI using cocoa cake containing 26.75% originated from Forastero type of cocoa seed. The capacity and recovery of the machine was influenced by space between rotor cylinder and stator wall. Grinding machine operated at cooling temperature of 25.5oC and space between rotor – stator 0.9 cm and the capacity of 187.5 kg/hour with recovery of 200 mesh cocoa powder as much as 24%. The maximum  power of machine required  was 2.5 kW with efficiency of  energy transfer of 97%. Results of proximate analysis showed that there was no change of protein content, but protein and carbohydrate content increased after processing, i.e. from 5.70% and 59.82% into 5.80% and 61.89% respectively.Key words : cocoa cake, cooling, grinding, cocoa powder 

  6. Tehachapi Wind Energy Storage Project - Technology Performance Report #3

    Energy Technology Data Exchange (ETDEWEB)

    Pinsky, Naum [Southern California Edison, Rosemead, CA (United States); O' Neill, Lori [Southern California Edison, Rosemead, CA (United States)

    2017-03-31

    The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing system capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.

  7. Performance Evaluation of a Prototyped Breadfruit Seed Dehulling Machine

    Directory of Open Access Journals (Sweden)

    Nnamdi Anosike

    2016-05-01

    Full Text Available The drudgery involved in dehulling breadfruit seed by traditional methods has been highlighted as one of the major problems hindering the realization of the full potential of breadfruit as a field to food material. This paper describes a development in an African breadfruit seed dehulling machine with increased throughput of about 70% above reported machines. The machine consists of a 20 mm diameter shaft, carrying a spiral wound around its circumference (feeder. The feeder provides the required rotational motion and turns a circular disk that rotates against a fixed disk. The two disks can be adjusted to maintain a pre-determined gap for dehulling. An inbuilt drying unit reduces the moisture content of the breadfruit for easy separation of the cotyledon from the endosperm immediately after the dehulling process. The sifting unit that separates the shell from the seed is achieved in this design with an electric fan. The machine is design to run at a speed of 250 rpm with an electric motor as the prime mover. The dehulling efficiency up to 86% and breakage of less than 1.3% was obtained at a clearance setting of 12.4 mm between disks. A sifting efficiency of 100% was achieved. Based on the design diameter and clearance between the dehulling disks, the machine throughput was 216 kg/h with an electric power requirement of 1.207 kW.

  8. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  9. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input...... the swept rotor area would allow the determination of the electrical power as a function of an equivalent wind speed where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub...

  10. Performance of a table vibration type coffee grading machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2005-05-01

    Full Text Available One of important coffee beans quality is the size uniformity. To confirm with the standart requirement, coffee beans have to be graded before being traded. Until now, grading process is still carried out fully manual, so that the grading cost is very expensive about 40% of total processing cost. Meanwhile, shortage of skill workers is as a limiting factor of the process. Therefore, machine for grading coffee beans is good alternative for grading cost. Indonesian Coffee and Cocoa Research Institute has designed a table vibration type coffee grading machine for grouping of coffee beans in order to consistent quality and reduce grading cost. The machine has dimension of 272 cm length, 126 cm height, and 144 cm width. The machine has three primary components, i.e. grader table, combustion engine, and beam. The machine has three kinds of grader table that each grader table has different holes size, i.e. 7 mm x 7 mm for top grader table, 5 mm x 5 mm for axle grader table, and 4 mm x 4 mm for bottom grader table. Each grader table has dimension of 206 cm length, 105.5 cm height, and 14 cm width. The grading mechanism is by vibration grader table with the power source 5.5 HP combustion engine. The results shown that the outlet are in farms of three grades of coffee beans with connected to each compartement. Assessment of the grading machine reveals that the optimum capacity of 1,406 kg/hour reached when the speed 2,600 rpm and the angle 10O. Economic analysis showed that operational cost for grading one kilogram Robusta coffee beans with moisture content 13—14% wet basis is Rp 7.17.Key words : grading, coffee, quality, vibration table.

  11. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  12. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where man...... and rotor poles . The effectiveness and accuracy of the proposed position estimation method are verified by simulation at various operating conditions.......Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where many...... wind turbines are operating. Fast and accurate rotor position estimation is essential to promote the sensorless control as well as sensor fault tolerant operation of the SRG, which may improve the reliability of the system. This paper presents a rotor position sensorless estimation scheme for Switched...

  13. Diagnostics for geometric performance of machine tool linear axes.

    Science.gov (United States)

    Vogl, Gregory W; Donmez, M Alkan; Archenti, Andreas

    2016-01-01

    Machine tools degrade during operations, yet knowledge of degradation is elusive; accurately detecting degradation of linear axes is typically a manual and time-consuming process. Manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes with minimal disruptions to production. A method was developed to use data from an inertial measurement unit (IMU) for identification of changes in the translational and angular errors due to axis degradation. A linear axis testbed, established for the purpose of verification and validation, revealed that the IMU-based method was capable of measuring geometric errors with acceptable test uncertainty ratios.

  14. Effect of combined stator winding on reduction of higher spatial harmonics in induction machine

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2017-01-01

    Roč. 99, č. 1 (2017), s. 161-169 ISSN 0948-7921 R&D Projects: GA ČR GA13-35370S; GA ČR(CZ) GA16-07795S Institutional support: RVO:61388998 Keywords : AC machines * multi-phase induction machines * symmetrical components of instantaneous values Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 0.569, year: 2016 http://www.scilit.net/article/10.1007/s00202-016-0409-y

  15. Effects of setting angle and chord length on performance of four blades bionic wind turbine

    Science.gov (United States)

    Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.

    2017-11-01

    With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design

  16. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics

    Directory of Open Access Journals (Sweden)

    Haejoon Jung

    2018-01-01

    Full Text Available As an intrinsic part of the Internet of Things (IoT ecosystem, machine-to-machine (M2M communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  17. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics.

    Science.gov (United States)

    Jung, Haejoon; Lee, In-Ho

    2018-01-12

    As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  18. Development and Performance Evaluation of Tomato Dehydrating Machine

    Directory of Open Access Journals (Sweden)

    C. N. Nwogu

    2017-04-01

    Full Text Available Tomato (Solanum lycopersicum is a very important staple food worldwide with about 7,500 varieties consumed in diverse ways including: raw in salads, as an ingredient in many dishes, sauces, ketchup and drinks. Tomatoes deteriorate (rotten easily due to their high moisture content. A tomato dehydrating machine comprising of a spray gun, cam shaft, delivery pipe, three air blowers, drying trough, base and a speed reduction gear box was designed, fabricated and evaluated. The machine is powered by a 1.5hp electric motor. The developed machine has a dehydration efficiency of 81.45%, throughput of 3.7212kg/hr. The dehydrated tomato produced from the machine has ascorbic acid content, lycopene content, calcium content, potassium content and sugar reduction content of 10.6 mg/100g, 78.24 mg/100g, 10.6 mg/100g, 169.0 mg/100g and 2.9 mg/100g respectively which fell between acceptable ranges for the nutritional content of tomato.

  19. Video Quality Assessment and Machine Learning: Performance and Interpretability

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Forchhammer, Søren; Korhonen, Jari

    2015-01-01

    In this work we compare a simple and a complex Machine Learning (ML) method used for the purpose of Video Quality Assessment (VQA). The simple ML method chosen is the Elastic Net (EN), which is a regularized linear regression model and easier to interpret. The more complex method chosen is Support...

  20. High Performance Reduced Order Models for Wind Turbines with Full-Scale Converters Applied on Grid Interconnection Studies

    Directory of Open Access Journals (Sweden)

    Heverton A. Pereira

    2014-11-01

    Full Text Available Wind power has achieved technological evolution, and Grid Code (GC requirements forced wind industry consolidation in the last three decades. However, more studies are necessary to understand how the dynamics inherent in this energy source interact with the power system. Traditional energy production usually contains few high power unit generators; however, Wind Power Plants (WPPs consist of dozens or hundreds of low-power units. Time domain simulations of WPPs may take too much time if detailed models are considered in such studies. This work discusses reduced order models used in interconnection studies of synchronous machines with full converter technology. The performance of all models is evaluated based on time domain simulations in the Simulink/MATLAB environment. A detailed model is described, and four reduced order models are compared using the performance index, Normalized Integral of Absolute Error (NIAE. Models are analyzed during wind speed variations and balanced voltage dip. During faults, WPPs must be able to supply reactive power to the grid, and this characteristic is analyzed. Using the proposed performance index, it is possible to conclude if a reduced order model is suitable to represent the WPPs dynamics on grid studies.

  1. Optimal Design of Stator Interior Permanent Magnet Machine with Minimized Cogging Torque for Wind Power Application

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, Ming

    2008-01-01

    This paper proposes a new approach to minimize the cogging torque of a stator interior permanent magnet (SIPM) machine. The optimization of stator slot gap and permanent magnet is carried out and the cogging torque ripple is analyzed by using finite element analysis. Experiments on a prototype...

  2. Design of Transverse Flux Permanent Magnet Machines for Large Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Bang, D.

    2010-01-01

    In order to maximize the energy harnessed, to minimize the cost, to improve the power quality and to ensure safety together with the growth of the size, various wind turbine concepts have been developed during last three decades. Different generator systems such as geared and direct-drive generator

  3. Comparative analysis of partial imaging performance parameters of home and imported X-ray machines

    International Nuclear Information System (INIS)

    Cao Yunxi; Wang Xianyun; Liu Huiqin; Guo Yongxin

    2002-01-01

    Objective: To compare and analyze the performance indexes and the imaging quality of the home and imported X-ray machines through testing their partial imaging performance parameters. Methods: By separate sampling from 10 home and 10 imported X-ray machines, the parameters including tube current, time of exposure, machine total exposure, and repeatability were tested, and the imaging performance was evaluated according to the national standard. Results: All the performance indexes met the standard of GB4505-84. The first sampling tests showed the maximum changing coefficient of imaging performance repeatability of the home X-ray machines was Δmax1 = 0.025, while that of the imported X-ray machine was Δmax1 = 0.016. In the second sampling tests, the maximum changing coefficients of the two were Δmax2 = 0.048 and Δmax2 = 0.022, respectively. Conclusion: The 2 years' follow-up tests indicate that there is no significant difference between the above-mentioned parameters of the elaborately adjusted home X-ray machines and imported ones, but the home X-ray machines are no better than the imported X-ray machines in stability and consistency

  4. Effects of wind application on thermal perception and self-paced performance

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2013-01-01

    Physiological and perceptual effects of wind cooling are often intertwined and have scarcely been studied in self-paced exercise. Therefore, we aimed to investigate (1) the independent perceptual effect of wind cooling and its impact on performance and (2) the responses to temporary wind cooling

  5. Development and Validation of a Rating Scale for Wind Jazz Improvisation Performance

    Science.gov (United States)

    Smith, Derek T.

    2009-01-01

    The purpose of this study was to construct and validate a rating scale for collegiate wind jazz improvisation performance. The 14-item Wind Jazz Improvisation Evaluation Scale (WJIES) was constructed and refined through a facet-rational approach to scale development. Five wind jazz students and one professional jazz educator were asked to record…

  6. Intraoperative performance and postoperative outcome comparison of longitudinal, torsional, and transversal phacoemulsification machines.

    Science.gov (United States)

    Christakis, Panos G; Braga-Mele, Rosa M

    2012-02-01

    To compare the intraoperative performance and postoperative outcomes of 3 phacoemulsification machines that use different modes. Kensington Eye Institute, Toronto, Ontario, Canada. Comparative case series. This chart and video review comprised consecutive eligible patients who had phacoemulsification by the same surgeon using a Whitestar Signature Ellips-FX (transversal), Infiniti-Ozil-IP (torsional), or Stellaris (longitudinal) machine. The review included 98 patients. Baseline characteristics in the groups were similar; the mean nuclear sclerosis grade was 2.0 ± 0.8. There were no significant intraoperative complications. The torsional machine averaged less phacoemulsification needle time (83 ± 33 seconds) than the transversal (99 ± 40 seconds; P=.21) or longitudinal (110 ± 45 seconds; P=.02) machines; the difference was accentuated in cases with high-grade nuclear sclerosis. The torsional machine had less chatter and better followability than the transversal or longitudinal machines (Pmachines had better anterior chamber stability than the transversal machine (Pmachine yielded less central corneal edema than the transversal (Pmachines, corresponding to a smaller increase in mean corneal thickness (torsional 5%, transversal 10%, longitudinal 12%; P=.04). Also, the torsional machine had better 1-day postoperative visual acuities (Pmachines were effective with no significant intraoperative complications. The torsional machine outperformed the transversal and longitudinal machines, with a lower mean needle time, less chatter, and improved followability. This corresponded to less corneal edema 1 day postoperatively and better visual acuity. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Reduced-Capacity Inrush Current Suppressor Using a Matrix Converter in a Wind Power Generation System with Squirrel-Cage Induction Machines

    Directory of Open Access Journals (Sweden)

    Sho Shibata

    2016-03-01

    Full Text Available This paper describes the reduced capacity of the inrush current suppressor using a matrix converter (MC in a large-capacity wind power generation system (WPGS with two squirrel-cage induction machines (SCIMs. These SCIMs are switched over depending on the wind speed. The input side of the MC is connected to the source in parallel. The output side of the MC is connected in series with the SCIM through matching transformers. The modulation method of the MC used is direct duty ratio pulse width modulation. The reference output voltage of the MC is decided by multiplying the SCIM current with the variable control gain. Therefore, the MC performs as resistors for the inrush current. Digital computer simulation is implemented to confirm the validity and practicability of the proposed inrush current suppressor using PSCAD/EMTDC (power system computer-aided design/electromagnetic transients including DC. Furthermore, the equivalent resistance of the MC is decided by the relationship between the equivalent resistance and the capacity of the MC. Simulation results demonstrate that the proposed inrush current suppressor can suppress the inrush current perfectly.

  8. Wind Information Uplink to Aircraft Performing Interval Management Operations

    Science.gov (United States)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    provider. This is generally a global environmental prediction obtained from a weather model such as the Rapid Refresh (RAP) from the National Centers for Environmental Prediction (NCEP). The weather forecast data will have errors relative to the actual, or truth, winds that the aircraft will encounter. The second source of uncertainty is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment. This results in loss of additional information. The Federal Aviation Administration (FAA) and RTCA are currently developing standards for the communication of wind and atmospheric data to the aircraft for use in NextGen operations. This study examines the impact of various wind forecast sampling methods on IM performance metrics to inform the standards development.

  9. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain; Iqbal; Muljadi, Eduard

    2015-08-24

    This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solvers that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.

  10. AC-Chopper-Based Inrush Current Suppressor in a Wind Power Generation System with Squirrel-Cage Induction Machines

    Directory of Open Access Journals (Sweden)

    Sho Shibata

    2018-02-01

    Full Text Available This paper proposes the inrush current suppressor using an AC chopper in a large-capacity wind power generation system (WPGS with two squirrel-cage induction machines (SCIMs, which are switched over depending on the wind speed. The input side of the AC chopper is connected to the source in parallel. The output side of the AC chopper is connected in series with the SCIM through matching transformers. In the proposed inrush current suppressor, the output voltage of the AC chopper is the same as the receiving-end voltage before connecting the SCIM. By gradually decreasing the output voltage of the AC chopper, the applied voltage of the SCIM is gradually increased without the inrush current. The basic principle of the proposed inrush current suppressor is discussed in detail. A computer simulation is implemented to confirm the validity and practicability of the proposed inrush current suppressor using a power system computer-aided design/electromagnetic transients including DC (PSCAD/EMTDC. Simulation results demonstrate that the proposed inrush current suppressor can suppress the inrush current.

  11. Impact of wind turbine control strategies on voltage performance

    OpenAIRE

    Vittal, Eknath; O'Malley, Mark; Keane, Andrew

    2009-01-01

    This study examines the 2013 Irish electricity network and its ability to accommodate large levels of wind generation while maintaining appropriate voltage levels across the system. The network provides a fully functional test system that is suitable for large scale power flow and dynamic simulations. In the next decade, wind generation is expected to constitute large percentage of the country’s new renewable generation portfolio due to the rich wind resource available in...

  12. Performance Analysis of Ivshmem for High-Performance Computing in Virtual Machines

    Science.gov (United States)

    Ivanovic, Pavle; Richter, Harald

    2018-01-01

    High-Performance computing (HPC) is rarely accomplished via virtual machines (VMs). In this paper, we present a remake of ivshmem which can change this. Ivshmem was a shared memory (SHM) between virtual machines on the same server, with SHM-access synchronization included, until about 5 years ago when newer versions of Linux and its virtualization library libvirt evolved. We restored that SHM-access synchronization feature because it is indispensable for HPC and made ivshmem runnable with contemporary versions of Linux, libvirt, KVM, QEMU and especially MPICH, which is an implementation of MPI - the standard HPC communication library. Additionally, MPICH was transparently modified by us to get ivshmem included, resulting in a three to ten times performance improvement compared to TCP/IP. Furthermore, we have transparently replaced MPI_PUT, a single-side MPICH communication mechanism, by an own MPI_PUT wrapper. As a result, our ivshmem even surpasses non-virtualized SHM data transfers for block lengths greater than 512 KBytes, showing the benefits of virtualization. All improvements were possible without using SR-IOV.

  13. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  14. Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance

    Science.gov (United States)

    Utomo, Ilham Satrio; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    The use of renewable energy in Indonesia is still low. Especially the use of wind energy. Wind turbine Savonius is one turbine that can work with low wind speed. However, Savonius wind turbines still have low efficiency. Therefore it is necessary to modify. Modifications by using the fin are expected to increase the positive drag force by creating a flow that can enter the overlap ratio of the gap. This research was conducted using experimental approach scheme. Parameters generated from the experiment include: power generator, power coefficient, torque coefficient. The experimental data will be collected by variation of fin area, horizontal finning, at wind speed 3 m/s - 4,85 m/s. Experimental results show that with the addition of fin can improve the performance of wind turbine Savonius 11%, and by using the diameter of 115 mm fin is able to provide maximum performance in wind turbine Savonius.

  15. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    Science.gov (United States)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  16. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  17. Effectiveness of Hamstring Knee Rehabilitation Exercise Performed in Training Machine vs. Elastic Resistance Electromyography Evaluation Study

    DEFF Research Database (Denmark)

    Jakobsen, M. D.; Sundstrup, E.; Andersen, C. H.

    2014-01-01

    Objective The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Design Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded.......001) during hamstring curl performed with elastic resistance (7.58 +/- 0.08) compared with hamstring curl performed in a machine (5.92 +/- 0.03). Conclusions Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more...... inclinometers. Results Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine...

  18. Surface Coating of Plastic Parts for Business Machines (Industrial Surface Coating): New Source Performance Standards (NSPS)

    Science.gov (United States)

    Learn more about the new source performance standards (NSPS) for surface coating of plastic parts for business machines by reading the rule summary and history and finding the code of federal regulations as well as related rules.

  19. Radar Performance Degradation due to the Presence of Wind Turbines

    NARCIS (Netherlands)

    Theil, A.; Ewijk, L.J. van

    2007-01-01

    Wind turbines located in the vicinity of a radar system may affect the system's detection and tracking capability. A description of adverse effects is given in the paper for both primary and secondary radar. In order to judge the consequence of the shadowed volume cast by a wind turbine, results of

  20. Lifetime Impact Identification for Continuous Improvement of Wind Farm Performance

    DEFF Research Database (Denmark)

    Petersen, Kristian R.; Ruitenburg, Richard J.; Madsen, Erik Skov

    2015-01-01

    in the offshore wind industry. In order to identify where to focus CI efforts, we turn to the theory of Asset Life Cycle Management which shows that a shared multidisciplinary understanding of the complete lifetime of a windfarm is critical. Based on a case study at a leading offshore wind farm company...

  1. Unit Commitment: Computational Performance, System Representation and Wind Uncertainty Management

    NARCIS (Netherlands)

    Morales Espana, G.

    2014-01-01

    In recent years, high penetration of variable generating sources, such as wind power, has challenged independent system operators (ISO) in keeping a cheap and reliable power system operation. Any deviation between expected and real wind production must be absorbed by the power system resources

  2. Performance analysis of voltage regulation in diesel-wind generation

    African Journals Online (AJOL)

    generated by the two sources one source is the diesel engine generator and the other source is the wind energy conversion system the supply is provided to the isolated load. The voltage is regulated at the load side .The electrical energy produced by the wind turbine at constant speed is connected to the specific load by ...

  3. Improvement of Wind Farm Performance by Means of Spinner Anemometry

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Gottschall, Julia

    powerful microprocessor and heating was added to the sonic sensor arms plus a range of smaller redesigns. Software was revised with an improved internal calibration procedure. The improved system was tested on a 2MW wind turbine at Tjæreborg wind farm. Measurements on this turbine includes calibration of K...

  4. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  5. Wind turbine power performance measurement with the use of spinner anemometry

    DEFF Research Database (Denmark)

    Demurtas, Giorgio

    The spinner anemometer was patented by DTU in 2004 and licenced to ROMO Wind in 2011. By 2015 the spinner anemometer was installed on several hundred wind turbines for yaw misalignment measurements. The goal of this PhD project was to investigate the feasibility of use of spinner anemometry...... is now used as default in commercial calibrations. To evaluate the power performance of a wind turbine with the use of spinner anemometry, an experiment was organized in collaboration with Romo Wind and Vattenfall. A met-mast was installed close to two wind turbines equipped with spinner anemometers...

  6. A method for obtaining performance correlations of absorption machines

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Pedro Juan [E.T.S. Ingenieros Industriales, Universidad Politecnica de Cartagena, Campus Muralla del Mar, 30202, Cartagena (Spain); Pinazo, Jose Manuel [E.T.S. Ingenieros Industriales, Universidad Politecnica de Valencia, Cmno. de Vera s/n, 46022, Valencia (Spain)

    2003-04-01

    Several authors have developed models to be implemented in building thermal simulation programs for modelling absorption machines. Some anarchy has been detected related to the order of these models and the variables they consist of. In this paper, specific statistical tools were employed to establish regression models for the COP and the capacity of a water-lithium bromide single-effect absorption chiller. Experimental designs were used to obtain the data (values of COP and capacity) utilized to estimate the model parameters. The hypotheses initially adopted in the formulation of the models were modified at the sight of the results of subjecting the values obtained for the response variables to a variance analysis. (authors)

  7. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine

    Directory of Open Access Journals (Sweden)

    John J. MOMOH

    2010-12-01

    Full Text Available Existing mechanically operated tensile and creep testing machine was modified to a low cost, electro-mechanically operated creep testing machine capable of determining the creep properties of aluminum, lead and thermoplastic materials as a function of applied stress, time and temperature. The modification of the testing machine was necessitated by having an electro-mechanically operated creep testing machine as a demonstration model ideal for use and laboratory demonstrations, which will provide an economical means of performing standard creep experiments. The experimental result is a more comprehensive understanding of the laboratory experience, as the technology behind the creep testing machine, the test methodology and the response of materials loaded during experiment are explored. The machine provides a low cost solution for Mechanics of Materials laboratories interested in creep testing experiment and demonstration but not capable of funding the acquisition of commercially available creep testing machines. Creep curves of strain versus time on a thermoplastic material were plotted at a stress level of 1.95MPa, 3.25MPa and 4.55MPa and temperature of 20oC, 40oC and 60oC respectively. The machine is satisfactory since it is always ready for operation at any given time.

  8. Performance Comparison of Geobroadcast Strategies for Winding Roads

    Directory of Open Access Journals (Sweden)

    Edgar Talavera

    2018-03-01

    Full Text Available Vehicle-to-X (V2X communications allow real-time information sharing between vehicles and Roadside Units (RSUs. These kinds of technologies allow for the improvement of road safety and can be used in combination with other systems. Advanced Driver Assistance Systems (ADAS are an example and can be used along with V2X communications to improve performance and enable Cooperative Systems. A key element of vehicular communications is that the information transmitted through the network is always linked to a GPS position related to origin and destination (GeoNetworking protocol in order to adjust the data broadcast to the dynamic road environment needs. In this paper, we present the implementation and development of Institute for Automobile Research (INSIA V2X communication modules that follow the European vehicular networking standards in a close curve in a winding road where poor visibility causes a risk to the safety of road users. The technology chosen to support these communications is ETSI ITS-G5, which has the capability to enable specific services that support GeoNetworking protocols, specifically the Geobroadcast (GBC algorithm. These functionalities have been implemented and validated in a real environment in order to demonstrate the performance of the communication devices in real V2V (Vehicle-to-Vehicle and V2I (Vehicle-to-Infrastructure situations. GBC messages are also compared with two different configurations of emission area. A comparison with/without RSU modules in critical areas of the road with previous knowledge of the road cartography has also been made.

  9. Unmanned tactical autonomous control and collaboration (utacc) human machine integration measures of performance and measures of effectiveness

    Science.gov (United States)

    2017-06-01

    AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS by Thomas A...TACTICAL AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS 5. FUNDING...Tactical Autonomous Control and Collaboration (UTACC) program seeks to integrate Marines and autonomous machines to address the challenges encountered in

  10. IEA Wind Task 26. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007–2012

    Energy Technology Data Exchange (ETDEWEB)

    Vitina, Aisma [Ea Energy Analyses, Copenhagen (Denmark); Lüers, Silke [Deutsche WindGuard, Varel (Germany); Wallasch, Anna-Kathrin [Deutsche WindGuard, Varel (Germany); Berkhout, Volker [Fraunhofer IWES, Kassel (Germany); Duffy, Aidan [Dublin Inst. of Technology and Dublin Energy Lab. (Ireland); Cleary, Brendan [Dublin Inst. of Technology and Dublin Energy Lab. (Ireland); Husabø, Lief I. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Weir, David E. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Lacal-Arántegui, Roberto [European Commission, Ispra (Italy). Joint Research Centre; Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Belyeu, Kathy [Belyeu Consulting, Takoma Park, MD (United States); Wiser, Ryan H [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    The International Energy Agency Implementing Agreement for cooperation in Research, Development, and Deployment of Wind Energy Systems (IEA Wind) Task 26—The Cost of Wind Energy represents an international collaboration dedicated to exploring past, present and future cost of wind energy. This report provides an overview of recent trends in wind plant technology, cost, and performance in those countries that are currently represented by participating organizations in IEA Wind Task 26: Denmark, Germany, Ireland, Norway, and the United States as well as the European Union.

  11. Experimental investigation on performance of crossflow wind turbine as effect of blades number

    Science.gov (United States)

    Kurniawati, Diniar Mungil; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Urban living is one of the areas with large electrical power consumption that requires a power supply that is more than rural areas. The number of multi-storey buildings such as offices, hotels and several other buildings that caused electricity power consumption in urban living is very high. Therefore, energy alternative is needed to replace the electricity power consumption from government. One of the utilization of renewable energy in accordance with these conditions is the installation of wind turbines. One type of wind turbine that is now widely studied is a crossflow wind turbines. Crossflow wind turbine is one of vertical axis wind turbine which has good self starting at low wind speed condition. Therefore, the turbine design parameter is necessary to know in order to improve turbine performance. One of wind turbine performance parameter is blades number. The main purpose of this research to investigate the effect of blades number on crossflow wind turbine performance. The design of turbine was 0.4 × 0.4 m2 tested by experimental method with configuration on three kinds of blades number were 8,16 and 20. The turbine investigated at low wind speed on 2 - 5 m/s. The result showed that best performance on 16 blade number.

  12. Investigation of transient models and performances for a doubly fed wind turbine under a grid fault

    DEFF Research Database (Denmark)

    Wang, M.; Zhao, B.; Li, H.

    2011-01-01

    of the grid-side converter and the rotor-side converter of DFIG. Secondly, the transient performances of the presented doubly fed wind turbine under a grid fault were compared and evaluated with different equivalent models, parameters and initial operational conditions. And thirdly, the effects of the active......In order to investigate the impacts of the integration of wind farms into utilities network, it is necessary to analyze the transient performances of wind turbine generation systems (WTGS) with the appropriate transient models. According to the grid code requirements for a wind turbine with doubly...... trip time. Firstly, the different mathematical models of the doubly fed wind turbine were presented, including the electromagnetic transient models of DFIG, a one-mass lumped model, a two-mass shaft flexible model of the wind turbine drive train system, and the power decoupling control strategies...

  13. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-05-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  14. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-02-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  15. Correlation of cutting fluid performance in different machining operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    2001-01-01

    An analysis of cutting fluid performance in different metal cutting operations is presented, based on experimental investigations in which type of operation, performance criteria, work material, and fluid type are considered. Cutting fluid performance was evaluated in turning, drilling, reaming a...

  16. A Thermal Performance Analysis and Comparison of Fiber Coils with the D-CYL Winding and QAD Winding Methods

    Directory of Open Access Journals (Sweden)

    Xuyou Li

    2016-06-01

    Full Text Available The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL and quadrupolar (QAD winding methods is comparatively analyzed. Simulation by the finite element method (FEM is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs.

  17. TRACEABILITY OF ON COORDINATE MEASURING MACHINES – CALIBRATION AND PERFORMANCE VERIFICATION

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Savio, Enrico; Bariani, Paolo

    This document is used in connection with three exercises each of 45 minutes duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measurement traceability: 1) Performance verification of a CMM using a ball bar; 2) Calibration...... of an optical coordinate measuring machine; 3) Uncertainty assessment using the ISO 15530-3 “Calibrated workpieces” procedure....

  18. Modelisation de la conversion electromecanique des machines ...

    African Journals Online (AJOL)

    These implemented models would constitute the module of possible generators that one could couple with a model of wind power engine in order to study, within the framework of a virtual laboratory, the performances of wind-driven systems of electricity generation. Cet article présente les modèles de machines électriques ...

  19. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    Science.gov (United States)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars

  20. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  1. Performance Analysis of Doubly Fed Induction Generator Based Wind turbine under Faulty and RLC Load Conditions

    OpenAIRE

    Rekha Parashar; Shashikant

    2015-01-01

    This paper presents the performance of Doubly Fed Induction Generator based wind turbine system during different types of grid fault. The doubly fed induction generator (DFIG) based wind turbine (WT) system provides better power delivery towards the demand. The design and response of the DFIG based wind turbine system during different fault conditions, various load conditions and integrated system consisting of DFIG based WT system have been verified using MATLAB/ Simulink. The simulation re...

  2. Effectiveness of hamstring knee rehabilitation exercise performed in training machine vs. elastic resistance: electromyography evaluation study.

    Science.gov (United States)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Persson, Roger; Zebis, Mette K; Andersen, Lars L

    2014-04-01

    The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded in the biceps femoris and the semitendinosus during the concentric and the eccentric phase of hamstring curls performed with TheraBand elastic tubing and Technogym training machines and normalized to maximal voluntary isometric contraction-EMG (normalized EMG). Knee joint angle was measured using electronic inclinometers. Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine exercise, slightly lower (P machine (5.92 ± 0.03). Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more extended knee angles and with higher perceived loading as hamstring curls using training machines.

  3. Wind farm economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy are changing rapidly, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. Although the United Kingdom has regions of high wind speed, these are often in difficult terrain and construction costs are often higher than elsewhere in Europe. Nevertheless, wind energy costs are converging with those of the conventional thermal sources. At present, bank loan periods for wind projects are shorter than for thermal plant, which means that energy prices are higher. Ways of overcoming this problem are explored. It is important, also, to examine the value of wind energy. It is argued that wind energy has a higher value than energy from centralized plant, since it is fed into the low-voltage distribution network. (Author)

  4. WindSat Space Borne Polarimetric Microwave Radiometer: Data Products and System Performance

    Science.gov (United States)

    Truesdale, D.; Gaiser, P.; Bettenhausen, M. H.; Li, L.; Twarog, E.

    2017-12-01

    WindSat, a satellite-based multi-frequency polarimetric microwave radiometer developed by the Naval Research Laboratory for the U.S. Navy and the NPOESS Integrated Program Office (IPO), has collected over 14 years of fully-polarimetric microwave measurements from space since its launch in 2003. The primary WindSat mission was to demonstrate the capability to retrieve the ocean surface wind vector from a space-based microwave radiometer. The WindSat data is now being used to produce near-real-time products for the ocean surface wind vector, sea surface temperature (SST) and atmospheric columnar water vapor and cloud liquid water over the ocean at the U.S. Navy's Fleet Numerical Meteorological and Oceanographic Center (FNMOC). Several groups are assimilating WindSat data products into numerical weather models with positive results. In addition to providing environmental products over the ocean, the WindSat data set has been exploited for retrievals over land and ice. In particular, the WindSat channel set is well suited to retrieving soil moisture and land surface temperature. We have also built on heritage algorithms to derive sea ice concentration. This paper will provide highlights of WindSat environmental products. The success of the WindSat mission is directly traceable to the on-orbit sensor calibration. WindSat was designed with a one-year mission requirement and three year goal. Now in WindSat's fifteenth year on orbit, we continue to monitor the instrument performance and the calibration stability. Key system performance and calibration parameters include the receiver gains and NEDTs. These parameters are susceptible to component aging and changes in the payload thermal behavior. We will present trends in NEDT and receiver gains over the life of the mission. In addition to its primary mission, the long life of WindSat enables it to provide many forms of risk reduction and lessons learned for future microwave imagers.

  5. What limits the performance of current invasive Brain Machine Interfaces?

    Directory of Open Access Journals (Sweden)

    Gytis eBaranauskas

    2014-04-01

    Full Text Available The concept of a brain-machine interface (BMI or a computer-brain interface is simple: BMI creates a communication pathway for a direct control by brain of an external device. In reality BMIs are very complex devices and only recently the increase in computing power of microprocessors enabled a boom in BMI research that continues almost unabated to this date, the high point being the insertion of electrode arrays into the brains of 5 human patients in a clinical trial run by Cyberkinetics with few other clinical tests still in progress. Meanwhile several EEG-based BMI devices (non-invasive BMIs were launched commercially. Modern electronics and dry electrode technology made possible to drive the cost of some of these devices below few hundred dollars. However, the initial excitement of the direct control by brain waves of a computer or other equipment is dampened by large efforts required for learning, high error rates and slow response speed. All these problems are directly related to low information transfer rates typical for such EEG-based BMIs. In invasive BMIs employing multiple electrodes inserted into the brain one may expect much higher information transfer rates than in EEG-based BMIs because, in theory, each electrode provides an independent information channel. However, although invasive BMIs require more expensive equipment and have ethical problems related to the need to insert electrodes in the live brain, such financial and ethical costs are often not offset by a dramatic improvement in the information transfer rate. Thus the main topic of this review is why in invasive BMIs an apparently much larger information content obtained with multiple extracellular electrodes does not translate into much higher rates of information transfer? This paper explores possible answers to this question by concluding that more research on what movement parameters are encoded by neurons in motor cortex is needed before we can enjoy the next

  6. A Comparative Study of Control Strategies for Performance Optimisation of Brushless Doubly- Fed Reluctance Machines

    Directory of Open Access Journals (Sweden)

    Milutin G. Jovanović

    2006-12-01

    Full Text Available The brushless doubly-fed machine (BDFM allows the use of a partially rated inverter and represents an attractive cost-effective candidate for variable speed applications with limited speed ranges. In its induction machine form (BDFIM, the BDFM has significant rotor losses and poor efficiency due to the cage rotor design which makes the machine dynamic models heavily parameter dependent and the resulting controller configuration complicated and difficult to implement. A reluctance version of the BDFM, the brushless doubly-fed reluctance machine (BDFRM, ideally has no rotor losses, and therefore offers the prospect for higher efficiency and simpler control compared to the BDFIM. A detailed study of this interesting and emerging machine is very important to gain a thorough understanding of its unusual operation, control aspects and compromises between optimal performance and the size of the inverter and the machine. This paper will attempt to address these issues specifically concentrating on developing conditions for various control properties of the machine such as maximum power factor, maximum torque per inverter ampere and minimum copper losses, as well as analysing the associated trade-offs.

  7. APPLICATION OF THE PERFORMANCE SELECTION INDEX METHOD FOR SOLVING MACHINING MCDM PROBLEMS

    Directory of Open Access Journals (Sweden)

    Dušan Petković

    2017-04-01

    Full Text Available Complex nature of machining processes requires the use of different methods and techniques for process optimization. Over the past few years a number of different optimization methods have been proposed for solving continuous machining optimization problems. In manufacturing environment, engineers are also facing a number of discrete machining optimization problems. In order to help decision makers in solving this type of optimization problems a number of multi criteria decision making (MCDM methods have been proposed. This paper introduces the use of an almost unexplored MCDM method, i.e. performance selection index (PSI method for solving machining MCDM problems. The main motivation for using the PSI method is that it is not necessary to determine criteria weights as in other MCDM methods. Applicability and effectiveness of the PSI method have been demonstrated while solving two case studies dealing with machinability of materials and selection of the most suitable cutting fluid for the given machining application. The obtained rankings have good correlation with those derived by the past researchers using other MCDM methods which validate the usefulness of this method for solving machining MCDM problems.

  8. Flight speed and performance of the wandering albatross with respect to wind.

    Science.gov (United States)

    Richardson, Philip L; Wakefield, Ewan D; Phillips, Richard A

    2018-01-01

    Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips. We derived simple equations to model observed albatross ground speed as a function of wind speed and relative wind direction. Ground speeds of the tracked birds in the along-wind direction varied primarily by wind-induced leeway, which averaged 0.51 (± 0.02) times the wind speed at a reference height of 5 m. By subtracting leeway velocity from ground velocity, we were able to estimate airspeed (the magnitude of the bird's velocity through the air). As wind speeds increased from 3 to 18 m/s, the airspeed of wandering albatrosses flying in an across-wind direction increased by 0.42 (± 0.04) times the wind speed (i.e. ~ 6 m/s). At low wind speeds, tracked birds increased their airspeed in upwind flight relative to that in downwind flight. At higher wind speeds they apparently limited their airspeeds to a maximum of around 20 m/s, probably to keep the forces on their wings in dynamic soaring well within tolerable limits. Upwind airspeeds were nearly constant and downwind leeway increased with wind speed. Birds therefore achieved their fastest upwind ground speeds (~ 9 m/s) at low wind speeds (~ 3 m/s). This study provides insights into which flight strategies are optimal for dynamic soaring. Our results are consistent with the prediction that the optimal range speed of albatrosses is higher

  9. Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine

    International Nuclear Information System (INIS)

    Wonchala, Jason; Hazledine, Maxwell; Goni Boulama, Kiari

    2014-01-01

    The water–lithium bromide absorption cooling machine was investigated theoretically in this paper. A detailed solution procedure was proposed and validated. A parametric study was conducted over the entire admissible ranges of the desorber, condenser, absorber and evaporator temperatures. The performance of the machine was evaluated based on the circulation ratio which is a measure of the system size and cost, the first law coefficient of performance and the second law exergy efficiency. The circulation ratio and the coefficient of performance were seen to improve as the temperature of the heat source increased, while the second law performance deteriorated. The same qualitative responses were obtained when the temperature of the refrigerated environment was increased. On the other hand, simultaneously raising the condenser and absorber temperatures was seen to result in a severe deterioration of both the circulation ratio and first law coefficient of performance, while the second law performance indicator improved significantly. The influence of the difference between the condenser and absorber exit temperatures, as well as that of the internal recovery heat exchanger on the different performance indicators was also calculated and discussed. - Highlights: • Analysis of a water–LiBr absorption machine, including detailed solution procedure. • Performance assessed using first and second law considerations, as well as flow ratio. • Effects of heat source and refrigerated environment temperatures on the performance. • Effects of the difference between condenser and absorber temperatures. • Effects of internal heat exchanger efficiency on overall cooling machine performance

  10. Performance comparison of control schemes for variable-speed wind turbines

    Science.gov (United States)

    Bottasso, C. L.; Croce, A.; Savini, B.

    2007-07-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies.

  11. Performance comparison of control schemes for variable-speed wind turbines

    International Nuclear Information System (INIS)

    Bottasso, C L; Croce, A; Savini, B

    2007-01-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies

  12. Transient performances analysis of wind turbine system with induction generator including flux saturation and skin effect

    DEFF Research Database (Denmark)

    Li, H.; Zhao, B.; Han, L.

    2010-01-01

    In order to analyze correctly the effect of different models for induction generators on the transient performances of large wind power generation, Wind turbine driven squirrel cage induction generator (SCIG) models taking into account both main and leakage flux saturation and skin effect were...

  13. Performance of a prototype micro wind turbine in the manmade wind field from air conditioner of buildings

    Directory of Open Access Journals (Sweden)

    K. H. Goh

    2012-03-01

    Full Text Available Harnessing waste energy from the manmade air fields of buildings presents a new area of renewable energy to explore. Due to the unpredictability of the natural wind, this study is to evaluate the practicality for harnessing waste energy from the air conditioner exhaust units which are a more constant and predictable source available in the buildings. A prototype of the micro wind turbine has been designed to minimize the negative effect of the exhaust sources. After the micro wind turbine was manufactured, the performance of the turbine was tested in the selected air conditioner exhaust unit. Increasing the rotor solidity and decreasing the resistance of the generator contribute to improved starting torque and decreased generator break in torque respectively in the design. The power generation of the micro wind turbine increases with an increase of the rotor speed. The 24-hour operation of the prototype presents an observation for both exhaust performance and power generation prediction when the prototype is mounted on the exhaust unit.

  14. Performance of Color Camera Machine Vision in Automated Furniture Rough Mill Systems

    Science.gov (United States)

    D. Earl Kline; Agus Widoyoko; Janice K. Wiedenbeck; Philip A. Araman

    1998-01-01

    The objective of this study was to evaluate the performance of color camera machine vision for lumber processing in a furniture rough mill. The study used 134 red oak boards to compare the performance of automated gang-rip-first rough mill yield based on a prototype color camera lumber inspection system developed at Virginia Tech with both estimated optimum rough mill...

  15. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  16. Performance of Wind Pump Prototype | Bayray | Momona Ethiopian ...

    African Journals Online (AJOL)

    A wind pump prototype with 3.6 m rotor diameter, 19 m hub height above ground and 0.22 mm reciprocating pump stroke has been developed at the Department of Mechanical Engineering, Mekelle University. The prototype was designed and manufactured locally. Theoretical model based on combined efficiency of the ...

  17. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  18. Design and Performance of ATLAS Tier 3 Computing Facility Based on Virtual Machine Technology

    CERN Document Server

    Benjamin, D; Fernando, W; Kagan, H; Panitkin, SY; Yao, Y

    2010-01-01

    We have developed an ATLAS Tier 3 computing facility based on Virtual Machine (VM) technology. In our system all worker nodes are CernVM based virtual machines running on a SUSE Xen hypervisor. Utilization of VM technology in a Tier 3 farm allows one to simplify not only system configuration and management, but also experiment specific software installation and configuration. That in turn reduces manpower required to run such a facility which is an important factor in the Tier 3 context. We have explored performance of a virtualized Tier 3 facility on a variety of workloads typical for the ATLAS. We have found that the performance of typical ATLAS workloads in the virtualized environment was adequate, with an acceptable performance penalty from virtualization in most scenarios. We've also found cases where jobs running in VM were faster than the ones running in a physical machine.

  19. Wind farm topology-finding algorithm considering performance, costs, and environmental impacts.

    Science.gov (United States)

    Tazi, Nacef; Chatelet, Eric; Bouzidi, Youcef; Meziane, Rachid

    2017-06-05

    Optimal power in wind farms turns to be a modern problem for investors and decision makers; onshore wind farms are subject to performance and economic and environmental constraints. The aim of this work is to define the best installed capacity (best topology) with maximum performance and profits and consider environmental impacts as well. In this article, we continue the work recently done on wind farm topology-finding algorithm. The proposed resolution technique is based on finding the best topology of the system that maximizes the wind farm performance (availability) under the constraints of costs and capital investments. Global warming potential of wind farm is calculated and taken into account in the results. A case study is done using data and constraints similar to those collected from wind farm constructors, managers, and maintainers. Multi-state systems (MSS), universal generating function (UGF), wind, and load charge functions are applied. An economic study was conducted to assess the wind farm investment. Net present value (NPV) and levelized cost of energy (LCOE) were calculated for best topologies found.

  20. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    Uhlmann, E.; Fuentes, J.A. Oyanedel; Keunecke, M.

    2009-01-01

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  1. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    Science.gov (United States)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  2. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    Science.gov (United States)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  3. Design and Performance Improvement of AC Machines Sharing a Common Stator

    Science.gov (United States)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be

  4. Permanent Magnet Flux-Switching Machine, Optimal Design and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Liviu Emilian Somesan

    2013-01-01

    Full Text Available In this paper an analytical sizing-design procedure for a typical permanent magnet flux-switching machine (PMFSM with 12 stator and respectively 10 rotor poles is presented. An optimal design, based on Hooke-Jeeves method with the objective functions of maximum torque density, is performed. The results were validated via two dimensions finite element analysis (2D-FEA applied on the optimized structure. The influence of the permanent magnet (PM dimensions and type, respectively of the rotor poles' shape on the machine performance were also studied via 2D-FEA.

  5. Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG

    Science.gov (United States)

    Reddy, Gongati Pandu Ranga; Kumar, M. Vijaya

    2017-10-01

    Wind power capacity has received enormous growth during past decades. With substantial development of wind power, it is expected to provide a fifth of world's electricity by the end of 2030. In wind energy conversion system, the power electronic converters play an important role. This paper presents the two level and matrix converters performance in wind energy conversion system employing Doubly Fed Induction Generator (DFIG). The DFIG is a wound rotor induction generator. Because of the advantages of the DFIG over other generators it is being used for most of the wind applications. This paper also discusses control of converters using the space vector pulse width modulation technique. The MATLAB/SIMULINK ® software is used to study the performance of the converters.

  6. Wind farms providing secondary frequency regulation: Evaluating the performance of model-based receding horizon control

    International Nuclear Information System (INIS)

    Shapiro, Carl R.; Meneveau, Charles; Gayme, Dennice F.; Meyers, Johan

    2016-01-01

    We investigate the use of wind farms to provide secondary frequency regulation for a power grid. Our approach uses model-based receding horizon control of a wind farm that is tested using a large eddy simulation (LES) framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and interactions, both of which play an important role in wind farm power production. This controller is implemented in an LES model of an 84-turbine wind farm represented by actuator disk turbine models. Differences between the velocities at each turbine predicted by the wake model and measured in LES are used for closed-loop feedback. The controller is tested on two types of regulation signals, “RegA” and “RegD”, obtained from PJM, an independent system operator in the eastern United States. Composite performance scores, which are used by PJM to qualify plants for regulation, are used to evaluate the performance of the controlled wind farm. Our results demonstrate that the controlled wind farm consistently performs well, passing the qualification threshold for all fastacting RegD signals. For the RegA signal, which changes over slower time scales, the controlled wind farm's average performance surpasses the threshold, but further work is needed to enable the controlled system to achieve qualifying performance all of the time. (paper)

  7. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.

    Science.gov (United States)

    Ozcift, Akin; Gulten, Arif

    2011-12-01

    Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Wind Turbine Performance Measurements by Means of Dynamic Data Analysis

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Wagner, Rozenn; Demurtas, Giorgio

    curves could be made faster with 1Hz dataset. In the FastWind project the Langevin power curve method was used on real power curve measurement datasets with the purpose to evaluate the method for practical use. A practical guide to application of the method to real power curve measurement data was made....... The study showed that the method has a range of parameter settings that the user must consider. Additionally to the wind speed binning power binning is needed but power binning size is not specified. Determination of drift in each bin is described with a general formula but in practice several additional...... tools have been developed by authors to try to make the drift field and fixed point determination more robust. A sensitivity analysis with nacelle lidar data showed drift determination was not very dependent on the time steps applied, leading to use of time steps of 2-3 points for each dataset. Power...

  9. Inrush Current Simulation of Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure and Genetic Algorithm

    Science.gov (United States)

    Tokunaga, Yoshitaka

    This paper presents estimation techniques of machine parameters for power transformer using design procedure of transformer and genetic algorithm with real coding. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by techniques developed in this study and simulation results were reproduced measured waveforms.

  10. Performance of spanish wind turbines. Year 1995; Estadisticas de produccion de parques eolicos en Espana. Ano 1995

    Energy Technology Data Exchange (ETDEWEB)

    Lago, C.

    1997-06-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1995 going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author)

  11. Performance of spanish wind turbines. Year 1996; Estadisticas de produccion de parques eolicos en Espana. Ano 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lago, C.

    1998-04-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1996 going on with the work that has been carried since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performance of different wind farms. (Author) 4 refs.

  12. Gust response and cross wind performance of a hovercraft with vertical wings

    Science.gov (United States)

    Kawahata, Nagakatu; Miura, Yosihiro

    The configurations of a radio-controlled hovercraft model with vertical wings are presented. The flight performance in cross wind is evaluated, and the difference between the target point and visual angular error is addressed.

  13. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  14. Investigations on the performance of ultrasonic drilling process with special reference to precision machining of advanced ceramics

    International Nuclear Information System (INIS)

    Adithan, M.; Laroiya, S.C.

    1997-01-01

    Advanced ceramics are assuming an important role in modern industrial technology. The applications and advantages of using advanced ceramics are many. There are several reasons why we should go in for machining of advanced ceramics after their compacting and sintering. These are discussed in this paper. However, precision machining of advanced ceramics must be economical. Critical technological issues to be addressed in cost effective machining of ceramics include design of machine tools, tooling arrangements, improved yield and precision, relationship of part dimensions and finish specifications to functional performance, and on-line inspection. Considering the above ultrasonic drilling is an important process used for the precision machining of advanced ceramics. Extensive studies on tool wear occurring in the ultrasonic machining of advanced ceramics have been carried out. In addition, production accuracy of holes drilled, surface finish obtained and surface integrity aspects in the machining of advanced ceramics have also been investigated. Some specific findings with reference to surface integrity are: a) there were no cracks or micro-cracks developed during or after ultrasonic machining of advanced ceramics, b) while machining Hexoloy alpha silicon carbide a recast layer is formed as a result of ultrasonic machining. This is attributed to the viscous heating resulting from high energy impacts during ultrasonic machining. While machining all other types of ceramics no such formation of recast layer was observed, and , c) there is no change in the microstructure of the advanced ceramics as a result of ultrasonic machining

  15. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  16. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  17. Effectiveness and resolution of tests for evaluating the performance of cutting fluids in machining aerospace alloys

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Axinte, Dragos A.

    2008-01-01

    The paper discusses effectiveness and resolution of five cutting tests (turning, milling, drilling, tapping, VIPER grinding) and their quality output measures used in a multi-task procedure for evaluating the performance of cutting fluids when machining aerospace materials. The evaluation takes...

  18. A Comparative Performance Analysis of FDM Machines Based on a Calibration Artefact

    DEFF Research Database (Denmark)

    D'Angelo, Greta; Nielsen, Jakob Skov; Rasmussen, Jeppe

    2014-01-01

    and there are no standards to compare them with. To overcome this problem, a method to evaluate the performance of AM machine tools based on the printing of an artefact and the subsequent measuring of its features is proposed and shown. This paper shows a validation of the method by means of a laser interferometer...

  19. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances...

  20. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINESPERFORMANCE VERIFICATION OF CMMs

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Sobiecki, René; Tosello, Guido

    This document is used in connection with one exercise of 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns performance verification of the volumetric measuring capability of a small volume coordinate measuring machine...

  1. Effect of changing polarity of graphite tool/ Hadfield steel workpiece couple on machining performances in die sinking EDM

    Directory of Open Access Journals (Sweden)

    Özerkan Haci Bekir

    2017-01-01

    Full Text Available In this study, machining performance ouput parameters such as machined surface roughness (SR, material removal rate (MRR, tool wear rate (TWR, were experimentally examined and analyzed with the diversifying and changing machining parameters in (EDM. The processing parameters (input par. of this research are stated as tool material, peak current (I, pulse duration (ton and pulse interval (toff. The experimental machinings were put into practice by using Hadfield steel workpiece (prismatic and cylindrical graphite electrodes with kerosene dielectric at different machining current, polarity and pulse time settings. The experiments have shown that the type of tool material, polarity (direct polarity forms higher MRR, SR and TWR, current (high current lowers TWR and enhances MRR, TWR and pulse on time (ton=48□s is critical threshold value for MRR and TWR were influential on machining performance in electrical discharge machining.

  2. Performance analysis of Rogowski coils and the measurement of the total toroidal current in the ITER machine

    Science.gov (United States)

    Quercia, A.; Albanese, R.; Fresa, R.; Minucci, S.; Arshad, S.; Vayakis, G.

    2017-12-01

    The paper carries out a comprehensive study of the performances of Rogowski coils. It describes methodologies that were developed in order to assess the capabilities of the Continuous External Rogowski (CER), which measures the total toroidal current in the ITER machine. Even though the paper mainly considers the CER, the contents are general and relevant to any Rogowski sensor. The CER consists of two concentric helical coils which are wound along a complex closed path. Modelling and computational activities were performed to quantify the measurement errors, taking detailed account of the ITER environment. The geometrical complexity of the sensor is accurately accounted for and the standard model which provides the classical expression to compute the flux linkage of Rogowski sensors is quantitatively validated. Then, in order to take into account the non-ideality of the winding, a generalized expression, formally analogue to the classical one, is presented. Models to determine the worst case and the statistical measurement accuracies are hence provided. The following sources of error are considered: effect of the joints, disturbances due to external sources of field (the currents flowing in the poloidal field coils and the ferromagnetic inserts of ITER), deviations from ideal geometry, toroidal field variations, calibration, noise and integration drift. The proposed methods are applied to the measurement error of the CER, in particular in its high and low operating ranges, as prescribed by the ITER system design description documents, and during transients, which highlight the large time constant related to the shielding of the vacuum vessel. The analyses presented in the paper show that the design of the CER diagnostic is capable of achieving the requisite performance as needed for the operation of the ITER machine.

  3. Analysis of Wind Speed Forecasting Error Effects on Automatic Generation Control Performance

    Directory of Open Access Journals (Sweden)

    H. Rajabi Mashhadi

    2014-09-01

    Full Text Available The main goal of this paper is to study statistical indices and evaluate AGC indices in power system which has large penetration of the WTGs. Increasing penetration of wind turbine generations, needs to study more about impacts of it on power system frequency control. Frequency control is changed with unbalancing real-time system generation and load . Also wind turbine generations have more fluctuations and make system more unbalance. Then AGC loop helps to adjust system frequency and the scheduled tie-line powers. The quality of AGC loop is measured by some indices. A good index is a proper measure shows the AGC performance just as the power system operates. One of well-known measures in literature which was introduced by NERC is Control Performance Standards(CPS. Previously it is claimed that a key factor in CPS index is related to standard deviation of generation error, installed power and frequency response. This paper focuses on impact of a several hours-ahead wind speed forecast error on this factor. Furthermore evaluation of conventional control performances in the power systems with large-scale wind turbine penetration is studied. Effects of wind speed standard deviation and also degree of wind farm penetration are analyzed and importance of mentioned factor are criticized. In addition, influence of mean wind speed forecast error on this factor is investigated. The study system is a two area system which there is significant wind farm in one of those. The results show that mean wind speed forecast error has considerable effect on AGC performance while the mentioned key factor is insensitive to this mean error.

  4. Performance Evaluation of Eleven-Phase Induction Machine with Different PWM Techniques

    Directory of Open Access Journals (Sweden)

    M.I. Masoud

    2015-06-01

    Full Text Available Multiphase induction machines are used extensively in low and medium voltage (MV drives. In MV drives, power switches have a limitation associated with switching frequency. This paper is a comparative study of the eleven-phase induction machine’s performance when used as a prototype and fed sinusoidal pulse-width-modulation (SPWM with a low switching frequency, selective harmonic elimination (SHE, and single pulse modulation (SPM techniques. The comparison depends on voltage/frequency controls for the same phase of voltage applied on the machine terminals for all previous techniques. The comparative study covers torque ripple, stator and harmonic currents, and motor efficiency.

  5. The Effect of Upscaling and Performance Degradation on Onshore Wind Turbine Lifetime Extension Decision Making

    Science.gov (United States)

    Rubert, T.; McMillan, D.; Niewczas, P.

    2017-11-01

    Ever greater rated wind turbine generators (WTGs) are reaching their end of design life in the near future. In addition, first research approaches quantified the impact of long-term performance degradation of WTGs. As a consequence, this work is aimed at discussing and analysing the impact of upscaling and performance degradation on the economics of wind turbine lifetime extension. Findings reveal that the lifetime extension levelised cost of energy (LCOE2) of an 18 MW wind farm comprising of 0.5 MW rated WTGs are within the order of £23.52 per MWh. Alternatively, if the same wind farm consists of fewer 2 or 3 MW WTGs, the LCOE2 reduces to £16.56 or £15.49 per MWh, respectively. Further, findings reveal that an annual performance degradation of 1.6% (0.2%) increases LCOE2 by 34-41% (3.6-4.3%).

  6. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    Science.gov (United States)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  7. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  8. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  9. Complex analysis of electromagnetic machines for vibro-impact technologies

    Science.gov (United States)

    Neyman, L. A.; Neyman, V. Yu

    2017-10-01

    For the implementation of high-energy impulse technologies of mechanical shock methods of secondary rock destruction, electromagnetic machines of vibro-impact action are of particular interest. Linear synchronous electromagnetic impact machine designs as a part of progress trend are considered where the head reciprocal motion is synchronized with 50 Hz power source pulses frequency applied to a winding or a system of windings. On the basis of identified differences of the head forced mechanical oscillation processes, merits and demerits of the work cycles of single or two-winding synchronous machine design variants are analyzed. Synchronous electromagnetic machines of a new design and principles of their control in a work cycle are presented. The specific half-wave interleaving of voltages applied to the windings allows reducing current amplitude and the influence of the impact drive on the power grid. To improve forced oscillation mode stability and precision, the new engineering solutions improving machines performances and exploitation conditions are proposed.

  10. Design Enhancement and Performance Examination of External Rotor Switched Flux Permanent Magnet Machine for Downhole Application

    Science.gov (United States)

    Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.

    2017-08-01

    The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.

  11. Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel

    Directory of Open Access Journals (Sweden)

    Junfeng Yuan

    2016-04-01

    Full Text Available In addition to the bulk properties of a workpiece material, characteristics of the tribofilms formed as a result of workpiece material mass transfer to the friction surface play a significant role in friction control. This is especially true in cutting of hardened materials, where it is very difficult to use liquid based lubricants. To better understand wear performance and the formation of beneficial tribofilms, this study presents an assessment of uncoated mixed alumina ceramic tools (Al2O3+TiC in the turning of two grades of steel, AISI T1 and AISI D2. Both workpiece materials were hardened to 59 HRC then machined under identical cutting conditions. Comprehensive characterization of the resulting wear patterns and the tribofilms formed at the tool/workpiece interface were made using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy. Metallographic studies on the workpiece material were performed before the machining process and the surface integrity of the machined part was investigated after machining. Tool life was 23% higher when turning D2 than T1. This improvement in cutting tool life and wear behaviour was attributed to a difference in: (1 tribofilm generation on the friction surface and (2 the amount and distribution of carbide phases in the workpiece materials. The results show that wear performance depends both on properties of the workpiece material and characteristics of the tribofilms formed on the friction surface.

  12. Residual Stress Evaluation of a High Performance Machined Pre-formed Ti6Al4V Part

    OpenAIRE

    Dimitrov, D.M.; Laubscher, R.F.; Sterzing, A.; Conradie, P.J.T.; Oosthuizen, G.A.; Blau, P.; Schmidt, G.; Hochmuth, C.; Styger, G.; Zachäus, R.

    2016-01-01

    Near net-shape technologies are increasingly used to enhance resource efficiency in high performance machining for various applications, including aerospace. In this paper the effect of a pre-formed based manufacturing route on the residual stress state of an aerospace part in Ti6Al4V is presented. The manufacturing strategies, including the pre-form and machining stages, are outlined in detail. Two similar preformed billets were manufactured. High performance machining was then conducted at ...

  13. Improving the performance of extreme learning machine for hyperspectral image classification

    Science.gov (United States)

    Li, Jiaojiao; Du, Qian; Li, Wei; Li, Yunsong

    2015-05-01

    Extreme learning machine (ELM) and kernel ELM (KELM) can offer comparable performance as the standard powerful classifier―support vector machine (SVM), but with much lower computational cost due to extremely simple training step. However, their performance may be sensitive to several parameters, such as the number of hidden neurons. An empirical linear relationship between the number of training samples and the number of hidden neurons is proposed. Such a relationship can be easily estimated with two small training sets and extended to large training sets so as to greatly reduce computational cost. Other parameters, such as the steepness parameter in the sigmodal activation function and regularization parameter in the KELM, are also investigated. The experimental results show that classification performance is sensitive to these parameters; fortunately, simple selections will result in suboptimal performance.

  14. Using social media and machine learning to predict financial performance of a company

    OpenAIRE

    Forouzani, Sepehr

    2016-01-01

    Social media have recently become one of the most popular communicating form of media for numerous number of people. the text and posts shared on social media is widely used by researcher to analyze, study and relate them to various fields. In this master thesis, sentiment analysis has been performed on posts containing information about two companies that are shared on Twitter, and machine learning algorithms has been used to predict the financial performance of these companies.

  15. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Xu, Haoran

    2014-01-01

    Blade element momentum (BEM) theory with airfoil data is a widely used technique for prediction of wind turbine aerodynamic performance, but the reliability of the airfoil data is an important factor for the prediction accuracy of aerodynamic loads and power. The airfoil characteristics used in BEM...... codes are mostly based on 2D wind tunnel measurements of airfoils with constant span. Due to 3D effects, a BEM code using airfoil data obtained directly from 2D wind tunnel measurements will not yield the correct loading and power. As a consequence, 2D airfoil characteristics have to be corrected before...

  16. Experiment and Simulation Effects of Cyclic Pitch Control on Performance of Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Le Quang Sang

    2017-06-01

      Keywords: Floating Offshore Wind Turbine, Aerodynamic Forces, Cyclic Pitch Control, FAST Code, Wind Tunnel Experiment Article History: Received February 11th 2017; Received in revised form April 29th 2017; Accepted June 2nd 2017; Available online How to Cite This Article: Sang, L.Q., Maeda, T., Kamada, Y., and Li, Q. (2017 Experiment and simulation effect of cyclic pitch control on performance of horizontal axis wind turbine to International Journal of Renewable Energy Develeopment, 6(2, 119-125. https://doi.org/10.14710/ijred.6.2.119-125

  17. A high performance finite element model for wind farm modeling in forested areas

    Science.gov (United States)

    Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis

    2015-04-01

    Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.

  18. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL

    2017-04-01

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.

  19. Standardizing the performance evaluation of short-term wind prediction models

    DEFF Research Database (Denmark)

    Madsen, Henrik; Pinson, Pierre; Kariniotakis, G.

    2005-01-01

    Short-term wind power prediction is a primary requirement for efficient large-scale integration of wind generation in power systems and electricity markets. The choice of an appropriate prediction model among the numerous available models is not trivial, and has to be based on an objective...... evaluation of model performance. This paper proposes a standardized protocol for the evaluation of short-term wind-poser preciction systems. A number of reference prediction models are also described, and their use for performance comparison is analysed. The use of the protocol is demonstrated using results...... from both on-shore and off-shore wind forms. The work was developed in the frame of the Anemos project (EU R&D project) where the protocol has been used to evaluate more than 10 prediction systems....

  20. Acoustic noise measurements on a wind turbine performed in the frame of the NIWT round robin

    International Nuclear Information System (INIS)

    Van der Borg, N.J.C.M.; Vink, P.W.

    1996-11-01

    A round robin acoustic measurement campaign has been performed by five project partners using one and the same wind turbine (WT). The measurement procedure for the round robin exercise was agreed to be in compliance with the IEA-recommended practices on WT-noise emission measurements and the measured characteristics were agreed to be the apparent sound power level and the tonality, both measured at the reference measurement position. The measurements performed by ECN resulted in an A-weighted sound power level of the TACKE TW500/37 wind turbine in Hooksiel, Germany, of 95.8 dB(A) at a wind speed of 5.5 m/s at reference conditions. The tonality assessment of the sound pressure at 50 m down wind of the turbine resulted in a difference between the maximum tone level and the masking noise level of 2.4 dB. This characterizes the noise as 'prominent'. 2 refs

  1. Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds

    Directory of Open Access Journals (Sweden)

    Yun-Su Kim

    2015-02-01

    Full Text Available This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various operating conditions and with eigenvalues obtained from the small-signal model of the PMSG WT, which are coordinated by adjusting the PI controller parameters. The parameters to be tuned are chosen by investigating participation factors of state variables, which simplifies the problem by reducing the number of parameters to be tuned. The process of adjusting these PI controller parameters is carried out using particle swarm optimization (PSO. To characterize the improvements in the control method due to the PSO method of tuning the PI controller parameters, the PMSG WT is modeled using the MATLAB/SimPowerSystems libraries with the obtained PI controller parameters.

  2. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar

    DEFF Research Database (Denmark)

    Foroughi Abari, Farzad; Pedersen, A. T.; Dellwik, Ebba

    2015-01-01

    The main purpose of this study is to evaluate the near-zero wind velocity measurement performance of two separate 1.5 μm all-fiber coherent Doppler lidars (CDL). The performance characterization is performed through the presentation of the results from two separate atmospheric field campaigns...

  3. Research status on aerodynamic interference effects of wind-resistant performance of pylon

    Science.gov (United States)

    LI, Shengli; Lu, Yu; Wang, Dongwei; Chen, Huai

    2011-04-01

    The aerodynamic interference effects of wind-resistant performance for pylon is one of very important problems in numerical simulation studies of wind resistant of bridges. On the basis of looking through a great deal of related literatures at home and abroad, research history, contents, method and achievements of the aerodynamic interference effects are summarized, and the existing problem for galloping, buffeting and vortex-induced vibration of pylon and directions for the next research are pointed out.

  4. Performance Analysis and Modeling of a Tubular Staggered-Tooth Transverse-Flux PM Linear Machine

    Directory of Open Access Journals (Sweden)

    Shaohong Zhu

    2016-03-01

    Full Text Available This paper investigates the performance analysis and mathematical modeling of a staggered-tooth transverse-flux permanent magnet linear synchronous machine (STTF-PMLSM, which is characterized by simple structure and low flux leakage. Firstly, the structure advantages and operation principle of the STTF-PMLSM are introduced, and a simplified one phase model is established to investigate the performance of the machine in order to save the computation time. Then, the electromagnetic characteristics, including no-load flux linkage, electromotive force (EMF, inductance, detent force and thrust force, are simulated and analyzed in detail. After that, the theoretical analysis of the detent force, thrust force, and power factor are carried out. And the theoretical analysis results are validated with 3-D finite-element method (FEM. Finally, an improved mathematical model of the machine based on d-q rotating coordinate system is proposed, in which inductance harmonics and coupling between d- and q-axis inductance is considered. The results from the proposed mathematical model are in accordance with the results from 3-D FEM, which proves the validity and effectiveness of the proposed mathematical model. This provides a powerful foundation for the control of the machine.

  5. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  6. Evaluation of performance reference compounds in PUF passive air samplers at different wind speeds

    Energy Technology Data Exchange (ETDEWEB)

    Bartkow, M.; Kennedy, K.; Muller, J. [Queensland Univ., Brisbane (Australia). National Research Centre for Environmental Toxicology; Jones, K. [Lancaster Univ. (United Kingdom). Dept. of Environmental Science; Holling, N. [Queensland Health and Scientific Sevices, Brisbane, QLD (Australia); Hawker, D. [Griffith Univ., Brisbane, QLD (Australia). Faculty of Environmental Sciences

    2004-09-15

    Polyurethane foam (PUF) samplers are being used in an increasing number of studies to passively sample semivolatile organic compounds (SOCs) in the atmosphere. However, recent research shows that the uptake and loss kinetics of passive air samplers is influenced by changes in wind speed. According to theory, the rate of chemical exchange between the sampler and atmosphere can be limited by the thickness of the air-side boundary layer. If this is the case then an increase in wind speed can reduce the thickness of the boundary layer resulting in higher rates of exchange. The loss of performance reference compounds (PRCs) loaded into the sampler prior to deployment should reflect exposure to different wind speeds at different sites. This approach has been used successfully with passive water samplers however studies using PRCs in passive air samplers are limited to SPMDs and a tristearin-based sampler. We tested whether PRCs could be loaded reproducibly into PUF samplers and then exposed the samplers to different wind speeds in a wind tunnel. Data was examined in order to determine whether the loss of PRCs responded to changes in wind speed. In addition, the capacity of sampling chambers to control for the effects of varying wind speeds was investigated.

  7. Cross-winds effect on the performance of natural draft wet cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Al-Waked, R. [Dhofar Univ., Mechanical Engineering Dept., College of Engineering, Sultanate of Oman (Oman)

    2010-01-15

    Effects of cross-winds on the thermal performance of natural draft wet cooling towers (NDWCTs) have been investigated. A three-dimensional CFD model has been used to determine the effect of cross-winds on NDWCTs performance surrounded by power plant building structures. The three-dimensional CFD model has utilized the standard k-{epsilon} turbulence model as the turbulence closure. Two cases have been investigated: a stand-alone NDWCT and two NDWCTs within a proposed power plant structures (PPS). It has been found that regardless of the cross-winds direction, an increase of 1.3 k or more could be predicted at cross-winds speeds greater than 4 m/s. Furthermore, the performance of NDWCTs under cross-winds has been found to be dependent on the three major factors: the structure of the approaching cross-winds and whether it is disturbed or undisturbed, the location of the NDWCT in the wake of the other NDWCT, and the location of the NDWCT in front of/in the wake of the PPS. When comparing results from the stand-alone and from the NDWCTs within PPS simulations, differences in {delta}T{sub wo} were found to be less than 1 K for the whole span of cross-winds speeds and could be decreased to 0.7 K for speeds less than 8 m/s. Finally, results obtained from the simulation of a stand-alone NDWCT could be used instead of those from NDWCTs within PPS at a certain cross-winds direction for qualitative comparisons. (authors)

  8. Cross-winds effect on the performance of natural draft wet cooling towers

    International Nuclear Information System (INIS)

    Al-Waked, R.

    2010-01-01

    Effects of cross-winds on the thermal performance of natural draft wet cooling towers (NDWCTs) have been investigated. A three-dimensional CFD model has been used to determine the effect of cross-winds on NDWCTs performance surrounded by power plant building structures. The three-dimensional CFD model has utilized the standard k-ε turbulence model as the turbulence closure. Two cases have been investigated: a stand-alone NDWCT and two NDWCTs within a proposed power plant structures (PPS). It has been found that regardless of the cross-winds direction, an increase of 1.3 k or more could be predicted at cross-winds speeds greater than 4 m/s. Furthermore, the performance of NDWCTs under cross-winds has been found to be dependent on the three major factors: the structure of the approaching cross-winds and whether it is disturbed or undisturbed, the location of the NDWCT in the wake of the other NDWCT, and the location of the NDWCT in front of/in the wake of the PPS. When comparing results from the stand-alone and from the NDWCTs within PPS simulations, differences in ΔT wo were found to be less than 1 K for the whole span of cross-winds speeds and could be decreased to 0.7 K for speeds less than 8 m/s. Finally, results obtained from the simulation of a stand-alone NDWCT could be used instead of those from NDWCTs within PPS at a certain cross-winds direction for qualitative comparisons. (authors)

  9. Wind energy resources assessment for Yanbo, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur

    2004-01-01

    The paper presents long term wind data analysis in terms of annual, seasonal and diurnal variations at Yanbo, which is located on the west coast of Saudi Arabia. The wind speed and wind direction hourly data for a period of 14 years between 1970 and 1983 is used in the analysis. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 5.0 m/s and more were observed during the summer months of the year and noon hours (09:00 to 16:00 h) of the day. The wind duration availability is discussed as the percent of hours during which the wind remained in certain wind speed intervals or bins. Wind energy calculations were performed using wind machines of sizes 150, 250, 600, 800, 1000, 1300, 1500, 2300 and 2500 kW rated power. Wind speed is found to remain above 3.5 m/s for 69% of the time during the year at 40, 50, 60, and 80 m above ground level. The energy production analysis showed higher production from wind machines of smaller sizes than the bigger ones for a wind farm of 30 MW installed capacity. Similarly, higher capacity factors were obtained for smaller wind machines compared to larger ones

  10. Effect of the blade arc angle on the performance of a Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2015-05-01

    Full Text Available Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k − ε turbulent model was utilized. The numerical method was validated with existing experimental data. The results indicate that the turbine with a blade arc angle of 160 ∘ generates the maximum power coefficient, 0.2836, which is 8.37% higher than that from a conventional Savonius turbine.

  11. Enhanced Central System of the Traversing Rod for High-Performance Rotor Spinning Machines

    Directory of Open Access Journals (Sweden)

    Valtera Jan

    2017-03-01

    Full Text Available The paper deals with the improvement of central traversing system on rotor spinning machines, where rectilinear motion with variable stroke is used. A new system of traversing rod with implemented set of magnetic-mechanical energy accumulators is described. Mathematical model of this system is analysed in the MSC. Software Adams/View and verified by an experimental measurement on a real-length testing rig. Analysis results prove the enhancement of devised traversing system, where the overall dynamic force is reduced considerably. At the same time, the precision of the traversing movement over the machine length is increased. This enables to increase machine operating speed while satisfying both the maximal tensile strength of the traversing rod and also output bobbin size standards. The usage of the developed mathematical model for determination of the optimal number and distribution of accumulators over the traversing rod of optional parameters is proved. The potential of the devised system for high-performance rotor spinning machines with longer traversing rod is also discussed.

  12. Implementation of Total Productive Maintenance (TPM to Improve Sheeter Machine Performance

    Directory of Open Access Journals (Sweden)

    Candra Nofri Eka

    2017-01-01

    Full Text Available This paper purpose is an evaluation of TPM implementation, as a case study at sheeter machine cut size line 5 finishing department, PT RAPP, Indonesia. Research methodology collected the Overall Equipment Effectiveness (OEE data of sheeter machine and computed its scores. Then, OEE analysis big losses, statistical analysis using SPSS 20 and focused maintenance evaluation of TPM were performed. The data collected to machine sheeter’s production for 10 months (January-October 2016. The data analyses was resulted the OEE average score of 82.75%. This score was still below the world class OEE (85% and the company target (90%. Based the big losses of OEE analysis was obtained the reduce speed losses, which most significant losses of OEE scores. The reduce speed losses value was 44.79% of total losses during the research period. The high score of these losses due to decreasing of machine production speed by operators, which intended to improve the quality of resulting products. The OEE scores statistical analysis was found breakdown losses and reduces speed losses, which significantly affected to OEE scores. Implementations of focused maintenance of TPM in the case study may need to improve because there were still occurred un-expecting losses during the research period.

  13. Aerodynamic performance analysis of an airborne wind turbine system with NREL Phase IV rotor

    International Nuclear Information System (INIS)

    Saeed, Muhammad; Kim, Man-Hoe

    2017-01-01

    Highlights: • Aerodynamic predictions for a buoyant airborne system at an altitude of 400 m. • Aerodynamic characteristics of NREL Phase IV rotor operating in a shell casing. • Buoyant shell aerodynamics under varying wind conditions. - Abstract: Wind energy becomes more powerful and consistent with an increase in altitude, therefore, harvesting the wind energy at high altitude results in a naturally restocked source of energy which is cheaper and far more efficient than the conventional wind power system. Airborne wind turbine (AWT), one of the many techniques being employed for this purpose, stands out due to its uninterrupted scheme of energy production. This paper presents the aerodynamic performance of AWT system with NREL Phase IV rotor at an altitude of 400 m. Unsteady simulation of the airborne system has been carried out and variations in the rotor’s torque for a complete revolution are reported and discussed. In order to compare the performance of the shell mounted configuration of Phase IV rotor with its standard test configuration, steady state simulations of the rotor are also conducted under various wind conditions for both configurations. Finally, for stable design of the buoyant airborne system, aerodynamic forces on the shell body are computed and reported.

  14. Measured and predicted rotor performance for the SERI advanced wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

    1992-02-01

    Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.

  15. Study of Low Voltage Ride Through Performance for Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Hirawata, Ryoya; Kai, Takaaki

    Recently, the introduction of wind power generation is increasing rapidly. The ratio of wind power generation to the capacity of a total generation is getting higher and higher. When the phase-to-phase fault occurs in the power system, the frequency of power system is lower due to disconnecting of the wind power generation with doubly fed induction generator (DFIG). Therefore, the power system might become unstable. This paper describes the LVRT (low voltage ride through) performance improvement scheme of the wind power generation with DFIG. The wind power generation is disconnected from the grid in case of the power system fault. It is independently in operation from the grid by controlling of the inverter equipped in the generation. After clearance of the power system fault, the wind power generation is immediately re-connected to the grid. As a result, instability in the power system disappears. The performance of LVRT is confirmed by using simulation software PSCAD/EMTDC. The simulation result shows an excellent result to the three-phase short-circuit fault of the voltage dip 100%.

  16. 77 FR 485 - Wind Plant Performance-Public Meeting on Modeling and Testing Needs for Complex Air Flow...

    Science.gov (United States)

    2012-01-05

    ... of Energy Efficiency and Renewable Energy Wind Plant Performance--Public Meeting on Modeling and... validation techniques for complex flow phenomena in and around off- shore and on-shore utility-scale wind power plants. DOE is requesting this information to support the development of cost-effective wind power...

  17. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  18. Predicting reaction performance in C-N cross-coupling using machine learning.

    Science.gov (United States)

    Ahneman, Derek T; Estrada, Jesús G; Lin, Shishi; Dreher, Spencer D; Doyle, Abigail G

    2018-02-15

    Machine learning methods are becoming integral to scientific inquiry in numerous disciplines. Here we demonstrate that machine learning can be used to predict the performance of a synthetic reaction in multidimensional chemical space using data obtained via high-throughput experimentation. We created scripts to compute and extract atomic, molecular, and vibrational descriptors for the components of a palladium-catalyzed Buchwald-Hartwig cross-coupling of aryl halides with 4-methylaniline in the presence of various potentially inhibitory additives. Using these descriptors as inputs and reaction yield as output, we show that a random forest algorithm provides significantly improved predictive performance over linear regression analysis. The random forest model was also successfully applied to sparse training sets and out-of-sample prediction, suggesting its value in facilitating adoption of synthetic methodology. Copyright © 2018, American Association for the Advancement of Science.

  19. ASSESSMENT OF PERFORMANCES OF VARIOUS MACHINE LEARNING ALGORITHMS DURING AUTOMATED EVALUATION OF DESCRIPTIVE ANSWERS

    Directory of Open Access Journals (Sweden)

    C. Sunil Kumar

    2014-07-01

    Full Text Available Automation of descriptive answers evaluation is the need of the hour because of the huge increase in the number of students enrolling each year in educational institutions and the limited staff available to spare their time for evaluations. In this paper, we use a machine learning workbench called LightSIDE to accomplish auto evaluation and scoring of descriptive answers. We attempted to identify the best supervised machine learning algorithm given a limited training set sample size scenario. We evaluated performances of Bayes, SVM, Logistic Regression, Random forests, Decision stump and Decision trees algorithms. We confirmed SVM as best performing algorithm based on quantitative measurements across accuracy, kappa, training speed and prediction accuracy with supplied test set.

  20. Aligning strategy and performance management systems : the case of the wind-farm industry

    NARCIS (Netherlands)

    Vieira, R.; O'Dwyer, B.; Schneider, R.

    This article presents a case study examining the problems and possibilities of performance management in a wind-farm company. Drawing on Ferreira and Otley’s recently developed performance management systems (PMSs) framework, the study demonstrates how the framework facilitates in-depth, holistic,

  1. The Cooling and Lubrication Performance of Graphene Platelets in Micro-Machining Environments

    Science.gov (United States)

    Chu, Bryan

    The research presented in this thesis is aimed at investigating the use of graphene platelets (GPL) to address the challenges of excessive tool wear, reduced part quality, and high specific power consumption encountered in micro-machining processes. There are two viable methods of introducing GPL into micro-machining environments, viz., the embedded delivery method, where the platelets are embedded into the part being machined, and the external delivery method, where graphene is carried into the cutting zone by jetting or atomizing a carrier fluid. The study involving the embedded delivery method is focused on the micro-machining performance of hierarchical graphene composites. The results of this study show that the presence of graphene in the epoxy matrix improves the machinability of the composite. In general, the tool wear, cutting forces, surface roughness, and extent of delamination are all seen to be lower for the hierarchical composite when compared to the conventional two-phase glass fiber composite. These improvements are attributed to the fact that graphene platelets improve the thermal conductivity of the matrix, provide lubrication at the tool-chip interface and also improve the interface strength between the glass fibers and the matrix. The benefits of graphene are seen to also carry over to the external delivery method. The platelets provide improved cooling and lubrication performance to both environmentally-benign cutting fluids as well as to semi-synthetic cutting fluids used in micro-machining. The cutting performance is seen to be a function of the geometry (i.e., lateral size and thickness) and extent of oxygen-functionalization of the platelet. Ultrasonically exfoliated platelets (with 2--3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micro-machining applications. Even at the lowest concentration of 0.1 wt%, they are capable of providing a 51% reduction in the cutting

  2. Defining brain-machine interface applications by matching interface performance with device requirements.

    Science.gov (United States)

    Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo

    2008-01-15

    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.

  3. Influence of Pretreatment on Diamond-Coated Tool Nucleation and Machining Performance

    Science.gov (United States)

    Xu, Yinchao; Chen, Kanghua; Wang, Shequan; Chen, Songyi; Chen, Xiangming

    The CVD diamond film with favorable adhesion and relatively thinner thickness is essential facing for its application on drills for machining carbon fiber reinforced plastics (CFRP), with regard to either the tool lifetime or the machining quality. A 500-nm-thick CrN layer was deposited by the cathode arc technique on slight chemical etched WC-Co 6wt.% drill, and nano-crystalline diamond (NCD) is subsequently deposited by the hot filament chemical vapor deposition (HFCVD) technique. The same NCD film is also deposited on the drills pretreated only by the slight chemical etching or the CrN interlayer, which are adopted as comparisons in the present study. The nucleation and growth of diamond film and the cutting performance of the coated drills are systematically studied. The results show that the drill pretreated by the slight chemical etching and CrN interlayer can acquire highest nucleation density (ND) compared to the other pretreatment methods as it sufficiently prevents the Co diffusion. The diamond-coated drill with deep chemical etching was used for comparison to study the machining quality when drilling CFRP. During machining the CFRP, the failure mode of the diamond-coated drill is mainly the delamination and peeling off of the diamond film at areas with stress concentration, while the diamond-coated drill pretreated by slight chemical etching + CrN interlayer can retard such failure. The exit hole quality of CRFP machined by drill pretreated with slight chemical etching + CrN interlayer is better than that by drill pretreated with deep chemical etching, which is ascribed to the different cutting edges of the drills.

  4. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); MacAlpine, Sara M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Silverman, Timothy J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-13

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air to flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.

  5. On Electrical Design and Technical Performance Requirements for Large Scale Wind Farms

    DEFF Research Database (Denmark)

    Gordon, Mark; Keerthipala, W.; Fernando, A.

    2009-01-01

    plant operating limits for ensuring power system security at the high voltage point of connection. Experiences presented here refer mainly to few of the selected technical requirements and issues encountered during the process of wind farms connections into Eastern Australian power system. In particular......This paper presents and discusses technical performance requirements for connection of large scale wind turbine generating systems into HV transmission networks. Requirements have been presented for the purpose of achieving performance enhanced operation, reliability and assessment of the power...

  6. Modeling of the wind turbine with doubly fed induction machine and its dynamic behavior in distribution networks

    International Nuclear Information System (INIS)

    Mendez Rodriguez, Christian; Badilla Solorzano, Jorge Adrian

    2014-01-01

    Wind turbines equipped with doubly fed induction generator (DFIG) are described. A model is constructed to represent the behavior of wind turbines during the connection with distribution networks. The main systems that compose a wind turbine with DFIG are specified to develop a mathematical model of each of them. The behavior of the wind turbine in the stable and transient regimes is investigated to explain its dynamics during nominal operation and contingency situations when they are connected to distribution networks. In addition, strategies to mitigate the negative effects of such situations and control strategies to contribute to the dynamics of the network are included. An integrated model of the parts of the wind turbine is built in the program SIMULINK® of MATLAB® to validate the models of the systems and to obtain a tool that allows their simulation. The wind turbine model developed is simulated in order to evaluate and to analyze the dynamic behavior under different operating conditions. The results from validations have revealed an adequate behavior for the model under normal operating conditions. In the case of behavior in contingency situations, the study is limited to the response to three-phase faults and voltage variations, and frequency under conditions of balance in the power system [es

  7. Performance of palm oil as a biobased machining lubricant when drilling inconel 718

    Directory of Open Access Journals (Sweden)

    Abd Rahim Erween

    2017-01-01

    Full Text Available Metalworking fluid acts as cooling and lubrication agent at the cutting zone in the machining process. However, conventional Metalworking fluid such mineral oil gives negative impact on the human and environment. Therefore, the manufacture tends to substitute the mineral oil to bio-based oil such as vegetables and synthetic oil. In this paper, the drilling experiment was carried out to evaluate the efficiency of palm oil and compare it with minimal quantity lubrication technique using synthetic ester, flood coolant and air blow with respect to cutting temperature, cutting force, torque and tool life. The experimental results showed that the application of palm oil under minimal quantity lubrication condition as the cutting fluid was more efficient process as it improves the machining performances.

  8. High-performance permanent magnet brushless motors with balanced concentrated windings and similar slot and pole numbers

    International Nuclear Information System (INIS)

    Stumberger, Bojan; Stumberger, Gorazd; Hadziselimovic, Miralem; Hamler, Anton; Trlep, Mladen; Gorican, Viktor; Jesenik, Marko

    2006-01-01

    The paper presents a comparison between the performances of exterior-rotor permanent magnet brushless motors with distributed windings and the performances of exterior-rotor permanent magnet brushless motors with concentrated windings. Finite element method analysis is employed to determine the performance of each motor. It is shown that motors with concentrated windings and similar slot and pole numbers exhibit similar or better performances than motors with distributed windings for brushless AC (BLAC) operation mode and brushless DC (BLDC) operation mode as well

  9. Wind turbine performance: Methods and criteria for reliability of measured power curves

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    In order to evaluate the performance of prototype turbines, and to quantify incremental changes in performance through field testing, Advanced Wind Turbines (AWT) has been developing methods and requirements for power curve measurement. In this paper, field test data is used to illustrate several issues and trends which have resulted from this work. Averaging and binning processes, data hours per wind-speed bin, wind turbulence levels, and anemometry methods are all shown to have significant impacts on the resulting power curves. Criteria are given by which the AWT power curves show a high degree of repeatability, and these criteria are compared and contrasted with current published standards for power curve measurement. 6 refs., 5 figs., 5 tabs.

  10. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    Science.gov (United States)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  11. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  12. Feasibility limits and performance of an absorption cooling machine using light alkane mixtures

    International Nuclear Information System (INIS)

    Dardour, H.; Mazouz, S.; Reneaume, J.-M.; Cézac, P.; Bourouis, M.; Bellagi, A.

    2015-01-01

    The performance of a heat-driven vapor absorption chiller with various alkane mixtures as working pairs was studied. A Thermodynamic analysis showed that under specified operating conditions and with a generator temperature below 130 °C, temperature achievable with a simple flat plate collector when solar energy is expected as the driving heat source, the application of some of the proposed alkane mixtures is not feasible. Simulations using ASPEN Plus flow sheeting program are then done with the selected working pairs. All simulations were done specifying the Peng-Robinson equation of state as the property method. A parametric study was carried out allowing the investigation of the generator temperature effect on the system performance and the comparison between performances released with each working pair. Results revealed that a water-cooled absorption machine using the C3H8/n-C9H20 pair as working fluid releases the best performances from a heat driving temperature level of about 100 °C. - Highlights: • Performance of an absorption chiller with various alkane mixtures was studied. • Some of the proposed alkane mixtures is not feasible. • Only the n-C4/n-C6 mixture may be considered for air-cooled machine. • In case of water cooling, C3/n-C9 and n-C4/n-C9 give the best COP

  13. Energy Storage System by Means of Improved Thermal Performance of a 3 MW Grid Side Wind Power Converter

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    side wind power converter. The cost, weight and cycle life of the energy storage technologies are evaluated based on a typical low speed high turbulence wind profile. In detail, a wind turbine system model is established and its control strategy is illustrated, which is followed by the power control......Wind speed variations make the power of wind turbine system to fluctuate, which could increase the thermal stress of the power converter and reduce its lifetime. In order to relieve this problem, short-term energy storage technologies are applied to improve the thermal performance of a 3 MW grid...

  14. Applying Machine Learning and High Performance Computing to Water Quality Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Ruijian Zhang

    2017-12-01

    Full Text Available Water quality assessment and prediction is a more and more important issue. Traditional ways either take lots of time or they can only do assessments. In this research, by applying machine learning algorithm to a long period time of water attributes’ data; we can generate a decision tree so that it can predict the future day’s water quality in an easy and efficient way. The idea is to combine the traditional ways and the computer algorithms together. Using machine learning algorithms, the assessment of water quality will be far more efficient, and by generating the decision tree, the prediction will be quite accurate. The drawback of the machine learning modeling is that the execution takes quite long time, especially when we employ a better accuracy but more time-consuming algorithm in clustering. Therefore, we applied the high performance computing (HPC System to deal with this problem. Up to now, the pilot experiments have achieved very promising preliminary results. The visualized water quality assessment and prediction obtained from this project would be published in an interactive website so that the public and the environmental managers could use the information for their decision making.

  15. Managing wind turbine reliability and maintenance via performance-based contract

    DEFF Research Database (Denmark)

    Jin, Tongdan; Ding, Yi; Guo, Huairui

    2012-01-01

    Performance-based contracting (PBC) is reshaping the acquisition, operation, and maintenance of capital equipment. Under the PBC scheme, we propose a holistic approach for lowering the cost of wind turbine ownership while meeting the availability requirement. Our effects are focused on integrated...

  16. Development of a representative model of a wind turbine in order to study the installation of several machines on a wind park; Developpement d'un modele representatif d'une eolienne afin d'etudier l'implantation de plusieurs machines sur un parc eolien

    Energy Technology Data Exchange (ETDEWEB)

    Jourieh, M

    2007-12-15

    This thesis is devoted to the study of aerodynamics in wind turbines. It is divided into two main parts, one is experimental, and the other deals with modelling and numerical simulation. The velocity field downstream from a three-bladed wind turbine with a horizontal axis is explored in the wind tunnel at ENSAM-Paris. Two measurement techniques are used: hot wire anemometry and Particle Image Velocimetry (PIV). Experimental work gives a clear idea of the structure of the near wake and provides useful data to validate the numerical simulations and the hybrid models which are studied in this thesis. In the work concerning numerical simulation, two hybrid models are defined and implemented: a model of actuator disc and a model of actuator cylinder, coupled with a simulation based on the numerical resolution of the Navier-Stokes equations. These models are validated by the power of the wind turbine and on the velocity field in the near wake of the rotor. The numerical results are compared with the experimental data resulting from the tests carried out by the NREL for NREL phase II and VI cases. The experimental and numerical velocity fields are also compared in the wake of a wind turbine Rutland 503. In both validation cases, power and wake, the experimental data are in accordance with the results provided by the hybrid models. After this validation, the interaction between several wind turbines is studied and quantified. The tested hybrid models are also used to study the interaction between identical wind turbines placed one behind the other. The obtained results highlight the effect of spacing between the machines as well as the effect of free stream velocity. (author)

  17. Evaluation of different control strategies on performance of a commercial wind farm

    DEFF Research Database (Denmark)

    Wang, L.; Yeh, T.-H.; Lee, W.-J.

    2009-01-01

    his paper presents potential performance improvements of a commercial wind farm (WF) in Taiwan by using current-limit reactors (CLRs), a static synchronous compensator (STATCOM), and a load tap changer (LTC) through computer simulations. With twenty-three 2-MW DFIG-type wind turbine generators...... (WTGs), this WF is connected to the 161-kV utility system through a 23/161-kV 60-MVA step-up main transformer from six feeders. Six CLRs, used to limit short-circuit currents under faulted conditions, are connected in series with the six feeders. The LTC of the main transformer is used to adjust and...

  18. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    Science.gov (United States)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  19. Transient Performance Iprovement of Wind Turbines with Doubly Fed Induction Generators Using Fractional Order Control Strategy

    Directory of Open Access Journals (Sweden)

    Samaneh Jenab

    2014-01-01

    Full Text Available Application of fractional order proportional integral (FOPI controller to improve transient performance of wind turbine (WT with Doubly fed induction generator (DFIG is presented and studied in this paper. By small signal analysis, it is found that the dynamic behavior of the DFIG based WT, during the variation of operating conditions, is strongly affected by the stator dynamics. Since the DFIG electrical dynamics are nonlinear, the linear control (PI scheme cannot work properly under change in wind speed and stator modes are not damped appropriately. The proposed fractional order controller generalizes the conventional integer order PI controller whose integral order are fractional number rather than integer. This expansion can provide more flexibility in achieving control objectives. By time domain simulations, a comparative analysis is made with respect to the standard PI controller to demonstrate effectiveness of the fractional order PI controller during wind speed perturbation.

  20. Standard test method to determine the performance of tiled roofs to wind-driven rain

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2008-09-01

    Full Text Available The extent to which roof coverings can resist water penetration from the combination of wind and rain, commonly referred to as wind driven rain, is important for the design of roofs. A new project of European Standard prEN 15601 (1 specifies a method of test to determine the performance of the roof covering against wind driven rain. The combined action of wind and rain varies considerably with geographical location of a building and the associated differences in the rain and wind climate. Three windrain conditions and one deluge condition covering Northern Europe Coastal, Central Europe and Southern Europe are specified in the project standard, each subdivided into four wind-speeds and rainfall rates to be applied to the test. The project does not contain information on the level of acceptable performance.Para el diseño de los tejados es importante determinar el punto hasta el cual éstos pueden resistirse a la penetración de agua causada por la combinación de viento y lluvia. Un nuevo proyecto de Norma Europeo prEN 15601 (1 especifica un método de ensayo para determinar el comportamiento del tejado frente a la combinación de viento y lluvia. La acción combinada de viento y lluvia varía considerablemente con la situación geográfica de un edificio y las diferencias asociadas al clima de la lluvia y del viento. El proyecto de norma especifica las condiciones de viento y lluvia y una condición de diluvio para cada una de las tres zonas de Europa: Europa del Norte y Costera, Europa Central y Europa del Sur, cada una subdividida en cuatro condiciones de velocidades de viento y caudal de lluvia para ser aplicadas en los ensayos. El proyecto no contiene la información sobre condiciones aceptables.

  1. Performance test of the prototype-unit for J-PARC machine protection system

    International Nuclear Information System (INIS)

    Sakaki, Hironao; Nakamura, Naoki; Takahashi, Hiroki; Yoshikawa, Hiroshi

    2004-03-01

    In High Intensity Proton Accelerator Project (J-PARC), the high-power proton beam is accelerated. If the beam in J-PARC is not stopped at a few micro seconds or less, the fatal thermal shock destruction is caused on the surface of accelerating structure, because of the high-power proton beam. To avoid the thermal shock damage, we designed the high-speed machine protection system. And, the prototype unit for the system was produced. This report shows the result of its performance test. (author)

  2. Comparing the performance of different meta-heuristics for unweighted parallel machine scheduling

    Directory of Open Access Journals (Sweden)

    Adamu, Mumuni Osumah

    2015-08-01

    Full Text Available This article considers the due window scheduling problem to minimise the number of early and tardy jobs on identical parallel machines. This problem is known to be NP complete and thus finding an optimal solution is unlikely. Three meta-heuristics and their hybrids are proposed and extensive computational experiments are conducted. The purpose of this paper is to compare the performance of these meta-heuristics and their hybrids and to determine the best among them. Detailed comparative tests have also been conducted to analyse the different heuristics with the simulated annealing hybrid giving the best result.

  3. Performance and load data from Mod-0A and Mod-1 wind turbine generators

    Science.gov (United States)

    Spera, D. A.; Janetzke, D. C.

    1982-01-01

    Experimental data, together with supporting analysis, are presented on the power conversion performance and blade loading of large, horizontal-axis wind turbines tested at electric utility sites in the U.S. Four turbine rotor configurations, from 28 to 61 meters in diameter, and data from five test sites are included. Performance data are presented in the form of graphs of power and system efficiency versus free-stream wind speed. Deviations from theoretical performance are analyzed statistically. Power conversion efficiency averaged 0.34 for all tests combined, compared with 0.31 predicted. Round blade tips appeared to improve performance significantly. Cyclic blade loads were normalized to develop load factors which can be used in the design of rotors with rigid hubs.

  4. Experimental Manufacture and Performance Evaluation of Linear Switched Reluctance Motor with HTS Excitation Windings

    Science.gov (United States)

    Hirayama, Tadashi; Oto, Satoshi; Higashijima, Atsushi; Kawabata, Shuma

    This paper presents an experimental manufacture and performance evaluation of prototype linear switched reluctance motor with HTS excitation windings (HTS-LSRM). The Ag-alloy sheathed Bi-2223 tapes are used for HTS coils. We first present a structure of the prototype HTS-LSRM. Next, current-carrying properties of the HTS coils are measured. Furthermore, current and voltage waveforms are measured and we evaluation a control performance of the current and voltage.

  5. Performance of refrigerating machineries with new refrigerants; Performance des machines frigorifiques avec les nouveaux refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A.; Jurkowski, R. [CIAT, 01 - Culoz (France)

    1997-12-31

    This paper reports on a comparative study of the thermal performances of different refrigerants like R-22, R-134a, R-404A and R-407C when used as possible substitutes for the HCFC22 refrigerant in a given refrigerating machinery equipped with compact high performance plate exchangers. Thermal performances are compared in identical operating conditions. The behaviour of the two-phase exchange coefficient is analyzed with respect to the different parameters. The composition of the mixture after one year of operation has been analyzed too and the influence of oil on the performances is studied. (J.S.)

  6. The Performance Evaluation of Horizontal Axis Wind Turbine Torque and Mechanical Power Generation Affected by the Number of Blade

    Directory of Open Access Journals (Sweden)

    Tan Rodney H. G.

    2016-01-01

    Full Text Available This paper presents the evaluation of horizontal axis wind turbine torque and mechanical power generation and its relation to the number of blades at a given wind speed. The relationship of wind turbine rotational frequency, tip speed, minimum wind speed, mechanical power and torque related to the number of blades are derived. The purpose of this study is to determine the wind energy extraction efficiency achieved for every increment of blade number. Effective factor is introduced to interpret the effectiveness of the wind turbine extracting wind energy below and above the minimum wind speed for a given number of blades. Improve factor is introduced to indicate the improvement achieved for every increment of blades. The evaluation was performance with wind turbine from 1 to 6 blades. The evaluation results shows that the higher the number of blades the lower the minimum wind speed to achieve unity effective factor. High improve factors are achieved between 1 to 2 and 2 to 3 blades increment. It contributes to better understanding and determination for the choice of the number of blades for wind turbine design.

  7. Performance Analysis of a Savonius Wind Turbine in the Solar Integrated Rotor House

    Directory of Open Access Journals (Sweden)

    ABDUL LATIFMANGANHAR

    2017-07-01

    Full Text Available Rooftop, building integrated and building augmented micro wind systems have the potential for small scale power generation in the built environment. Nevertheless, the expansion of micro wind technology is very slow and its market is strongly affected by the low efficiency of conventional wind generators. WAG-RH (Wind Accelerating and Guiding Rotor House which is a new technique introduced to enhance the efficiency of vertical axis rotor. The present study utilizes other green energy element by integrating the WAG-RH with a solar heating system. In this effort roof of the WAG-RH has been utilized to heat air through micro solar chimney for creating buoyancy effect in the air flow channel at rotor zone in the WAG-RH. The integration is capable of improving the performance of rotor setup in the WAG-RH as well as providing hot air with sufficient air mass flow rate for space heating. The WAG-RH had brought about 138% increase in the performance coefficient(Cp of conventional three bladed Savonius rotor, whereas solar integrated WAG-RH has contributed 162% increase in the Cp of the same rotor.

  8. A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Hu, Jianming

    2015-01-01

    With the increasing importance of wind power as a component of power systems, the problems induced by the stochastic and intermittent nature of wind speed have compelled system operators and researchers to search for more reliable techniques to forecast wind speed. This paper proposes a combination model for probabilistic short-term wind speed forecasting. In this proposed hybrid approach, EWT (Empirical Wavelet Transform) is employed to extract meaningful information from a wind speed series by designing an appropriate wavelet filter bank. The GPR (Gaussian Process Regression) model is utilized to combine independent forecasts generated by various forecasting engines (ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM)) in a nonlinear way rather than the commonly used linear way. The proposed approach provides more probabilistic information for wind speed predictions besides improving the forecasting accuracy for single-value predictions. The effectiveness of the proposed approach is demonstrated with wind speed data from two wind farms in China. The results indicate that the individual forecasting engines do not consistently forecast short-term wind speed for the two sites, and the proposed combination method can generate a more reliable and accurate forecast. - Highlights: • The proposed approach can make probabilistic modeling for wind speed series. • The proposed approach adapts to the time-varying characteristic of the wind speed. • The hybrid approach can extract the meaningful components from the wind speed series. • The proposed method can generate adaptive, reliable and more accurate forecasting results. • The proposed model combines four independent forecasting engines in a nonlinear way.

  9. Operational performance of the Avispa-IIE wind generator in microhybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Galarza, Raul; Mejia Neri, Fortino [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The purpose of this paper is to make a general analysis over the operational performance of the Avispa-IIE wind generator in an Solar-Eolic hybrid installation, at an eco-tourist resort. This work was performed through the monitor of the wind generator and the system itself throughout a year, for the acquisition taking the variables of interest and operational parameters that might allow to characterize and to evaluate the general behavior of the system. Herein are the principals characteristics of the wind generator; its performance curve, the basic configuration of the installation and the control philosophy; Likewise, some technical and human problems which arise during the operation of the system are included, the implementation of improvements in the wind generator and the general results acquired during the time of operation of the wind generator in the cited installations. [Espanol] El proposito de este articulo es el hacer un analisis general del comportamiento operacional del aerogenerador Avispa-IIE en una instalacion hibrida Solar-Eolica en un lugar de veraneo eco-turistico. Este trabajo ha sido llevado a cabo mediante el monitor del aerogenerador y el sistema mismo por espacio de un ano, para la adquisicion de las variables de interes y de los parametros operacionales que pudieran servir para caracterizar y evaluar el comportamiento general del sistema. Aqui se incluyen las caracteristicas principales del aerogenerador; su curva de comportamiento, la configuracion basica de la instalacion y la filosofia del control. De la misma manera se incluyen algunos problemas tecnicos y humanos que se originan durante la operacion del sistema y la puesta en practica de las mejoras del aerogenerador y los resultados generales adquiridos durante el tiempo de operacion del aerogenerador en las instalaciones citadas.

  10. Performance Acceleration on Production Machines Using the Overall Equipment Effectiveness (OEE) Approach

    Science.gov (United States)

    Mansur, A.; Rayendra, R.; Mastur, MI

    2016-01-01

    Mistakes during working can trigger a decrease in production level that may lead financial loss to the company. The factors that affect the mistakes are called losses, such as breakdown loss, set up/ adjustment loss, idling and minor stoppage loss, reduced speed loss, reduced yield loss, and rework loss. The objective of the research is to accelerate the performance of the JSW 330T machine in PT. YogyaPresisiTehnikatamaIndustri. JSW 330T is a machine that has the highest downtime numbers. The method for measuring the effectiveness is using the Overall Equipment Effectiveness (OEE). The results of the research show that the JWQ 330T has average rate of the effectiveness (OEE) of 52.66%, availability ratioof 73.43%, performance efficiency rate of 83.58% and quality rate of 84.6%. From the six big losses calculation, the factor that affects the most on the low score of OEE is the breakdown loss which is 58.85% with total time loss of 929.65 hours in a year.

  11. Fatigue behaviour of high performance concretes for wind turbines; Ermuedungsverhalten von Hochleistungsbetonen in Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lohaus, Ludger; Oneschkow, Nadja; Elsmeier, Kerstin; Huemme, Julian [Hannover Univ. (Germany). Inst. fuer Baustoffe

    2012-08-15

    New developments in the wind energy sector will lead to wind turbines with enormous capacities. As a result, the loads of the supporting structures are also increasing. For some time now, high performance concretes with self-compacting properties have been used in wind turbines for structural connections. Furthermore, slender foundations and prestressed concrete supporting structures made out of high-strength concrete are under development. In future, fatigue design of these high performance concretes is to be done according to the new fib-Model Code 2010. This code includes a new fatigue design model which enables a safe and economic fatigue design, even for high strength concrete. Extensive research with regard to the fatigue behaviour of different types of high performance concrete has been carried out at the Institute of Building Materials Science, Leibniz Universitaet Hannover. As part of these research activities, the influences of steel fibre reinforcement on the fatigue behaviour of high performance concretes are being investigated. In this paper, interim results of these investigations are presented and the potential for the practical applications of high performance concrete is discussed. The results of the conducted investigations are presented in comparison with the new fatigue design model of the fib-Model Code 2010. (orig.)

  12. Analysis of indirect rotor field oriented control-based induction machine performance under inaccurate field-oriented condition

    DEFF Research Database (Denmark)

    Liu, Yang; Tao, Geng; Wang, Huai

    2017-01-01

    Indirect rotor field oriented control (IRFOC) plays an important role in the high performance induction machine drives. In the indirect rotor field oriented control — based induction machine adjustable speed control system, the rotor field angle is usually obtained by the rotor angular velocity...... used in the indirect rotor field oriented control may have considerable error. In the paper, the angle error caused by rotor resistance variation is analyzed and the impact on the output torque and the rotor field intensity of the induction machine is studied. Simulations and experimental verification...

  13. Optimization of Tape Winding Process Parameters to Enhance the Performance of Solid Rocket Nozzle Throat Back Up Liners using Taguchi's Robust Design Methodology

    Science.gov (United States)

    Nath, Nayani Kishore

    2017-08-01

    The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.

  14. Performance of Rotary Cutter Type Breaking Machine for Breakingand Deshelling Cocoa Roasted Beans

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2005-12-01

    Full Text Available Conversion of cocoa beans to chocolate product is, therefore, one of the promising alternatives to increase the value added of dried cocoa beans. On the other hand, the development of chocolate industry requires an appropriate technology that is not available yet for small or medium scale of business. Breaking and deshelling cocoa roasted beans is one important steps in cocoa processing to ascertain good chocolate quality. The aim of this research is to study performance of rotary cutter type breaking machine for breaking and deshelling cocoa roasted beans. Indonesian Coffee and Cocoa Research Institute has designed and tested a rotary cutter type breaking machine for breaking and deshelling cocoa roasted beans. Breaker unit has rotated by ½ HP power, single phase, 110/220 V and 1440 rpm. Transmission system that use for rotating breaker unit is pulley and single V belt. Centrifugal blower as separator unit between cotyledon and shell has specification 0.5 m 3 /min air flow, 780 Pa, 370 W, and 220 V. Field tests showed that the optimum capacity of the machine was 268 kg/h with 500 rpm speed of rotary cutter, 2,8 m/s separator air flow, and power require was 833 W. Percentage product in outlet 1 and 2 were 94.5% and 5.5%. Particle distribution from outlet 1 was 92% as cotyledon, 8% as shell in cotyledon and on outlet 2 was 97% as shell, 3% as cotyledon in shell. Key words:cocoa, breaking, rotary cutter, quality.

  15. BOUNDARY LAYER AND AMPLIFIED GRID EFFECTS ON AERODYNAMIC PERFORMANCES OF S809 AIRFOIL FOR HORIZONTAL AXIS WIND TURBINE (HAWT

    Directory of Open Access Journals (Sweden)

    YOUNES EL KHCHINE

    2017-11-01

    Full Text Available The design of rotor blades has a great effect on the aerodynamics performances of horizontal axis wind turbine and its efficiency. This work presents the effects of mesh refinement and boundary layer on aerodynamic performances of wind turbine S809 rotor. Furthermore, the simulation of fluid flow is taken for S809 airfoil wind turbine blade using ANSYS/FLUENT software. The problem is solved by the conservation of mass and momentum equations for unsteady and incompressible flow using advanced SST k-ω turbulence model, in order to predict the effects of mesh refinement and boundary layer on aerodynamics performances. Lift and drag coefficients are the most important parameters in studying the wind turbine performance, these coefficients are calculated for four meshes refinement and different angles of attacks with Reynolds number is 106. The study is applied to S809 airfoil which has 21% thickness, specially designed by NREL for horizontal axis wind turbines.

  16. Empowering wind power. On social and institutional conditions affecting the performance of entrepreneurs in the wind power supply market in the Netherlands

    International Nuclear Information System (INIS)

    Agterbosch, S.

    2006-01-01

    This dissertation focuses on wind energy for electricity generation, analysing the evolution of the wind power supply market in the Netherlands. We analysed different kind of wind power entrepreneurs (energy distributors, small private investors, wind cooperatives and new independent wind power producers), their capacity to implement wind energy and the social and institutional conditions that affected their investments over the period 1989-2004. Central in the analyses are the institutional regulatory dimension and the social context as explanatory variables for the emergence and performance of these wind power entrepreneurs. Special attention is given to the liberalisation of the electricity market. The primary social actors for the implementation of wind energy projects in a liberalised market are entrepreneurs willing to invest. Understanding conditions that trigger entrepreneurs to invest in these projects, and understanding conditions that determine the chance of success for entrepreneurs to implement and exploit their projects, is vital for setting up effective policies to stimulate wind electricity generation. The analytical perspective that we used to study investment behaviour of wind power entrepreneurs and their capacity to implement wind energy can be referred to as the 'new institutional perspective'. Based on this new institutional perspective the concept of implementation capacity has been developed. Implementation capacity indicates the feasibility for wind power entrepreneurs to adopt wind turbines, and enables to explain, comparatively, changing possibilities in time for different types of entrepreneurs. The development of the wind power supply market is divided into three successive market periods: Monopoly powers (1989-1995), Interbellum (1996-1997) and Free market (1998-2002). We conducted case studies on the implementation capacity of the four entrepreneurial groups in each of the three market periods. The case studies led to conclusions

  17. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  18. Performance of a Horizontal Double Cylinder Type of Fresh Coffee Cherries Pulping Machine

    OpenAIRE

    Widyotomo, Sukrisno; Mulato, Sri; Ahmad, H; Soekarno, s

    2009-01-01

    Pulping is one important step in wet coffee processing method. Usually, pulping process uses a machine which constructed using wood or metal materials. A horizontal single cylinder type coffee pulping machine is the most popular machine in coffee processor and market. One of the weakness of a horizontal single cylinder type coffee pulping machine is high of broken beans. Broken beans is one of major aspect in defect system that result in low quality. Indonesian Coffee and Cocoa Research Insti...

  19. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine

    OpenAIRE

    John J. MOMOH; Lanre Y. SHUAIB-BABATA; Gabriel O. ADELEGAN

    2010-01-01

    Existing mechanically operated tensile and creep testing machine was modified to a low cost, electro-mechanically operated creep testing machine capable of determining the creep properties of aluminum, lead and thermoplastic materials as a function of applied stress, time and temperature. The modification of the testing machine was necessitated by having an electro-mechanically operated creep testing machine as a demonstration model ideal for use and laboratory demonstrations, which will prov...

  20. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  1. Very Large-Scale Neighborhoods with Performance Guarantees for Minimizing Makespan on Parallel Machines

    NARCIS (Netherlands)

    Brueggemann, T.; Hurink, Johann L.; Vredeveld, T.; Woeginger, Gerhard

    2006-01-01

    We study the problem of minimizing the makespan on m parallel machines. We introduce a very large-scale neighborhood of exponential size (in the number of machines) that is based on a matching in a complete graph. The idea is to partition the jobs assigned to the same machine into two sets. This

  2. Wind height distribution influence on offshore wind farm feasibility study

    Science.gov (United States)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  3. Strategic Performance Measurement Using Balanced Scorecard: A Case of Machine Tool Industry

    Directory of Open Access Journals (Sweden)

    Kshatriya Anil

    2017-02-01

    Full Text Available This paper focuses on implementation, monitoring, and application of balanced scorecard (BSC techniques in an organization involved in providing machine tool solutions to the industrial sector. The growth of the company considered in real time constituted improvements of both top and bottom lines. In the industry under consideration, it was observed that in our company, the top line was steadily growing but not the bottom line. This is when we started getting down to brass tacks and strategically focusing on growth in overall profits of the company. This included growing revenues by improving of EBITDA (earnings before interests, taxes, depreciation, and amortization and by increasing efficiency (i.e., cutting costs. These improvements were implemented by chalking out a comprehensive BSC designed to suit the machine tool industry. The four perspectives of the management, namely, internal business process, organizational learning, financial perspective, and customer perspective, have been considered lucidly and enunciate the parameters that affect the BSC very aptly. The BSC designed considered 9 objectives and 27 relative measures of these factors to quantify the various quantitative and qualitative dimensions that affect the company’s performance. A Balanced Lean Index (BL Score was used to measure the results for company X.

  4. Performance Evaluation of a Bench-Top Precision Glass Molding Machine

    Directory of Open Access Journals (Sweden)

    Peter Wachtel

    2013-01-01

    Full Text Available A Dyna Technologies Inc. GP-5000HT precision glass molding machine has been found to be a capable tool for bridging the gap between research-level instruments and the higher volume production machines typically used in industry, providing a means to apply the results of rigorous instrumentation analysis performed in the lab to industrial PGM applications. The GP-5000HT's thermal and mechanical functionality is explained and characterized through the measurement baseline functionality and the associated error. These baseline measurements were used to determine the center thickness repeatability of pressed glass parts, which is the main metric used in industrial pressing settings. The baselines and the repeatability tests both confirmed the need for three warm-up pressing cycles before the press reaches a thermal steady state. The baselines used for pressing a 2 mm glass piece to a 1 mm target center thickness yielded an average center thickness of 1.001 mm and a standard deviation of thickness of 0.0055 mm for glass samples pressed over 3 consecutive days. The baseline tests were then used to deconvolve the sources of error of final pressed piece center thickness.

  5. Investigation of tool engagement and cutting performance in machining a pocket

    Science.gov (United States)

    Adesta, E. Y. T.; Hamidon, R.; Riza, M.; Alrashidi, R. F. F. A.; Alazemi, A. F. F. S.

    2018-01-01

    This study investigates the variation of tool engagement for different profile of cutting. In addition, behavior of cutting force and cutting temperature for different tool engagements for machining a pocket also been explored. Initially, simple tool engagement models were developed for peripheral and slot cutting for different types of corner. Based on these models, the tool engagements for contour and zig zag tool path strategies for a rectangular shape pocket with dimension 80 mm x 60 mm were analyzed. Experiments were conducted to investigate the effect of tool engagements on cutting force and cutting temperature for the machining of a pocket of AISI H13 material. The cutting parameters used were 150m/min cutting speed, 0.05mm/tooth feed, and 0.1mm depth of cut. Based on the results obtained, the changes of cutting force and cutting temperature performance there exist a relationship between cutting force, cutting temperature and tool engagement. A higher cutting force and cutting temperature is obtained when the cutting tool goes through up milling and when the cutting tool makes a full engagement with the workpiece.

  6. Short-Term Solar Forecasting Performance of Popular Machine Learning Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgindy, Tarek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dobbs, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-03

    A framework for assessing the performance of short-term solar forecasting is presented in conjunction with a range of numerical results using global horizontal irradiation (GHI) from the open-source Surface Radiation Budget (SURFRAD) data network. A suite of popular machine learning algorithms is compared according to a set of statistically distinct metrics and benchmarked against the persistence-of-cloudiness forecast and a cloud motion forecast. Results show significant improvement compared to the benchmarks with trade-offs among the machine learning algorithms depending on the desired error metric. Training inputs include time series observations of GHI for a history of years, historical weather and atmospheric measurements, and corresponding date and time stamps such that training sensitivities might be inferred. Prediction outputs are GHI forecasts for 1, 2, 3, and 4 hours ahead of the issue time, and they are made for every month of the year for 7 locations. Photovoltaic power and energy outputs can then be made using the solar forecasts to better understand power system impacts.

  7. A new geometrical construction using rounded surfaces proposed for the transverse flux machine for direct drive wind turbine

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Nica, Florin Valentin Traian; Ritchie, Ewen

    2014-01-01

    This paper proposes a new construction for transverse flux machines (TFM) using a rounded surfaces core geometry. The new concept has been developed for TFM with U core geometry. In this case a new analytic design procedure was proposed. The analytic design of the new TFM construction is further...... improved by FEM modelling and analysis. Using the new concept, a significant reduction of the active materials is obtained. The innovative geometry also provides a uniform magnetic field in the core structure. According to the comparison of both the TFM with prismatic and rounded core geometries the new...

  8. Performance of machine-learning scoring functions in structure-based virtual screening.

    Science.gov (United States)

    Wójcikowski, Maciej; Ballester, Pedro J; Siedlecki, Pawel

    2017-04-25

    Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary).

  9. A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music

    Science.gov (United States)

    Giraldo, Sergio I.; Ramirez, Rafael

    2016-01-01

    Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules

  10. A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music.

    Science.gov (United States)

    Giraldo, Sergio I; Ramirez, Rafael

    2016-01-01

    Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules.

  11. A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music

    Directory of Open Access Journals (Sweden)

    Sergio Ivan Giraldo

    2016-12-01

    Full Text Available Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1 quantitatively evaluate the accuracy of the induced models, (2 analyse the relative importance of the considered musical features, (3 discuss some of the learnt expressive performance rules in the context of previous work, and (4 assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules’ performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the

  12. Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Jurado, F.

    2008-01-01

    As a result of the increasing wind power penetration on power systems, the wind farms are today required to participate actively in grid operation by an appropriate generation control. This paper presents a comparative study on the performance of three control strategies for DFIG wind turbines. The study focuses on the regulation of the active and reactive power to a set point ordered by the wind farm control system. Two of them (control systems 1 and 2) are based on existing strategies, whereas the third control system (control system 3) presents a novel control strategy, which is actually a variation of the control system 2. The control strategies are evaluated through simulations of DFIG wind turbines, under normal operating conditions, integrated in a wind farm with centralized control system controlling the wind farm generation at the connection point and computing the power reference for each wind turbine according to a proportional distribution of the available power. The three control systems present similar performance when they operate with power optimization and power limitation strategies. However, the control system 3 with down power regulation presents a better response with respect to the reactive power production, achieving a higher available reactive power as compared with the other two. This is a very important aspect to maintain an appropriate voltage control at the wind farm bus

  13. Comparison and analysis of transient performances for doubly fed induction generator wind turbine under grid voltage dip

    DEFF Research Database (Denmark)

    Li, H.; Ye, R.; Han, L.

    2010-01-01

    In order to entirely analyze the transient performances of a grid-connected doubly fed induction generator (DFIG) wind turbine under the different operational states, based on the transient models of DFIG, a two-mass wind turbine electrical equivalent model considering the torsional flexibility o...

  14. Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Li, J; Ma, X; Singh, K; Schulz, M; de Supinski, B R; McKee, S A

    2008-10-09

    With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generate performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.

  15. Analytical Modeling of a Double-Sided Flux Concentrating E-Core Transverse Flux Machine with Pole Windings

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hasan, Iftekhar [University of Akron; Husain, Tausif [University of Akron; Sozer, Yilmaz [University of Akron; Husain, Iqbal [North Carolina State University

    2017-08-08

    In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in a two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.

  16. Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

    Science.gov (United States)

    Doubrawa, P.; Montornès, A.; Barthelmie, R. J.; Pryor, S. C.; Giroux, G.; Casso, P.

    2017-05-01

    The main objective of this work is to estimate how much of the discrepancy between measured and modeled flow parameters can be attributed to wake effects. The real case simulations were performed for a period of 15 days with the Weather Research and Forecasting (WRF) model and nested down to a Large-Eddy Simulation (LES) scale of ∼ 100 m. Beyond the coastal escarpment, the site is flat and homogeneous and the study focuses on a meteorological mast and a northern turbine subjected to the wake of a southern turbine. The observational data set collected during the Prince Edward Island Wind Energy Experiment (PEIWEE) includes a sonic anemometer at 60 m mounted onto the mast, and measurements from the two turbines. Wake versus free stream conditions are distinguished based on measured wind direction while assuming constant expansion for the wake of the southern turbine. During the period considered the mast and northern turbine were under the southern turbine wake ∼ 16% and ∼ 11% of the time, respectively. Under these conditions, the model overestimates the wind speed and underestimates the turbulence intensity at the mast but not at the northern turbine, where the effect of wakes on the model error is unclear and other model limitations are likely more important. The wind direction difference between the southern and northern turbines is slightly underestimated by the model regardless of whether free stream or wake conditions are observed, indicating that it may be due to factors unrelated to the wake development such as surface forcings. Finally, coupling an inexpensive wake model to the high-fidelity simulation as a post-processing tool drives the simulated wind speeds at the mast significantly closer to the observed values, but the opposite is true at the coastal turbine which is in the far wake. This indicates that the application of a post-processing wake correction should be performed with caution and may increase the wind speed errors when other important

  17. A small wind turbine system (SWTS) application and its performance analysis

    International Nuclear Information System (INIS)

    Ozgener, Onder

    2006-01-01

    Energy conservation, pollution prevention, resource efficiency, systems integration and life cycle costing are very important terms for sustainable construction. The purpose of this work is to ensure a power supply for the north of the Solar Energy Institute building environment lamps by using wind power to comply with the green building approach. Beside this, the study is to present an energy analysis of the 1.5 kW small wind turbine system (SWTS) with a hub height of 12 m above ground level with a 3 m rotor diameter in Turkey. The SWTS was installed at the Solar Energy Institute of Ege University (latitude 38.24 N, longitude 27.50 E), Izmir, Turkey. NACA 63-622 profile type (National Advisory Committee for Aeronautics) blades of epoxy carbon fiber reinforced plastics were used. The system was commissioned in September 2002, and performance tests have been conducted since then. The performance analysis of the SWTS is quantified and illustrated in the tables, particularly for a reference temperature of 25 deg. C, 30th of October 2003 till 5th of November 2003 for comparison purposes. Test results show that when the average wind speed is 7.5 m/s, 616 W and 76 Hz electricity is produced by the alternator

  18. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    International Nuclear Information System (INIS)

    Yang, C X; Li, S T

    2013-01-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia

  19. Performance Evaluation on Transmission Tower-Line System with Passive Friction Dampers Subjected to Wind Excitations

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2015-01-01

    Full Text Available The vibration control and performance evaluation on a transmission-tower line system by using friction dampers subjected to wind excitations are carried out in this study. The three-dimensional finite element (FE model of a transmission tower is firstly constructed. A two-dimensional lumped mass model of a transmission tower is developed for dynamic analysis. The analytical model of transmission tower-line system is proposed by taking the dynamic interaction between the tower and the transmission lines into consideration. The mechanical model of passive friction damper is presented by involving the effects of damper axial stiffness. The equation of motion of the transmission tower-line system incorporated with the friction dampers disturbed by wind excitations is established. A real transmission tower-line system is taken as an example to examine the feasibility and reliability of the proposed control approach. An extensive parameter study is carried out to find the optimal parameters of friction damper and to assess the effects of slipping force axial stiffness and hysteresis loop on control performance. The work on an example structure indicates that the application of friction dampers with optimal parameters could significantly reduce wind-induced responses of the transmission tower-line system.

  20. Investigation of Counter-Rotating Wind Turbine Performance using Computational Fluid Dynamics Simulation

    Science.gov (United States)

    Koehuan, V. A.; Sugiyono; Kamal, S.

    2017-11-01

    Investigation of the dual rotor counter-rotating wind turbine (CRWT) performance using non-dimensional parameters of the rotor diameter ratio and the rotor axial distance ratio against the characteristics of power coefficient with tip speed ratio (TSR) as input parameters have been successfully carried through CFD simulation. CFD simulation used k-e turbulence realizable with hexahedral meshing to predict the CRWT performance to the rotor diameter ratio of D1/D2 1 and rotor axial distance ratio with the s826 airfoil that has been applied to the single rotor wind turbine. The best CRWT performance obtained on the rotor diameter ratio of D1/D2 = 1.0 with the peak power coefficient of 0.5219 or increased to ΔCp, max = 16.49% from the single rotor. CRWT performance through the addition of rotor axial distance ratio showed the power coefficient of the front rotor continued to rise closely to the single rotor performance while the rear rotor will continue to decline. However, the overall CRWT performance were relatively stable after the ratio of the distance Z/D1 = 0.5 with the peak power coefficient of 0.5348 or increased to ΔCp, max = 19.37%.

  1. Flood damage assessment performed based on Support Vector Machines combined with Landsat TM imagery and GIS

    Science.gov (United States)

    Alouene, Y.; Petropoulos, G. P.; Kalogrias, A.; Papanikolaou, F.

    2012-04-01

    Floods are a water-related natural disaster affecting and often threatening different aspects of human life, such as property damage, economic degradation, and in some instances even loss of precious human lives. Being able to provide accurately and cost-effectively assessment of damage from floods is essential to both scientists and policy makers in many aspects ranging from mitigating to assessing damage extent as well as in rehabilitation of affected areas. Remote Sensing often combined with Geographical Information Systems (GIS) has generally shown a very promising potential in performing rapidly and cost-effectively flooding damage assessment, particularly so in remote, otherwise inaccessible locations. The progress in remote sensing during the last twenty years or so has resulted to the development of a large number of image processing techniques suitable for use with a range of remote sensing data in performing flooding damage assessment. Supervised image classification is regarded as one of the most widely used approaches employed for this purpose. Yet, the use of recently developed image classification algorithms such as of machine learning-based Support Vector Machines (SVMs) classifier has not been adequately investigated for this purpose. The objective of our work had been to quantitatively evaluate the ability of SVMs combined with Landsat TM multispectral imagery in performing a damage assessment of a flood occurred in a Mediterranean region. A further objective has been to examine if the inclusion of additional spectral information apart from the original TM bands in SVMs can improve flooded area extraction accuracy. As a case study is used the case of a river Evros flooding of 2010 located in the north of Greece, in which TM imagery before and shortly after the flooding was available. Assessment of the flooded area is performed in a GIS environment on the basis of classification accuracy assessment metrics as well as comparisons versus a vector

  2. Wind and the earth rotation effects on the trajectories and performance of tactical and strategic missiles

    International Nuclear Information System (INIS)

    Muslim, G.A.; Ali, A.; Tariq, G.F.

    1998-01-01

    This paper deals with a mathematical model developed for carrying out trajectories and performance analysis of aerodynamic bodies in flight. The model caters for external wind and the earth rotation effects, and simulates three dimensional motion of the powered or un powered vehicles in space,. The resulting system of ordinary differential equations is solved by fourth order Runge Kutta method. The trajectory and performance parameters are computed by a computer Code AERO. The sensitivity analysis of the burnout conditions has also been carried out for the strategic missiles. (author)

  3. Fatigue Life of High Performance Grout for Wind Turbine Grouted Connection in Wet or Dry Environment

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Westhof, Luc; Yde, Elo

    Grouted connections of monopile supported offshore wind turbine structures are subjected to loads leading to very high oscillating service stresses in the grout material. The fatigue capacity of a high performance cement based grout was tested by dynamic compressive loading of cylindrical specimens...... at varying levels of cyclic frequency and load. The fatigue tests were performed in two series: one with the specimens in air and one with the specimens submerged in water during the test. The fatigue life of the grout, in terms of the number of cycles to failure, was found to be significantly shorter when...... tested in water than when tested in air....

  4. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar

    DEFF Research Database (Denmark)

    Abari, Cyrus F.; Pedersen, Anders Tegtmeier; Dellwik, Ebba

    2015-01-01

    The main purpose of this study is to evaluate the near-zero wind velocity measurement performance of two separate 1.5 µm all-fiber coherent Doppler lidars (CDLs). The performance characterization is carried out through the presentation of the results from two separate atmospheric field campaigns....... In one campaign, a recently developed continuous wave (CW) CDL benefiting from an image-reject front-end was deployed. The other campaign utilized a different CW CDL, benefiting from a heterodyne receiver with intermediate-frequency (IF) sampling. In both field campaigns the results are compared against...

  5. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  6. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  7. A Comparison of the Performance of Advanced Statistical Techniques for the Refinement of Day-ahead and Longer NWP-based Wind Power Forecasts

    Science.gov (United States)

    Zack, J. W.

    2015-12-01

    Predictions from Numerical Weather Prediction (NWP) models are the foundation for wind power forecasts for day-ahead and longer forecast horizons. The NWP models directly produce three-dimensional wind forecasts on their respective computational grids. These can be interpolated to the location and time of interest. However, these direct predictions typically contain significant systematic errors ("biases"). This is due to a variety of factors including the limited space-time resolution of the NWP models and shortcomings in the model's representation of physical processes. It has become common practice to attempt to improve the raw NWP forecasts by statistically adjusting them through a procedure that is widely known as Model Output Statistics (MOS). The challenge is to identify complex patterns of systematic errors and then use this knowledge to adjust the NWP predictions. The MOS-based improvements are the basis for much of the value added by commercial wind power forecast providers. There are an enormous number of statistical approaches that can be used to generate the MOS adjustments to the raw NWP forecasts. In order to obtain insight into the potential value of some of the newer and more sophisticated statistical techniques often referred to as "machine learning methods" a MOS-method comparison experiment has been performed for wind power generation facilities in 6 wind resource areas of California. The underlying NWP models that provided the raw forecasts were the two primary operational models of the US National Weather Service: the GFS and NAM models. The focus was on 1- and 2-day ahead forecasts of the hourly wind-based generation. The statistical methods evaluated included: (1) screening multiple linear regression, which served as a baseline method, (2) artificial neural networks, (3) a decision-tree approach called random forests, (4) gradient boosted regression based upon an decision-tree algorithm, (5) support vector regression and (6) analog ensemble

  8. Improving brain-machine interface performance by decoding intended future movements

    Science.gov (United States)

    Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.

    2013-04-01

    Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.

  9. Rotor Performance of a UH-60 Rotor System in the NASA Ames 80- by 120-Foot Wind Tunnel

    National Research Council Canada - National Science Library

    Shinoda, Patrick M; Yeo, Hyeonsoo; Norman, Thomas R

    2002-01-01

    .... To evaluate the NASA Ames 80- by 120- Foot Wind Tunnel as a hover testing facility, rotor performance data were compared with predictions, UH-60 aircraft flight test data, and UH-60 model-scale data...

  10. Study on development system of increasing gearbox for high-performance wind-power generator

    Science.gov (United States)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  11. Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Gongbo Zhou

    2015-01-01

    Full Text Available Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectric bimorph cantilever beam are given in detail. Finally, an experiment is also conducted. The results show that wind-induced piezoelectric bimorph cantilever beam has low resonant frequency and stable output under the first modal mode and can achieve the maximum output voltage under the resonant condition. The output voltage increases with the increase of the length and width of wind-induced piezoelectric bimorph cantilever beam, but the latter increasing amplitude is relatively smaller. In addition, the output voltage decreases with the increase of the thickness and the ratio of metal substrate to piezoelectric patches thickness. The experiment showed that the voltage amplitude generated by the piezoelectric bimorph cantilever beam can reach the value simulated in ANSYS, which is suitable for actual working conditions.

  12. Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance

    Science.gov (United States)

    Christie, Breanne P.; Tat, Derek M.; Irwin, Zachary T.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Ryu, Stephen I.; Shenoy, Krishna V.; Thompson, David E.; Chestek, Cynthia A.

    2015-02-01

    Objective. For intracortical brain-machine interfaces (BMIs), action potential voltage waveforms are often sorted to separate out individual neurons. If these neurons contain independent tuning information, this process could increase BMI performance. However, the sorting of action potentials (‘spikes’) requires high sampling rates and is computationally expensive. To explicitly define the difference between spike sorting and alternative methods, we quantified BMI decoder performance when using threshold-crossing events versus sorted action potentials. Approach. We used data sets from 58 experimental sessions from two rhesus macaques implanted with Utah arrays. Data were recorded while the animals performed a center-out reaching task with seven different angles. For spike sorting, neural signals were sorted into individual units by using a mixture of Gaussians to cluster the first four principal components of the waveforms. For thresholding events, spikes that simply crossed a set threshold were retained. We decoded the data offline using both a Naïve Bayes classifier for reaching direction and a linear regression to evaluate hand position. Main results. We found the highest performance for thresholding when placing a threshold between -3 and -4.5 × Vrms. Spike sorted data outperformed thresholded data for one animal but not the other. The mean Naïve Bayes classification accuracy for sorted data was 88.5% and changed by 5% on average when data were thresholded. The mean correlation coefficient for sorted data was 0.92, and changed by 0.015 on average when thresholded. Significance. For prosthetics applications, these results imply that when thresholding is used instead of spike sorting, only a small amount of performance may be lost. The utilization of threshold-crossing events may significantly extend the lifetime of a device because these events are often still detectable once single neurons are no longer isolated.

  13. Long term, stable brain machine interface performance using local field potentials and multiunit spikes

    Science.gov (United States)

    Flint, Robert D.; Wright, Zachary A.; Scheid, Michael R.; Slutzky, Marc W.

    2013-10-01

    Objective. Brain machine interfaces (BMIs) have the potential to restore movement to people with paralysis. However, a clinically-viable BMI must enable consistently accurate control over time spans ranging from years to decades, which has not yet been demonstrated. Most BMIs that use single-unit spikes as inputs will experience degraded performance over time without frequent decoder re-training. Two other signals, local field potentials (LFPs) and multi-unit spikes (MSPs), may offer greater reliability over long periods and better performance stability than single-unit spikes. Here, we demonstrate that LFPs can be used in a biomimetic BMI to control a computer cursor. Approach. We implanted two rhesus macaques with intracortical microelectrodes in primary motor cortex. We recorded LFP and MSP signals from the monkeys while they performed a continuous reaching task, moving a cursor to randomly-placed targets on a computer screen. We then used the LFP and MSP signals to construct biomimetic decoders for control of the cursor. Main results. Both monkeys achieved high-performance, continuous control that remained stable or improved over nearly 12 months using an LFP decoder that was not retrained or adapted. In parallel, the monkeys used MSPs to control a BMI without retraining or adaptation and had similar or better performance, and that predominantly remained stable over more than six months. In contrast to their stable online control, both LFP and MSP signals showed substantial variability when used offline to predict hand movements. Significance. Our results suggest that the monkeys were able to stabilize the relationship between neural activity and cursor movement during online BMI control, despite variability in the relationship between neural activity and hand movements.

  14. The Electrostatic Wind Energy Converter : Electrical performance of a high voltage prototype

    NARCIS (Netherlands)

    Djairam, D.

    2008-01-01

    Wind energy is converted to electrical energy by letting the wind move charged particles against the direction of an electric field. The advantage of this type of conversion is that no rotational movement, which occurs in conventional wind turbines, is required. An electrostatic wind energy

  15. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...... still be optimized towards more competitive alternative to conventional machines. Additionally, by constructing the HTS machine setup we went through most of the issues related to the HTS machine design which we managed to address in rather simple manner using everyday materials and therefore proving......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented...

  16. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  17. Power from the Wind

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  18. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.

    Science.gov (United States)

    Abuassba, Adnan O M; Zhang, Dezheng; Luo, Xiong; Shaheryar, Ahmad; Ali, Hazrat

    2017-01-01

    Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, L 2 -norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets.

  19. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Adnan O. M. Abuassba

    2017-01-01

    Full Text Available Extreme Learning Machine (ELM is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN. It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME for classification, which includes Regularized-ELM, L2-norm-optimized ELM (ELML2, and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble. The validity of AELME is confirmed through classification on several real-world benchmark datasets.

  20. Multiscale decoding for reliable brain-machine interface performance over time.

    Science.gov (United States)

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  1. Inventory management performance in machine tool SMEs: What factors do influence them?

    Directory of Open Access Journals (Sweden)

    Rajeev Narayana Pillai

    2010-12-01

    Full Text Available Small and Medium Enterprises (SMEs are one of the principal driving forces in the development of an economy because of its significant contribution in terms of number of enterprises, employment, output and exports in most developing as well as developed countries. But SMEs, particularly in developing countries like India, face constraints in key areas such as technology, finance, marketing and human resources. Moreover these SMEs have been exposed to intense competition since early 1990s because of globalization. However, globalization, the process of continuing integration of the countries in the world has opened up new opportunities for SMEs of developing countries to cater to wider international market which brings out the need for these SMEs to develop competitiveness for their survival as well as growth. It is observed from literature that pursuing appropriate IM practice is one of the ways of acquiring competitiveness among others, by effectively managing and minimizing inventory investment. Inventory management can therefore be one of the crucial determinants of competitiveness as well as operational performance of SMEs in inventory intensive manufacturing industries. The key issue is whether Indian SMEs pursue better IM practices with an intension to reduce their inventory cost and enhance their competitiveness. If so, what are the IM practices pursued by these enterprises? What are the factors which influence the inventory cost and IM performance of enterprises? These questions have been addressed in this study with reference to machine tool SMEs located in the city of Bangalore, India.

  2. Development and operating performance of the refuelling machine of the Fugen

    International Nuclear Information System (INIS)

    Kaneko, Jun; Kasai, Yoshimitsu; Takeshita, Norito; Ohta, Takeo

    1985-01-01

    In the advanced thermal reactor ''Fugen'' power station, with the refuelling machine the fuel replacement during operation is made through the reactor bottom. Its design was started in 1967 and up to 1975 various tests were conducted. Fugen's refuelling machine has thus been used from the initial fuel loading in 1978 and handled so far about 1300 fuel assemblies in seven times of the refuelling. In the stage of Fugen operation there occurred failure of the grab drive due to crud, etc. At present, with such troubles all eliminated, the refuelling machine is in steady operation with proper maintenance. The results with Fugen's refuelling machine are reflected in the development of the refuelling machine for the demonstration ATR. (Mori, K.)

  3. Financial analysis of wind power projects

    International Nuclear Information System (INIS)

    Juanico, Luis E.; Bergallo, Juan E.

    1999-01-01

    In this work a financial assessment of the economic competitiveness of wind power projects in Argentina compared with other no CO 2 emission sources, such as nuclear, was developed. Argentina has a market driven electrical grid system, and no greenhouse gas emissions penalty taxes, together with a very low natural gas cost and a sustained nuclear development program. For the financial analysis an average wind velocity source of 8 m/s, on several wind farms (from 2 machines to 60) built with new technology wind generators (750 kilowatts power, 900 dollar/kilowatt cost) operating over 20 years, was considered. The leveled cost obtained is decreasing while the number of machines is increasing, from 0,130 dollar/kilowatt-hour to 0,090 dollar/kilowatts-hour. This poor performance can be partially explained considering the higher interest rates in the argentine financial market (15%) than the ones in developed countries

  4. Novel Power Electronics Systems for Wind Energy Applications: Final Report; Period of Performance: August 24, 1999 -- November 30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.; Angkititrakul, S.; Al-Naseem, O.; Lujan, G.

    2004-10-01

    The objective of this work was to develop new approaches to the power electronics of variable-speed wind power systems, with the goal of improving the associated cost of energy. Of particular importance is the converter efficiency at low-wind operating points. Developing converter approaches that maintain high efficiency at partial power, without sacrificing performance at maximum power, is desirable, as is demonstrating an approach that can use emerging power component technologies to attain these performance goals with low projected capital costs. In this report, we show that multilevel conversion is an approach that can meet these performance requirements. In the wind power application, multilevel conversion proves superior to conventional converter technologies because it is callable to high power and higher voltage levels, it extends the range of high converter efficiency to lower wind speeds, and it allows superior low-voltage fast-switching semiconductor devices to be used in high-voltage high-power applications.

  5. Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism

    Science.gov (United States)

    Hu, Gang; Tse, K. T.; Kwok, K. C. S.

    2016-03-01

    This letter presents the effects that fitting fins to various corners of a square-prism galloping-based piezoelectric energy harvester (PEH) has on its performance, based on results from a series of wind tunnel model tests. The results show that attaching fins to the leading edge significantly improves the efficiency of the harvester, achieving a maximum power 2.5 times that attained by a plain square prism PEH. Furthermore, a length that is 1/6 of the prism's cross-sectional width is found to be optimal for fins that are attached to the harvester.

  6. Performance-Based Design Optimization of a Transition Piece for Bucket Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia; Andersen, Lars; Ibsen, Lars Bo

    2011-01-01

    This paper deals with optimization of the shape of the transition piece connecting turbine column with a suction bucket used as a monopod foundation for an offshore wind turbine. The structural behaviour of a transition piece made of compact reinforced composite (CRC) is analysed. Several...... geometries are compared to find the one providing better force distribution, preventing stress concentration and buckling, reducing the amount of material used as well as potentially minimizing scour. Local optimization of the cross section is performed with the aim of minimizing the material consumption...... (steel, as well as CRC). A non-linear finiteelement model is developed for analysis of the structure....

  7. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)

  8. Effects of an electromagnetic shield and armature teeth on the short-circuit performance of a direct drive superconducting generator for 10 MW wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    reactance. An electromagnetic (EM) shield between the rotor and the stator as well as iron or non-magnetic composite (NMC) armature teeth affects the sub-transient reactance of a superconducting machine so that they play a role in the short-circuit performance of a superconducting wind generator. This paper...... presents a 10 MW superconducting generator design and studies the effects of material, thickness and position of an EM shield and the effects of NMC and iron armature teeth on the torque and the field current density during a three-phase short circuit at the generator terminal. One result shows...... that the short circuit torque is not able to be effectively reduced by varying the EM shield and the armature tooth material. The other result shows that the field current density is likely to exceed its critical value during a short circuit although the EM shield material and the armature tooth material take...

  9. Minimizing data transfer with sustained performance in wireless brain-machine interfaces

    Science.gov (United States)

    Thor Thorbergsson, Palmi; Garwicz, Martin; Schouenborg, Jens; Johansson, Anders J.

    2012-06-01

    Brain-machine interfaces (BMIs) may be used to investigate neural mechanisms or to treat the symptoms of neurological disease and are hence powerful tools in research and clinical practice. Wireless BMIs add flexibility to both types of applications by reducing movement restrictions and risks associated with transcutaneous leads. However, since wireless implementations are typically limited in terms of transmission capacity and energy resources, the major challenge faced by their designers is to combine high performance with adaptations to limited resources. Here, we have identified three key steps in dealing with this challenge: (1) the purpose of the BMI should be clearly specified with regard to the type of information to be processed; (2) the amount of raw input data needed to fulfill the purpose should be determined, in order to avoid over- or under-dimensioning of the design; and (3) processing tasks should be allocated among the system parts such that all of them are utilized optimally with respect to computational power, wireless link capacity and raw input data requirements. We have focused on step (2) under the assumption that the purpose of the BMI (step 1) is to assess single- or multi-unit neuronal activity in the central nervous system with single-channel extracellular recordings. The reliability of this assessment depends on performance in detection and sorting of spikes. We have therefore performed absolute threshold spike detection and spike sorting with the principal component analysis and fuzzy c-means on a set of synthetic extracellular recordings, while varying the sampling rate and resolution, noise level and number of target units, and used the known ground truth to quantitatively estimate the performance. From the calculated performance curves, we have identified the sampling rate and resolution breakpoints, beyond which performance is not expected to increase by more than 1-5%. We have then estimated the performance of alternative

  10. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    International Nuclear Information System (INIS)

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  11. Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators

    Science.gov (United States)

    Kiani, Morgan Mozhgan

    Inherent difficulties in management of electric power in the presence of an increasing demand for more energy, non-conventional loads such as digital appliances, and non-sustainable imported fossil fuels has initiated a multi-folded effort by many countries to restructure the way electric energy is generated, dispatched, and consumed. Smart power grid is the manifestation of many technologies that would eventually transforms the existing power grid into a more flexible, fault resilient, and intelligent system. Integration of distributed renewable energy sources plays a central role in successful implementation of this transformation. Among the renewable options, wind energy harvesting offers superior engineering and economical incentives with minimal environmental impacts. Doubly fed induction generators (DFIG) have turned into a serious contender for wind energy generators due to their flexibility in control of active and reactive power with minimal silicon loss. Significant presence of voltage unbalance and system harmonics in finite inertia transmission lines can potentially undermine the reliability of these wind generators. The present dissertation has investigated the impacts of system unbalances and harmonics on the performance of the DFIG. Our investigation indicates that these effects can result in an undesirable undulation in the rotor shaft which can potentially invoke mechanical resonance, thereby causing catastrophic damages to the installations and the power grid. In order to remedy the above issue, a control solution for real time monitoring of the system unbalance and optimal excitation of the three phase rotor currents in a DFIG is offered. The optimal rotor currents will create appropriate components of the magneto-motive force in the airgap that will actively compensate the undesirable magnetic field originated by the stator windings. Due to the iterative nature of the optimization procedure, field reconstruction method has been incorporated

  12. Intensification of the Students' Self-Development Process When Performing Design and Settlement Works on the "Machine Parts" Course

    Science.gov (United States)

    Timerbaev, Rais Mingalievich; Muhutdinov, Rafis Habreevich; Danilov, Valeriy Fedorovich

    2015-01-01

    The article addresses issues related to the methodology of intensifying self-development process when performing design and settlement works on the "Machine Parts" course for the students studying in such areas of training as "Technology" and "Vocational Education" with the use of computer technologies. At the same…

  13. Design, Fabrication and Performance Evaluation of a Manual Clay Brick Moulding Machine

    Directory of Open Access Journals (Sweden)

    S.K. Kolawole

    2013-01-01

    Full Text Available In an attempt to improve the production of clay bricks for housing and general construction purposes, a 215 X 102.5 X 65 mm manual brick moulding machine was designed and fabricated. The machine parts were made of mild steel, because of its availability and versatile machinability. The efficiency of the machine was examined using local clay, sourced within the University of Ilorin, Ilorin, Nigeria. Water was added to the clay after sieving to form a paste, and then packed into a mould box, before manually rammed and compacted with the machine mould cover. This process allowed for the formation of required shape, which was sent to kiln for baking to obtain stronger bricks. The machine is capable of producing a total of four bricks at a time using the available four mould boxes. The production time of the four bricks was found to be relatively equal to the time used by an automated one to produce equal number of bricks, indicating favourable efficiency. Thus, the fabricated manual machine can be used for mass production of clay bricks for improved and effective housing delivery.

  14. Effects of setting angle on performance of fish-bionic wind wheel

    Science.gov (United States)

    Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.

    2016-08-01

    With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.

  15. Summary of proceedings: Oklahoma and Texas wind energy forum, April 2-3, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S. C.; Ball, D. E.

    1981-06-01

    The Wind Energy Forum for Oklahoma and Texas was held at the Amarillo Quality Inn in Amarillo, Texas on April 2-3, 1981. Its purpose was to bring together the diverse groups involved in wind energy development in the Oklahoma and Texas region to explore the future commercial potential and current barriers to achieving this potential. Major topics of discussion included utility interconnection of wind machines and the buy-back rate for excess power, wind system reliability and maintenance concerns, machine performance standards, and state governmental incentives. A short summary of each presentation is included.

  16. Probability of Detection Study to Assess the Performance of Nondestructive Inspection Methods for Wind Turbine Blades.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Wind turbine blades pose a unique set of inspection challenges that span from very thick and attentive spar cap structures to porous bond lines, varying core material and a multitude of manufacturing defects of interest. The need for viable, accurate nondestructive inspection (NDI) technology becomes more important as the cost per blade, and lost revenue from downtime, grows. NDI methods must not only be able to contend with the challenges associated with inspecting extremely thick composite laminates and subsurface bond lines, but must also address new inspection requirements stemming from the growing understanding of blade structural aging phenomena. Under its Blade Reliability Collaborative program, Sandia Labs quantitatively assessed the performance of a wide range of NDI methods that are candidates for wind blade inspections. Custom wind turbine blade test specimens, containing engineered defects, were used to determine critical aspects of NDI performance including sensitivity, accuracy, repeatability, speed of inspection coverage, and ease of equipment deployment. The detection of fabrication defects helps enhance plant reliability and increase blade life while improved inspection of operating blades can result in efficient blade maintenance, facilitate repairs before critical damage levels are reached and minimize turbine downtime. The Sandia Wind Blade Flaw Detection Experiment was completed to evaluate different NDI methods that have demonstrated promise for interrogating wind blades for manufacturing flaws or in-service damage. These tests provided the Probability of Detection information needed to generate industry-wide performance curves that quantify: 1) how well current inspection techniques are able to reliably find flaws in wind turbine blades (industry baseline) and 2) the degree of improvements possible through integrating more advanced NDI techniques and procedures. _____________ S a n d i a N a t i o n a l L a b o r a t o r i e s i s a m u l t i

  17. Feasibility Study of Economics and Performance of Wind Turbine Generators at the Newport Indiana Chemical Depot Site

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joseph Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Newport Indiana Chemical Depot site in Newport, Indiana, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the sitefor possible wind turbine electrical generator installation and estimate the cost, performance, and site impacts of different wind energy options. In addition, the report recommends financing options that could assist in the implementation of a wind system at the site.

  18. ERDA/NASA 100 kilowatt mod-o wind turbine operations and performance. [at the NASA Plum Brook Station, Ohio

    Science.gov (United States)

    Thomas, R. L.; Richards, T. R.

    1977-01-01

    The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.

  19. Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine

    Directory of Open Access Journals (Sweden)

    Behnam Moghadassian

    2016-07-01

    Full Text Available The objective of this paper is to numerically investigate the effects of the atmospheric boundary layer on the aerodynamic performance and loads of a novel dual-rotor wind turbine (DRWT. Large eddy simulations are carried out with the turbines operating in the atmospheric boundary layer (ABL and in a uniform inflow. Two stability conditions corresponding to neutral and slightly stable atmospheres are investigated. The turbines are modeled using the actuator line method where the rotor blades are modeled as body forces. Comparisons are drawn between the DRWT and a comparable conventional single-rotor wind turbine (SRWT to assess changes in aerodynamic efficiency and loads, as well as wake mixing and momentum and kinetic energy entrainment into the turbine wake layer. The results show that the DRWT improves isolated turbine aerodynamic performance by about 5%–6%. The DRWT also enhances turbulent axial momentum entrainment by about 3.3 %. The highest entrainment is observed in the neutral stability case when the turbulence in the ABL is moderately high. Aerodynamic loads for the DRWT, measured as out-of-plane blade root bending moment, are marginally reduced. Spectral analyses of ABL cases show peaks in unsteady loads at the rotor passing frequency and its harmonics for both rotors of the DRWT.

  20. Wind Turbine Performance in Controlled Conditions: BEM Modeling and Comparison with Experimental Results

    Directory of Open Access Journals (Sweden)

    David A. Johnson

    2016-01-01

    Full Text Available Predictions of the performance of operating wind turbines are challenging for many reasons including the unsteadiness of the wind and uncertainties in blade aerodynamic behaviour. In the current study an extended blade element momentum (BEM program was developed to compute the rotor power of an existing 4.3 m diameter turbine and compare predictions with reported controlled experimental measurements. Beginning with basic blade geometry and the iterative computation of aerodynamic properties, the method integrated the BEM analysis into the program workflow ensuring that the power production by a blade element agreed with its lift and drag data at the same Reynolds number. The parametric study using the extended BEM algorithm revealed the close association of the power curve behaviour with the aerodynamic characteristics of the blade elements, the discretization of the aerodynamic span, and the dependence on Reynolds number when the blades were stalled. Transition prediction also affected overall performance, albeit to a lesser degree. Finally, to capture blade finite area effects, the tip loss model was adjusted depending on stall conditions. The experimental power curve for the HAWT of the current study was closely matched by the extended BEM simulation.

  1. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have designed and constructed an HTS machine......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely on in the future. The work presented...... experimental setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises...

  2. Machine Learning for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Wass, J.; Thrane, Jakob; Piels, Molly

    2016-01-01

    Supervised machine learning methods are applied and demonstrated experimentally for inband OSNR estimation and modulation format classification in optical communication systems. The proposed methods accurately evaluate coherent signals up to 64QAM using only intensity information....

  3. Using financial risk measures for analyzing generalization performance of machine learning models.

    Science.gov (United States)

    Takeda, Akiko; Kanamori, Takafumi

    2014-09-01

    We propose a unified machine learning model (UMLM) for two-class classification, regression and outlier (or novelty) detection via a robust optimization approach. The model embraces various machine learning models such as support vector machine-based and minimax probability machine-based classification and regression models. The unified framework makes it possible to compare and contrast existing learning models and to explain their differences and similarities. In this paper, after relating existing learning models to UMLM, we show some theoretical properties for UMLM. Concretely, we show an interpretation of UMLM as minimizing a well-known financial risk measure (worst-case value-at risk (VaR) or conditional VaR), derive generalization bounds for UMLM using such a risk measure, and prove that solving problems of UMLM leads to estimators with the minimized generalization bounds. Those theoretical properties are applicable to related existing learning models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  5. Operational results for the experimental DOE/NASA Mod-OA wind turbine project

    Science.gov (United States)

    Shaltens, R. K.; Birchenough, A. G.

    The Mod-OA wind turbine project which was to gain early experience in the operation of large wind turbines in a utility environment is discussed. The Mod-OA wind turbines were a first generation design, and even though not cost effective, the operating experience and performance characteristics had a significant effect on the design and development of the second and third generation machines. The Mod-OA machines were modified as a result of the operational experience, particularly the blade development and control system strategy. The results of study to investigate the interaction of a Mod-OA wind turbine with an isolated diesel generation system are discussed. The machine configuration, its advantages and disadvantages and the machine performance and availability are discussed.

  6. Performance assessment of a wind energy conversion system using a hierarchical controller structure

    International Nuclear Information System (INIS)

    Viveiros, C.; Melício, R.; Igreja, J.; Mendes, V.M.F.

    2015-01-01

    Highlights: • Implements a supervisory control in a higher level. • Compares two different control strategies in a lower level. • Fuzzy PI controller provided the best closed loop performance. • Fractional-order PI controller presented better energy consumption. - Abstract: This paper deals with a hierarchical structure composed by an event-based supervisor in a higher level and two distinct proportional integral (PI) controllers in a lower level. The controllers are applied to a variable speed wind energy conversion system with doubly-fed induction generator, namely, the fuzzy PI control and the fractional-order PI control. The event-based supervisor analyses the operation state of the wind energy conversion system among four possible operational states: park, start-up, generating or brake and sends the operation state to the controllers in the lower level. In start-up state, the controllers only act on electric torque while pitch angle is equal to zero. In generating state, the controllers must act on the pitch angle of the blades in order to maintain the electric power around the nominal value, thus ensuring that the safety conditions required for integration in the electric grid are met. Comparisons between fuzzy PI and fractional-order PI pitch controllers applied to a wind turbine benchmark model are given and simulation results by Matlab/Simulink are shown. From the results regarding the closed loop point of view, fuzzy PI controller allows a smoother response at the expense of larger number of variations of the pitch angle, implying frequent switches between operational states. On the other hand fractional-order PI controller allows an oscillatory response with less control effort, reducing switches between operational states

  7. The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade

    Science.gov (United States)

    Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano; Turbulence Group Collaboration

    2012-11-01

    In the present research, a 2-D wind turbine blade section based on the S809 airfoil was manufactured and tested at Johns Hopkins University in the Stanley Corrsin wind tunnel facility. A free stream velocity of 10 m/s produced a Reynolds number based on blade chord of 2.08.x105. Free stream turbulence was generated using an active grid placed 5.5 m upstream of the blade which generated a turbulence intensity, Tu of up to 6.1% and an integral length scale, L∞ of about 0.15 m. The blade was pitched to a range of angles of attack, α from 0 to 18 degrees in order to study the effects of the integral length scales on the aerodynamic characteristics of the wind turbine under fully attached and separated flow conditions. Pressure measurements around the blade and wake velocity deficit measurements utilizing a hot-wire probe were acquired to compute the lift and drag coefficient. Results suggest that turbulence generally increases aerodynamic performance as measured by the lift to drag ratio, L / D except at 0 degrees angle of attack. A significant enhancement in L / D results with free stream turbulence at post-stall angles of attack of 16 and 18 degrees, where L / D increase from 2.49 to 5.43 and from 0.64 to 4.00 respectively. This is a consequence of delaying flow separation with turbulence (which is observed in the suction pressure distribution) which in turn reduces the momentum loss in the wake particularly at 18 degrees angle of attack.

  8. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2008-05-01

    This report focuses on key trends in the U.S. wind power market, with an emphasis on the latest year, and presents a wealth of data, some of which has not historically been mined by wind power analysts.

  9. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    of the wind field reconstruction methods. Two wind models were developed in this thesis. The first one employs lidar measurement at a single distance – but several heights –, accounts for shear through a power law profile, and estimates hub height wind speed, direction and the shear exponent. The second model...... combines the wind model with a simple one-dimensional induction model. The lidar inputs were line-of-sight velocity measurements taken at multiple distances close to the rotor, from 0.5 to 1.25 rotor diameters. Using the combined wind-induction model, hub height free stream wind characteristics...... uncertainties were also quantified. Further, the annual energy production (AEP) was computed for a range of annual mean wind speeds. At 8ms−1, the lidar-estimated AEP was within 1% to the one obtained with the cup anemometer. The combined wind-induction reconstruction technique represents a paradigm shift...

  10. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  11. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  12. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  13. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    Secure power system operation of a highly wind power integrated power system is always at risk during critical weather conditions, e.g. in extreme high winds. The risk is even higher when 50% of the total electricity consumption has to be supplied by wind power, as the case for the future Danish...

  14. Empowering wind power; On social and institutional conditions affecting the performance of entrepreneurs in the wind power supply market in the Netherlands

    NARCIS (Netherlands)

    Agterbosch, S.

    2006-01-01

    This dissertation focuses on wind energy for electricity generation, analysing the evolution of the wind power supply market in the Netherlands. We analysed different kind of wind power entrepreneurs (energy distributors, small private investors, wind cooperatives and new independent wind power

  15. Calibration Performance and Capabilities of the New Compact Ocean Wind Vector Radiometer System

    Science.gov (United States)

    Brown, S. T.; Focardi, P.; Kitiyakara, A.; Maiwald, F.; Montes, O.; Padmanabhan, S.; Redick, R.; Russell, D.; Wincentsen, J.

    2014-12-01

    The paper describes performance and capabilities of a new satellite conically imaging microwave radiometer system, the Compact Ocean Wind Vector Radiometer (COWVR), being built by the Jet Propulsion Laboratory (JPL) for an Air Force demonstration mission. COWVR is an 18-34 GHz fully polarimetric radiometer designed to provide measurements of ocean vector winds with an accuracy that meets or exceeds that provided by WindSat, but using a simpler design which has both calibration and cost advantages. Heritage conical radiometer systems, such as WindSat, AMSR, GMI or SSMI(S), all have a similar overall architecture and have exhibited significant intra-channel and inter-sensor calibration biases, due in part to the relative independence of the radiometers between the different polarizations and frequencies in the system. The COWVR system uses a broadband compact hybrid combining architecture and Electronic Polarization Basis Rotation to minimize the number of free calibration parameters between polarization and frequencies, as well as providing a definitive calibration reference from the modulation of the mean polarized signal from the Earth. This second calibration advantage arises because the sensor modulates the incoming polarized signal at the input antenna aperture in a known way based only on the instrument geometry which forces relative calibration consistency between the polarimetric channels of the sensor and provides a gain and offset calibration independent of a model or other ancillary data source, which has typically been a weakness in the calibration and inter-calibration of heritage microwave sensors. This paper will give a description of the COWVR instrument and an overview of the technology demonstration mission. We will discuss the overall calibration approach for this system, its advantages over existing systems and how many of the calibration issues that impact existing satellite radiometers can be eliminated in future operational systems based on

  16. Next Generation Munitions Handler: Human-Machine Interface and Preliminary Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.; Jansen, J.F.; Pin, F.G.; Rowe, J.C.

    1999-04-25

    The Next Generation Munitions Handler/Advanced Technology Demonstrator (NGMI-VATTD) is a technology demonstrator for the application of an advanced robotic device for re-arming U.S. Air Force (USAF) and U.S. Navy (USN) tactical fighters. It comprises two key hardware components: a heavy-lift dexterous manipulator (HDM) and a nonholonomic mobility platform. The NGMWATTD is capable of lifting weapons up to 4400 kg (2000 lb) and placing them on any weapons rack on existing fighters (including the F-22 Raptor). This report describes the NGMH mission with particular reference to human-machine interfaces. It also describes preliminary testing to garner feedback about the heavy-lift manipulator arm from experienced fighter load crewmen. The purpose of the testing was to provide preliminary information about control system parameters and to gather feed- back from users about manipulator arm functionality. To that end, the Air Force load crewmen interacted with the NGMWATTD in an informal testing session and provided feedback about the performance of the system. Certain con- trol system parameters were changed during the course of the testing and feedback from the participants was used to make a rough estimate of "good" initial operating parameters. Later, formal testing will concentrate within this range to identify optimal operating parameters. User reactions to the HDM were generally positive, All of the USAF personnel were favorably impressed with the capabilities of the system. Fine-tuning operating parameters created a system even more favorably regarded by the load crews. Further adjustment to control system parameters will result in a system that is operationally efficient, easy to use, and well accepted by users.

  17. HIGH PERFORMANCE TAPS FOR CUTTING THREADS IN DIFFICULT TO MACHINE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. R. Akhmedova

    2016-01-01

    Full Text Available Objectives. This article explores in detail questions of instrument operation function of tapping internal threads in hard materials. The existing relationship between vibration system amplitude and tool durability is indicated; on this basis, it is determined that the best course for improving the durability performance is increasing vibratory resistance. Based on a critical analysis of existing designs with consideration of their flaws, the development of new technological designs of taps is tasked with ensuring stable operation when handling hard materials. Methods. It is noteworthy that one of the main vibration resistance improvement methods of the tool is to reduce the contact area of the tool with the work piece in the cutting zone. Methods are proposed for improving the vibration resistance of taps, considering the correlation adjustment of tap teeth in order to completely eliminate friction at the sides of the thread cutting surface and uneven implementation flute cutting steps. Results. The idea of increasing vibration resistance has seen the new development of vibration-proof tap designs, heralded as innovations due to the accuracy of thread cutting and durability achieved by reducing the thread contact area with the work piece in the cutting zone. Increased vibration resistance is achieved in the modified taps through high correction by means of thread side downgrading of the coarse tap cone by an additional angle of 30º. In another design, the stylus provided with uneven angular spacing. Test results of designed taps machined in corrosion-resistant 1Kh18N9T steel. A manifold increase in tool durability was achieved due to its high vibration resistance. Conclusions. The redesigned taps have a number of advantages, characterised by a high resistance when processing difficult materials and an insignificant increase in the complexity of their manufacture compared with standard taps. Therefore they can be recommended for large

  18. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  19. Development and Performance Evaluation of Manually and Motorized Operated Melon Shelling Machine using Impact Technique

    Directory of Open Access Journals (Sweden)

    H. D. Olusegun

    2009-01-01

    Full Text Available Melon shelling in most part of the world is usually done manually by hand, and like all other manual operations it is time consuming and strenuous. The design and construction of manually and motorized operated melon shelling machine using impact method was done in order to meet the domestic, commercial and industrial requirement of melon for food processing. Two of the main cultivars of melon found in Western part of Nigeria; which are Bara and Serewe can be shelled properly by this machine; the machine is made up of three sections namely the hopper, the shelling chamber which consists of the shelling disc and the shaft, and the gear system. The machine was made from locally sourced materials and it can be used in both urban and rural areas even where there is no power supply. The percentage of melon been shelled in either manual or motorized operation in two successive runs of the two types of melon (Bara and Serewe was found to be above eighty percent (80% and the shelling efficiency of the machine is above 68%.

  20. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Corbus, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  1. Manufacturing issues which affect coating erosion performance in wind turbine blades

    Science.gov (United States)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  2. Oscillation Performance and Wide‐area Coordination Control of Power System with Large‐scale Wind Farms

    DEFF Research Database (Denmark)

    Su, Chi

    in the power system; investigating the possible influence of large‐scale wind power integration on system oscillation performance; developing oscillation mitigation strategies for wind farms; and coordinating various damping controllers in the power system. For the power system operation aspect, an optimal...... and a residue identification technique is used. Furthermore, a particle swarm optimization (PSO) based coordinating strategy to select the locations, input signals and parameters of multiple PSSs is proposed. Simulation results show that this method is able to find a group of PSSs to improve the target mode...... by observing the oscillation damping change in relation with the change of the ancillary controller parameters. Furthermore, the forced oscillation in the power system activated by the wind power oscillation due to wind shear and tower shadow effects is analyzed. The forced oscillation amplitude is found...

  3. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.

    Science.gov (United States)

    Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P

    2016-04-15

    In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control

    International Nuclear Information System (INIS)

    Najafian Ashrafi, Z.; Ghaderi, M.; Sedaghat, A.

    2015-01-01

    Highlights: • A pitch controlled 200 kW HAWT blade is designed with BEM for off-design conditions. • Parametric study conducted on power coefficient, axial and angular induction factors. • The optimal pitch angles were determined at off-design operating conditions. - Abstract: In this paper, a 200 kW horizontal axis wind turbine (HAWT) blade is designed using an efficient iterative algorithm based on the blade element momentum theory (BEM) on aerodynamic of wind turbines. The effects of off-design variations of wind speed are investigated on the blade performance parameters according to constant rotational speed of the rotor. The performance parameters considered are power coefficient, axial and angular induction factors, lift and drag coefficients on the blade, angle of attack and angle of relative wind. At higher or lower wind speeds than the designed rated speed, the power coefficient is reduced due to considerable changes in the angle of attacks. Therefore, proper pitch control angles were calculated to extract maximum possible power at various off-design speeds. The results showed a considerable improvement in power coefficient for the pitch controlled blade as compared with the baseline design in whole operating range. The present approach can be equally employed for determining pitch angles to design pitch control system of medium and large-scale wind turbines

  5. Performance of a Horizontal Double Cylinder Type of Fresh Coffee Cherries Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2009-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Usually, pulping process uses a machine which constructed using wood or metal materials. A horizontal single cylinder type coffee pulping machine is the most popular machine in coffee processor and market. One of the weakness of a horizontal single cylinder type coffee pulping machine is high of broken beans. Broken beans is one of major aspect in defect system that result in low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type coffee pulping machine. Material tested is Robusta cherry, mature, 60—65% (wet basis moisture content, which size compostition of coffee cherries was 50.8% more than 15 mm diameter, 32% more than 10 mm diameter, and 16.6% to get through 10 mm hole diameter; 690—695 kg/m3 bulk density, and clean from methal and foreign materials. The result showed that this machine has 420 kg/h optimal capacity in operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 53.08% whole parchment coffee, 16.92% broken beans, and 30% beans in the wet skin. For small size coffee cherries, 603 kg/h optimal capacity in operational conditions, 1600 rpm rotor rotation speed with composition 51.30% whole parchment coffee, 12.59% broken beans, and 36.1% beans in the wet skin. Finally, for medium size coffee cherries, 564 kg/h optimal capacity in operational conditions, 1800 rpm rotor rotation speed with composition 48.64% whole parchment coffee, 18.5% broken beans, and 32.86% beans in the wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  6. Performance and optimization of support vector machines in high-energy physics classification problems

    International Nuclear Information System (INIS)

    Sahin, M.Oe.; Kruecker, D.; Melzer-Pellmann, I.A.

    2016-01-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.

  7. Performance of machine learning methods for ligand-based virtual screening.

    Science.gov (United States)

    Plewczynski, Dariusz; Spieser, Stéphane A H; Koch, Uwe

    2009-05-01

    Computational screening of compound databases has become increasingly popular in pharmaceutical research. This review focuses on the evaluation of ligand-based virtual screening using active compounds as templates in the context of drug discovery. Ligand-based screening techniques are based on comparative molecular similarity analysis of compounds with known and unknown activity. We provide an overview of publications that have evaluated different machine learning methods, such as support vector machines, decision trees, ensemble methods such as boosting, bagging and random forests, clustering methods, neuronal networks, naïve Bayesian, data fusion methods and others.

  8. An experimental result of surface roughness machining performance in deep hole drilling

    Directory of Open Access Journals (Sweden)

    Mohamad Azizah

    2016-01-01

    Full Text Available This study presents an experimental result of a deep hole drilling process for Steel material at different machining parameters which are feed rate (f, spindle speed (s, the depth of the hole (d and MQL, number of drops (m on surface roughness, Ra. The experiment was designed using two level full factorial design of experiment (DoE with centre points to collect surface roughness, Ra values. The signal to noise (S/N ratio analysis was used to discover the optimum level for each machining parameters in the experiment.

  9. Experimental assessment of the performance of ablative heat shield materials from plasma wind tunnel testing

    Science.gov (United States)

    Löhle, S.; Hermann, T.; Zander, F.

    2017-12-01

    A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material uc(Zuram), the Airbus material uc(Asterm) and the carbon preform uc(Calcarb) were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.

  10. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  11. On the use of high-frequency SCADA data for improved wind turbine performance monitoring

    Science.gov (United States)

    Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. J.

    2017-11-01

    SCADA-based condition monitoring of wind turbines facilitates the move from costly corrective repairs towards more proactive maintenance strategies. In this work, we advocate the use of high-frequency SCADA data and quantile regression to build a cost effective performance monitoring tool. The benefits of the approach are demonstrated through the comparison between state-of-the-art deterministic power curve modelling techniques and the suggested probabilistic model. Detection capabilities are compared for low and high-frequency SCADA data, providing evidence for monitoring at higher resolutions. Operational data from healthy and faulty turbines are used to provide a practical example of usage with the proposed tool, effectively achieving the detection of an incipient gearbox malfunction at a time horizon of more than one month prior to the actual occurrence of the failure.

  12. EFFECT OF THE FILL VENTILATION WINDOW ON PERFORMANCE OF A NATURAL DRAFT COOLING TOWER SUBJECTED TO CROSS-WINDS

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2016-01-01

    Full Text Available Various aerodynamic design elements and technics (wind deflectors, wind walls, etc. are utilized for improvement of the thermal efficiency of the natural draft cooling towers, particularly in conditions of cross wind. One of the technical methods, proposed by engineers of Belarus Academy of Sciences, is installation of the ventilation window in the center of the fill. This method is substantiated by the fact that the flow of cooling gas obtains maximum temperature and humidity near the center of the under-fill space of cooling tower and, as a consequence, performs minimal heat exchange. The influence of the fill ventilation window and wind deflectors in the inlet windows of the cooling tower on its thermal performance in condition of cross-wind is investigated in the paper numerically. The cooling tower of the “Woo-Jin” power plant (China 150 m of the height and 114 m of the base diameter was taken as a prototype. The analogy (equivalence between the heat and mass transfer was taken into consideration, which enabled us to consider single-phase flow and perform complicated 3D simulation by using modern personal computers. Heat transfer coefficient for the fill and its hydrodynamic resistance were defined by using actual data on total flow rate in the cooling tower. The numerical model and computational methods were tested and verified in numerous previous works. The non-linear dependence of the thermal performance of the cooling tower on wind velocity (with the minimum in vicinity of Ucr ~ 8 m/s for the simulated system was demonstrated. Calculations show that in the condition of the average wind speed the fill ventilation window doesn’t improve, but slightly decrease (by 3–7 % performance of the cooling tower. Situation changes in the condition of strong winds Ucw > 12 m/s, which are not typical for Belarus. Utilization of airflow deflectors at the inlet windows of cooling tower, conversely, increases thermal performance of the

  13. Relative performance of different numerical weather prediction models for short term predition of wind wnergy

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G.; Landberg, L. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Moennich, K.; Waldl, H.P. [Carl con Ossietzky Univ., Faculty of Physics, Dept. of Energy and Semiconductor, Oldenburg (Germany)

    1999-03-01

    In several approaches presented in other papers in this conference, short term forecasting of wind power for a time horizon covering the next two days is done on the basis of Numerical Weather Prediction (NWP) models. This paper explores the relative merits of HIRLAM, which is the model used by the Danish Meteorological Institute, the Deutschlandmodell from the German Weather Service and the Nested Grid Model used in the US. The performance comparison will be mainly done for a site in Germany which is in the forecasting area of both the Deutschlandmodell and HIRLAM. In addition, a comparison of measured data with the forecasts made for one site in Iowa will be included, which allows conclusions on the merits of all three models. Differences in the relative performances could be due to a better tailoring of one model to its country, or to a tighter grid, or could be a function of the distance between the grid points and the measuring site. Also the amount, in which the performance can be enhanced by the use of model output statistics (topic of other papers in this conference) could give insights into the performance of the models. (au)

  14. Performance Improvement of Servo Machine Low Speed Operation Using RBFN Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The typical speed estimation scheme in most servo system for low speed operation is sensitive to the variation of machine parameters, especially the moment of inertia...

  15. Some measurements of Java-to-bytecode compiler performance in the Java Virtual Machine

    OpenAIRE

    Daly, Charles; Horgan, Jane; Power, James; Waldron, John

    2001-01-01

    In this paper we present a platform independent analysis of the dynamic profiles of Java programs when executing on the Java Virtual Machine. The Java programs selected are taken from the Java Grande Forum benchmark suite, and five different Java-to-bytecode compilers are analysed. The results presented describe the dynamic instruction usage frequencies.

  16. Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel

    Science.gov (United States)

    Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.

    2018-04-01

    Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.

  17. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.

    Science.gov (United States)

    Geng, Daxi; Zhang, Deyuan; Xu, Yonggang; He, Fengtao; Liu, Dapeng; Duan, Zuoheng

    2015-05-01

    The rotary ultrasonic elliptical machining (RUEM) has been recognized as a new effective process to machining circular holes on CFRP materials. In CFRP face machining, the application of grinding tools is restricted for the tool clogging and the machined surface integrity. In this paper, we proposed a novel approach to extend the RUEM process to side milling of CFRP for the first time, which kept the effect of elliptical vibration in RUEM. The experiment apparatus was developed, and the preliminary experiments were designed and conducted, with comparison to conventional grinding (CG). The experimental results showed that when the elliptical vibration was applied in RUEM, a superior cutting process can be obtained compared with that in CG, including providing reduced cutting forces (2-43% decrement), an extended tool life (1.98 times), and improved surface integrity due to the intermittent material removal mechanism and the excellent chip removal conditions achieved in RUEM. It was concluded that the RUEM process is suitable to mill flat surface on CFRP composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Performance optimization of a CNC machine through exploration of the timed state space

    NARCIS (Netherlands)

    Mota, M.A. Mujica; Piera, Miquel Angel

    2010-01-01

    Flexible production units provide very efficient mechanisms to adapt the type and production rate according to fluctuations in demand. The optimal sequence of the different manufacturing tasks in each machine is a challenging problem that can deal with important productivity benefits.

  19. Combining Gas Bearing and Smart Material Technologies for Improved Machine Performance Theory and Experiment

    DEFF Research Database (Denmark)

    Nielsen, Bo Bjerregaard

    According to industry leaders, the world is on the verge of the fourth industrial revolution in which the Internet of Things and cyber-physical systems are central concepts. Where the previous industrial revolution evolved around electronics, IT and automated production on machine level, Industry 4...

  20. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – TRACEABILITY, CALIBRATION AND PERFORMANCE VERIFICATION

    DEFF Research Database (Denmark)

    Bariani, Paolo; De Chiffre, Leonardo; Tosello, Guido

    This document is used in connection with an exercise of 1 hour duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns establishment of traceability of measurements with optical coordinate machine by mean of using two different calibrated...

  1. Feasibility of Virtual Machine and Cloud Computing Technologies for High Performance Computing

    Science.gov (United States)

    2014-05-01

    Hat Enterprise Linux SaaS software as a service VM virtual machine vNUMA virtual non-uniform memory access WRF weather research and forecasting...computing model is composed of three service models: infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS

  2. Machine vision-based high-resolution weed mapping and patch-sprayer performance simulation

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    1999-01-01

    An experimental machine vision-based patch-sprayer was developed. This sprayer was primarily designed to do real-time weed density estimation and variable herbicide application rate control. However, the sprayer also had the capability to do high-resolution weed mapping if proper mapping techniques

  3. Improving the energy performance of wind turbines implemented in the built environment using counter-rotating planetary transmissions

    Science.gov (United States)

    Saulescu, R.; Neagoe, M.; Jaliu, C.

    2016-08-01

    Most of wind turbine applications for urban areas use electric generators with counter-rotating rotor and stator, able to ensure a better efficiency than the conventional turbines with one wind rotor and generator with fixed stator, and, hence, a higher production of electricity. These types of power systems have two independent wind rotors that require a complex control of the two independent input speeds to obtain the optimal output speed. This paper deals with the use of a 1DOF (Degree Of Freedom) compound planetary transmission with two inputs and two outputs and three sun gears, meant for the implementation in counterrotating wind turbines, which has the properties of summing the input torques and determined transmission of the independent speed. Firstly, the kinematic and static analysis of the proposed planetary transmission, assuming friction of gears, is performed. Afterwards, the mechanism efficiency model is established depending on the ratio of the two input torques. The transmission efficiency is simulated and analysed, with determination and representation of power flows, in the four distinct operating cases according to the k ratio values. The paper results allowed formulating recommendations on the design of these mechanical planetary transmissions used in wind turbines and broadening a database for the conceptual synthesis of wind systems.

  4. Performance results from a test of an S-76 rotor in the NASA Ames 80- by 120-foot wind tunnel

    Science.gov (United States)

    Shinoda, Patrick M.; Johnson, Wayne

    1993-01-01

    A full-scale helicopter rotor wind tunnel test has been conducted which covers a wide range of rotor-shaft angles-of-attack and 0-100 kt thrust conditions. The hover performance data thus obtained were compared with the results of momentum theory calculations; forward flight rotor-performance data were compared with calculations from a comprehensive rotorcraft analysis. These comparisons suggest that hover testing at an outdoor facility in the absence of ground effect is required to make a final determination of the absolute accuracy of the wind tunnel hover data.

  5. An HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2012-01-01

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which...... is in this design integral part of the cryostat. The discussion of the requirements for the TTE supported with a simple case study comparing a shaft and a cylinder as candidates for TTE are presented. The discussion resulted with a cylinder as a TTE design rated for a 250Nm and with more then 10 times lower heat...... conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33...

  6. Effect of wind generation system types on Micro-Grid (MG) fault performance during both standalone and grid connected modes

    International Nuclear Information System (INIS)

    Kamel, Rashad M.

    2014-01-01

    Highlights: • This paper evaluated the effects of different wind system types on fault performance of Micro-Grid. • Both standalone and grid connected modes are considered. • The MG earthing system configuration is taken in consideration. - Abstract: Recently, there are three wind generation (WG) system types. The first type is called Fixed Speed Wind Generation (FSWG) system, which employs squirrel cage induction generators. Double Fed Induction Generator (DFIG) is utilized in the second type. The third type is called Full Converter Wind Generation (FCWG) system, which is interfaced with Micro-Grid (MG) through a back to back converter. During fault occurrence, each WG has its performance and characteristics which are determined by the generator physical characteristics and the MG earthing system configuration. For some WG types, the fault current depends also on the control algorithm of the power converter. The main target of this paper is to investigate and estimate how the fault performance of MG during both standalone and grid-connected modes is influenced by the type of WG. It is found during standalone mode that the type of the employed WG has a dominant impact on the MG performance under fault disturbance. On the contrary, the type of the employed WG has a negligible effect on the MG fault performance during grid-connected mode. This is because the main grid contributes most of the fault current. Effects of earthing system type on MG performance are highlighted

  7. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG) ...... acting as STATCOM helps to improve the voltage profile sufficiently to permit rotor-side converter reconnection....

  8. Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E. I.; Dabo, M.

    2009-05-01

    The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

  9. Superconducting rotating electronic machine

    International Nuclear Information System (INIS)

    Cheon, Hui Yeong

    1989-04-01

    This book is divided into ten chapters, which handles summary of superconducting electronic machine, aspect of using of superconductor, superconducting direct current : Homopolar D. C. Machines, Drum machines, segmented slip-ring principle and carbon fibre brushes, superconducting alternating current turbine generator, design of superconducting alternating current machine, performance of superconducting alternating current machine, superconducting turbo generator by new rotor design, basic design of superconducting current generator, generator and power model, design of rotor and information of material property.

  10. Analysis of the Drivetrain Performance of a Large Horizontal-Axis Wind Turbine: An Aeroelastic Approach

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Preidikman, Sergio; Massa, Julio C

    2010-01-01

    blades’, the drivetrain and the generator. The blades are the part of the turbine that touches energy in the wind and rotates about an axis. Extracting energy from the wind is typically accomplished by first mechanically converting the velocity of the wind into a rotational motion of the wind turbine...... scheme are implemented in a computational tool; and by using it, the behavior of the turbine in the starting initial regime is investigated, considering different laws of brake releasing. The capability to simulate these phenomena is one of the novel aspects in the present effort....

  11. Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy.

    Science.gov (United States)

    Gibbons, Chris; Richards, Suzanne; Valderas, Jose Maria; Campbell, John

    2017-03-15

    Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor's activity for the purposes of quality assurance, safety, and continuing professional development. The objective of the study was to evaluate the accuracy of machine learning algorithms trained to classify open-text reports of doctor performance and to assess the potential for classifications to identify significant differences in doctors' professional performance in the United Kingdom. We used 1636 open-text comments (34,283 words) relating to the performance of 548 doctors collected from a survey of clinicians' colleagues using the General Medical Council Colleague Questionnaire (GMC-CQ). We coded 77.75% (1272/1636) of the comments into 5 global themes (innovation, interpersonal skills, popularity, professionalism, and respect) using a qualitative framework. We trained 8 machine learning algorithms to classify comments and assessed their performance using several training samples. We evaluated doctor performance using the GMC-CQ and compared scores between doctors with different classifications using t tests. Individual algorithm performance was high (range F score=.68 to .83). Interrater agreement between the algorithms and the human coder was highest for codes relating to "popular" (recall=.97), "innovator" (recall=.98), and "respected" (recall=.87) codes and was lower for the "interpersonal" (recall=.80) and "professional" (recall=.82) codes. A 10-fold cross-validation demonstrated similar performance in each analysis. When combined together into an ensemble of multiple algorithms, mean human-computer interrater agreement was .88. Comments that were classified as "respected," "professional," and "interpersonal" related to higher doctor scores on the GMC-CQ compared with comments that were not classified (P.05). Machine learning algorithms can classify open-text feedback of doctor performance into multiple themes derived by human raters with high

  12. Aerodynamic Performance Degradation Induced by Ice Accretion. PIV Technique Assessment in Icing Wind Tunnel

    Science.gov (United States)

    Gregorio, Fabrizio De

    The aim of the present chapter is to consider the use of PIV technique in an industrial icing wind tunnel (IWT) and the potentiality/advantages of applying the PIV technique to this specific field. The purpose of icing wind tunnels is to simulate the aircraft flight condition through cloud formations. In this operational condition ice accretions appear on the aircraft exposed surfaces due to the impact of the water droplets present in the clouds and the subsequent solidification. The investigation of aircraft aerodynamic performances and flight safety in icing condition is a fundamental aspect in the phase of design, development and certification of new aircrafts. The description of this unusual ground testing facility is reported. The assessment of PIV in CIRA-IWT has been investigated. Several technological problems have been afforded and solved by developing the components of the measurement system, such as the laser system and the recording apparatus, both fully remotely controlled, equipped with several traversing mechanism and protected by the adverse environment conditions (temperature and pressure). The adopted solutions are described. Furthermore, a complete test campaign on a full-scale aircraft wing tip, equipped with moving slat and deicing system has been carried out by PIV. Two regions have been investigated. The wing leading-edge (LE) area has been studied with and without ice accretion and for different cloud characteristics. The second activitiy was aimed at the investigation of the wing-wake behavior. The measurements were aimed to characterize the wake for the model in cruise condition without ice formation and during the ice formation.

  13. A concept of external aerodynamic elements in improving the performance of natural smoke ventilation in wind conditions

    Science.gov (United States)

    Wegrzyński, Wojciech; Krajewski, Grzegorz; Kimbar, Grzegorz

    2018-01-01

    This paper is a proposal of a new device that may be used as a component of natural smoke ventilation systems - an external aerodynamic baffle used to limit the wind effect at the most adverse angle. Natural ventilation is not only affected by the external wind, but also dependent on the angle of wind attack. It has been proven, that at angles between 45° to 60° the performance of such device is the lowest. This is the reason why additional device is proposed - external baffle that could hypothetically increase the performance at chosen angles. The purpose of this paper is to explore this idea by numerical modelling of such external elements on a validated natural ventilator model, with use of ANSYS® Fluent® CFD model.

  14. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because...... of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result......, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid...

  15. The Effect of Additional Mooring Chains on the Motion Performance of a Floating Wind Turbine with a Tension Leg Platform

    Directory of Open Access Journals (Sweden)

    Jinping Ou

    2012-04-01

    Full Text Available In this study, two types of floating offshore wind turbine (FOWT systems were proposed: a traditional tension leg platform (TLP type and a new TLP type with additional mooring chains. They were both based on the National Renewable Energy Laboratory 5 MW offshore wind turbine model. Taking the coupled effect of dynamic response of the top wind turbine, tower support structure and lower mooring system into consideration, not only were the 1/60 scale model tests for the two floating wind turbine systems done in HIT’s wind-wave tunnel according to the typical design conditions in IEC61400-3 code, but also the numerical simulations corresponding to the scaled model tests were performed by advanced numerical tools. As a result, the numerical results displayed good agreement with the test data. Moreover, the additional mooring chains could play an active role in reducing the surge displacement, surge acceleration and typical tension leg force responses of the FOWT system, which is very beneficial for ensuring the good operational performance and the safety of the FOWT system.

  16. Influence of "in series" elastic resistance on muscular performance during a biceps-curl set on the cable machine.

    Science.gov (United States)

    García-López, David; Herrero, Azael J; González-Calvo, Gustavo; Rhea, Matthew R; Marín, Pedro J

    2010-09-01

    This study aimed to investigate the role of elastic resistance (ER) applied "in series" to a pulley-cable (PC) machine on the number of repetitions performed, kinematics parameters, and perceived exertion during a biceps-curl set to failure with a submaximal load (70% of the 1 repetition maximum). Twenty-one undergraduate students (17 men and 4 women) performed, on 2 different days, 1 biceps-curl set on the PC machine. Subjects were randomly assigned to complete 2 experimental conditions in a cross-over fashion: conventional PC mode or ER + PC mode. Results indicate ER applied "in series" to a PC machine significantly reduces (p tension could have been achieved throughout the range of movement, leading to greater fatigue that could explain the lower number of maximal repetitions achieved. The application of force in a smooth, consistent fashion during each repetition of an exercise, while avoiding active deceleration, is expected to enhance the benefits of the resistance exercise, especially for those seeking greater increases in muscular hypertrophy.

  17. Experimental studies on improving the performance of electrochemical machining of high carbon, high chromium die steel using jet patterns

    Directory of Open Access Journals (Sweden)

    V. Sathiyamoorthy

    2014-03-01

    Full Text Available Electrochemical machining (ECM is a non-traditional process used mainly to cut hard or difficult-to-cut metals, where the application of a more traditional process is not convenient. Stiff market competition and ever-growing demand for better, durable and reliable products has brought about a material revolution, which has greatly expanded the families of difficult-to-machine materials namely highcarbon,high-chromium die steel; stainless steel and superalloys. This investigation attempts to analyze the effect of electrolyte distribution on material removal rate (MRR and surface roughness (SR on electrochemical machining of high-carbon, high-chromium die steel using NaCl aqueous solution. Three electrolyte jet patterns namely straight jet in circular, inclined jet in circular and straight jet in spiral were used for this experimentation. The results reveal that electrolyte distribution significantly improves the performance of ECM and the straight jet in spiral pattern performs satisfactorily in obtaining better MRR and surface roughness.

  18. THE EFFECT OF IMPLEMENTATION MAINTENANCE CARDS IN PERFORMANCE OF MACHINES IN SELECTED PRODUCTION COMPANY

    Directory of Open Access Journals (Sweden)

    Michał ZASADZIEŃ

    2015-10-01

    Full Text Available Intelligent development should become an inherent part of the policy of each enterprise which wants to develop and maintain its position on the competitive market. The article presents investigations related to the implementation of one of Total Productive Maintenance system elements. Reasons for introducing a new procedure for circulating information about machine inspections and overhauls planned, the major element of which are work sheets for key machines taking part in the production process, have been presented. The effectiveness of the new procedure was subjected to analysis by comparing particular machines’ work times and downtimes before and after the implementation of new procedures. The conducted research revealed an increased effectiveness of machines’ work, which resulted from shortened down-times, especially the duration of a failure.

  19. Optimization of machining parameters of turning operations based on multi performance criteria

    Directory of Open Access Journals (Sweden)

    N.K.Mandal

    2013-01-01

    Full Text Available The selection of optimum machining parameters plays a significant role to ensure quality of product, to reduce the manufacturing cost and to increase productivity in computer controlled manufacturing process. For many years, multi-objective optimization of turning based on inherent complexity of process is a competitive engineering issue. This study investigates multi-response optimization of turning process for an optimal parametric combination to yield the minimum power consumption, surface roughness and frequency of tool vibration using a combination of a Grey relational analysis (GRA. Confirmation test is conducted for the optimal machining parameters to validate the test result. Various turning parameters, such as spindle speed, feed and depth of cut are considered. Experiments are designed and conducted based on full factorial design of experiment.

  20. An investigation on the aerodynamic performance of a vertical axis wind turbine

    Science.gov (United States)

    Vaishnav, Etesh

    Scope and Method of Study. The two dimensional unsteady flow around a vertical axis wind turbine (VAWT) comprising three rotating symmetric airfoils (NACA0018) was studied numerically with the consideration of the near wake. The flow around the wind turbine was simulated using ANSYS FLUENT 12.0.16 at Reynolds number of 106. ICEM CFD was used as a pre-processor to generate hexahedral grid and arbitrary sliding mesh technique was implemented to create a moving mesh. SST k-o turbulence model was employed for the analysis and simulation was set to run at several tip speed ratios ranging from 1 to 5. The variation of the performance coefficient (Cp) as a function of tip speed ratio (lambda) was investigated by plotting a graph between them. A validation was made by comparing CFD results with experimental results. Maximum Cp of 0.34 was obtained at lambda of 3.8. In addition, the effect of the rotor diameter on the VAWT's performance was investigated. In this regard, rotor diameter was halved and the angular velocity was doubled to keep the tip speed ratio constant. Furthermore, the effect of laminar boundary layer separation on Cp of a VAWT was studied by comparing the results of Laminar viscous model and RANS turbulence model. Apart from that, the effect of solidity on Cp was investigated by comparing the Cp obtained from six bladed turbine with the three bladed turbine. Findings and Conclusions. Influence of rotor diameter on the aerodynamic performance of a VAWT was investigated and found that Cp remained almost constant at the same value of lambda ranging from 1 to 5. This was due to the fact that the ratio of the chord length and the rotor radius were kept the same in both cases. For Laminar flow at low Reynolds number, Cp was found to be low due to the presence of leading edge separation bubble and reduced lift-to-drag ratio. Therefore, in order to increase Cp of a VAWT at low Reynolds numbers (e.g. small VAWT), different blade geometry (e.g. cambered) and

  1. Performance of palm oil as a biobased machining lubricant when drilling inconel 718

    OpenAIRE

    Abd Rahim Erween; Sasahara Hiroyuki

    2017-01-01

    Metalworking fluid acts as cooling and lubrication agent at the cutting zone in the machining process. However, conventional Metalworking fluid such mineral oil gives negative impact on the human and environment. Therefore, the manufacture tends to substitute the mineral oil to bio-based oil such as vegetables and synthetic oil. In this paper, the drilling experiment was carried out to evaluate the efficiency of palm oil and compare it with minimal quantity lubrication technique using synthet...

  2. Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network

    Directory of Open Access Journals (Sweden)

    Yoshitaka Haribara

    2016-04-01

    Full Text Available We present the operational principle of a coherent Ising machine (CIM based on a degenerate optical parametric oscillator (DOPO network. A quantum theory of CIM is formulated, and the computational ability of CIM is evaluated by numerical simulation based on c-number stochastic differential equations. We also discuss the advanced CIM with quantum measurement-feedback control and various problems which can be solved by CIM.

  3. Cogenerative Performance of a Wind − Gas Turbine − Organic Rankine Cycle Integrated System for Offshore Applications

    DEFF Research Database (Denmark)

    Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea

    2016-01-01

    , but limitedefficiency of such machines is the main drawback. A solutionto enhance the system performance, also in Combined Heat andPower (CHP) arrangement, is the implementation of OrganicRankine Cycle (ORC) systems at the bottom of the gas turbines.Moreover, the resulting GT-ORC combined cycle could befurther...

  4. Using the coupled wake boundary layer model to evaluate the effect of turbulence intensity on wind farm performance

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We use the recently introduced coupled wake boundary layer (CWBL) model to predict the e ect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a \\top-down" approach to get improved predictions for the power output compared to a stand-alone

  5. A Model for Determining the Effect of the Wind Velocity on 100 M Sprinting Performance

    Directory of Open Access Journals (Sweden)

    Janjic Natasa

    2017-06-01

    Full Text Available This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected.

  6. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb; Muljadi, Eduard

    2017-02-01

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale and medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.

  7. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine

    Science.gov (United States)

    Sullivan, T. L.

    1984-01-01

    Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.

  8. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  9. Technical performance of the Villas Carrousel PV-Wind hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Agredano, J.; Munguia, G.; Flores, J. R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    Fifteen PV-Wind mini Hybrid Systems were installed at the Villas Carrousel Hotel. The first twelve were installed in December 1995. The remainder were installed during January 1997. The energy produced by the systems is used to provide the hotel illumination. Monitoring of the system`s performance has been carried out since 1996. Each system is integrated by a wind generator (Avispa) rated at 500 W, a PV array ranging from 150 to 320 Wp, an electronic control and a battery bank with capacities from 585 up to 780 Ah. The systems operate at 12 VDC and the energy produced is used through 12 V, 13 Watt high efficiency fluorescent lamps. The systems were designed to produce 140-180 Ah/day. During the first months of operation. Some problems arised with the battery voltage measurement. This parameter was formerly measured at the DC bus car of the control board. Some corrosion problems were detected there. This problem caused the undercharging of the battery banks, and in several cases abnormal operation of the wind generators were observed. In general the systems produce the energy demanded by the load. This first experience is helping to promote the Mini Hybrid technology in other applications. This paper presents some results from the system monitoring for the first year of operation that gives a general idea of the system performance. [Espanol] En el Hotel Villas Carrousel se instalaron 15 sistemas hibridos fotovoltaicos-viento. Los primeros doce se instalaron en diciembre de 1995. Los restantes se instalaron durante el mes de enero de 1997. La energia producida por los sistemas se usa para proporcionar la iluminacion del hotel. El monitoreo del rendimiento del sistema se ha llevado a cabo desde 1966. Cada sistema esta integrado por un aerogenerador (Avispa) con capacidad nominal de 500 W, en un arreglo fotovoltaico que varia de 150 a 320 Wp, un control electronico y un banco de baterias con capacidades desde 585 hasta 780 Ampere-horas. Los sistemas operan a 12 VCD y

  10. MITS machine operations

    International Nuclear Information System (INIS)

    Flinchem, J.

    1980-01-01

    This document contains procedures which apply to operations performed on individual P-1c machines in the Machine Interface Test System (MITS) at AiResearch Manufacturing Company's Torrance, California Facility

  11. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition.

    Science.gov (United States)

    Sivamani, Seralathan; T, Micha Premkumar; Sohail, Mohammed; T, Mohan; V, Hariram

    2017-12-01

    Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E) are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s.

  12. Experimental tests of the effect of rotor diameter ratio and blade number to the cross-flow wind turbine performance

    Science.gov (United States)

    Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.

  13. Performance Analysis and Simulation of a Novel Brushless Double Rotor Machine for Power-Split HEV Applications

    Directory of Open Access Journals (Sweden)

    Jingang Bai

    2012-01-01

    Full Text Available A new type of brushless double rotor machine (BDRM is proposed in this paper. The BDRM is an important component in compound-structure permanent-magnet synchronous machine (CS-PMSM systems, which are promising for power-split hybrid electric vehicle (HEV applications. The BDRM can realize the speed adjustment between claw-pole rotor and permanent-magnet rotor without brushes and slip rings. The structural characteristics of the BDRM are described and its magnetic circuit model is built. Reactance parameters of the BDRM are deduced by an analytical method. It is found that the size characteristics of the BDRM are different from those of conventional machines. The new sizing and torque equations are analyzed and the theoretical results are used in the optimization process. Studies of the analytical magnetic circuit and finite element method (FEM model show that the BDRM tends to have high leakage flux and low power factor, and then the method to obtain high power factor is discussed. Furthermore, a practical methodology of the BDRM design is developed, which includes an analytical tool, 2D field calculation and performance evaluation by 3D field calculation. Finally, different topologies of the BDRM are compared and an optimum prototype is designed.

  14. Performance Analysis and Comparison of Symmetrical and Asymmetrical Dual Stator Induction Generators for Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    R. Singh

    2018-02-01

    Full Text Available The emergence of micro/nano level wind generation has opened the research on induction generator (IG topologies having easier and finer control available in multiphase generators. To establish the suitability of multiphase generators for wind generators the analysis of their performance based on the developed model for the same rating of six phase symmetrical (60˚ and asymmetrical (30˚ IGs is presented. A comparative performance evaluation of grid-excited six phase symmetrical and asymmetrical IGs also known as Dual Stator Induction Generators (DSIGs is presented through simulation results in MATLAB/SIMULINK environment amidst load perturbations, limited variation of wind speed and perturbations in voltage and frequency of the non stiff micro-grid to which they are connected. Based on the performance indices like flux of direct and quadrature axis, speed variations, terminal voltage drop/rise, range of operational speed variation etc., a comparative analysis with the help of the results is drawn to establish the suitability of asymmetrical multiphase IGs for grid connected wind generators.

  15. On the Cutting Performance of Coated HSS Taps When Machining of Austenitic Steel

    Science.gov (United States)

    Sliwkova, Petra; Piska, Miroslav

    2014-12-01

    The paper deals with a quality of the PVD coated HSS taps when cutting the stainless austenitic chromiumnickel non-stabilized steel DIN 1.4301 (X5CrNi 18-10). The main attention is focused on the analysis of loading (cutting moment, specific energy) of the HSS taps by means of pieso-electrical dynamometer Kistler 9272 and the relation between the quality of duplex and triplex PVD coatings and their effects on the quality of machined thread surfaces and tool life of the taps. The results showed a safe and stabilized cutting with acceptable quality of threads for HSSE with the TiN+TiCN+DLC coating.

  16. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    International Nuclear Information System (INIS)

    Averous, Nurhan Rizqy; Berthold, Anica; Monti, Antonello; De Doncker, Rik W.; Schneider, Alexander; Schwimmbeck, Franz

    2016-01-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids. (paper)

  17. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    Science.gov (United States)

    Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.

    2016-09-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.

  18. Performance of Generating Plant: Managing the Changes. Part 3: Renewable energy plant: reports on wind, photovoltaics and biomas energies

    Energy Technology Data Exchange (ETDEWEB)

    Manoha, Bruno; Cohen, Martin [Electricite de France (France)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 3 (WG3). WG3 will promote the introduction of performance indicators for renewable energy generating plant (wind, geothermal, solar and biomass) developed by the Committee. It will also assess selected transitional technology issues and environmental factors related to non-conventional technologies. The WG3 report includes sections on Wind Energy Today, Photovoltaics Energy Today, Biomass Electricity Today and appendices.

  19. Multi-megawatt wind-power installations call for new, high-performance solutions

    International Nuclear Information System (INIS)

    2004-01-01

    This article discusses the development of increasingly powerful and profitable wind-energy installations for off-shore, on-shore and refurbishment sites. In particular, the rapid development of megawatt-class units is discussed. The latest products of various companies with rotor diameters of up to 120 metres and with power ratings of up to 5 MW are looked at and commented on. The innovations needed for the reduction of weight and the extreme demands placed on gearing systems are discussed. Also, the growing markets for wind energy installations in Europe and the United States are discussed and plans for new off-shore wind parks are looked at

  20. Horizontal axis Magnus wind turbine performance according to their geometric and kinematic variables

    OpenAIRE

    Richmond-Navarro, Gustavo

    2016-01-01

    This study covers the analysis of a horizontal axis wind turbine that uses rotating cylinders instead of blades. The working principle of this wind generator is the Magnus effect, which happens when the cylinders start rotating, giving rise to an interaction between the incident wind and the air dragged by the walls of the moving cylinders. This generates lift which puts the turbine in motion. The goal of this investigation was to characterize this type of turbine by means of numerical and ma...