WorldWideScience

Sample records for wind lidar dwl

  1. An Observing System Simulation Experiment (OSSE to Assess the Impact of Doppler Wind Lidar (DWL Measurements on the Numerical Simulation of a Tropical Cyclone

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2010-01-01

    Full Text Available The importance of wind observations has been recognized for many years. However, wind observations—especially three-dimensional global wind measurements—are very limited. A satellite-based Doppler Wind Lidar (DWL is proposed to measure three-dimensional wind profiles using remote sensing techniques. Assimilating these observations into a mesoscale model is expected to improve the performance of the numerical weather prediction (NWP models. In order to examine the potential impact of the DWL three-dimensional wind profile observations on the numerical simulation and prediction of tropical cyclones, a set of observing simulation system experiments (OSSEs is performed using the advanced research version of the Weather Research and Forecasting (WRF model and its three-dimensional variational (3DVAR data assimilation system. Results indicate that assimilating the DWL wind observations into the mesoscale numerical model has significant potential for improving tropical cyclone track and intensity forecasts.

  2. Analysis of Detectors and Transmission Curve Correction of Mobile Rayleigh Doppler Wind Lidar

    International Nuclear Information System (INIS)

    Tang Lei; Shu Zhi-Feng; Dong Ji-Hui; Wang Guo-Cheng; Xu Wen-Jing; Hu Dong-Dong; Wang Yong-Tao; Chen Ting-Di; Dou Xian-Kang; Sun Dong-Song; Cha Hyunki

    2010-01-01

    A mobile molecular Doppler wind lidar (DWL) based on double-edge technique is presented for wind measurement at altitudes from 10km to 40km. A triple Fabry-Perot etalon is employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity. The lidar operates at 355 nm with a 45-cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing. In order to guarantee the wind accuracy, different forms of calibration function of detectors in different count rates response range would be especially valuable. The accuracy of wind velocity iteration is improved greatly because of application of the calibration function of linearity at the ultra low light intensity especially at altitudes from 10km to 40km. The calibration functions of nonlinearity make the transmission of edge channel 1 and edge channel 2 increase 38.9% and 27.7% at about 1 M count rates, respectively. The dynamic range of wind field measurement may also be extended because of consideration of the response function of detectors in their all possible operating range. (fundamental areas of phenomenology(including applications))

  3. IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar

    DEFF Research Database (Denmark)

    Clifton, Andrew; Clive, Peter; Gottschall, Julia

    2018-01-01

    IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex...... flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models......, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been...

  4. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar

    Directory of Open Access Journals (Sweden)

    Andrew Clifton

    2018-03-01

    Full Text Available IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.

  5. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  6. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-25

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  7. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  8. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  9. A spinner-integrated wind lidar for enhanced wind turbine control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Angelou, Nikolas; Hansen, Kasper Hjorth

    2013-01-01

    A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m roto...... of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed-forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd....

  10. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  11. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  12. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  13. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... historical overview within the topic of wind lidar systems. Both the potential and the challenges of an industrialized wind lidar has been addressed here. Furthermore, the basic concept behind the heterodyne detection and a brief overview of the lidar signal processing is explained; and a simple...... investigation of the telescope truncation and lens aberrations is conducted, both numerically and experimentally. It is shown that these parameters dictate the spatial resolution of the lidar system, and have profound impact on the SNR. In this work, an all-semiconductor light source is used in the lidar design...

  14. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...

  15. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  16. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle...

  17. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed......In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...

  18. Lidars for Wind Tunnels - an IRPWind Joint Experiment Project

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Vignaroli, Andrea; Angelou, Nikolas

    2017-01-01

    Measurement campaigns with continuous-wave Doppler Lidars (Light detection and ranging) developed at DTU Wind Energy in Denmark were performed in two very different wind tunnels. Firstly, a measurement campaign in a small icing wind tunnel chamber at VTT in Finland was performed with high frequency...... used in blind test comparisons for wind turbine wake modelers. These Lidar measurement activities constitute the Joint Experiment Project” L4WT - Lidars for Wind Tunnels, with applications to wakes and atmospheric icing in a prospective Nordic Network” with the aim of gaining and sharing knowledge...... about possibilities and limitations with lidar instrumentation in wind tunnels, which was funded by the IRPWind project within the community of the European Energy Research Alliance (EERA) Joint Programme on Wind Energy....

  19. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    The sensitivity of nacelle lidar wind speed measurements to wind-induction models and lidar range configurations is studied using experimental data from the Nørrekær Enge (NKE) measurement campaign and simulated lidar data from Reynold-Averaged Navier Stokes (RANS) aerodynamic computational fluid...... the ZDM was configured to measure at five distances. From the configured distances, a large number of range configurations were created and systematically tested to determine the sensitivity of the reconstructed wind speeds to the number of ranges, minimum range and maximum range in the range......) of the fitting residuals. The results demonstrate that it is not possible to use RANS CFD simulated lidar data to determine optimal range configurations for real-time nacelle lidars due to their perfect (unrealistic) representation of the simulated flow field. The recommended range configurations are therefore...

  20. Wind field reconstruction from nacelle-mounted lidar short-range measurements

    Directory of Open Access Journals (Sweden)

    A. Borraccino

    2017-05-01

    Full Text Available Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear. In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken at multiple distances close to the rotor, where a wind model is combined with a simple induction model. The method allows robust determination of free-stream wind characteristics. The method was applied to experimental data obtained with two different types of nacelle lidar (five-beam Demonstrator and ZephIR Dual Mode. The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.

  1. Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop

    Directory of Open Access Journals (Sweden)

    Eric Simley

    2018-06-01

    Full Text Available IEA Wind Task 32 serves as an international platform for the research community and industry to identify and mitigate barriers to the use of lidars in wind energy applications. The workshop “Optimizing Lidar Design for Wind Energy Applications” was held in July 2016 to identify lidar system properties that are desirable for wind turbine control applications and help foster the widespread application of lidar-assisted control (LAC. One of the main barriers this workshop aimed to address is the multidisciplinary nature of LAC. Since lidar suppliers, wind turbine manufacturers, and researchers typically focus on their own areas of expertise, it is possible that current lidar systems are not optimal for control purposes. This paper summarizes the results of the workshop, addressing both practical and theoretical aspects, beginning with a review of the literature on lidar optimization for control applications. Next, barriers to the use of lidar for wind turbine control are identified, such as availability and reliability concerns, followed by practical suggestions for mitigating those barriers. From a theoretical perspective, the optimization of lidar scan patterns by minimizing the error between the measurements and the rotor effective wind speed of interest is discussed. Frequency domain methods for directly calculating measurement error using a stochastic wind field model are reviewed and applied to the optimization of several continuous wave and pulsed Doppler lidar scan patterns based on commercially-available systems. An overview of the design process for a lidar-assisted pitch controller for rotor speed regulation highlights design choices that can impact the usefulness of lidar measurements beyond scan pattern optimization. Finally, using measurements from an optimized scan pattern, it is shown that the rotor speed regulation achieved after optimizing the lidar-assisted control scenario via time domain simulations matches the performance

  2. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  3. Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements

    Science.gov (United States)

    Mann, J.; Menke, R.; Vasiljevic, N.

    2017-12-01

    The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.

  4. Methodology for obtaining wind gusts using Doppler lidar

    DEFF Research Database (Denmark)

    Suomi, Irene; Gryning, Sven-Erik; O'Connor, Ewan J.

    2017-01-01

    reduced the bias in the Doppler lidar gust factors from 0.07 to 0.03 and can be improved further to reduce the bias by using a realistic estimate of turbulence. Wind gust measurements are often prone to outliers in the time series, because they represent the maximum of a (moving-averaged) horizontal wind...... detection also outperformed the traditional Doppler lidar quality assurance method based on carrier-to-noise ratio, by removing additional unrealistic outliers present in the time series.......A new methodology is proposed for scaling Doppler lidar observations of wind gusts to make them comparable with those observed at a meteorological mast. Doppler lidars can then be used to measure wind gusts in regions and heights where traditional meteorological mast measurements are not available...

  5. Lidar-based Research and Innovation at DTU Wind Energy - a Review

    Science.gov (United States)

    Mikkelsen, T.

    2014-06-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars

  6. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  7. UpWind D1. Uncertainties in wind assessment with LIDAR

    Energy Technology Data Exchange (ETDEWEB)

    Lindeloew-Marsden, P.

    2009-01-15

    In this report sources influencing wind assessments with lidars are listed and discussed. Comparisons with mast mounted cup anemometers are presented and the magnitudes of the errors from the listed error sources are estimated. Finally an attempt to define uncertainty windows for the current state of the two commercial wind sensing lidars is presented. The results in this report give important feedback on system improvements to manufacturers and an estimation of the current ability for wind farm developers which are potential users. (author)

  8. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two

  9. GRIP DOPPLER AEROSOL WIND LIDAR (DAWN) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Doppler Aerosol WiNd Lidar (DAWN) Dataset was collected by the Doppler Aerosol WiNd (DAWN), a pulsed lidar, which operated aboard a NASA DC-8 aircraft...

  10. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  11. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    Science.gov (United States)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  12. Wind Predictions Upstream Wind Turbines from a LiDAR Database

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available This article presents a new method to predict the wind velocity upstream a horizontal axis wind turbine from a set of light detection and ranging (LiDAR measurements. The method uses higher order dynamic mode decomposition (HODMD to construct a reduced order model (ROM that can be extrapolated in space. LiDAR measurements have been carried out upstream a wind turbine at six different planes perpendicular to the wind turbine axis. This new HODMD-based ROM predicts with high accuracy the wind velocity during a timespan of 24 h in a plane of measurements that is more than 225 m far away from the wind turbine. Moreover, the technique introduced is general and obtained with an almost negligible computational cost. This fact makes it possible to extend its application to both vertical axis wind turbines and real-time operation.

  13. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    International Nuclear Information System (INIS)

    Mikkelsen, T

    2014-01-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site ''Østerild'' for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site ''Høvsøre'' DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast

  14. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  15. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  16. An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen

    2015-01-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  17. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  18. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mikkelsen, Torben; Hansen, Kasper H.; Sjoeholm, M.; Harris, M.

    2010-08-15

    In the context of the increasing application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner-mounted wind lidar was tested during the SpinnerEx 2009 experiment. The objective was to install a QinetiQ (Natural Power) ZephIR lidar in the rotating spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009. In this report, information is given regarding the experimental setup and the lidar's operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar's pointing direction, the spinner axis's vertical tilt and the wind turbine's yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar's instantaneous line-of-sight radial wind speed measurements. Two different setups have been investigated in which the approaching wind field was measured at distances of 0.58 OE and 1.24 OE rotor diameters upwind, respectively. For both setups, the instantaneous yaw misalignment of the turbine has been estimated from the lidar measurements. Data from an adjacent meteorological mast as well as data logged within the wind turbine's control system were used to evaluate the results. (author)

  19. Wind Lidar Activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer; St. Pe, Alexandra; Iungo, G. Valerio; Wharton, Sonia; Herges, Tommy; Filippelli, Matthew; Pontbriand, Philippe; Osler, Evan

    2017-06-28

    IEA Wind Task 32 seeks to identify and mitigate the barriers to the adoption of lidar for wind energy applications. This work is partly achieved by sharing experience across researchers and practitioners in the United States and worldwide. This presentation is a short summary of some wind lidar-related activities taking place in the country, and was presented by Andrew Clifton at the Task 32 meeting in December 2016 in his role as the U.S. Department of Energy-nominated country representative to the task.

  20. The marbll experiment: towards a martian wind lidar

    Directory of Open Access Journals (Sweden)

    Määttänen Anni

    2018-01-01

    Full Text Available Operating a lidar on Mars would fulfill the need of accessing wind and aerosol profiles in the atmospheric boundary layer. This is the purpose of the MARs Boundary Layer Lidar (MARBLL instrument. We report recent developments of this compact direct-detection wind lidar designed to operate from the surface of Mars. A new laser source has been developed and an azimuthal scanning capability has been added. Preliminary results of a field campaign are presented.

  1. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  2. Wind turbine improvements by wind-lidar-based preview and control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2014-01-01

    Wind turbines equipped with laser prevision hold potential for up to 6+ years lifetime extension. Forward looking wind lidars integrated within operational wind turbines providing feed-forward control can reduce the daily operation loads. The turbine lifetime may in this way be extended by up to 30...

  3. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David; Wright, Alan; Johnson, Kathryn; Wang, Na

    2016-08-01

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation of an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.

  4. Research on the space-borne coherent wind lidar technique and the prototype experiment

    Science.gov (United States)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  5. Wind gust measurements using pulsed Doppler wind-lidar: comparison of direct and indirect techniques

    DEFF Research Database (Denmark)

    The measurements of wind gusts, defined as short duration wind speed maxima, have traditionally been limited by the height that can be reached by weather masts. Doppler lidars can potentially provide information from levels above this and thereby fill this gap in our knowledge. To measure the 3D...... is 3.9 s) which can provide high resolution turbulent measurements, both in the vertical direction, and potentially in the horizontal direction. In this study we explore different strategies of wind lidar measurements to measure the wind speed maxima. We use a novel stochastic turbulence reconstruction...... model, driven by the Doppler lidar measurements, which uses a non-linear particle filter to estimate the small-scale turbulent fluctuations. The first results show that the reconstruction method can reproduce the wind speed maxima measured by the sonic anemometer if a low-pass filter with a cut...

  6. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  7. Doppler lidar mounted on a wind turbine nacelle - UPWIND deliverable D6.7.1

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mann, J.; Courtney, M.; Sjoeholm, M.

    2010-12-15

    A ZephIR prototype wind lidar manufactured by QinetiQ was mounted on the nacelle of a Vestas V27 wind turbine and measurements of the incoming wind flow towards the rotor of the wind turbine were acquired for approximately 3 months (April - June 2009). The objective of this experiment was the investigation of the turbulence attenuation induced in the lidar measurements. In this report are presented results from data analysis over a 21-hour period (2009-05-05 12:00 - 2009-05-06 09:00). During this period the wind turbine was not operating and the line-of-sight of the lidar was aligned with the wind direction. The analysis included a correlation study between the ZephIR lidar and a METEK sonic anemometer. The correlation analysis was performed using both 10 minutes and 10 Hz wind speed values. The spectral transfer function which describes the turbulence attenuation, which is induced in the lidar measurements, was estimated by means of spectral analysis. An attempt to increase the resolution of the wind speed measurements of a cw lidar was performed, through the deconvolution of the lidar signal. A theoretical model of such a procedure is presented in this report. A simulation has validated the capability of the algorithm to deconvolve and consequently increase the resolution of the lidar system. However the proposed method was not efficient when applied to real lidar wind speed measurements, probably due to the effect, that the wind direction fluctuations along the lidar's line-of-sight have, on the lidar measurements. (Author)

  8. Wind speed errors for LIDARs and SODARs in complex terrain

    International Nuclear Information System (INIS)

    Bradley, S

    2008-01-01

    All commercial LIDARs and SODARs are monostatic and hence sample distributed volumes to construct wind vector components. We use an analytic potential flow model to estimate errors arising for a range of LIDAR and SODAR configurations on hills and escarpments. Wind speed errors peak at a height relevant to wind turbines and can be typically 20%

  9. Wind speed errors for LIDARs and SODARs in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S [Physics Department, The University of Auckland, Private Bag 92019, Auckland (New Zealand) and School of Computing, Science and Engineering, University of Salford, M5 4WT (United Kingdom)], E-mail: s.bradley@auckland.ac.nz

    2008-05-01

    All commercial LIDARs and SODARs are monostatic and hence sample distributed volumes to construct wind vector components. We use an analytic potential flow model to estimate errors arising for a range of LIDAR and SODAR configurations on hills and escarpments. Wind speed errors peak at a height relevant to wind turbines and can be typically 20%.

  10. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  11. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2014-01-01

    " for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn...... "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing...... their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today...

  12. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    2016-01-01

    Nacelle-based Doppler wind lidars have shown promising capabilities to assess power performance, detect yaw misalignment or perform feed-forward control. The power curve application requires uncertainty assessment. Traceable measurements and uncertainties of nacelle-based wind lidars can be obtai...

  13. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    International Nuclear Information System (INIS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-01-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three

  14. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  15. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  16. Evaluation of wind flow with a nacelle-mounted, continuous wave wind lidar

    DEFF Research Database (Denmark)

    Medley, John; Barker, Will; Harris, Mike

    2014-01-01

    Nacelle-mounted lidar is becoming widely recognized as a tool with potential for assessing power curves, understanding wind flow characteristics, and controlling turbines. As rotor diameters continue to increase, and the deployment of turbines in complex terrain becomes more widespread, knowledge...... mounted on the nacelle of a 550 kW turbine at the Risø campus of the Technical University of Denmark (DTU). Lidar measurements of wind speed and turbulence were compared against those made by anemometers on a high-quality traditional mast. Analysis showed excellent correlation between mast and Zeph...... that this is the first time that a commercially available nacelle-mounted lidar has been used to evaluate such rotor-equivalent power curves....

  17. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  18. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  19. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    , we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based......The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...... on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, the MPC without error compensation and an MPC with re-linearization at each sample point...

  20. Doppler Wind Lidar Measurements and Scalability to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Global measurements of wind speed and direction from Doppler wind lidars, if available, would significantly improve forecasting of severe weather events such as...

  1. Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars

    International Nuclear Information System (INIS)

    Mikkelsen, T; Mann, J; Courtney, M; Sjoeholm, M

    2008-01-01

    At RISOe DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed

  2. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  3. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  4. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  5. Application of lidars for assessment of wind conditions on a bridge site

    DEFF Research Database (Denmark)

    Jakobsen, J. B.; Cheynet, Etienne; Snæbjörnsson, Jonas

    2015-01-01

    Wind measurement techniques based on remote optical sensing, extensively applied in wind energy, have been exploited in civil engineering only in a limited number of studies. The present paper introduces a novel application of wind lidars in bridge engineering, and presents the findings from...... characterization. The paper presents a promising comparison of the measurements obtained by the three different sets of instruments, and discusses their complementary value....... the pilot measurement campaign on the Lysefjord Bridge in the South-West Norway. A single long-range pulsed WindScanner lidar and two short-range continuous-wave WindScanner lidars were deployed, in addition to five sonic anemometers installed on the bridge itself, the latter for long-term wind...

  6. Imaging doppler lidar for wind turbine wake profiling

    Science.gov (United States)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  7. Wind turbine control applications of turbine-mounted LIDAR

    International Nuclear Information System (INIS)

    Bossanyi, E A; Kumar, A; Hugues-Salas, O

    2014-01-01

    In recent years there has been much interest in the possible use of LIDAR systems for improving the performance of wind turbine controllers, by providing preview information about the approaching wind field. Various potential benefits have been suggested, and experimental measurements have sometimes been used to claim surprising gains in performance. This paper reports on an independent study which has used detailed analytical methods for two main purposes: firstly to try to evaluate the likely benefits of LIDAR-assisted control objectively, and secondly to provide advice to LIDAR manufacturers about the characteristics of LIDAR systems which are most likely to be of value for this application. Many different LIDAR configurations were compared: as a general conclusion, systems should be able to sample at least 10 points every second, reasonably distributed around the swept area, and allowing a look-ahead time of a few seconds. An important conclusion is that the main benefit of the LIDAR will be to enhance of collective pitch control to reduce thrust-related fatigue loads; there is some indication that extreme loads can also be reduced, but this depends on other considerations which are discussed in the paper. LIDAR-assisted individual pitch control, optimal C p tracking and yaw control were also investigated, but the benefits over conventional methods are less clear

  8. Field test of a lidar wind profiler

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Wind speeds and wind directions are measured remotely using an incoherent backscatter lidar system operating at a wavelength of 1.06 mm with a maximum repetition rate of 13 Hz. The principle of the measurements is based on following detectable atmospheric structures, which are transported by the

  9. Detecting wind turbine wakes with nacelle lidars

    DEFF Research Database (Denmark)

    Held, D. P.; Larvol, A.; Mann, Jakob

    2017-01-01

    variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream...... turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level....

  10. Remote wind sensing with a CW diode laser lidar beyond the coherence regime.

    Science.gov (United States)

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-08-15

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime.

  11. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2015-01-01

    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...

  12. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  13. Remote wind sensing with a CW diode laser lidar beyond the coherence regime

    DEFF Research Database (Denmark)

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical...... optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars...

  14. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew; Fleming, Paul; Wright, Alan; Wang, Na; Schlipf, David; Johnson, Kathryn

    2016-07-01

    This paper will look at the development of lidar-enhanced controls and how they have been used for turbine load reduction with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.

  15. Lidar-based reconstruction of wind fields and application for wind turbine control

    OpenAIRE

    Kapp, Stefan

    2017-01-01

    In this thesis horizontal, upwind scanning lidar systems of the focused continuous-wave type are regarded for wind turbines. The theory of wind field reconstruction is extended to a five parameter model describing the inflow in non-uniform conditions more accurately. Sensor requirements are derived. A new approach to spherically scan the inflow area is studied experimentally. Expected inaccuracies of the averaged wind direction signal in a wind farm environment are quantified and spatial inho...

  16. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  17. Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boquet, Matthieu [Leosphere, Orsay (France); Burin Des Roziers, Edward [UL International Gmbh, Freemont, CA (United States); Westerhellweg, Annette [UL International Gmbh, Freemont, CA (United States); Hofsass, Martin [Univ. of Stuttgart (Germany). Stuttgart Wind Energy; Klaas, Tobias [Fraunhofer Inst. for Wind Energy and Energy System Technology, Freiburg (Germany); Vogstad, Klaus [Meventus, Hamburg (Germany); Clive, Peter [Sgurr Energy, Glasgow (United Kingdom); Harris, Mike [ZephIR Limited, Kirkcudbrightshire (United Kingdom); Wylie, Scott [ZephIR Limited, Kirkcudbrightshire (United Kingdom); Osler, Evan [Renewable NRG Systems, Hinesburg, VT (United States); Banta, Bob [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Choukulkar, Aditya [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Lundquist, Julie [Univ. of Colorado, Boulder, CO (United States); Aitken, Matthew [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    Remote sensing of winds using lidar has become popular and useful in the wind energy industry. Extensive experience has been gained with using lidar for applications including land-based and offshore resource assessment, plant operations, and turbine control. Prepared by members of International Energy Agency Task 32, this report describes the state of the art in the use of Doppler wind lidar for resource assessment in complex flows. The report will be used as input for future recommended practices on this topic.

  18. Lidar observations of marine boundary-layer winds and heights: a preliminary study

    DEFF Research Database (Denmark)

    Peña, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2015-01-01

    the highest data availability (among the three sites) and a very good agreement with the observations of wind speed and direction from cup anemometers and vanes from the platform's tower. The wind lidar was also able to perform measurements under a winter storm where 10-s gusts were observed above 60 m s 1......Here we describe a nearly 1-yr meteorological campaign, which was carried out at the FINO3 marine research platform on the German North Sea, where a pulsed wind lidar and a ceilometer were installed besides the platform's 105-m tower and measured winds and the aerosol backscatter in the entire...... marine atmospheric boundary layer. The campaign was the last phase of a research project, in which the vertical wind profile in the atmospheric boundary layer was firstly investigated on a coastal and a semi-urban site. At FINO3 the wind lidar, which measures the wind speed up to 2000 m, shows...

  19. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    Science.gov (United States)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  20. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    Science.gov (United States)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  1. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...

  2. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    In developing a national energy strategy, the United States has a number of objectives, including increasing economic growth, improving environmental quality, and enhancing national energy security. Wind power contributes to these objectives through the deployment of clean, affordable and reliable domestic energy. To achieve U.S. wind generation objectives, the Wind and Water Power Program within the Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE) instituted the U.S. Offshore Wind: Removing Market Barriers Program in FY 2011. Accurate and comprehensive information on offshore wind resource characteristics across a range of spatial and temporal scales is one market barrier that needs to be addressed through advanced research in remote sensing technologies. There is a pressing need for reliable offshore wind-speed measurements to assess the availability of the potential wind energy resource in terms of power production and to identify any frequently occurring spatial variability in the offshore wind resource that may impact the operational reliability and lifetime of wind turbines and their components and to provide a verification program to validate the “bankability” of the output of these alternative technologies for use by finance institutions for the financing of offshore wind farm construction. The application of emerging remote sensing technologies is viewed as a means to cost-effectively meet the data needs of the offshore wind industry. In particular, scanning and buoy mounted LIDAR have been proposed as a means to obtain accurate offshore wind data at multiple locations without the high cost and regulatory hurdles associated with the construction of offshore meteorological towers. However; before these remote sensing technologies can be accepted the validity of the measured data must be evaluated to ensure their accuracy. The proposed research will establish a unique coastal ocean test-bed in the Mid-Atlantic for

  3. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  4. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    . Simultaneously, data regarding wind speed, rotational speed, and pitch angle recorded by the turbine was logged as well as data from a nearby met mast. The encouraging results of this first campaign include wind speed measurements at 20 Hz data rate along the rotor plane, acquired during the co...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...... the possibility of integrating lidar telescopes into turbine blades as well as the capability of the lidar to measure the required wind speeds and to operate in the challenging environment of a rotating spinner and vibrating blade. The use of two separate telescopes allows a direct measurement of the blade’s AOA...

  5. Doppler lidar mounted on a wind turbine nacelle – UPWIND deliverable D6.7.1

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mann, Jakob; Courtney, Michael

    measurements, was estimated by means of spectral analysis. An attempt to increase the resolution of the wind speed measurements of a cw lidar was performed, through the deconvolution of the lidar signal. A theoretical model of such a procedure is presented in this report. A simulation has validated...... the capability of the algorithm to deconvolve and consequently increase the resolution of the lidar system. However the proposed method was not efficient when applied to real lidar wind speed measurements, probably due to the effect, that the wind direction fluctuations along the lidar’s line-of-sight have...

  6. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  7. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mikkelsen, Torben; Hansen, Kasper Hjorth

    spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009....... In this report, information is given regarding the experimental setup and the lidar’s operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar’s pointing direction, the spinner axis’s vertical tilt...... and the wind turbine’s yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar’s instantaneous...

  8. An MPC approach to individual pitch control of wind turbines using uncertain LIDAR measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. A new approach is proposed to simplify the optimization problem of MPC. We linearize the obtained nonlinear model for different operating points which are determined by the effective wind...... speed on the rotor disc and take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore the scheduling variable is known for the entire prediction horizon. We consider uncertainty in the wind propagation, which is the traveling time of wind...... from the LIDAR measurement point to the rotor. An algorithm based on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, without error...

  9. An error reduction algorithm to improve lidar turbulence estimates for wind energy

    Directory of Open Access Journals (Sweden)

    J. F. Newman

    2017-02-01

    Full Text Available Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine

  10. High-energy, 2µm laser transmitter for coherent wind LIDAR

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  11. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    Science.gov (United States)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  12. Remote Sensing of Complex Flows by Doppler Wind Lidar: Summary of Issues and Preliminary Recommendations from IEA Wind Task 32 Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew

    2017-06-21

    IEA Wind Task 32 seeks to identify and mitigate the barriers to the adoption of lidar for wind energy applications. In Phase 1 of the task, a working group looked at the state of the art of wind lidar in complex flow conditions. This presentation is a short summary of that work, given at the start of Phase 2.

  13. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes

    International Nuclear Information System (INIS)

    Iungo, Giacomo Valerio; Porté-Agel, Fernando

    2014-01-01

    Aerodynamic optimization of wind farm layout is a crucial task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as wind shear and turbulence intensity, which are in turn affected by the ABL thermal stability. In order to characterize the downstream evolution of wakes produced by full-scale wind turbines under different atmospheric conditions, wind velocity measurements were performed with three wind LiDARs. The volumetric scans are performed by continuously sweeping azimuthal and elevation angles of the LiDARs in order to cover a 3D volume that includes the wind turbine wake. The minimum wake velocity deficit is then evaluated as a function of the downstream location for different atmospheric conditions. It is observed that the ABL thermal stability has a significant effect on the wake evolution, and the wake recovers faster under convective conditions

  14. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    Winds in the coastal zone have importance for near-shore wind farm planning. Recently the Danish Energy Agency gave new options for placing offshore wind farms much closer to the coastlines than previously. The new tender areas are located from 3 to 8 km from the coast. Ground-based scanning lidar...... located on land can partly cover this area out to around 15 km. In order to improve wind farm planning for near-shore coastal areas, the project‘Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models’ (RUNE) is established. The measurement campaign starts October....... The various observation types have advantages and limitations; one advantage of both the Sentinel-1 and the scanning lidar is that they both observe wind fields covering a large area and so can be combined for studying the spatial variability of winds. Sentinel-1 are being processed near-real-time at DTU Wind...

  15. Canopy wake measurements using multiple scanning wind LiDARs

    Science.gov (United States)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  16. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    Science.gov (United States)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  17. 3D wake measurements from a scanning wind lidar in combination with a fast wind field reconstruction model

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, T. G.; Astrup, Poul

    2017-01-01

    University of Denmark. The purpose of the SpinnerLidar measurements at SWIFT is to measure the response of a V27 turbine wake to varying inflow conditions and turbine operating states. Although our fast scanning SpinnerLidar is able to measure the line-of-sight projected wind speed at up to 400 points per......-Stokes CFD code “Lincom Cyclop-buster model,”3 the corresponding 3D wind vector field (u, v, w) can be reconstructed under constraints for conservation of mass and momentum. The resulting model calculated line-of-sight projections of the 3D wind velocity vectors will become consistent with the line...

  18. Three dimensional winds: A maximum cross-correlation application to elastic lidar data

    Energy Technology Data Exchange (ETDEWEB)

    Buttler, William Tillman [Univ. of Texas, Austin, TX (United States)

    1996-05-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.

  19. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, J.-P.; Courtney, Michael

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence mea...... measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the Mar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically.......Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...

  20. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    As a wind turbine generates power, induced velocities, lower than the freestream velocity, will be present upstream of the turbine due to perturbation of the flow by the rotor. In this study, the upstream induction zone of a 225kW horizontal axis Vestas V27 wind turbine located at the Danish...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  1. A classical model wind turbine wake “blind test” revisited by remote sensing lidars

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Angelou, Nikolas; Nielsen, Morten Busk

    2017-01-01

    One of the classical model wind turbine wake “blind test” experiments1 conducted in the boundary-layer wind tunnel at NTNU in Trondheim and used for benchmarking of numerical flow models has been revisited by remote sensing lidars in a joint experiment called “Lidars For Wind Tunnels” (L4WT) under...... was D=0.894 m and it was designed for a tip speed ratio (TSR) of 6. However, the TSRs used were 3, 6, and 10 at a free-stream velocity of 10 m/s. Due to geometrical constraints imposed by for instance the locations of the wind tunnel windows, all measurements were performed in the very same vertical...... cross-section of the tunnel and the various down-stream distances of the wake, i.e. 1D, 3D, and 5D were achieved by re-positioning the turbine. The approach used allows for unique studies of the influence of the inherent lidar spatial filtering on previously both experimentally and numerically well...

  2. 3D turbulence measurements in inhomogeneous boundary layers with three wind LiDARs

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2014-05-01

    One of the most challenging tasks in atmospheric anemometry is obtaining reliable turbulence measurements of inhomogeneous boundary layers at heights or in locations where is not possible or convenient to install tower-based measurement systems, e.g. mountainous terrain, cities, wind farms, etc. Wind LiDARs are being extensively used for the measurement of averaged vertical wind profiles, but they can only successfully accomplish this task under the limiting conditions of flat terrain and horizontally homogeneous flow. Moreover, it has been shown that common scanning strategies introduce large systematic errors in turbulence measurements, regardless of the characteristics of the flow addressed. From the point of view of research, there exist a variety of techniques and scanning strategies to estimate different turbulence quantities but most of them rely in the combination of raw measurements with atmospheric models. Most of those models are only valid under the assumption of horizontal homogeneity. The limitations stated above can be overcome by a new triple LiDAR technique which uses simultaneous measurements from three intersecting Doppler wind LiDARs. It allows for the reconstruction of the three-dimensional velocity vector in time as well as local velocity gradients without the need of any turbulence model and with minimal assumptions [EGU2013-9670]. The triple LiDAR technique has been applied to the study of the flow over the campus of EPFL in Lausanne (Switzerland). The results show the potential of the technique for the measurement of turbulence in highly complex boundary layer flows. The technique is particularly useful for micrometeorology and wind engineering studies.

  3. Investigation of the Representation of OLEs and Terrain Effects Within the Costal Zone in the EDMF Parameterization Scheme: An Airborne Doppler Wind Lidar Perspective

    Science.gov (United States)

    2014-10-20

    This platform relative navigation has been done and is reported in attachment 3. The second step is to compute heat, moisture and momentum fluxes for...Prospecting DWL mode 2° forward stare ~6km surface intercept from 300 m flight level Line-of-Sight wind speed (VLOS) ’ Stacked VLOS ~2m vertical, 50 m...instabilities (non-convective). WY^ Particle probes j* TODWL scanner ^ ^^■^^1 ; ^ ’^^H ^^^immmm CTV Surface Temperature Sensor / iW

  4. Pointing Knowledge for SPARCLE and Space-Based Doppler Wind Lidars in General

    Science.gov (United States)

    Emmitt, G. D.; Miller, T.; Spiers, G.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) will fly on a space shuttle to demonstrate the use of a coherent Doppler wind lidar to accurately measure global tropospheric winds. To achieve the LOS (Line of Sight) accuracy goal of approx. m/s, the lidar system must be able to account for the orbiter's velocity (approx. 7750 m/s) and the rotational component of the earth's surface motion (approx. 450 m/s). For SPARCLE this requires knowledge of the attitude (roll, pitch and yaw) of the laser beam axis within an accuracy of 80 microradians. (approx. 15 arcsec). Since SPARCLE can not use a dedicated star tracker from its earth-viewing orbiter bay location, a dedicated GPS/INS (Global Positioning System/Inertial Navigation System) will be attached to the lidar instrument rack. Since even the GPS/INS has unacceptable drifts in attitude information, the SPARCLE team has developed a way to periodically scan the instrument itself to obtain less than 10 microradian (2 arcsec) attitude knowledge accuracy that can then be used to correct the GPS/INS output on a 30 minute basis.

  5. Investigation of the Impact of the Upstream Induction Zone on LIDAR Measurement Accuracy for Wind Turbine Control Applications using Large-Eddy Simulation

    International Nuclear Information System (INIS)

    Simley, Eric; Pao, Lucy Y; Gebraad, Pieter; Churchfield, Matthew

    2014-01-01

    Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone

  6. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short...... compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...... for accurately measuring small scale flow structures in a wind tunnel....

  7. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.R. [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Finnish Meteorological Institute, Erik Palmenin aukio 1, Helsinki, 00101 (Finland); Pauscher, L. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Ward, H.C. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB (United Kingdom); Kotthaus, S. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Barlow, J.F., E-mail: j.f.barlow@reading.ac.uk [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Gouvea, M. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Lane, S.E. [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Grimmond, C.S.B. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom)

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65-0.68 m s{sup -1}) as comparisons between sonic anemometers (0.35-0.73 m s{sup -1}). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12-1.63 m s{sup -1}) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. -- Highlights: Black-Right-Pointing-Pointer An inter-comparison was made between lidar-derived winds and regular anemometry. Black-Right-Pointing-Pointer A new lidar operating technique was developed. Black-Right-Pointing-Pointer Airflow features above an urban river included channelling of wind.

  8. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry

    International Nuclear Information System (INIS)

    Wood, C.R.; Pauscher, L.; Ward, H.C.; Kotthaus, S.; Barlow, J.F.; Gouvea, M.; Lane, S.E.; Grimmond, C.S.B.

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s −1 ) as comparisons between sonic anemometers (0.35–0.73 m s −1 ). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12–1.63 m s −1 ) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. -- Highlights: ► An inter-comparison was made between lidar-derived winds and regular anemometry. ► A new lidar operating technique was developed. ► Airflow features above an urban river included channelling of wind.

  9. Winds observed in the Northern European seas with wind lidars, meteorological masts and satellite

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, D.; Peña, Alfredo

    2013-01-01

    Ocean winds have been observed in the Baltic, Irish and North Seas from a combination of groundbased lidars, tall offshore meteorological masts and satellites remote sensing in recent years. In the FP7 project NORSEWInD (2008-2012) the project partners joined forces to ensure collection of these ...

  10. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  11. Comparison of Large Eddy Simulations of a convective boundary layer with wind LIDAR measurements

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2012-01-01

    Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when...

  12. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    International Nuclear Information System (INIS)

    Mann, J; Courtney, M S; Mikkelsen, T; Wagner, R; Lindeloew, P; Sjoeholm, M; Enevoldsen, K; Cariou, J-P; Parmentier, R

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the lidar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically

  13. Observation of wind field over heterogeneous terrain by the French-German airborne Doppler lidar WIND

    Science.gov (United States)

    Dabas, A.; Werner, C.; Delville, P.; Reitebuch, O.; Drobinski, P.; Cousin, F.

    2003-04-01

    In summer 2001, the French-German airborne Doppler lidar WIND participated to field campaign ESCOMPTE. ESCOMPTE was carried out in the region of Marseille along the Mediterranean coast of France. It was dedicated to the observation of heavy pollution events in this industrialized, densely populated region of nearly 4 million inhabitants. The aim was to gather a data base as comprehensive as possible on several pollution events and use them to check the ability of several regional forecast models to predict such events. The specific mission devoted to WIND was the characterization at mesoscale of the wind field and the topography of the planetary boundary layer. Both are complex around Marseille due the heterogeneity of the surface with a transition sea/land to the south, the fore-Alps to the North, the Rhône valley to the North-West etc... Seven, 3-hr flights were carried out and gave excellent results. In 2002, first comparisons were made with mesoscale models. They will be shown during the presentation. They are good examples of the usefulness of airborne Doppler lidar for validating and improving atmospheric model simulations.

  14. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  15. Application of staring lidars to study the dynamics of wind turbine wakes

    Directory of Open Access Journals (Sweden)

    Davide Trabucchi

    2015-11-01

    Full Text Available Standard anemometry or vertical profiling remote sensing are not always a convenient approach to study the dynamics of wind turbines wake. One or more lidar windscanner can be applied for this purpose. In this paper a measurement strategy is presented, which permits the characterization of the wake dynamics using two long range wind lidars operated in a stationary mode. In this approach two pulsed devices are staring with low elevation obliquely across the wake. The lidar beams are supposed to cross each other on the downstream axis of the wake to perform simultaneous measurements in the wake field from side to side. The deflection of the wake is identified fitting a model to the average data. Spectral analysis provide the frequency content of the measurements at different distances from the wake center. This setup was implemented in a full-field measurement campaign where the wake of a multi-MW wind turbine was analysed. The tracking of the wake centre was applied successfully to this measurement. Moreover the spectral analysis showed increased energy content close to the wake lateral edges. This can be connected both to the higher turbulence level due to the tip vorteces and to the large scale dynamics of the wake.

  16. Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas

    2013-01-01

    Introduction Wind turbine load reduction and power performance optimization via advanced control strategies is an active area in the wind energy community. In particular, feed-forward control using upwind inflow measurements by lidar (light detection and ranging) remote sensing instruments has...... novel full two-dimensional radial inflow measurements. Approach In order to achieve full two-dimensional radial inflow measurements, a special laser beam scanner has been developed at the DTU Wind Energy Department. It is based on two rotating prisms that each deviate the beam by 15°, resulting......, a proof-of-concept trial with a blade mounted lidar was performed during the measurement campaign and is reported in a separate EWEA 2013 contribution. Conclusion The study presented here is the novel full two-dimensional continuation of the previous inflow measurements on a circle presented in the paper...

  17. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  18. Simulation study on detection performance of eye-safe coherent Doppler wind lidar operating near 1.6 μm

    Science.gov (United States)

    Ma, Han; Wang, Qing; Na, Quanxin; Gao, Mingwei

    2018-01-01

    Coherent Doppler wind lidars (CDWL) are widely used in aerospace, atmospheric monitoring and other fields. The parameters of laser source such as the wavelength, pulse energy, pulse duration and pulse repetition rate (PRR) have significant influences on the detection performance of wind lidar. We established a simulation model which takes into account the effects of atmospheric transmission, backscatter, atmospheric turbulence and parameters of laser source. The maximum detection range is also calculated under the condition that the velocity estimation accuracy is 0.1 m/s by using this model. We analyzed the differences of the detection performance between two operation systems, which show the high pulse energy-low pulse repetition rate (HPE-LPRR) and low pulse energy-high repetition rate (LPE-HPRR), respectively. We proved our simulation model reliable by using the parameters of two commercial lidar products. This research has important theoretical and practical values for the design of eye-safe coherent Doppler wind lidar.

  19. Four Methods for LIDAR Retrieval of Microscale Wind Fields

    Directory of Open Access Journals (Sweden)

    Thomas Naini

    2012-08-01

    Full Text Available This paper evaluates four wind retrieval methods for micro-scale meteorology applications with volume and time resolution in the order of 30m3 and 5 s. Wind field vectors are estimated using sequential time-lapse volume images of aerosol density fluctuations. Suitably designed mono-static scanning backscatter LIDAR systems, which are sensitive to atmospheric density aerosol fluctuations, are expected to be ideal for this purpose. An important application is wind farm siting and evaluation. In this case, it is necessary to look at the complicated region between the earth’s surface and the boundary layer, where wind can be turbulent and fractal scaling from millimeter to kilometer. The methods are demonstrated using first a simple randomized moving hard target, and then with a physics based stochastic space-time dynamic turbulence model. In the latter case the actual vector wind field is known, allowing complete space-time error analysis. Two of the methods, the semblance method and the spatio-temporal method, are found to be most suitable for wind field estimation.

  20. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    International Nuclear Information System (INIS)

    Shangguan Ming-Jia; Xia Hai-Yun; Dou Xian-Kang; Wang Chong; Qiu Jia-Wei; Zhang Yun-Peng; Shu Zhi-Feng; Xue Xiang-Hui

    2015-01-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. (paper)

  1. A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications

    Science.gov (United States)

    Menzies, Robert T.

    1985-01-01

    Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.

  2. Airborne direct-detection and coherent wind lidar measurements over the North Atlantic in 2015 supporting ESA's aeolus mission

    Science.gov (United States)

    Marksteiner, Uwe; Reitebuch, Oliver; Lemmerz, Christian; Lux, Oliver; Rahm, Stephan; Witschas, Benjamin; Schäfler, Andreas; Emmitt, Dave; Greco, Steve; Kavaya, Michael J.; Gentry, Bruce; Neely, Ryan R.; Kendall, Emma; Schüttemeyer, Dirk

    2018-04-01

    The launch of the Aeolus mission by the European Space Agency (ESA) is planned for 2018. The satellite will carry the first wind lidar in space, ALADIN (Atmospheric Laser Doppler INstrument). Its prototype instrument, the ALADIN Airborne Demonstrator (A2D), was deployed during several airborne campaigns aiming at the validation of the measurement principle and optimization of algorithms. In 2015, flights of two aircraft from DLR & NASA provided the chance to compare parallel wind measurements from four airborne wind lidars for the first time.

  3. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site

    DEFF Research Database (Denmark)

    Gullí, D.; Avolio, E.; Calidonna, C. R.

    2017-01-01

    Reliable measurements of vertical profiles of wind speed and direction are needed for testing models and methodologies of use for wind energy assessment. In particular, modelling complex terrain such as coastal areas is challenging due to the coastal discontinuity that is not accurately resolved...... in mesoscale numerical model. Here, we present a unique database from a coastal site in South Italy (middle of the Mediterranean area) where vertical profiles of wind speed and direction have been collected during a two-year period from a wind-lidar ZEPHIR-300® at a coastal-suburban area. We show an overview...

  4. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  5. Wind field re-construction of 3D Wake measurements from a turbine-installed scanning lidar

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, Tommy; Astrup, Poul

    High-resolution wake flow measurements obtained from a turbine-mounted scanning lidar have been obtained from 1D to 5D behind a V27 test turbine. The measured line-of-sight projected wind speeds have, in connection with a fast CFD wind field reconstruction model, been used to generate 3D wind fie...

  6. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    the so-called whitebox approach. It consists mainly in calibrating the lidar primary measurementsof line-of-sight velocities. The line-of-sight velocity is the projection of the wind vector onto the laser beam propagation path. The calibration is performed in situ, by comparing the lidar velocity...... measurements to a reference quantity itself traceable to the international standards of units. The uncertainty of the line-ofsight velocity measurements was assessed using a normative methodology (GUM) which is based on the law of propagation of uncertainties. The generic calibration procedure was applied...... to two commercially developed nacelle lidars systems, the Avent 5-beam Demonstrator and the ZephIR Dual Mode lidars. Further, the lineof-sight positioning quantities such as inclination angles or beam trajectory werealso calibrated and their uncertainties assessed. Calibration results were of high...

  7. Weather and climate needs for Lidar observations from space and concepts for their realization. [wind, temperature, moisture, and pressure data needs

    Science.gov (United States)

    Atlas, D.; Korb, C. L.

    1980-01-01

    The spectrum of weather and climate needs for Lidar observations from space is discussed with emphasis on the requirements for wind, temperature, moisture, and pressure data. It is shown that winds are required to realistically depict all atmospheric scales in the tropics and the smaller scales at higher latitudes, where both temperature and wind profiles are necessary. The need for means to estimate air-sea exchanges of sensible and latent heat also is noted. A concept for achieving this through a combination of Lidar cloud top heights and IR cloud top temperatures of cloud streets formed during cold air outbreaks over the warmer ocean is outlined. Recent theoretical feasibility studies concerning the profiling of temperatures, pressure, and humidity by differential absorption Lidar (DIAL) from space and expected accuracies are reviewed. An alternative approach to Doppler Lidar wind measurements also is presented. The concept involves the measurement of the displacement of the aerosol backscatter pattern, at constant heights, between two successive scans of the same area, one ahead of the spacecraft and the other behind it a few minutes later. Finally, an integrated space Lidar system capable of measuring temperature, pressure, humidity, and winds which combines the DIAL methods with the aerosol pattern displacement concept is described.

  8. Remote Sensing of Three-dimensional Winds with Elastic Lidar: Explanation of Maximum Cross-correlation Method

    Science.gov (United States)

    Buttler, William T.; Soriano, Cecilia; Baldasano, Jose M.; Nickel, George H.

    Maximum cross-correlation provides a method toremotely de-ter-mine high-lyre-solved three-dimensional fields of horizontalwinds with e-las-tic li-darthrough-out large volumes of the planetaryboundary layer (PBL). This paperdetails the technique and shows comparisonsbetween elastic lidar winds, remotelysensed laser Doppler velocimeter (LDV) windprofiles, and radiosonde winds.Radiosonde wind data were acquired at Barcelona,Spain, during the BarcelonaAir-Quality Initiative (1992), and the LDVwind data were acquired at SunlandPark, New Mexico during the 1994 Border AreaAir-Quality Study. Comparisonsshow good agreement between the differentinstruments, and demonstrate the methoduseful for air pollution management at thelocal/regional scale. Elastic lidar windscould thus offer insight into aerosol andpollution transport within the PBL. Lidarwind fields might also be used to nudge orimprove initialization and evaluation ofatmospheric meteorological models.

  9. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-05-01

    Full Text Available We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1 and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1 in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr and summer (33 ± 10 sr. The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  10. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    Science.gov (United States)

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  11. Scanning Lidar Spatial Calibration and Alignment Method for Wind Turbine Wake Characterization

    DEFF Research Database (Denmark)

    Herges, Thomas; Maniaci, David; Naughton, Brian

    2017-01-01

    Sandia National Laboratories and the National Renewable Energy Laboratory conducted a field campaign at the Scaled Wind Farm Technology (SWiFT) Facility using a customized scanning lidar from the Technical University of Denmark. The results from this field campaign will support the validation...

  12. A preliminary comparison of Na lidar and meteor radar zonal winds during geomagnetic quiet and disturbed conditions

    Science.gov (United States)

    Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.

    2018-03-01

    We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.

  13. The e-Beam Sustained Laser Technology for Space-based Doppler Wind Lidar

    Science.gov (United States)

    Brown, M. J.; Holman, W.; Robinson, R. J.; Schwarzenberger, P. M.; Smith, I. M.; Wallace, S.; Harris, M. R.; Willetts, D. V.; Kurzius, S. C.

    1992-01-01

    An overview is presented of GEC Avionics activities relating to the Spaceborne Doppler Wind Lidar. In particular, the results of design studies into the use of an e-beam sustained CO2 laser for spaceborne applications, and experimental work on a test bed system are discussed.

  14. A New Framework for Quantifying Lidar Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer, F.; Clifton, Andrew; Bonin, Timothy A.; Churchfield, Matthew J.

    2017-03-24

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards discuss uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device. However, real-world experience has shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we propose the development of a new lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from an operational wind farm to assess the ability of the framework to predict errors in lidar-measured wind speed.

  15. Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements

    Science.gov (United States)

    Piccone, A. N.; Lautenbach, J.

    2017-12-01

    Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.

  16. Computational modelling of an operational wind turbine and validation with LIDAR

    Science.gov (United States)

    Creech, Angus; Fruh, Wolf-Gerrit; Clive, Peter

    2010-05-01

    We present a computationally efficient method to model the interaction of wind turbines with the surrounding flow, where the interaction provides information on the power generation of the turbine and the generated wake behind the turbine. The turbine representation is based on the principle of an actuator volume, whereby the energy extraction and balancing forces on the fluids are formulated as body forces which avoids the extremely high computational costs of boundary conditions and forces. Depending on the turbine information available, those forces can be derived either from published turbine performance specifications or from their rotor and blade design. This turbine representation is then coupled to a Computational Fluid Dynamics package, in this case the hr-adaptive Finite-Element code Fluidity from Imperial College, London. Here we present a simulation of an operational 950kW NEG Micon NM54 wind turbine installed in the west of Scotland. The calculated wind is compared with LIDAR measurements using a Galion LIDAR from SgurrEnergy. The computational domain extends over an area of 6km by 6km and a height of 750m, centred on the turbine. The lower boundary includes the orography of the terrain and surface roughness values representing the vegetation - some forested areas and some grassland. The boundary conditions on the sides are relaxed Dirichlet conditions, relaxed to an observed prevailing wind speed and direction. Within instrumental errors and model limitations, the overall flow field in general and the wake behind the turbine in particular, show a very high degree of agreement, demonstrating the validity and value of this approach. The computational costs of this approach are such that it is possible to extend this single-turbine example to a full wind farm, as the number of required mesh nodes is given by the domain and then increases only linearly with the number of turbines

  17. Verification test for three WindCube WLS7 LiDARs at the Høvsøre test site

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael

    The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7-0062, and ......-0062, and in a summary for units WLS7-0064 and WLS7-0066. The verification test covers the evaluation of measured mean wind speeds, wind directions and wind speed standard deviations. The data analysis is basically performed in terms of different kinds of regression analyses.......The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7...

  18. Development of Prototype Micro-Lidar using Narrow Linewidth Semiconductor Lasers for Mars Boundary Layer Wind and Dust Opacity Profiles

    Science.gov (United States)

    Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David

    1999-01-01

    We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.

  19. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    Science.gov (United States)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity

  20. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.; Fleming, Paul; Boquet, Mathieu; Krishnamurthy, Raghu

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  1. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...... the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so...

  2. First Simultaneous and Common-Volume Lidar Observations of Na and Fe Metals, Temperatures, and Vertical Winds in Antarctica

    Science.gov (United States)

    Chu, X.

    2017-12-01

    A new STAR Na Doppler lidar will be installed to Arrival Heights near McMurdo Station, Antarctica in October 2017. This new lidar will be operated next to an existing Fe Boltzmann lidar to make simultaneous and common-volume measurements of metal Na and Fe layers, neutral temperatures, and vertical winds in the mesosphere and thermosphere, up to nearly 200 km. These measurements will be used to study a variety of science topics, e.g., the meteoric metal layers, wave dynamics, polar mesospheric clouds, constituent and heat fluxes, and cosmic dust. The discoveries of thermospheric neutral Fe layers and persistent gravity waves by the Fe Boltzmann lidar observations has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere coupling and processes. This paper will report the first summer results from the simultaneous Na and Fe lidar observations from Antarctica, and highlight important discoveries made by the Fe lidar during its first seven years of campaign at McMurdo. A thermosphere-ionosphere Fe/Fe+ (TIFe) model will be introduced to explain the TIFe layers in Antarctica.

  3. Coherent lidar wind measurements from the Space Station base using 1.5 m all-reflective optics

    Science.gov (United States)

    Bilbro, J. W.; Beranek, R. G.

    1987-01-01

    This paper discusses the space-based measurement of atmospheric winds from the point of view of the requirements of the optical system of a coherent CO2 lidar. A brief description of the measurement technique is given and a discussion of previous study results provided. The telescope requirements for a Space Station based lidar are arrived at through discussions of the desired system sensitivity and the need for lag angle compensation.

  4. A LIDAR-assisted model predictive controller added on a traditional wind turbine controller

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Hansen, Morten Hartvig

    2016-01-01

    control and opens the market of retrofitting existing wind turbines with the new technology. In this paper, we suggest a model predictive controller (MPC) that is added to the basic gain scheduled PI controller of a WT to enhance the performance of the closed loop system using LIDAR measurements...

  5. Observing System Simulation Experiment (OSSE) for a future Doppler Wind Lidar satellite in Japan:

    Science.gov (United States)

    Baron, Philippe; Ishii, Shoken; Okamoto, Kozo

    2017-04-01

    A feasibility study of tropospheric wind measurements by a coherent Doppler lidar aboard a super-low-altitude satellite is being conducted in Japan. We consider a coherent lidar with a laser light source at 2.05 μm whose characteristics correspond to an existing ground-based instrument (power=3.75 W, PRF=30 Hz and pulse width=200 ns). An Observing System Simulation Experiment (OSSE) has been implemented based on the Sensitivity Observing System experiment (SOSE) developed at the Japanese Meteorological-Research-Institute using the Japan Meteorological Agency global Numerical Weather Prediction model. The measurement simulator uses wind, aerosol and cloud 3-d global fields from the OSSE speudo-truth and the aerosol model MASINGAR. In this presentation, we will first discuss the measurement performances. Considering measurement horizontal resolutions of 100 km along the orbit track, we found that below 3 km, the median horizontal wind error is between 0.8-1 m/s for a vertical resolution of 0.5 km, and that near 50% of the data are valid measurements. Decreasing the vertical resolution to 1 km allows us to maintain similar performances up to 8 km almost over most latitudes. Above, the performances significantly fall down but a relatively good percentage of valid measurements (20-40%) are still found near the tropics where cirrus clouds frequently occur. The potential of the instrument to improve weather prediction models will be discussed using the OSSE results obtained for both polar and low inclination orbit satellites. The first results show positive improvements of short-term forecasts (Meteor. Soc. Japan, 2016 P. Baron et al., "Feasibility study for future space-borne coherent Doppler wind lidar, Part 2: Measurement simulation algorithms and retrieval error characterization", submitted to J. Meteor. Soc. Japan, 2016.

  6. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  7. Dependence of Weibull distribution parameters on the CNR threshold i wind lidar data

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph

    2015-01-01

    in the boundary layer. Observations from tall towers in combination with observations from a lidar of wind speed up to 600 m are used to study the long-term variability of the wind profile over sub-urban, rural, coastal and marine areas. The variability is expressed in terms of the shape parameter in the Weibull...... over land, both terms are about equally important in the coastal area where the height of the reversal height is low and in the marine conditions, the second term dominates....

  8. Power curve measurement with a nacelle mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Friis Pedersen, Troels; Courtney, Michael

    2014-01-01

    is tested. A pulsed lidar prototype, measuring horizontally, was installed on the nacelle of a multi-megawatt wind turbine. A met mast with a top-mounted cup anemometer standing at two rotor diameters in front of the turbine was used as a reference. After a data-filtering step, the comparison of the 10 min......Nacelle-based lidars are an attractive alternative to conventional mast base reference wind instrumentation where the erection of a mast is expensive, for example offshore. In this paper, the use of this new technology for the specific application of wind turbine power performance measurement...... in wind speed measurements. A lower scatter in the power curve was observed for the lidar than for the mast. Since the lidar follows the turbine nacelle as it yaws, it always measures upwind. The wind measured by the lidar therefore shows a higher correlation with the turbine power fluctuations than...

  9. Analysis of inflow parameters using LiDARs

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2014-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technique for wind resource assessment and oncoming wind prediction in wind energy. The validation of LiDAR measurements and comparisons with other sensing elements thus, is of high importance for further

  10. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  11. The long term stability of lidar calibrations

    DEFF Research Database (Denmark)

    Courtney, Michael; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. One of the requirements for the data to be accepted in support of project financing (so-called ‘banka-bility’) is to demonstrate the long-term stability of lidar cali-brations. Calibration results for six Leosphere WindCube li...

  12. Testing and comparison of lidars for profile and turbulence measurements in wind energy

    International Nuclear Information System (INIS)

    Courtney, M; Wagner, R; Lindeloew, P

    2008-01-01

    Lidar profilers are beginning to gain a foothold in wind energy. Both of the currently available commercially systems have been extensively tested at the Hovsore facility in Denmark and valuable insights have been gained. The extensively instrumented facility will be described and some examples of the results given, illustrating the strength and weaknesses of the two contrasting profilers

  13. Development of a Dynamic Lidar Uncertainty Framework

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, Andrew [WindForS; Bonin, Timothy [CIRES/NOAA ESRL; Choukulkar, Aditya [CIRES/NOAA ESRL; Brewer, W. Alan [NOAA ESRL; Delgado, Ruben [University of Maryland Baltimore County

    2017-08-07

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing consider uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict

  14. The Lidar Cyclops Syndrome Bypassed: 3D Wind Field Measurements from a Turbine mounted Lidar in combination with a fast CFD solver

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Astrup, Poul; van Dooren, Marijn Floris

    as the “Lidar Cyclops syndrome” with reference to the one-eyed Cyclops in old Greek mythology. However, by feeding a single lidar’s line-of-sight (LOS) rotor plane scanned wind speeds to a fast CFD solver, it has been possible to determine the entire 3D velocity vectors at each measurement point consistent...

  15. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  16. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Floors, Rogier Ralph; Peña, Alfredo

    2016-01-01

    Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is ex...... of the vertical profile of the shape parameter fits well with observations over land, coastal regions and over the sea. An applied model for the dependence of the reversal height on the surface roughness is in good agreement with the observations over land....

  17. Development, Field Testing, and Evaluation of LIDAR Assisted Controls

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, Robert [Asltom Power Inc.; Wang, Na [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrock, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guadayol, Marc [Alstom Power Inc.; Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arora, Dhiraj [Alstom Power Inc.

    2015-05-18

    Typical wind turbines utilize feedback controllers which have a delayed response to winds peed disturbances. A nacelle mounted LIght Detection and Ranging(LIDAR) system measures a preview wind signal in front of the turbine. This can be included in a feed-forward control system, improving turbine pitch command for incoming variations in wind speed. The overall aim is reduced blade and tower fatigue, and potentially improved annual energy production. To be successful, the LIDAR must yield accurate wind speed measurements. Therefore, a LIDAR was characterized against a nearby met tower and turbine wind speed estimator. Results indicate good correlation between measurements.

  18. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  19. LiDAR error estimation with WAsP engineering

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Mann, Jakob; Foussekis, D.

    2008-01-01

    The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model Li......DAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met. mast data have been collected and the same conditions are simulated with Riso/DTU software, WAsP Engineering 2.0. Finally measurement...

  20. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  1. Moving Beyond 2% Uncertainty: A New Framework for Quantifying Lidar Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew

    2017-03-08

    Remote sensing of wind using lidar is revolutionizing wind energy. However, current generations of wind lidar are ascribed a climatic value of uncertainty, which is based on a poor description of lidar sensitivity to external conditions. In this presentation, we show how it is important to consider the complete lidar measurement process to define the measurement uncertainty, which in turn offers the ability to define a much more granular and dynamic measurement uncertainty. This approach is a progression from the 'white box' lidar uncertainty method.

  2. Water vapour and wind measurements by a two micron space lidar

    Science.gov (United States)

    Ghibaudo, J.-B.; Labandibar, J.-Y.

    2018-04-01

    AEROSPATIALE presents the main results of the feasibility study under ESA contract on a coherent 2μm lidar instrument capable of measuring water vapour and wind velocity in the planetary boundary layer. The selected instrument configuration and the associated performance are provided, and the main critical subsystems identified (laser configuration, coherent receiver chain architecture, frequency locking and offsetting architecture. The second phase of this study is dedicated to breadboard the most critical elements of such an instrument in order to technologically consolidate its feasibility.

  3. Design of a monolithic Michelson interferometer for fringe imaging in a near-field, UV, direct-detection Doppler wind lidar.

    Science.gov (United States)

    Herbst, Jonas; Vrancken, Patrick

    2016-09-01

    The low-biased, fast, airborne, short-range, and range-resolved determination of atmospheric wind speeds plays a key role in wake vortex and turbulence mitigation strategies and would improve flight safety, comfort, and economy. In this work, a concept for an airborne, UV, direct-detection Doppler wind lidar receiver is presented. A monolithic, tilted, field-widened, fringe-imaging Michelson interferometer (FWFIMI) combines the advantages of low angular sensitivity, high thermo-mechanical stability, independence of the specific atmospheric conditions, and potential for fast data evaluation. Design and integration of the FWFIMI into a lidar receiver concept are described. Simulations help to evaluate the receiver design and prospect sufficient performance under different atmospheric conditions.

  4. Hub Height Ocean Winds over the North Sea Observed by the NORSEWInD Lidar Array: Measuring Techniques, Quality Control and Data Management

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, Detlef; Courtney, Michael

    2013-01-01

    performed excellently, two slightly failed the first criterion and one failed both. The lidars were operated offshore from six months to more than two years and observed in total 107 months of 10-min mean wind profile observations. Four lidars were re-evaluated post deployment with excellent results...

  5. Field test of an all-semiconductor laser-based coherent continuous-wave Doppler lidar for wind energy applications

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Dellwik, Ebba; Hu, Qi

    -produced all-semiconductor laser. The instrument is a coherent continuous-wave lidar with two fixed-focus telescopes for launching laser beams in two different directions. The alternation between the telescopes is achieved by a novel switching technique without any moving parts. Here, we report results from...... signal strength from external atmospheric parameters such as relative humidity and concentrations of atmospheric particles is discussed. This novel lidar instrument design seems to offer a promising low-cost alternative for prevision remote sensing of wind turbine inflow....

  6. Wind turbine wake characterization using long-range Doppler lidar

    Science.gov (United States)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  7. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.

    Science.gov (United States)

    Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao

    2017-04-01

    Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.

  8. Turbulence measurement with a two-beam nacelle lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...

  9. Assimilating high-resolution winds from a Doppler lidar using an ensemble Kalman filter with lateral boundary adjustment

    Directory of Open Access Journals (Sweden)

    Masahiro Sawada

    2015-03-01

    Full Text Available Monitoring severe weather, including wind shear and clear air turbulence, is important for aviation safety. To provide accurate information for nowcasts and very short-range forecasts up to an hour, a rapid-update prediction system has been developed, with a particular focus on lateral boundary adjustment (LBA using the local ensemble transform Kalman filter (LETKF. Due to the small forecast domain, limited-area forecasts are dominated by the lateral boundary conditions from coarse-resolution global forecasts. To effectively extend the forecast lead time for the small domain, a new LBA scheme using the LETKF has been developed and assessed with three sea-breeze front cases. Observing system simulation experiments for high-resolution winds from a simulated Doppler lidar were performed with the Japan Meteorological Agency Nonhydrostatic Mesoscale Model at a horizontal resolution of 400 m and 15-minute update cycle. The results indicate that the LBA improved the forecast significantly. In particular, the 1-hour wind-speed forecast with the LBA is as accurate as the 15-minute forecast without the LBA. The assimilation of Doppler lidar high-resolution wind data with the LBA is a promising approach for very short-range forecasts up to an hour with a small domain, such as for aviation weather.

  10. Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality

    Science.gov (United States)

    Cherukuru, Nihanth Wagmi

    Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as

  11. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    Science.gov (United States)

    Simley, Eric J.

    Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by

  12. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    Science.gov (United States)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  13. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  14. Proactive monitoring of a wind turbine array with lidar measurements, SCADA data and a data-driven RANS solver

    Science.gov (United States)

    Iungo, G.; Said, E. A.; Santhanagopalan, V.; Zhan, L.

    2016-12-01

    Power production of a wind farm and durability of wind turbines are strongly dependent on non-linear wake interactions occurring within a turbine array. Wake dynamics are highly affected by the specific site conditions, such as topography and local atmospheric conditions. Furthermore, contingencies through the life of a wind farm, such as turbine ageing and off-design operations, make prediction of wake interactions and power performance a great challenge in wind energy. In this work, operations of an onshore wind turbine array were monitored through lidar measurements, SCADA and met-tower data. The atmospheric wind field investing the wind farm was estimated by using synergistically the available data through five different methods, which are characterized by different confidence levels. By combining SCADA data and the lidar measurements, it was possible to estimate power losses connected with wake interactions. For this specific array, power losses were estimated to be 4% and 2% of the total power production for stable and convective atmospheric regimes, respectively. The entire dataset was then leveraged for the calibration of a data-driven RANS (DDRANS) solver for prediction of wind turbine wakes and power production. The DDRANS is based on a parabolic formulation of the Navier-Stokes equations with axisymmetry and boundary layer approximations, which allow achieving very low computational costs. Accuracy in prediction of wind turbine wakes and power production is achieved through an optimal tuning of the turbulence closure model. The latter is based on a mixing length model, which was developed based on previous wind turbine wake studies carried out through large eddy simulations and wind tunnel experiments. Several operative conditions of the wind farm under examination were reproduced through DDRANS for different stability regimes, wind directions and wind velocity. The results show that DDRANS is capable of achieving a good level of accuracy in prediction

  15. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    Science.gov (United States)

    Cherukuru, N. W.; Calhoun, R.

    2016-06-01

    Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  16. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  17. Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    Science.gov (United States)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.

  18. Turbulence characterization from a forward-looking nacelle lidar

    DEFF Research Database (Denmark)

    Peña, Alfredo; Mann, Jakob; Dimitrov, Nikolay Krasimirov

    2017-01-01

    of lidars were installed on the nacelle of a wind turbine. Comparison of the lidar-based along-wind unfiltered variances with those from a cup anemometer installed on a meteorological mast close to the turbine shows a bias of just 2 %. The ratios of the unfiltered and filtered radial velocity variances...

  19. Identification of Critical Design Points for the EAP of a Space-based Doppler Lidar Wind Sounder

    Science.gov (United States)

    Emmitt, G. D.; Wood, S. A.

    1992-01-01

    The feasibility of making tropospheric wind measurements with a space-based Doppler lidar was studied by a number of agencies over the past 10-15 years. Currently NASA has a plan to launch such an instrument, the Laser Atmospheric Wind Sounder (LAWS), within the next decade. The design of the LAWS continues to undergo a series of iterations common to most instruments targeted for a space platform. In general, the constraints of available platform power, weight allowance, and project funds continue to change. With these changes the performance and design specifications also must change.

  20. Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael Stephen; Friis Pedersen, Troels

    2015-01-01

    Nacelle lidars are attractive for offshore measurements since they can provide measurements of the free wind speed in front of the turbine rotor without erecting a met mast, which significantly reduces the cost of the measurements. Nacelle-mounted pulsed lidars with two lines of sight (LOS) have...... lies between 1 and 2% for the wind speed range between cut-in and rated wind speed. Finally, the lidar was mounted on the nacelle of a wind turbine in order to perform a power curve measurement. The wind speed was simultaneously measured with a mast-top mounted cup anemometer placed two rotor diameters...... lidar was less than 10% larger on average than that obtained with the mast mounted cup anemometer. Copyright © 2015 John Wiley & Sons, Ltd....

  1. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  2. Wind Resource Assessment – Østerild National Test Centre for Large Wind Turbines

    OpenAIRE

    Hansen, Brian Ohrbeck; Courtney, Michael; Mortensen, Niels Gylling

    2014-01-01

    This report presents a wind resource assessment for the seven test stands at the Østerild National Test Centre for Large Wind Turbines in Denmark. Calculations have been carried out mainly using wind data from three on-site wind lidars. The generalized wind climates applied in the wind resource calculations for the seven test stands are based on correlations between a short period of on-site wind data from the wind lidars with a long-term reference. The wind resource assessment for the seven ...

  3. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

    DEFF Research Database (Denmark)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas

    2016-01-01

    Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during...... four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis...

  4. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  5. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.

    Science.gov (United States)

    Xia, Haiyun; Shangguan, Mingjia; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2016-11-15

    For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.

  6. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    Science.gov (United States)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  7. Quantifying wind blown landscapes using time-series airborne LiDAR at White Sands Dune Field, New Mexico

    Science.gov (United States)

    Ewing, R. C.

    2011-12-01

    Wind blown landscapes are a default geomorphic and sedimentary environment in our solar system. Wind sand dunes are ubiquitous features on the surfaces of Earth, Mars and Titan and prevalent within the aeolian rock records of Earth and Mars. Dunes are sensitive to environmental and climatic changes and a complete understanding of this system promises a unique, robust and quantitative record of paleoclimate extending to the early histories of these worlds. However, our understanding of how aeolian dune landscapes evolve and how the details of the wind are recorded in cross-strata is limited by our lack of understanding of three-dimensional dune morphodynamics related to changing boundary conditions such as wind direction and magnitude and sediment source area. We use airborne LiDAR datasets over 40 km2 of White Sands Dune Field collected from June 2007, June 2008, January 2009, September 2009 and June 2010 to quantify 1) three-dimensional dune geometries, 2) annual and seasonal patterns of erosion and deposition across dune topography, 3) spatial changes in sediment flux related to position within the field, 4) spatial changes in sediment flux across sinuous crestlines and 5) morphologic changes through dune-dune interactions. In addition to measurements, we use the LiDAR data along with wind data from two near-by weather stations to develop a simple model that predicts depositional and stratigraphic patterns on dune lee slopes. Several challenges emerged using time series LiDAR data sets at White Sands Dune Field. The topography upon which the dunes sit is variable and rises by 16 meters over the length of the dune field. In order to compare individual dune geometries across the field and between data sets a base surface was interpolated from local minima and subtracted from the dune topography. Co-registration and error calculation between datasets was done manually using permanent vegetated features within the active dune field and structures built by the

  8. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  9. ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch

    Science.gov (United States)

    Straume, Anne Grete; Elfving, Anders; Wernham, Denny; de Bruin, Frank; Kanitz, Thomas; Schuettemeyer, Dirk; Bismarck, Jonas von; Buscaglione, Fabio; Lecrenier, O.; McGoldrick, Phil

    2018-04-01

    ESA's Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus), was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP) and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK), and the instrument prime is Airbus Defence & Space France (ADS-F).

  10. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar

    DEFF Research Database (Denmark)

    Abari, Cyrus F.; Pedersen, Anders Tegtmeier; Dellwik, Ebba

    2015-01-01

    The main purpose of this study is to evaluate the near-zero wind velocity measurement performance of two separate 1.5 µm all-fiber coherent Doppler lidars (CDLs). The performance characterization is carried out through the presentation of the results from two separate atmospheric field campaigns....... In one campaign, a recently developed continuous wave (CW) CDL benefiting from an image-reject front-end was deployed. The other campaign utilized a different CW CDL, benefiting from a heterodyne receiver with intermediate-frequency (IF) sampling. In both field campaigns the results are compared against...

  11. Development of LiDAR measurements for the German offshore test site

    International Nuclear Information System (INIS)

    Rettenmeier, A; Kuehn, M; Waechter, M; Rahm, S; Mellinghoff, H; Siegmeier, B; Reeder, L

    2008-01-01

    The paper introduces the content of the recently started joint research project 'Development of LiDAR measurements for the German Offshore Test Site' which has the objective to support other research projects at the German offshore test site 'alpha ventus'. The project has started before the erection of the offshore wind farm and one aim is to give recommendations concerning LiDAR technology useable for offshore measurement campaigns and data analysis. The work is organized in four work packages. The work package LiDAR technology deals with the specification, acquisition and calibration of a commercial LiDAR system for the measurement campaigns. Power curve measurements are dedicated to power curve assessment with ground-based LiDAR using standard statistical methods. Additionally, it deals with the development of new methods for the measurement of non-steady short-term power curves. Wind field research aims at the development of wake loading simulation methods of wind turbines and the exploration of loading control strategies and nacelle-based wind field measurement techniques. Finally, dissemination of results to the industry takes place in work package Technology transfer

  12. Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load validation

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand

    2017-01-01

    We demonstrate a method for incorporating wind velocity measurements from multiple-point scanning lidars into threedimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly gener...

  13. Design and performance simulation of 532 nm Rayleigh-Mie Doppler lidar system for 5-50 km wind measurement

    Science.gov (United States)

    Shen, Fahua; Wang, Bangxin; Shi, Wenjuan; Zhuang, Peng; Zhu, Chengyun; Xie, Chenbo

    2018-04-01

    A novel design of the 532 nm Rayleigh-Mie Doppler lidar receiving system is carried out. The use of polarization isolation technology to effectively improve the receiving system optical reception efficiency, suppress the background noise, not only improves the system wind field detection accuracy, while achieving a high-accuracy temperature measurement. The wind speed and temperature measurement principle of the system are discussed in detail, and the triple Fabry-Perot etalon parameters are optimized. Utilizing the overall design parameters of the system, the system detection performance is simulated. The simulation results show that from 5 to 50 km altitude with vertical resolution of 0.1 km@5 ∼20 km, 0.5 km@20 ∼40 km, 1 km@40 ∼50 km, by using the laser with single pulse energy of 600 mJ, repetition frequency of 50 Hz and the receiving telescope with aperture of 0.8 m, with 2min integration time and in ±50 m/s radial wind speed range, the radial wind speed measurement accuracies of our designed lidar in the day and night are better than 2.6 m/s and 0.9 m/s respectively, and its performance is obviously superior to that of traditional system 5.6 m/s and 1.4 m/s wind speed accuracies; with 10min integration time and in 210 ∼280 K temperature range, the temperature measurement accuracies of the system in the day and night are better than 3.4 K and 1.2 K respectively; since the wind speed sensitivities of the Mie and Rayleigh scattering signals are not exactly the same, in ±50 m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 1 m/s in the temperature range of 210-290 K and in the backscatter ratio range of 1-1.5 for pair measurement.

  14. ESA’s spaceborne lidar mission ADM-Aeolus; project status and preparations for launch

    Directory of Open Access Journals (Sweden)

    Straume Anne Grete

    2018-01-01

    Full Text Available ESA’s Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus, was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK, and the instrument prime is Airbus Defence & Space France (ADS-F.

  15. Conically scanning lidar error in complex terrain

    Directory of Open Access Journals (Sweden)

    Ferhat Bingöl

    2009-05-01

    Full Text Available Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error is measured by collocating a meteorological mast and a lidar at two Greek sites, one hilly and one mountainous. The maximum error for the sites investigated is of the order of 10 %. In order to predict the error for various wind directions the flows at both sites are simulated with the linearized flow model, WAsP Engineering 2.0. The measurement data are compared with the model predictions with good results for the hilly site, but with less success at the mountainous site. This is a deficiency of the flow model, but the methods presented in this paper can be used with any flow model.

  16. Long-Range WindScanner System

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Courtney, Michael

    2016-01-01

    The technical aspects of a multi-Doppler LiDAR instrument, the long-range WindScanner system, are presented accompanied by an overview of the results from several field campaigns. The long-range WindScanner system consists of three spatially-separated, scanning coherent Doppler LiDARs and a remote......-rangeWindScanner system measures the wind field by emitting and directing three laser beams to intersect, and then scanning the beam intersection over a region of interest. The long-range WindScanner system was developed to tackle the need for high-quality observations of wind fields on scales of modern wind turbine...

  17. Fiber Laser for Wind Speed Measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig

    This PhD thesis evaluates the practical construction and use of a Frequency Stepped Pulse Train modulated coherent Doppler wind lidar (FSPT lidar) for wind speed measurement. The concept of Doppler lidar is introduced as a means to measure line of sight wind speed by the Doppler shift of reflected...... Sweeper (LSFS) is introduced and analyzed as a light source for the FSPT lidar. The setup of the LSFS is discussed, and the necessary concepts for modeling and analyzing LSFS noise are developed. The model and measurements are then used to discuss the growth of optical noise in the LSFS and the impact...... on its use in the FSPT lidar. A complex ABCD model is developed and described as a method for calculating spatial and frequency dependency of a lidar’s signal strength. The model includes both spatial and temporal components of the lidar system, enabling a model capable of describing both CW, pulsed...

  18. How good are remote sensors at measuring extreme winds?

    NARCIS (Netherlands)

    Sathe, A.R.; Courtney, M.; Mann, J.; Wagner, R.

    2011-01-01

    This article describes some preliminary efforts within the SafeWind project, aimed to identify the possible added value of using wind lidars to detect extreme wind events. Exceptionally good performance is now regularly reported in the measurement of the mean wind speed with some wind lidars in flat

  19. Effect of wind turbine wakes on summer-time wind profiles in the US Great Plains

    Science.gov (United States)

    Rhodes, M. E.; Lundquist, J. K.; Aitken, M.

    2011-12-01

    Wind energy is steadily becoming a significant source of grid electricity in the United States, and the Midwestern United States provides one of the nation's richest wind resources. This study examines the effect of wind turbine wakes on the wind profile in central Iowa. Data were collected using a coherent Doppler LiDAR system located approximately 2.5 rotor diameters north of a row of modern multi-MW wind turbine generators. The prevailing wind direction was from the South allowing the LiDAR to capture wind turbine wake properties; however, a number of periods existed where the LiDAR captured undisturbed flow. The LiDAR system reliably obtained readings up to 200 m above ground level (AGL), spanning the entire rotor disk (~40 m to 120 m AGL) which far surpasses the information provided by traditional wind resource assessment instrumentation. We extract several relevant parameters from the lidar data including: horizontal wind speed, vertical velocity, horizontal turbulence intensity, wind shear, and turbulent kinetic energy (TKE). Each time period at a particular LiDAR measurement height was labeled "wake" or "undisturbed" based on the wind direction at that height. Wake and undisturbed data were averaged separately to create a time-height cross-section averaged day for each parameter. Significant differences between wake and undisturbed data emerge. During the day, wake conditions experience larger values of TKE within the altitudes of the turbine rotor disk while TKE values above the rotor disk are similar between waked and undisturbed conditions. Furthermore, the morning transition of TKE in the atmospheric boundary layer commences earlier during wake conditions than in undisturbed conditions, and the evening decay of TKE persists longer during wake conditions. Waked wind shear is consistently greater than undisturbed periods at the edges of the wind turbine rotor disk (40m & 120m AGL), but especially so during the night where wind shear values during wake

  20. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, Marijn Floris; Campagnolo, Filippo; Sjöholm, Mikael

    2017-01-01

    to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The duallidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe...... as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hotwire probes are the larger measurement...... probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing...

  1. A demonstrator for an incoherent Doppler wind lidar receiver

    Science.gov (United States)

    Fabre, F.; Marini, A.; Sidler, Thomas C.; Morancais, Didier; Fongy, G.; Vidal, Ph.

    2018-04-01

    The knowledge of wind fields for a global terrestrial coverage and accurate altitude sampling is one of the main keys for improvement of meteorological predictions and general understanding of atmosphere behaviour. The best way to recover this information is remote sensing from space using low Earth orbit satellites. The measurement principle is to analyse the Doppler shift of the flux emitted by the space instrument and backscattered by the atmosphere. One of the most promising principle for Doppler shift measurement is the direct detection which does not need local oscillators. what significantly simplifies the design of such a space-borne receiver. ESA-ESTEC initiated at early 95' a programme called "lncoherent Doppler Wind Lidar (IDWL) technologies" for the study and bread-boarding phase. MMS won this contract proposing an original concept based on the use of a Fizeau high resolution interferometer working in the UV band. coupled with an intensified CCD. This concept is patented by MMS, as well as the special CCD timing sequence that will be depicted below. The programme begun by a study of the space-borne instrument in order to identify main constraints and define the receiver as could be for a flight model. A detailed performance model was established and parametric analysis allowed to optimise the concept in order to reach required performances. This study phase finally provided the definition of a bread-board for expected performances demonstration. Moreover, the Laser Signal Simulator (LSS) which is used to simulate the Lidar echo in term of amplitude as well as frequency modulation was defined at this step. The performances of this test support equipment are of main importance for the validation of the demonstrator design and performances. The second part of the study aimed at defining the derailed design of the demonstrator and associated test support equipment as well as initiating preliminary validation experiments on most critical technologies, like

  2. Special Relativity Corrections for Space-Based Lidars

    Science.gov (United States)

    RaoGudimetla, Venkata S.; Kavaya, Michael J.

    1999-01-01

    The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.

  3. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

    Science.gov (United States)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas; Mikkelsen, Torben; Sjöholm, Mikael; Mann, Jakob; Hansen, Per; Angelou, Nikolas; Svardal, Benny

    2016-12-01

    Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis on the root-coherence and the co-coherence of turbulence. A four-parameter decaying exponential function has been fitted to the measured co-coherence, and a good agreement is observed between data obtained by the sonic anemometers and the lidars. The root-coherence of turbulence is compared to theoretical models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate the integral length scales, which could not be explained by the laser beam averaging effect alone. On the other hand, the spatial averaging effect does not seem to have any significant effect on the coherence.

  4. WindScanner.dk - a new Remote Sensing based Research Infrastructure for on- and offshore Wind Energy Research

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    obtained in planetary boundary layer turbulent flow have been acquired from both ground-based and wind turbine-integrated space by time and space synchronized scanning lidars. Results to date include: turbulent inflow over complex terrain scanned in a horizontal-vertical 2D scan plane, and 2-dimensional...... and 3-dimensional wind vector scan measurements obtained during various WindScanner boundary-layer field campaigns. A special designed `2D upwind rotor plane scanning SpinnerLidar', mounted in the rotating spinner, and able to provide the wind turbine control systems with detailed upwind feed......-forward inflow information, is also investigated as a provider of rotor plane inflow for accurate power curve measurements. The instrument development involves both a short range (10 -200 m) and a long-range (100 - 6000 m) synchronized 3D scanning wind lidar system....

  5. Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner

    International Nuclear Information System (INIS)

    Schlipf, David; Haizmann, Florian; Hofsäß, Martin; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew; Wright, Alan

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Furthermore, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines

  6. Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner

    Science.gov (United States)

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsäß, Martin; Wright, Alan; Cheng, Po Wen

    2014-12-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Furthermore, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.

  7. Korea-China Joint R and D on Doppler Lidar Technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kim, D. H.; Kwon, S. O.; Yang, K. H.; Song, I. K.

    2009-03-01

    Doppler lidar technology is to monitor atmospheric wind velocity by measuring the light scattering signals between a laser and aerosol particles or molecules existing in the atmosphere. When the particles (or molecules) in the atmosphere are moving by wind force, the frequency of backscattering light is shifted by doppler effect, so that the wind velocity profile can be obtained by measurement of the shifted frequencies. When the laser radiation is scanned in four different direction, three dimensional wind profiles are obtained. The Anhui Institute of Optics and Fine Mechanics under the China Academy of Sciences has developed and operated the doppler lidar system for long time. In this project we want to developed a new technologies adopted to the chinese doppler system and to test the updated In the process of collaboration between China and Korea research teams, we want to learn the state-of-art technology involved in the doppler lidar system

  8. Generic calibration procedures for nacelle-based profiling lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    In power performance testing, it has been demonstrated that the effects of wind speed and direction variations over the rotor disk can no longer be neglected for large wind turbines [1]. A new generation of commercial nacelle-based lidars is now available, offering wind profiling capabilities. De...

  9. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Cherukuru N. W.

    2016-01-01

    As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  10. Capturing the journey of wind from the wind turbines (poster)

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence

  11. LiDAR observation of the flow structure in typhoons

    Science.gov (United States)

    Wu, Yu-Ting; Hsuan, Chung-Yao; Lin, Ta-Hui

    2015-04-01

    Taiwan is subject to 3.4 landfall typhoons each year in average, generally occurring in the third quarter of every year (July-September). Understanding of boundary-layer turbulence characteristics of a typhoon is needed to ensure the safety of both onshore and offshore wind turbines used for power generation. In this study, a floating LiDAR (Light Detection and Ranging) was deployed in a harbor to collect data of wind turbulence, atmospheric pressure, and temperature in three typhoon events (Matmo typhoon, Soulik typhoon, Trami typhoon). Data collected from the floating LiDAR and from meteorological stations located at Taipei, Taichung and Kaohsiung are adopted to analyse the wind turbulence characteristics in the three typhoon events. The measurement results show that the maximum 10-min average wind speed measured with the floating LiDAR is up to 24 m/s at a height of 200 m. Compared with other normal days, the turbulence intensity is lower in the three typhoon events where the wind speed has a rapid increase. Changes of wind direction take place clearly as the typhoons cross Taiwan from East to West. Within the crossing intervals, the vertical momentum flux is observed to have a significant pattern with both upward and downward propagating waves which are relevant to the flow structure of the typhoons.

  12. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  13. A Comparison of sector-scan and dual Doppler wind measurements at Høvsøre Test Station – one lidar or two?

    DEFF Research Database (Denmark)

    Simon, Elliot; Courtney, Michael

    from the coast). Ground based remote sensing has numerous advantages over traditional in-situ (offshore met mast) and buoy based installations, mainly in terms or cost, complexity, and failure/delay risk. Since each lidar can only measure a portion of the wind vector, it is necessary to either deploy...

  14. Development of lidar techniques for environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats

    1996-09-01

    The lidar group in Lund has performed many DIAL measurements with a mobile lidar system that was first described in 1987. The lidar system is based on a Nd:YAG-pumped dye laser. During the last few years the lidar group has focused on fluorescence imaging and mercury measurements in the troposphere. In 1994 we performed two campaigns: one fluorescence imaging measurement campaign outside Avignon, France and one unique lidar campaign at a mercury mine in Almaden, Spain. Both campaigns are described in this thesis. This thesis also describes how the mobile lidar system was updated with the graphical programming language LabVIEW to obtain a user friendly lidar system. The software controls the lidar system and analyses measured data. The measurement results are shown as maps of species concentration. All electronics and the major parts of the program are described. A new graphical technique to estimate wind speed from plumes is also discussed. First measurements have been performed with the new system. 31 refs, 19 figs, 1 tab

  15. Calibration of Avent Wind IRIS SN 01030167

    DEFF Research Database (Denmark)

    Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement un...

  16. Test of ground-based Lidar instrument WLS7-106

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  17. Test of ground-based lidar instrument WLS7-159

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  18. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  19. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  20. Monitoring and Quantifying Particles Emissions around Industrial Sites with Scanning Doppler Lidar

    Science.gov (United States)

    Thobois, L.; Royer, P.; Parmentier, R.; Brooks, M.; Knoepfle, A.; Alexander, J.; Stidwell, P.; Kumar, R.

    2018-04-01

    Scanning Coherent Doppler Lidars have been used over the last decade for measuring wind for applications in wind energy [1], meteorology [2] and aviation [3]. They allow for accurate measurements of wind speeds up to a distance of 10 km based on the Doppler shift effect of aerosols. The signal reflectivity (CNR or Carrier-to-Noise Ratio) profiles can also be retrieved from the strength of the Lidar signal. In this study, we will present the developments of algorithm for retrieving aerosol optical properties like the relative attenuated backscatter coefficient and the mass concentration of particles. The use of these algorithms during one operational trial in Point Samson, Western Australia to monitor fugitive emissions over a mine will be presented. This project has been initiated by the Australian Department of Environment Regulations to better determine the impact of the Port on the neighboring town. During the trial in Summer, the strong impact of turbulence refractive index on Lidar performances has been observed. Multiple methodologies have been applied to reduce this impact with more or less success. At the end, a dedicated setup and configuration have been established that allow to properly observe the plumes of the mine with the scanning Lidar. The Lidar data has also been coupled to beta attenuation in-situ sensors for retrieving mass concentration maps. A few case of dispersion of plumes will be presented showing the necessity to combine both the wind and aerosol data.

  1. Modelling lidar volume-averaging and its significance to wind turbine wake measurements

    Science.gov (United States)

    Meyer Forsting, A. R.; Troldborg, N.; Borraccino, A.

    2017-05-01

    Lidar velocity measurements need to be interpreted differently than conventional in-situ readings. A commonly ignored factor is “volume-averaging”, which refers to lidars not sampling in a single, distinct point but along its entire beam length. However, especially in regions with large velocity gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination with an actuator line to test the algorithm and investigate the potential impact of volume-averaging. Even with very few points discretising the lidar beam is volume-averaging captured accurately. The difference in a lidar compared to a point measurement is greatest at the wake edges and increases from 30% one rotor diameter (D) downstream of the rotor to 60% at 3D.

  2. Calibration report for Avent 5-beam Demonstrator lidar

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael

    Nacelle-based profiling LiDARs may be the future of power performance assessment. Due to their large rotor size, single-point measurements are insufficient to quantify the power modern wind turbines can harness. The available energy in the wind indeed varies with heights. Improving power performa...

  3. In-situ Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    This report presents the result of the lidar in-situ calibration performed at DTU’s test site for large wind turbine at Østerild, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertainties provided by mea...

  4. Atmospheric energy harvesting: use of Doppler Wind Lidars on UAVs to extend mission endurance and enable quiet operations

    Science.gov (United States)

    Greco, S.; Emmitt, G. D.; Wood, S. A.; Costello, M.

    2014-10-01

    The investigators are developing a system tool that utilizes both pre-flight information and continuous real-time knowledge and description of the state of the atmosphere and atmospheric energetics by an Airborne Doppler Wind Lidar (ADWL) to provide the autonomous guidance for detailed and adaptive flight path planning by UAS and small manned aircraft. This flight planning and control has the potential to reduce mission dependence upon preflight assumptions, extend flight duration and endurance, enable long periods of quiet operations and allow for the optimum self-routing of the aircraft. The ADWL wind data is used in real-time to detect atmospheric energy features such as thermals, waves, wind shear and others. These detected features are then used with an onboard, weather model driven flight control model to adaptively plan a flight path that optimizes energy harvesting with frequent updates on local changes in the opportunities and atmospheric flow characteristics. We have named this package AEORA for the Atmospheric Energy Opportunity Ranking Algorithm (AEORA).

  5. Calibration of Avent Wind IRIS SN. WI01030176

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement un...

  6. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  7. Novel Hemispherical Scanner for a Coherent Fiber LIDAR System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SibellOptics proposes to develop an eye-safe, long-range, compact, versatile, all-fiber wind LIDAR system for atmospheric wind velocity measurement applications that...

  8. Perdigão 2015: Methodology for atmospheric multi-Doppler lidar experiments

    DEFF Research Database (Denmark)

    Vasiljevia, Nikola; Palma, José M.L.M.; Angelou, Nikolas

    2017-01-01

    The long-range and short-range WindScanner systems (LRWS and SRWS), multi-Doppler lidar instruments, when combined together can map the turbulent flow around a wind turbine and at the same time measure mean flow conditions over an entire region such as a wind farm. As the WindScanner technology...

  9. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  10. Test of ground-based Lidar instrument WLS200S-10

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  11. Test of ground-based Lidar instrument WLS200S-11

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  12. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  13. Preview-based Asymmetric Load Reduction of Wind Turbines

    DEFF Research Database (Denmark)

    Madsen, Mathias; Filsø, Jakob; Soltani, Mohsen

    2012-01-01

    Controller (MPC) developed is based on a model with individual blade pitching to utilize the LIDAR measurements. The MPC must also maintain a given power reference while satisfying a set of actuator constraints. The designed controller was tested on a 5 MW wind turbine in the FAST simulator and compared......Fatigue loads on wind turbines caused by an asymmetric wind field become an increasing concern when the scale of wind turbines increases. This paper presents a model based predictive approach to reduce asymmetric loads by using Light Detection And Ranging (LIDAR) measurements. The Model Predictive...

  14. Pose and Wind Estimation for Autonomous Parafoils

    Science.gov (United States)

    2014-09-01

    Precision Airdrop System LIDAR light detection and ranging LOP line of position MCADS Maritime Craft Air Delivery System MEMS micro-electro-mechanical...least squares SLAM simultaneous localization and mapping SPS standard positioning service TIP Turn Initiation Point TMA target motion analysis TNT...improvements and further testing on the WindPack [45]. Most recently, Herrmann proposed the use of a ground-based lidar wind measurement system to transmit

  15. Wind profile modelling using WAsP and "tall" wind measurements

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Kelly, Mark C.; Troen, Ib

    2015-01-01

    extrapolations (the wind profile) this is done using the Weibull distribution and the geostrophic drag law. Wind lidar measurements obtained during the ’Tall wind’ campaign at three different sites are used to evaluate the assumptions and equations that are used in the WAsP vertical extrapolation strategy...

  16. Requirements and Technology Advances for Global Wind Measurement with a Coherent Lidar: A Shrinking Gap

    Science.gov (United States)

    Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David

    2007-01-01

    Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.

  17. Next Generation Fiber Coherent Lidar System for Wake Vortex Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SibellOptics proposes to develop an eye-safe, long-range, compact, versatile, all-fiber wind LIDAR system for wake vortex measurement and other wind measurement...

  18. Field performance of an all-semiconductor laser coherent Doppler lidar

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    We implement and test what, to our knowledge, is the first deployable coherent Doppler lidar (CDL) system based on a compact, inexpensive all-semiconductor laser (SL). To demonstrate the field performance of our SL-CDL remote sensor, we compare a 36 h time series of averaged radial wind speeds...... measured by our instrument at an 80 m distance to those simultaneously obtained from an industry-standard sonic anemometer (SA). An excellent degree of correlation (R2=0.994 and slope=0.996) is achieved from a linear regression analysis of the CDL versus SA wind speed data. The lidar system is capable...

  19. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  20. LIDAR Correlation to Extreme Flapwise Moment : Gust Impact Prediction Time and Feedforward Control

    DEFF Research Database (Denmark)

    Meseguer Urban, Albert; Hansen, Morten Hartvig

    A Conventional wind turbine controller uses feedback parameters reacting to wind disturbances after they have already impacted the rotor. LIDARs are able to measure the wind speed before it reaches the wind turbine rotor. These anticipated values can be used in control systems designed to reduce...

  1. Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, Edward G.

    2013-01-01

    This study demonstrates that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. Three different angles are considered: the wind turning, the angle between the stress vector and the mean wind direction......, and the angle between the stress vector and the vertical gradient of the mean velocity vector. The latter is assumed to be zero by the often applied turbulent-viscosity hypothesis, so that the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where...... the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only...

  2. Calibration of ground-based Lidar instrument WLS7-73

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain...

  3. Multi-MW wind turbine power curve measurements using remote sensing instruments - the first Hoevsoere campaign

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.

    2009-02-15

    Power curve measurement for large wind turbines requires taking into account more parameters than only the wind speed at hub height. Based on results from aerodynamic simulations, an equivalent wind speed taking the wind shear into account was defined and found to reduce the scatter in the power curve significantly. Two LiDARs and a SoDAR are used to measure the wind profile in front of a wind turbine. These profiles are used to calculate the equivalent wind speed. LiDAR are found to be more accurate than SoDAR and therefore more suitable for power performance measurement. The equivalent wind speed calculated from LiDAR profile measurements gave a small reduction of the power curve uncertainty. Several factors can explain why this difference is smaller than expected, including the experimental design and errors pertaining to the LiDAR at that time. This first measurement campaign shows that used of the equivalent wind speed at least results in a power curve with no more scatter than using the conventional method. (au)

  4. Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements

    Directory of Open Access Journals (Sweden)

    Paula Doubrawa

    2016-11-01

    Full Text Available Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  5. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Science.gov (United States)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  6. Calibration report for ZephIR Dual Mode lidar (unit 351)

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael

    Nacelle-based profiling LiDARs may be the future of power performance assessment. Due to their large rotor size, single-point measurements are insufficient to quantify the power modern wind turbines can harness. The available energy in the wind indeed varies with heights. Improving power performa...

  7. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    -speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  8. Anholt offshore wind farm winds investigated from satellite images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Volker, Patrick

    , i.e. before the wind farm was constructed. Based on these data the wind resource is estimated. Concurrent Sentinel-1 SAR data and available SCADA and lidar data, kindly provided by DONG Energy and partners, for the period January 2013 to June 2015 account for ~70 images, while ~300 images...... are available for Sentinel-1 from July 2015 to February 2017. The Sentinel-1 wind maps are investigated for wind farm wake effects. Furthermore the results on wind resources and wakes are compared to the SCADA and model results from WRF, Park, Fuga and RANS models....

  9. Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements

    Science.gov (United States)

    Floors, R.; Hahmann, A. N.; Peña, A.

    2018-03-01

    The atmospheric flow in the coastal zone is investigated using lidar and mast measurements and model simulations. Novel dual-Doppler scanning lidars were used to investigate the flow over a 7 km transect across the coast, and vertically profiling lidars were used to study the vertical wind profile at offshore and onshore positions. The Weather, Research and Forecasting model is set up in 12 different configurations using 2 planetary boundary layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions. All model simulations describe the observed mean wind profile well at different onshore and offshore locations from the surface up to 500 m. The simulated mean horizontal wind speed gradient across the shoreline is close to that observed, although all simulations show wind speeds that are slightly higher than those observed. Inland at the lowest observed height, the model has the largest deviations compared to the observations. Taylor diagrams show that using ERA-Interim data as boundary conditions improves the model skill scores. Simulations with 0.5 and 1 km horizontal grid spacing show poorer model performance compared to those with a 2 km spacing, partially because smaller resolved wave lengths degrade standard error metrics. Modeled and observed velocity spectra were compared and showed that simulations with the finest horizontal grid spacing resolved more high-frequency atmospheric motion.

  10. Comparative study of the performance of semiconductor laser based coherent Doppler lidars

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development of conti......Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development...... of continuous-wave CDL systems using compact, inexpensive semiconductor laser (SL) sources. In this work, we compare the performance of two candidate emitters for an allsemiconductor CDL system: (1) a monolithic master-oscillator-power-amplifier (MOPA) SL and (2) an external-cavity tapered diode laser (ECTDL)....

  11. Modelling lidar volume-averaging and its significance to wind turbine wake measurements

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels; Borraccino, Antoine

    2017-01-01

    gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination...

  12. Nacelle lidar for power curve measurement - Avedøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Davoust, Samuel

    measurement of the wind speed away from the instrument. In the first phase of the EUDP project: “Nacelle lidar for power performance measurement”, a measurement campaign with a na-celle lidar prototype placed on an onshore turbine demonstrated the poten-tial of the technology for power curve measurement....... The main deviations of this method to the requirement of the IEC 61400-12-1 were identified and a procedure was established for the use of a nacelle lidar specifically for power curve measurement. This report describes the results of a sec-ond measurement campaign aiming at testing and finalising...

  13. Overview and first results of the Wind and Storms Experiment (WASTEX): a field campaign to observe the formation of gusts using a Doppler lidar

    Science.gov (United States)

    Pantillon, Florian; Wieser, Andreas; Adler, Bianca; Corsmeier, Ulrich; Knippertz, Peter

    2018-05-01

    Wind gusts are responsible for most damages in winter storms over central Europe, but capturing their small scale and short duration is a challenge for both models and observations. This motivated the Wind and Storms Experiment (WASTEX) dedicated to investigate the formation of gusts during the passage of extratropical cyclones. The field campaign took place during the winter 2016-2017 on a former waste deposit located close to Karlsruhe in the Upper Rhine Valley in southwest Germany. Twelve extratropical cyclones were sampled during WASTEX with a Doppler lidar system performing vertical scans in the mean wind direction and complemented with a Doppler C-band radar and a 200 m instrumented tower. First results are provided here for the three most intense storms and include a potential sting jet, a unique direct observation of a convective gust and coherent boundary-layer structures of strong winds.

  14. 12MW Horns Rev experiment[Wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Pena, A; Mikkelsen, T.; Courtney, M.; Antoniou, I.; Gryning, S.-E.; Hansen, P. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark); Soerensen, P.B. [DONG Energy (Denmark)

    2007-10-15

    The 12MW project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting and operating the instruments on the transformer platform at Horns Rev were overcome by a close collaboration between DONG energy and Risoe National Laboratory DTU. The site is presented. In particular, three tall offshore meteorological masts, up to 70 m tall, provided a useful source of meteorological data for comparison to the remotely sensed wind and turbulence observations. The comparison showed high correlation. The LIDAR and SODAR wind and turbulence observations were collected far beyond the height of the masts (up to 160 m above sea level) and the extended profiles were compared to the logarithmic wind profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported. (au)

  15. Investigation of Kelvin-Helmholtz Instability in the boundary layer using Doppler lidar and radiosonde data

    Science.gov (United States)

    Das, Subrata Kumar; Das, Siddarth Shankar; Saha, Korak; Murali Krishna, U. V.; Dani, K. K.

    2018-04-01

    Characteristics of Kelvin Helmholtz Instability (KHI) using Doppler wind lidar observation have rarely been reported during the Indian summer monsoon season. In this paper, we present a case study of KHI near planetary boundary layer using Doppler wind lidar and radiosonde measurements at Mahabubnagar, a tropical Indian station. The data was collected during the Integrated Ground Observation Campaign (June-October 2011) under the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment-2011. The continuous wind lidar observation during 10-16 August 2011 shows there is an increase in carrier-to-noise ratio values near planetary boundary layer from 03:00 to 11:00 LT on 13 August; reveals the formation of KHI. There is a strong power bursts pattern corresponding to high turbulence characteristics in the early half of the day. The KHI temporal evolution from initial to dissipating stage is observed with clear variation in the carrier-to-noise ratio values. The observed KHI billows are in the height between 600 and 1200 m and lasted for about 7.5 h. The vertical velocity from Doppler lidar measurement shows the presence of updrafts after breaking of KHI in the boundary layer. The presence of strong wind shear, high stability parameter, low Richardson number and high relative humidity during the enhanced carrier-to-noise ratio period indicates the ideal condition for the formation and persistence of this dynamic instability. A typical characteristic of trapped humidity above the KHI billows suggest the presence of strong inversion. A wavelet analysis of 3-dimensional wind components show dominant periodicity of 45-65 min and the periodicity in vertical wind is more prominent.

  16. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  17. Coaxial direct-detection lidar-system

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a coaxial direct-detection LIDAR system for measuring velocity, temperature and/or particulate density. The system comprises a laser source for emitting a laser light beam having a lasing center frequency along an emission path. The system further comprises an optical....... Finally, the system comprises a detector system arranged to receive the return signal from the optical delivery system, the detector system comprising a narrowband optical filter and a detector, the narrowband optical filter having a filter center frequency of a pass-band, wherein the center lasing...... frequency and/or the center filter frequency may be scanned. The invention further relates to an aircraft airspeed measurement device, and a wind turbine airspeed measurement device comprising the LIDAR system....

  18. Results of the Simulation and Assimilation of Doppler Wind Lidar Observations in Preparation for European Space Agency's Aeolus Mission

    Science.gov (United States)

    McCarty, Will

    2011-01-01

    With the launch of the European Space Agency's Aeolus Mission in 2013, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework has been utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP) as an activity through the Joint Center for Satellite Data Assimilation. An update of this ongoing effort will be presented, including the methodology of proxy data generation, the limitations of the proxy data, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type.

  19. Autonomous Alignment Advancements for Eye-safe Coherent Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Eye-safe coherent lidar technology holds increasing promise of meeting NASA's demanding remote 3D space winds goal near term. Highly autonomous, long-range coherent...

  20. Estimating Turbulence Statistics and Parameters from Lidar Measurements. Remote Sensing Summer School

    DEFF Research Database (Denmark)

    Sathe, Ameya

    This report is prepared as a written contribution to the Remote Sensing Summer School, that is organized by the Department of Wind Energy, Technical University of Denmark. It provides an overview of the state-of-the-art with regards to estimating turbulence statistics from lidar measurements...... configuration. The so-called velocity Azimuth Display (VAD) and the Doppler Beam Swinging (DBS) methods of post processing the lidar data are investigated in greater details, partly due to their wide use in commercial lidars. It is demonstrated that the VAD or DBS techniques result in introducing significant...

  1. Scanning elastic lidar observations of aerosol transport in New York City

    Science.gov (United States)

    Diaz, Adrian; Dominguez, Victor; Dobryansky, Selma; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2018-04-01

    In this study, spatial distribution of aerosols in New York City is observed using a scanning eyesafe 532 nm elastic-backscatter micro-pulse lidar system. Observations show dynamics of the boundary layer and inhomogeneous distribution and transport of aerosols. The data acquired are complemented with simultaneous measurements of particulate matter and wind speed and direction. Furthermore, the system observations are validated by comparing them with a colocated multi-wavelength lidar.

  2. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  3. Complex terrain experiments in the New European Wind Atlas

    Science.gov (United States)

    Angelou, N.; Callies, D.; Cantero, E.; Arroyo, R. Chávez; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J.; Ivanell, S.; Kühn, P.; Lea, G.; Matos, J. C.; Palma, J. M. L. M.; Peña, A.; Rodrigo, J. Sanz; Söderberg, S.; Vasiljevic, N.; Rodrigues, C. Veiga

    2017-01-01

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265025

  4. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  5. Analysis of Sub-Grid Boundary-Layer Processes Observed by the P-3 Doppler Wind Lidar in Support of the Western Pacific Tropical Cyclone Structure 2008 Experiment

    Science.gov (United States)

    2012-02-02

    characteristics in the low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon Wea, Rev, 139, 1447-1462. 9 PUBLICATIONS Refereed Journals...experiment that involved USAF Hurricane Hunter C-130s, the Navy’s P-3, the German Falcon aircraft and the Taiwanese DOTSTAR. The P-3 was equipped with... hurricane research with airborne 8 DWLs for the next 5 years. All of this airborne DWL activity is being done with the expectation of under flying the

  6. Lidar Characterization of Boundary Layer Transport and Mixing for Estimating Urban-Scale Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Hardesty R. Michael

    2016-01-01

    Full Text Available A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.

  7. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  8. Validating the WRF-Chem model for wind energy applications using High Resolution Doppler Lidar data from a Utah 2012 field campaign

    Science.gov (United States)

    Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.

    2015-12-01

    Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.

  9. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  10. Project ABLE: (Atmospheric Balloonborne Lidar Experiment)

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1985-03-01

    Project ABLE (Atmospheric Balloonborne Lidar Experiment) is part of the A.F. Geophysics Laboratory's continuing interest in developing techniques for making remote measurements of atmospheric quantities such as density, pressure, temperatures, and wind motions. The system consists of a balloonborne lidar payload designed to measure neutral molecular density as a function of altitude from ground level to 70 km. The lidar provides backscatter data at the doubled and tripled frequencies of a Nd:YAG laser, which will assist in the separation of the molecular and aerosol contributions and subsequent determination of molecular and aerosol contributions and subsequent determination of molecular density vs altitude. The object of this contract was to fabricate and operate in a field test a balloonborne lidar experiment capable of performing nighttime atmospheric density measurements up to 70 km altitude with a resolution of 150 meters. The payload included a frequency-doubled and -tripled Nd:YAG laser with outputs at 355 and 532 nm; a telescoped receiver with PMT detectors; a command-controlled optical pointing system; and support system, including thermal control, telmetry, command, and power. Successful backscatter measurements were made during field operations which included a balloon launch from Roswell, NM and a flight over the White Sands Missile Range.

  11. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    OpenAIRE

    Cherukuru N. W.; Calhoun R.

    2016-01-01

    Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of...

  12. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  13. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  14. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results...

  15. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B.; Senff, C. [Univ. of Colorado/NOAA Environmental Technology Lab., Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States); Banta, R.M. [NOAA Environmental Technology Lab., Boulder, CO (United States)

    1997-10-01

    The mixing depth is one of the most important parameters in air pollution studies because it determines the vertical extent of the `box` in which pollutants are mixed and dispersed. During the 1995 Southern Oxidants Study (SOS95), scientists from the National Oceanic and Atmospheric Administration Environmental Technology Laboratory (NOAA/ETL) deployed four 915-MHz boundary-layer radar/wind profilers (hereafter radars) in and around the Nashville, Tennessee metropolitan area. Scientists from NOAA/ETL also operated an ultraviolet differential absorption lidar (DIAL) onboard a CASA-212 aircraft. Profiles from radar and DIAL can be used to derive estimates of the mixing depth. The methods used for both instruments are similar in that they depend on information derived from the backscattered power. However, different scattering mechanisms for the radar and DIAL mean that different tracers of mixing depth are measured. In this paper we compare the mixing depth estimates obtained from the radar and DIAL and discuss the similarities and differences that occur. (au)

  16. Validation and deployment of the first Lidar based weather observation network in New York State: The NYS MesoNet Project

    Directory of Open Access Journals (Sweden)

    Thobois L.

    2018-01-01

    This paper will describe the New York State Mesonet that is being deployed in the state of New York, USA. It is composed of 126 stations including 17 profiler sites. These sites will acquire continuous upper air observations through the combination of WINDCUBE Lidars and microwave radiometers. These stations will provide temperature, relative humidity & “3D” wind profile measurements through and above the planetary boundary layer (PBL and will retrieve derived atmospheric quantities such as the PBL height, cloud base, momentum fluxes, and aerosol & cloud optical properties. The different modes and configurations that will be used for the Lidars are discussed. The performances in terms of data availability and wind accuracy and precision are evaluated. Several profiles with specific wind and aerosol features are presented to illustrate the benefits of the use of Coherent Doppler Lidars to monitor accurately the PBL.

  17. Multi-MW wind turbine power curve measurements using remote sensing instruments – the first Høvsøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael

    curve significantly. Two LiDARs and a SoDAR are used to measure the wind profile in front of a wind turbine. These profiles are used to calculate the equivalent wind speed. LiDAR are found to be more accurate than SoDAR and therefore more suitable for power performance measurement. The equivalent wind...... that used of the equivalent wind speed at least results in a power curve with no more scatter than using the conventional method....

  18. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas

    2017-01-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated...... structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation...

  19. European Space Agency lidar development programs for remote sensing of the atmosphere

    Science.gov (United States)

    Armandillo, Errico

    1992-12-01

    Active laser remote sensing from space is considered an important step forward in the understanding of the processes which regulate weather and climate changes. The planned launching into polar orbit in the late 1990s of a series of dedicated Earth observation satellites offer new possibilities for flying lidar in space. Among the various lidar candidates, ESA has recognized in the backscattering lidar and Doppler wind lidar the instruments which can most contribute to the Earth observation program. To meet the schedule of the on-coming flight opportunities, ESA has been engaged over the past years in a preparatory program aimed to define the instruments and ensure timely availability of the critical components. This paper reviews the status of the ongoing developments and highlights the critical issues addressed.

  20. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Bingöl, Ferhat

    2010-01-01

    to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same...... alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow...

  1. Advancements in Wind Energy Metrology - UPWIND 1A2.3

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Troels F.; Wagner, R.

    2011-02-15

    An overview of wind related metrology research made at Risoe DTU over the period of the UPWIND project is given. A main part of the overview is devoted to development of the Lidar technology with several sub-chapters considering different topics of the research. Technical problems are not rare for this new technology, and testing against a traditional met mast have shown to be efficient for gaining confidence with the ground based Lidar technology and for trust in accuracy of measurements. In principle, Lidar measurements could be traceable through the fundamental measurement principles, but at this stage of development it is not found feasible. Instead, traceability is secured through comparison with met masts that are traceable through wind tunnel calibrations of cup anemometers. The ground based Lidar measurement principle works almost acceptable in flat terrain. In complex terrain and close to woods the measurement volume is disturbed because the flow is no longer horizontally homogeneous. These conditions require special attention and correction methods. Due to the large measurement volume, ground based Lidars perform a spatial averaging which has the effect of a low pass filter on turbulence measurements. Theory and measurements seem to be in good agreement. Lidar measurements from a rotating spinner have been performed. The analysis show good perspectives for scanning the incoming wind, which may lead to better controlled wind turbines. Lidars have also been used to scan the wake of wind turbines. These measurements document the meandering wake pattern. The second part of the overview considers power performance measurements. A new investigation on the influence of wind shear points to a revision of the definition of a power curve. A new measurement method has been developed which has a good chance of being implemented in the present revision of the IEC performance standard. Also, a turbulence normalization method has been tested but not found efficient

  2. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    Science.gov (United States)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  3. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E).

    Science.gov (United States)

    Kawahara, T D; Nozawa, S; Saito, N; Kawabata, T; Tsuda, T T; Wada, S

    2017-06-12

    An Nd:YAG laser-based sodium temperature/wind lidar was developed for the measurement of the northern polar mesosphere and lower thermosphere at Tromsø (69.6N, 19.2E), Norway. Coherent light at 589 nm is produced by sum frequency generation of 1064 nm and 1319 nm from two diode laser end-pumped pulsed Nd:YAG lasers. The output power is as high as 4W, with 4 mJ/pulse at 1000 Hz repetition rate. Five tilting Cassegrain telescopes enable us to make five-direction (zenith, north, south, east, west) observation for temperature and wind simultaneously. This highly stable laser system is first of its kind to operate virtually maintenance-free during the observation season (from late September to March) since 2010.

  4. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Winstroth, J; Ernst, B; Seume, J R; Schoen, L

    2014-01-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations

  5. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    Science.gov (United States)

    Winstroth, J.; Schoen, L.; Ernst, B.; Seume, J. R.

    2014-06-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations.

  6. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    Science.gov (United States)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  7. A coordinated study of 1 h mesoscale gravity waves propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature mapper

    Science.gov (United States)

    Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.

    2015-10-01

    We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.

  8. Long Term Stratospheric Aerosol Lidar Measurements in Kyushu

    Science.gov (United States)

    Fujiwara, Motowo

    1992-01-01

    Lidar soundings of the stratospheric aerosols have been made since 1972 at Fukuoka, Kyushu Island of Japan. Volcanic clouds from eruptions of La Soufriere, Sierra Negra, St. Helens, Uluwan, Alaid, unknown volcano, and El Chichon were detected one after another in only three years from 1979 to 1982. In july 1991 strong scattering layers which were originated from the serious eruptions of Pinatubo in June and were almost comparable to the El Chichon clouds were detected. Volcanic clouds from pinatubo and other volcanos mentioned are examined and carefully compared to each other and to the wind and temperature which was measured by Fukuoka Meteorological Observatory almost at the same time as the lidar observation was made.

  9. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  10. Nocturnal Low-level Jet Evolution in a Broad Valley Observed by Dual Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Thomas Damian

    2014-09-01

    Full Text Available The temporal evolution of a nocturnal low-level jet (LLJ in the 40km$40\\,\\text{km}$ broad Rhine Valley near Karlsruhe is studied, in the framework of a case study, with two heterodyne detection Doppler lidars using the new scan concept of “virtual towers”. For validation of this measuring technique, we performed comparative case studies with a tethered balloon and the highly instrumented 200m$200\\,\\text{m}$ KIT tower. The findings show capabilities of the virtual tower technique for wind measurements. Virtual towers can be placed at all locations within the range of Lidar measurements. Associated with nocturnal stable stratification, the LLJ, a wind speed maximum of about 9ms-1$9\\,\\text{m}\\,\\text{s}^{-1}$, develops at 100m$100\\,\\text{m}$ to 150m$150\\,\\text{m}$ agl, but the wind does not show the typical clockwise wind direction change that is reported in many other studies. This is attributed to the channeling effect occurring in broad valleys like the Rhine Valley when the boundary layer is stably stratified. Such channeling means a significant deviation of the wind direction from the Ekman spiral so that low-altitude winds turn into valley-parallel direction.

  11. The value of Doppler LiDAR systems to monitor turbulence intensity during storm events in order to enhance aviation safety in Iceland

    Science.gov (United States)

    Yang, Shu; Nína Petersen, Guðrún; Finger, David C.

    2017-04-01

    Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.

  12. Efficient, space-based, PM 100W thulium fiber laser for pumping Q-switched 2μm Ho:YLF for global winds and carbon dioxide lidar

    Science.gov (United States)

    Engin, Doruk; Mathason, Brian; Storm, Mark

    2017-08-01

    Global wind measurements are critically needed to improve and extend NOAA weather forecasting that impacts U.S. economic activity such as agriculture crop production, as well as hurricane forecasting, flooding, and FEMA disaster planning.1 NASA and the 2007 National Research Council (NRC) Earth Science Decadal Study have also identified global wind measurements as critical for global change research. NASA has conducted aircraft-based wind lidar measurements using 2 um Ho:YLF lasers, which has shown that robust wind measurements can be made. Fibertek designed and demonstrated a high-efficiency, 100 W average power continuous wave (CW) 1940 nm thulium (Tm)- doped fiber laser bread-board system meeting all requirements for a NASA Earth Science spaceflight 2 μm Ho:YLF pump laser. Our preliminary design shows that it is possible to package the laser for high-reliability spaceflight operation in an ultra-compact 2″x8″x14″ size and weight <8.5 lbs. A spaceflight 100 W polarization maintaining (PM) Tm laser provides a path to space for a pulsed, Q-switched 2 μm Ho:YLF laser with 30-80 mJ/pulse range at 100-200 Hz repletion rates.

  13. Investigation of noise in Lightwave Synthesized Frequency Sweeper seeded LIDAR anemometers from leakage through the Acousto Optic Modulators

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Lindelöw, Per Jonas Petter

    2009-01-01

    Train (FSPT) modulated lidars the leakage will give rise to rapidly growing noise in the bins which corresponds to the signal from low radial wind velocities. It is likely that noise canceling techniques similar to those used for RIN removal has to be deployed for measurements of low wind velocities.......Lightwave Synthesized Frequency Sweepers (LSFS) have potential use as lightsources in lidar anemometers. In this paper noise due to leakage in the acousto optic modulators in an LSFS is investigated. Theoretical expressions describing the build-up of noise in the LSFS due to leakage are derived...

  14. Sensitivity of Depth-Integrated Satellite Lidar to Subaqueous Scattering

    Directory of Open Access Journals (Sweden)

    Michael F. Jasinski

    2011-07-01

    Full Text Available A method is presented for estimating subaqueous integrated backscatter using near-nadir viewing satellite lidar. The algorithm takes into account specular reflection of laser light, laser scattering by wind-generated foam as well as sun glint and solar scattering from foam. The formulation is insensitive to the estimate of wind speed but sensitive to the estimate of transmittance used in the atmospheric correction. As a case study, CALIOP data over Tampa Bay were compared to MODIS 645 nm remote sensing reflectance, which previously has been shown to be nearly linearly related to turbidity. The results indicate good correlation on nearly all CALIOP cloud-free dates during the period 2006 through 2007, particularly those with relatively high atmospheric transmittance. The correlation decreases when data are composited over all dates but is still statistically significant, a possible indication of variability in the biogeochemical composition in the water. Overall, the favorable results show promise for the application of satellite lidar integrated backscatter in providing information about subsurface backscatter properties, which can be extracted using appropriate models.

  15. Measurement of the Flow Over Two Parallel Mountain Ridges in the Nighttime Stable Boundary Layer With Scanning Lidar Systems at the Perdigão 2017 Experiment

    Science.gov (United States)

    Wildmann, N.; Kigle, S.; Gerz, T.; Bell, T.; Klein, P. M.

    2017-12-01

    For onshore wind energy production, the highest wind potential is often found on exposed spots like hilltops, mountain ridges or escarpments with heterogeneous land cover. The understanding of the flow field in such complex terrain in the relevant heights where wind power is generated is an ongoing field of research. The German Aerospace Center (DLR) contributed to the NEWA (New European Wind Atlas) experiment in the province of Perdigão (Portugal) with three long-range Doppler wind lidar of type Leosphere Windcube-200S from May to June 2017. In the experiment, a single wind energy converter (WEC) of type Enercon E82 is situated on a forested mountain ridge. In main wind direction, which is from South-West and almost perpendicular to the ridge, a valley and then a second mountain ridge in a distance of approximately 1.4 km follow. Two of the DLR lidar instruments are placed downstream and in line with the main wind direction and the WEC. One of these instruments is placed in the valley, and the other one on the distant mountain ridge. This line-up allows coplanar scanning of the flow in the valley and over the ridge tops and thus the determination of horizontal and vertical wind components. The third DLR system, placed on the WEC ridge, and an additional scanning lidar from the University of Oklahoma, placed in the valley, are used to determine the cross-wind component of the flow. Regular flow features that were observed with this lidar setup in the six weeks of the intensive operation period are jet-like layers of high wind speeds that occur during the night from a North-Easterly direction. These jets are found to have wind speeds up to 13 m s-1 and are very variable with regards to their maximum speed, height and broadness. Depending on the Froude number of the flow, waves are forming over the two mountain ridges with either a stable wavelength that equals the mountain ridge distance, or more dynamic higher frequency oscillations. All of these flow features are

  16. The Offshore New European Wind Atlas

    Science.gov (United States)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  17. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    2001-08-01

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  18. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  19. Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    Hyoungsig Cho

    2015-09-01

    Full Text Available A terrestrial Light Detection and Ranging (LIDAR system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1 a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2 co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP algorithm; and (3 a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM generated from the LIDAR scanning data was ±27.7 cm.

  20. Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica.

    Science.gov (United States)

    Cho, Hyoungsig; Hong, Seunghwan; Kim, Sangmin; Park, Hyokeun; Park, Ilsuk; Sohn, Hong-Gyoo

    2015-09-16

    A terrestrial Light Detection and Ranging (LIDAR) system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1) a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2) co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP) algorithm; and (3) a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS) receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM) generated from the LIDAR scanning data was ±27.7 cm.

  1. 12MW: final report; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.; Pena, A.; Mikkelsen, T.; Gryning, S.-E.; Courtney, M.; Soerensen, Paul B. (DONG energy)

    2009-06-15

    '12MW: final report' is for the project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' that had the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st October 2005 and ended 31st March 2009. Firstly was conducted a 6-month experiment at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer platform. The observed data were successfully compared to offshore mast data and the wind profile was extended 100 m above previous levels observed in this offshore environment. The wind and turbulence was observed up to 160m above mean sea level. A new normalization was introduced to group the wind profiles into stability groups with variable roughness. Secondly two experiments were conducted at Hoevsoere at the North Sea coast in Jutland. Again the wind profile was extended far beyond previous observed levels, up to 300 m above ground. The analysis showed that the profiles extended far beyond the surface layer and therefore surface layer scale alone could not described the profiles well. In addition the boundary layer height has to be used for the scaling. The boundary layer height was observed by an aerosol lidar at Hoevsoere. The results are published widely, please see the list of publications. (au)

  2. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  3. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  4. Lidar observation of aerosol stratification in the lower troposphere ...

    Indian Academy of Sciences (India)

    S K Saha, S M Sonbawne, S M Deshpande, P C S Devara,. Y Jaya Rao .... The lidar system operated in bistatic mode essen- tially comprises a .... with this system at 1700hrs Local Time (LT) on all the ..... Pune in operating the wind profiler system and. Dr. (Mrs.) ... 1995 Real-time monitoring of atmospheric aerosols using a ...

  5. A time-space synchronization of coherent Doppler scanning lidars for 3D measurements of wind fields

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola

    initiates the laser pulse emission and acquisition of the backscattered light, while the two servo motors conduct the scanner head rotation that provides means to direct the laser pulses into the atmosphere. By controlling the rotation of the three motors from the motion controller the strict......-dimensional flow field by emitting the laser beams from the three spatially separated lidars, directing them to intersect, and moving the beam intersection over an area of interest. Each individual lidar was engineered to be powered by two real servo motors, and one virtual stepper motor. The stepper motor...... synchronization and time control of the emission, steering and acquisition were achieved, resulting that the complete lidar measurement process is controlled from the single hardware component. The system was formed using a novel approach, in which the master computer simultaneously coordinates the remote lidars...

  6. Analysis of Anholt offshore wind farm SCADA measurements

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Volker, Patrick; Pena Diaz, Alfredo

    SCADA measurements from the Danish Anholt offshore wind farm (ANH) for a period of 2½ years have been qualified. ANH covers 12 km × 22 km and is located between Djursland and the island Anholt in Kattegat, Denmark. This qualification encompasses identification of curtailment and idling periods......, start/stop events and a power curve control for each wind turbine in the wind farm. Data also include wind speed measurements from a nearby WindCube lidar and simulations from the WRF model for the same period as the SCADA. An equivalent wind speed (wsi) is derived from the combined power and pitch...

  7. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    Science.gov (United States)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  8. Wind field measurement in the nonprecipitous regions surrounding storms by an airborne pulsed Doppler lidar system, appendix A

    Science.gov (United States)

    Bilbro, J. W.; Vaughan, W. W.

    1980-01-01

    Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.

  9. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols

    Science.gov (United States)

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-01-01

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170

  10. Mixed layer depths via Doppler lidar during low-level jet events

    Science.gov (United States)

    Carroll, Brian; Demoz, Belay; Bonin, Timothy; Delgado, Ruben

    2018-04-01

    A low-level jet (LLJ) is a prominent wind speed peak in the lower troposphere. Nocturnal LLJs have been shown to transport and mix atmospheric constituents from the residual layer down to the surface, breaching quiescent nocturnal conditions due to high wind shear. A new fuzzy logic algorithm combining turbulence and aerosol information from Doppler lidar scans can resolve the strength and depth of this mixing below the jet. Conclusions will be drawn about LLJ relations to turbulence and mixing.

  11. Estimating near-shore wind resources

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Hahmann, Andrea N.; Peña, Alfredo

    An evaluation and sensitivity study using the WRF mesoscale model to estimate the wind in a coastal area is performed using a unique data set consisting of scanning, profiling and floating lidars. The ability of the WRF model to represent the wind speed was evaluated by running the model for a four...... grid spacings were performed for each of the two schemes. An evaluation of the wind profile using vertical profilers revealed small differences in modelled mean wind speed between the different set-ups, with the YSU scheme predicting slightly higher mean wind speeds. Larger differences between...... the different simulations were observed when comparing the root-mean-square error (RMSE) between modelled and measured wind, with the ERA interim-based simulations having the lowest errors. The simulations with finer horizontal grid spacing had a larger MSE. Horizontal transects of mean wind speed across...

  12. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    Science.gov (United States)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  13. Relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  14. 3D turbulence measurements using three intersecting Doppler LiDAR beams: validation against sonic anemometry

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    Nowadays communities of researchers and industry in the wind engineering and meteorology sectors demand extensive and accurate measurements of atmospheric boundary layer turbulence for a better understanding of its role in a wide range of onshore and offshore applications: wind resource evaluation, wind turbine wakes, meteorology forecast, pollution and urban climate studies, etc. Atmospheric turbulence has been traditionally investigated through sonic anemometers installed on meteorological masts. However, the setup and maintenance of instrumented masts is generally very costly and the available location for the measurements is limited by the fixed position and height of the facility. In order to overcome the above-mentioned shortcomings, a measurement technique is proposed, based on the reconstruction of the three-dimensional velocity vector from simultaneous measurements of three intersecting Doppler wind LiDARs. This measuring technique presents the main advantage of being able to measure the wind velocity at any point in space inside a very large volume, which can be set and optimized for each test. Furthermore, it is very flexible regarding its transportation, installation and operation in any type of terrain. On the other hand, LiDAR measurements are strongly affected by the aerosol concentration in the air, precipitation, and the spatial and temporal resolution is poorer than that of a sonic anemometer. All this makes the comparison between these two kinds of measurements a complex task. The accuracy of the technique has been assessed by this study against sonic anemometer measurements carried out at different heights on the KNMI's meteorological mast at Cabauw's experimental site for atmospheric research (CESAR) in the Netherlands. An early uncertainty analysis shows that one of the most important parameters to be taken into account is the relative angles between the intersecting laser beams, i.e., the position of each LiDAR on the terrain and their

  15. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  16. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    Science.gov (United States)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  17. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pukayastha, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, C. [Univ. of Colorado, Boulder, CO (United States); Newsom, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  18. Multi-Instrument Observations of Prolonged Stratified Wind Layers at Iqaluit, Nunavut

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Gascon, Gabrielle; Joe, Paul; Hudak, David; Strawbridge, Kevin; Corriveau, Julien

    2018-02-01

    Data collected between October 2015 and May 2016 at Environment and Climate Change Canada's Iqaluit research site (64°N, 69°W) have revealed a high frequency (40% of all days for which observations were available) of stratified wind layer events that occur from near the surface up to about 7.2 km above sea level. These stratified wind layers are clearly visible as wind shifts (90 to 180°) with height in range-height indicator scans from the Doppler lidar and Ka-band radar and in wind direction profiles from the Doppler lidar and radiosonde. During these events, the vertical structure of the flow appears to be a stack of 4 to 10 layers ranging in vertical width from 0.1 to 4.4 km. The stratification events that were observed occurred predominantly (81%) during light precipitation and lasted up to 27.5 h. The integrated measurement platforms at Iqaluit permitted continuous observations of the evolution of stratification events in different meteorological conditions.

  19. Tracking atmospheric boundary layer in tehran using combined lidar remote sensing and ground base measurements

    Science.gov (United States)

    Panahifar, Hossein; Khalesifard, Hamid

    2018-04-01

    The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.

  20. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  1. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    Science.gov (United States)

    Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris

    2007-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  2. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  3. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  4. The RUNE Experiment—A Database of Remote-Sensing Observations of Near-Shore Winds

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Peña, Alfredo; Lea, Guillaume

    2016-01-01

    We present a comprehensive database of near-shore wind observations that were carried out during the experimental campaign of the RUNE project. RUNE aims at reducing the uncertainty of the near-shore wind resource estimates from model outputs by using lidar, ocean, and satellite observations. Here...

  5. Robust lidar-based closed-loop wake redirection for wind farm control

    NARCIS (Netherlands)

    Raach, Steffen; Boersma, S.; van Wingerden, J.W.; Schlipf, David; Cheng, Po Wen; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Wind turbine wake redirection is a promising concept for wind farm control to increase the total power of a wind farm. Further, the concept aims to avoid partial wake overlap on a downwind wind turbine and hence aims to decrease structural loads. Controller for wake redirection need to account

  6. UAV-borne coherent doppler lidar for marine atmospheric boundary layer observations

    Science.gov (United States)

    Wu, Songhua; Wang, Qichao; Liu, Bingyi; Liu, Jintao; Zhang, Kailin; Song, Xiaoquan

    2018-04-01

    A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.

  7. Deploying scanning lidars at coastal sites

    DEFF Research Database (Denmark)

    Courtney, Michael; Simon, Elliot

    that the most desirable sites are away from sand dunes and with some significant elevation above the sea surface, such as at the top of a cliff. Coastal planning restrictions in Denmark are quite restrictive and it was important to allow sufficient time to obtain permission from the relevant authorities....... At the same time, with our particular application, the authorities and land owners were quite favourably inclined to give permission to temporary installations in support of wind energy research. The report concludes with the final positions and a pictorial description of the three RUNE scanning lidars....

  8. COHERENT LIDAR SYSTEM BASED ON A SEMICONDUCTOR LASER AND AMPLIFIER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a compact, reliable and low-cost coherent LIDAR (Light Detection And Ranging) system for remote wind-speed determination, determination of particle concentration, and/or temperature based on an all semiconductor light source and related methods. The present...... invention provides a coherent LIDAR system comprising a semiconductor laser for emission of a measurement beam of electromagnetic radiation directed towards a measurement volume for illumination of particles in the measurement volume, a reference beam generator for generation of a reference beam, a detector...... for generation of a detector signal by mixing of the reference beam with light emitted from the particles in the measurement volume illuminated by the measurement beam, and a signal processor for generating a velocity signal corresponding to the velocity of the particles based on the detector signal....

  9. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  10. Making lidar more photogenic: creating band combinations from lidar information

    Science.gov (United States)

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  11. The effect of baroclinicity on the wind in the planetary boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Peña, Alfredo; Gryning, Sven-Erik

    2015-01-01

    close to zero and a standard deviation of approximately 3ms−1km−1. The geostrophic wind shear had a strong seasonal dependence because of temperature differences between land and sea. The mean wind profile in Hamburg, observed during an intensive campaign using radio sounding and during the whole year...... using the wind lidar, was influenced by baroclinicity. For easterly winds at Høvsøre, the estimated gradient wind decreased rapidly with height, resulting in a mean low-level jet. The turning of the wind in the boundary layer, the boundary-layer height and the empirical constants in the geostrophic drag...

  12. Validation of long-range scanning lidars deployed around the Høvsøre Test Station

    DEFF Research Database (Denmark)

    Lea, Guillaume; Courtney, Michael

    This report describes validation tests performed on the long-range scanning lidars prior to deployment in the RUNE campaign. Position and speed accuracy tests have been performed at a range of 5km from the Høvsøre met mast. This range is typical of ranges for near-coastal resource measurements....... The accuracy of the beam positioning was checked by comparing the predicted position to the position found from hard-target returns from the mast. Radial speeds measured by the lidar were also found to be in close agreement with the mast measured wind speeds projected in the line of sight direction....

  13. A finite difference approach to despiking in-stationary velocity data - tested on a triple-lidar

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels

    2016-01-01

    A novel despiking method is presented for in-stationary wind lidar velocity measurements. A finite difference approach yields the upper and lower bounds for a valid velocity reading. The sole input to the algorithm is the velocity series and optionally a far- field reference to the temporal...

  14. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    Science.gov (United States)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important

  15. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    Science.gov (United States)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  16. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  17. Validation and deployment of the first Lidar based weather observation network in New York State: The NYS MesoNet Project

    Science.gov (United States)

    Thobois, L.; Freedman, J.; Royer, P.; Brotzge, J.; Joseph, E.

    2018-04-01

    The number and quality of atmospheric observations used by meteorologists and operational forecasters are increasing year after year, and yet, consistent improvements in forecast skill remains a challenge. While contributing factors involving these challenges have been identified, including the difficulty in accurately establishing initial conditions, improving the observations at regional and local scales is necessary for accurate depiction of the atmospheric boundary layer (below 2km), particularly the wind profile, in high resolution numerical models. Above the uncertainty of weather forecasts, the goal is also to improve the detection of severe and extreme weather events (severe thunderstorms, tornadoes and other mesoscale phenomena) that can adversely affect life, property and commerce, primarily in densely populated urban centers. This paper will describe the New York State Mesonet that is being deployed in the state of New York, USA. It is composed of 126 stations including 17 profiler sites. These sites will acquire continuous upper air observations through the combination of WINDCUBE Lidars and microwave radiometers. These stations will provide temperature, relative humidity & "3D" wind profile measurements through and above the planetary boundary layer (PBL) and will retrieve derived atmospheric quantities such as the PBL height, cloud base, momentum fluxes, and aerosol & cloud optical properties. The different modes and configurations that will be used for the Lidars are discussed. The performances in terms of data availability and wind accuracy and precision are evaluated. Several profiles with specific wind and aerosol features are presented to illustrate the benefits of the use of Coherent Doppler Lidars to monitor accurately the PBL.

  18. Energy Yield Prediction of Offshore Wind Farm Clusters at the EERA-DTOC European Project

    DEFF Research Database (Denmark)

    Cantero, E.; Hasager, Charlotte Bay; Réthoré, Pierre-Elouan

    2014-01-01

    third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from ‘BARD Offshore 1’ wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes power...

  19. Energy yield prediction of offshore wind farm clusters at the EERA-DTOC European project

    DEFF Research Database (Denmark)

    Cantero, E.; Sanz, J.; Lorenzo, S.

    2013-01-01

    third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from ‘BARD Offshore 1’ wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes power...

  20. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.

    Science.gov (United States)

    Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine

    2016-05-01

    Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.

  1. Combined use of headwind ramps and gradients based on LIDAR data in the alerting of low-level windshear/turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China); Shin, D.K. [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2011-12-15

    A sophisticated algorithm based on the detection of significant headwind changes, the so-called ''windshear ramps'', has been developed by the Hong Kong Observatory (HKO) in the alerting of low-level windshear using LIDAR data. The method, named as LIWAS (LIDAR Windshear Alerting System), is particularly efficient in detecting airflow disturbances in the vicinity of the Hong Kong International Airport (HKIA) due to terrain disruption of the background wind. It puts emphasis on sustained headwind change from one level to another level. However, for terrain-disrupted airflow, there may also be abrupt wind changes of smaller spatial scales (e.g. over a distance of a few hundred metres) embedded in the windshear ramp which typically spans a larger spatial scale (e.g. over a couple of kilometres). As such, for the alerting of low-level windshear it may be advantageous to consider both the larger scale windshear ramps and the smaller scale wind changes, i.e. headwind gradients. This paper examines the usefulness of such an approach by applying the method to the windshear cases in spring time over four years. It turns out that the inclusion of headwind gradients helps capture 5-10 % more of the significant windshear reported by the pilots. For a particular runway corridor, the combined use of the two windshear detection methods even outperforms the existing windshear alerting service at HKIA. The paper will discuss the rationale behind the headwind gradient method, a prototype of its implementation, and its combined use with the existing LIWAS alerts. It will also discuss preliminary results on the climatology of headwind changes at HKIA based on LIDAR data, as well as the use of aircraft simulator in improving the calculation of LIDAR-based F-factor. (orig.)

  2. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R. J. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical & Aerospace Engineering; Pryor, S. C. [Cornell Univ., Ithaca, NY (United States). Dept. of Earth and Atmospheric Sciences

    2017-09-18

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At the National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to

  3. Interrelationship of Cn2 & Eddy Dissipation rate based on Scintillometer and Doppler Lidar observations in complex terrain during the Perdigao Campaign 2017

    Science.gov (United States)

    Creegan, E. D.; Krishnamurthy, R.; Hocut, C. M.; Pattantyus, A.; Leo, L. S.; Wang, Y.; Fernando, H. J.; Bariteau, L.

    2017-12-01

    The Perdigao campaign is a joint EU/US science project designed to provide information on flow field(s) over complex terrain and through wind turbines at unprecedented high spatial and temporal resolution. The goal is to improve wind energy physics and overcome the current deficiencies of wind resource models. Topographically the Perdigao location is an expansion of the "double hill in crossflow", consisting of two parallel ridges along the NW-SE direction. The site was heavily instrumented with an array of towers (with multiple transects along the valley and across two ridges) and a large suite of ground based and aerial remote sensing platforms. On the outflow side of the NW ridge a scintillometer was emplaced with the line-of-sight (LOS) running adjacent to the towers comprising the NE transect from the ridgetop down to the base. Scanning lidars were placed at both ends of this LOS. Other instruments included a tethered lifting system (TLS), sodar, microwave radiometer, an energy budget flux tower and radiosonde releases. Scintillomoter data provides a quantitative measure of the intensity of optical turbulence, through the refractive index structure parameter, Cn2, where averaged Cn2 is often determined as a function of local differences in temperature, moisture, and wind velocity at discrete points. The refractive index structure parameter is also a function of the inner (dissipation) and outer (energy producing) turbulent scales. The scintillometer directly gives path averaged Cn2 and Eddy Dissipation rate along the LOS. Coplanar scans along the same path were synchronized using two scanning coherent Doppler lidars. Algorithms have been developed to estimate both eddy dissipation rate and Cn2 from Doppler lidar data effectively creating a new lidar data product. Additionally, from TLS measurements, Cn2 and dissipation rate are calculated using the high frequency spectra of the hot-wire sensor. In this work, measurements of Cn2 and Eddy Dissipation rate

  4. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  5. Parameter identification of JONSWAP spectrum acquired by airborne LIDAR

    Science.gov (United States)

    Yu, Yang; Pei, Hailong; Xu, Chengzhong

    2017-12-01

    In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.

  6. Extinction effects of atmospheric compositions on return signals of space-based lidar from numerical simulation

    Science.gov (United States)

    Yao, Lilin; Wang, Fu; Min, Min; Zhang, Ying; Guo, Jianping; Yu, Xiao; Chen, Binglong; Zhao, Yiming; Wang, Lidong

    2018-05-01

    The atmospheric composition induced extinction effect on return signals of space-based lidar remains incomprehensively understood, especially around 355 nm and 2051 nm channels. Here we simulated the extinction effects of atmospheric gases (e.g., H2O, CO2, and O3) and six types of aerosols (clean continental, clean marine, dust, polluted continental, polluted dust, and smoke) on return signals of space-based lidar system at 355 nm, 532 nm, 1064 nm, and 2051 nm channels, based on a robust lidar return signal simulator in combination with radiative transfer model (LBLRTM). Results show significant Rayleigh (molecular) scattering effects in the return signals at 355 nm and 532 nm channels, which markedly decays with increases in wavelength. The spectral transmittance of CO2 is nearly 0, yet the transmittance of H2O is approximately 100% at 2051 nm, which verifies this 2051 nm channel is suitable for CO2 retrieval. The spectral transmittance also reveals another possible window for CO2 and H2O detection at 2051.6 nm, since their transmittance both near 0.5. Moreover the corresponding Doppler return signals at 2051.6 nm channel can be used to retrieve wind field. Thus we suggest 2051 nm channel may better be centered at 2051.6 nm. Using the threshold for the signal-to-noise ratio (SNR) of return signals, the detection ranges for three representative distribution scenarios for the six types of aerosols at four typical lidar channels are determined. The results clearly show that high SNR values can be seen ubiquitously in the atmosphere ranging from the height of aerosol layer top to 25 km at 355 nm, and can been found at 2051.6 nm in the lower troposphere that highly depends on aerosol distribution scenario in the vertical. This indicates that the Doppler space-based lidar system with a double-channel joint detection mode is able to retrieve atmospheric wind field or profile from 0 to 25 km.

  7. Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Floors, Rogier Ralph; Sathe, Ameya

    2016-01-01

    Operational since 2004, the National Centre for Wind Turbines at Høvsøre, Denmark has become a reference research site for wind-power meteorology. In this study, we review the site, its instrumentation, observations, and main research programs. The programs comprise activities on, inter alia......, remote sensing, where measurements from lidars have been compared extensively with those from traditional instrumentation on masts. In addition, with regard to wind-power meteorology, wind-resource methodologies for wind climate extrapolation have been evaluated and improved. Further, special attention...

  8. The design, development, and test of balloonborne and groundbased lidar systems. Volume 3: Groundbased lidar systems

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  9. Frequency swept fibre laser for wind speed measurements

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier

    This PhD thesis builds around a light source forming the basis for a novel type of wind measuring lidar. The lidar emits a train of laser pulses with each pulse being separated from its neighbours in frequency, while being closely spaced in time, thus combining the advantages of conventional...... continuous wave (CW) and pulsed lidars. A light source capable of emitting such a pulse train is suggested. A theoretical description of all components constituting the light source is presented, and a time dependent model is developed and compared to measurements as well as to previous theoretical work from...... the scientific literature. The model presented shows good agreement with the experimental results regarding the pulse train envelope as well as the individual pulses. A model adopted from the literature is subsequently expanded to incorporate frequency components other than the main signal frequency and compared...

  10. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  11. Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico

    Science.gov (United States)

    Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.

    2014-12-01

    A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.

  12. Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Foroughi Abari, Farzad; Mann, Jakob

    2012-01-01

    are presented. A method for determining the background noise spectrum without interrupting the transmission of the laser beam is described. Moreover, the dependency between the determination of the threshold of a Doppler spectrum with low signal-to-noise ratios and the characteristics of the wind flow......This paper is focused on the required post processing of Doppler spectra, acquired from a continuous-wave coherent lidar at high sampling rates (400 Hz) and under rapid scanning of the laser beam. In particular, the necessary steps followed for extracting the wind speed from such Doppler spectra...... are investigated and a systematic approach for removing the noise is outlined. The suggested post processing procedures are applied to two sample time series acquired by a short-range WindScanner during one second each....

  13. On the Weibull distribution for wind energy assessment

    DEFF Research Database (Denmark)

    Batchvarova, Ekaterina; Gryning, Sven-Erik

    2014-01-01

    -term measurements performed by a wind lidar, the vertical profile of the shape parameter will be discussed for a sub-urban site, a coastal site and a marine site. The profile of the shape parameter was found to be substantially different over land and sea. A parameterization of the vertical behavior of the shape...

  14. Lake Michigan Offshore Wind Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the

  15. A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Bechmann, Andreas; Taryainen, Lasse

    2015-01-01

    and this information is required for each grid point in the three-dimensional computational domain. By using raw data from aerial LiDAR scans together with the Beer-Lambert law, we propose and test a method to calculate and grid highly variable and realistic frontal area density input. An extensive comparison...

  16. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    International Nuclear Information System (INIS)

    Churchfield, M; Wang, Q; Scholbrock, A; Herges, T; Mikkelsen, T; Sjöholm, M

    2016-01-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign. (paper)

  17. New Results from the NOAA CREST Lidar Network (CLN Observations in the US Eastcoast

    Directory of Open Access Journals (Sweden)

    Moshary Fred

    2016-01-01

    Full Text Available This paper presents coordinated ground-based observations by the NOAA-CREST Lidar Network (CLN for profiling of aerosols, cloud, water vapor, and wind along the US east coast including Caribbean region at Puerto Rico. The instrumentation, methodology and observation capability are reviewed. The applications to continental and intercontinental-scale transport of smoke and dust plumes, and their large scale regional impact are discussed.

  18. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...... itself depends on the wind speed profile, especially for large turbines. Therefore, it is important to characterize the wind profile in front of the turbine, and this should be preferably achieved by measuring the wind speed over the vertical range between lower and higher rotor tips. In this paper, we...... describe an experiment in which wind speed profiles were measured in front of a multimegawatt turbine using a ground–based pulsed lidar. Ignoring the vertical shear was shown to overestimate the kinetic energy flux of these profiles, in particular for those deviating significantly from a power law profile...

  19. Evaluation of wind flow with a nacelle-mounted continuous-wave lidar

    DEFF Research Database (Denmark)

    Medley, John; Slinger, Chris; Barker, Will

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  20. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production Task...

  1. 2015 OLC Lidar: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  2. Let’s agree on the casing of Lidar

    Science.gov (United States)

    Deering, Carol; Stoker, Jason M.

    2014-01-01

    Is it lidar, Lidar, LiDAR, LIDAR, LiDar, LiDaR, or liDAR? A comprehensive review of the scientific/technical literature reveals seven different casings of this short form for light detection and ranging. And there could be more.

  3. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Area 1 (Aroostook), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  4. Balloonborne lidar payloads for remote sensing

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Hurd, A. G.; Rappaport, S. A.; Reidy, W. P.; Rieder, R. J.; Bedo, D. E.; Swirbalus, R. A.

    1994-02-01

    A series of lidar experiments has been conducted using the Atmospheric Balloonborne Lidar Experiment payload (ABLE). These experiments included the measurement of atmospheric Rayleigh and Mie backscatter from near space (approximately 30 km) and Raman backscatter measurements of atmospheric constituents as a function of altitude. The ABLE payload consisted of a frequency-tripled Nd:YAG laser transmitter, a 50 cm receiver telescope, and filtered photodetectors in various focal plane configurations. The payload for lidar pointing, thermal control, data handling, and remote control of the lidar system. Comparison of ABLE performance with that of a space lidar shows significant performance advantages and cost effectiveness for balloonborne lidar systems.

  5. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  6. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  7. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Science.gov (United States)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  8. Validation of sentinel-1A SAR coastal wind speeds against scanning LiDAR

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Karagali, Ioanna

    2017-01-01

    High-accuracy wind data for coastal regions is needed today, e.g., for the assessment of wind resources. Synthetic Aperture Radar (SAR) is the only satellite borne sensor that has enough resolution to resolve wind speeds closer than 10 km to shore but the Geophysical Model Functions (GMF) used fo...

  9. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  10. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  11. WindScanner.eu - a new remote sensing research infrastructure for on- and offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Torben; Knudsen, Soeren; Sjoeholm, M.; Angeloua, N.; Tegtmeier, A. [Technical Univ. og Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)

    2012-07-01

    A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment studies on- and off shore of the future. Today, hub heights on +5 MW wind turbines exceed the 100 m mark. At the Danish DTU test site Oesterild testing is ongoing with a Siemens turbine with hub height 120 meters and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky. The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane. The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind lidar measurement of turbulence in complex terrain within an internal boundary layer developing behind an escarpment. Also measurements of wind speed and direction profiles

  12. Lidar Inter-Comparison Exercise Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Protat, A [Australian Bureau of Meterology; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  13. Wind Farm Wake: The 2016 Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2017-03-01

    Full Text Available Offshore wind farm wakes were observed and photographed in foggy conditions at Horns Rev 2 on 25 January 2016 at 12:45 UTC. These new images show highly contrasting conditions regarding the wind speed, turbulence intensity, atmospheric stability, weather conditions and wind farm wake development as compared to the Horns Rev 1 photographs from 12 February 2008. The paper examines the atmospheric conditions from satellite images, radiosondes, lidar and wind turbine data and compares the observations to results from atmospheric meso-scale modelling and large eddy simulation. Key findings are that a humid and warm air mass was advected from the southwest over cold sea and the dew-point temperature was such that cold-water advection fog formed in a shallow layer. The flow was stably stratified and the freestream wind speed was 13 m/s at hub height, which means that most turbines produced at or near rated power. The wind direction was southwesterly and long, narrow wakes persisted several rotor diameters downwind of the wind turbines. Eventually mixing of warm air from aloft dispersed the fog in the far wake region of the wind farm.

  14. 2015 OLC Lidar DEM: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  15. 2015 OLC Lidar: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  16. Multi-site testing and evaluation of remote sensing instruments for wind energy applications

    DEFF Research Database (Denmark)

    Sanz Rodrigo, J.; Borbon Guillen, F.; Gomez Arranz, P.

    2013-01-01

    A procedure for testing and evaluation of remote sensing instruments that makes use of two test sites in flat and complex terrain is presented. To illustrate the method, a system intercomparison experiment is presented involving one sodar and two lidars (pulsed and continuous-wave). The wind...

  17. Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: Experimental proof

    Science.gov (United States)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Sivignon, J. F.; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2018-06-01

    Optical sensors based on absorption spectroscopy play a central role in the detection and monitoring of atmospheric trace gases. We here present for the first time the experimental demonstration of OSAS-Lidar on the remote sensing of CH4 in the atmosphere. This new methodology, the OSAS-Lidar, couples the Optical Similitude Absorption Spectroscopy (OSAS) methodology with a light detection and ranging device. It is based on the differential absorption of spectrally integrated signals following Beer Lambert-Bouguer law, which are range-resolved. Its novelty originates from the use of broadband laser spectroscopy and from the mathematical approach used to retrieve the trace gas concentration. We previously applied the OSAS methodology in laboratory on the 2ν3 methane absorption band, centered at the 1665 nm wavelength and demonstrated that the OSAS-methodology is almost independent from atmospheric temperature and pressure. In this paper, we achieve an OSAS-Lidar device capable of observing large concentrations of CH4 released from a methane source directly into the atmosphere. Comparison with a standard in-situ measurement device shows that the path-integrated concentrations retrieved from OSAS-Lidar methodology exhibit sufficient sensitivity (2 000 ppm m) and observational time resolution (1 s) to remotely sense methane leaks in the atmosphere. The coupling of OSAS-lidar with a wind measurement device opens the way to monitor time-resolved methane flux emissions, which is important in regards to future climate mitigation involving regional reduction of CH4 flux emissions.

  18. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  19. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    International Nuclear Information System (INIS)

    Fast, Jerome D.; Darby, Lisa S.

    2004-01-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evening s

  20. Long-Term Profiles of Wind and Weibull Distribution Parameters up to 600 m in a Rural Coastal and an Inland Suburban Area

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph

    2014-01-01

    An investigation of the long-term variability of wind profiles for wind energy applications is presented. The observations consists of wind measurements obtained from a ground-based wind lidar at heights between 100 and 600 m, in combination with measurements from tallmeteorological towers...... by the root-mean-square error was about 10 % lower for the analysis compared to the forecast simulations. At the rural coastal site, the observed mean wind speeds above 60 m were underestimated by both the analysis and forecast model runs. For the inland suburban area, the mean wind speed is overestimated...

  1. The spatial concentration of dust emissions measured by using 3D scanning lidar in the open storage yards of steel-making company

    Science.gov (United States)

    Chiang, Chih-Wei; Chiang, Hong-Wei; Chou, Huann-Ming; Sun, Shu-Huang; Lee, Jiann-Shen

    2017-06-01

    The wind-blown dust emissions frequently occur in the open storage yards of steel-making companies. Tracking the dust source and monitoring their dispersion are rather difficult. This type of open-air storage yards poses many environmental hazards. The 3-D scanning lidar system is effective in environmental monitoring (e.g., dust) with high temporal and spatial resolution, which is lacking in traditional ground-based measurement. The objective of this paper is to make an attempt for the flux estimation of dust concentration by using lidar system. Further, we investigate the dynamical process of dust and their relationship with local air quality monitoring data. The results show that the material storage erosion by wind ( 3.6 m/s) could cause dust to elevate up to 20m height above the material storage, and produces the flux of dust around 674 mg/s. The flux of dust is proportional to the dust mass concentration (PM10) measured by commercial ambient particular monitors.

  2. Charactering lidar optical subsystem using four quadrants method

    Science.gov (United States)

    Tian, Xiaomin; Liu, Dong; Xu, Jiwei; Wang, Zhenzhu; Wang, Bangxin; Wu, Decheng; Zhong, Zhiqing; Xie, Chenbo; Wang, Yingjian

    2018-02-01

    Lidar is a kind of active optical remote sensing instruments , can be applied to sound atmosphere with a high spatial and temporal resolution. Many parameter of atmosphere can be get by using different inverse algorithm with lidar backscatter signal. The basic setup of a lidar consist of a transmitter and a receiver. To make sure the quality of lidar signal data, the lidar must be calibrated before being used to measure the atmospheric variables. It is really significant to character and analyze lidar optical subsystem because a well equiped lidar optical subsystem contributes to high quality lidar signal data. we pay close attention to telecover test to character and analyze lidar optical subsystem.The telecover test is called four quadrants method consisting in dividing the telescope aperture in four quarants. when a lidar is well configured with lidar optical subsystem, the normalized signal from four qudrants will agree with each other on some level. Testing our WARL-II lidar by four quadrants method ,we find the signals of the four basically consistent with each other both in near range and in far range. But in detail, the signals in near range have some slight distinctions resulting from overlap function, some signals distinctions are induced by atmospheric instability.

  3. The design, development, and test of balloonborne and groundbased lidar systems. Volume 1: Balloonborne coherent CO2 lidar system

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Rappaport, S. A.

    1991-06-01

    This is Volume 1 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 2 describes the flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2, which successfully made atmospheric density backscatter measurements during a flight over White Sands Missile Range. Volume 3 describes groundbased lidar development and measurements, including the design of a telescope dome lidar installation, the design of a transportable lidar shed for remote field sites, and field measurements of atmospheric and cloud backscatter from Ascension Island during SABLE 89 and Terciera, Azores during GABLE 90. In this volume, Volume 1, the design and fabrication of a balloonborne CO2 coherent lidar payload are described. The purpose of this payload is to measure, from altitudes greater than 20 km, the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Minor modifications to the lidar would provide for aerosol velocity measurements to be made. The lidar and payload system design was completed, and major components were fabricated and assembled. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  4. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......This document reports on the analysis performed by the work task 3.1 of the EU NORSEWInD project and includes the following deliverables: 3.2 Calculated vertical wind shears 3.3 Multi-variational correlation analysis 3.4 NWP data for wind shear model 3.5 Vertical extrapolation methodology 3.......6 Results input into satellite maps The nature of the offshore vertical wind shear is investigated using acquired data from the NORSEWInD network of mast and wind lidar stations. The importance of the knowledge of the vertical wind speed profile and wind shear is first illustrated for the evaluation...

  5. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  6. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    Science.gov (United States)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  7. Lidar Wind Profiler for the NextGen Airportal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a standoff sensor that can measure 3D components of wind velocity in the vicinity of an airport has the potential to improve airport throughput,...

  8. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  9. Transient LES of an offshore wind turbine

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2017-12-01

    Full Text Available The estimation of the cost of energy of offshore wind farms has a high uncertainty, which is partly due to the lacking accuracy of information on wind conditions and wake losses inside of the farm. Wake models that aim to reduce the uncertainty by modeling the wake interaction of turbines for various wind conditions need to be validated with measurement data before they can be considered as a reliable estimator. In this paper a methodology that enables a direct comparison of modeled with measured flow data is evaluated. To create the simulation data, a model chain including a mesoscale model, a large-eddy-simulation (LES model and a wind turbine model is used. Different setups are compared to assess the capability of the method to reproduce the wind conditions at the hub height of current offshore wind turbines. The 2-day-long simulation of the ambient wind conditions and the wake simulation generally show good agreements with data from a met mast and lidar measurements, respectively. Wind fluctuations due to boundary layer turbulence and synoptic-scale motions are resolved with a lower representation of mesoscale fluctuations. Advanced metrics to describe the wake shape and development are derived from simulations and measurements but a quantitative comparison proves to be difficult due to the scarcity and the low sampling rate of the available measurement data. Due to the implementation of changing synoptic wind conditions in the LES, the methodology could also be beneficial for case studies of wind farm performance or wind farm control.

  10. The design, development, and test of balloonborne and groundbased lidar systems. Volume 2: Flight test of Atmospheric Balloon Lidar Experiment, ABLE 2

    Science.gov (United States)

    Shepherd, O.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the Aug. 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks were successfully completed, and recommendations for further lidar measurements and data analysis were made.

  11. Simulating Wake Vortex Detection with the Sensivu Doppler Wind Lidar Simulator

    Science.gov (United States)

    Ramsey, Dan; Nguyen, Chi

    2014-01-01

    In support of NASA's Atmospheric Environment Safety Technologies NRA research topic on Wake Vortex Hazard Investigation, Aerospace Innovations (AI) investigated a set of techniques for detecting wake vortex hazards from arbitrary viewing angles, including axial perspectives. This technical report describes an approach to this problem and presents results from its implementation in a virtual lidar simulator developed at AI. Threedimensional data volumes from NASA's Terminal Area Simulation System (TASS) containing strong turbulent vortices were used as the atmospheric domain for these studies, in addition to an analytical vortex model in 3-D space. By incorporating a third-party radiative transfer code (BACKSCAT 4), user-defined aerosol layers can be incorporated into atmospheric models, simulating attenuation and backscatter in different environmental conditions and altitudes. A hazard detection algorithm is described that uses a twocomponent spectral model to identify vortex signatures observable from arbitrary angles.

  12. 2006 MDEQ Camp Shelby, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines...

  13. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  14. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  15. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  16. Calibration Methods for a Space Borne Backscatter Lidar

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Lidar returns from cloud decks and from the Earth's surface are useful for calibrating single scatter lidar signals from space. To this end analytical methods (forward and backward) are presented for inverting lidar waveforms in terms of the path integrated lidar retum and the transmission losses

  17. New Generation Lidar Technology and Applications

    Science.gov (United States)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of

  18. Aerodynamic roughness length estimation from very high-resolution imaging LIDAR observations over the Heihe basin in China

    Directory of Open Access Journals (Sweden)

    J. Colin

    2010-12-01

    Full Text Available Roughness length of land surfaces is an essential variable for the parameterisation of momentum and heat exchanges. The growing interest in the estimation of the surface turbulent flux parameterisation from passive remote sensing leads to an increasing development of models, and the common use of simple semi-empirical formulations to estimate surface roughness. Over complex surface land cover, these approaches would benefit from the combined use of passive remote sensing and land surface structure measurements from Light Detection And Ranging (LIDAR techniques. Following early studies based on LIDAR profile data, this paper explores the use of imaging LIDAR measurements for the estimation of the aerodynamic roughness length over a heterogeneous landscape of the Heihe river basin, a typical inland river basin in the northwest of China. The point cloud obtained from multiple flight passes over an irrigated farmland area were used to separate the land surface topography and the vegetation canopy into a Digital Elevation Model (DEM and a Digital Surface Model (DSM respectively. These two models were then incorporated in two approaches: (i a strictly geometrical approach based on the calculation of the plan surface density and the frontal surface density to derive a geometrical surface roughness; (ii a more aerodynamic approach where both the DEM and DSM are introduced in a Computational Fluid Dynamics model (CFD. The inversion of the resulting 3-D wind field leads to a fine representation of the aerodynamic surface roughness. Examples of the use of these three approaches are presented for various wind directions together with a cross-comparison of results on heterogeneous land cover and complex roughness element structures.

  19. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions

    Science.gov (United States)

    Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.

    2017-11-01

    Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.

  20. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  1. Flying Under the LiDAR: Relating Forest Structure to Bat Community Diversity

    Science.gov (United States)

    Swanson, A. C.; Weishampel, J. F.

    2015-12-01

    Bats are important to many ecological processes such as pollination, insect (and by proxy, disease) control, and seed dispersal and can be used to monitor ecosystem health. However, they are facing unprecedented extinction risks from habitat degradation as well as pressures from pathogens (e.g., white-nose syndrome) and wind turbines. LiDAR allows ecologists to measure structural variables of forested landscapes with increased precision and accuracy at broader spatial scales than previously possible. This study used airborne LiDAR to classify forest habitat/canopy structure at the Ordway-Swisher Biological Station (OSBS) in north central Florida. LiDAR data were acquired by the NEON airborne observation platform in summer 2014. OSBS consists of open-canopy pine savannas, closed-canopy hardwood hammocks, and seasonally wet prairies. Multiple forest structural parameters (e.g., mean, maximum, and standard deviation of height returns) were derived from LiDAR point clouds using the USDA software program FUSION. K-means clustering was used to segregate each 5x5 m raster across the ~3765 ha OSBS area into six different clusters based on the derived canopy metrics. Cluster averages for maximum, mean, and standard deviation of return heights ranged from 0 to 19.4 m, 0 to 15.3 m, and 0 to 3.0 m, respectively. To determine the relationships among these landscape-canopy features and bat species diversity and abundances, AnaBat II bat detectors were deployed from May to September in 2015 stratified by these distinct clusters. Bat calls were recorded from sunset to sunrise during each sampling period. Species were identified using AnalookW. A statistical regression model selection approach was performed in order to evaluate how forest attributes such as understory clutter, open regions, open and closed canopy, etc. influence bat communities. This knowledge provides a deeper understanding of habitat-species interactions to better manage survival of these species.

  2. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive me...

  3. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  4. Clear-air lidar dark band

    Science.gov (United States)

    Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.

    2018-04-01

    This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.

  5. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  6. 2014 OLC Lidar: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  7. 2015 OLC Lidar DEM: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  8. 2015 OLC Lidar: Okanogan WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Okanogan FEMA study area. This study area is located in...

  9. Occurrence and characteristics of mutual interference between LIDAR scanners

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  10. Methods from Information Extraction from LIDAR Intensity Data and Multispectral LIDAR Technology

    Science.gov (United States)

    Scaioni, M.; Höfle, B.; Baungarten Kersting, A. P.; Barazzetti, L.; Previtali, M.; Wujanz, D.

    2018-04-01

    LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on `Information Extraction from LiDAR Intensity Data' has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  11. METHODS FROM INFORMATION EXTRACTION FROM LIDAR INTENSITY DATA AND MULTISPECTRAL LIDAR TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2018-04-01

    Full Text Available LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on ‘Information Extraction from LiDAR Intensity Data’ has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  12. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  13. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  14. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  15. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  16. A cloud masking algorithm for EARLINET lidar systems

    Science.gov (United States)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  17. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Areas 2 and 3 (Mid-Coastal Cleanup), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  18. Standards – An Important Step for the (Public Use of Lidars

    Directory of Open Access Journals (Sweden)

    Althausen Dietrich

    2016-01-01

    Full Text Available Lidar standards are needed to ensure quality and lidar product control at the interface between lidar manufacturers and lidar users. Meanwhile three lidar standards have been published by German and international standardization organizations. This paper describes the cooperation between the lidar technique inventors, lidar instrument constructors, and lidar product users to establish useful standards. Presently a backscatter lidar standard is elaborated in Germany. Key points of this standard are presented here. Two German standards were already accepted as international standards by the International Organization for Standardization (ISO. Hence, German and international organizations for the establishment of lidar standards are introduced to encourage a cooperative work on lidar standards by lidar scientists.

  19. Accounting for the speed shear in wind turbine power performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.

    2010-04-15

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and therefore of the power output, cannot be ignored any longer. Primary effects on the power performance are from the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were considered both resulting in the reduction of the scatter in the power curve. As a lidar wind profiler can measure the wind speed at several heights within the rotor span, the wind speed profile is described with more accuracy than with the power law model. The equivalent wind speed derived from measurements, including at least one measurement above hub height, resulted in a smaller scatter in the power curve than the equivalent wind speed derived from profiles extrapolated from measurements

  20. Turbulence estimation from a continuous-wave scanning lidar (SpinnerLidar)

    DEFF Research Database (Denmark)

    Barnhoorn, J.G.; Sjöholm, Mikael; Mikkelsen, Torben Krogh

    2017-01-01

    out, and 2) the mixing of velocity covariances from other components into the line-of-sight variance measurements. However, turbulence measurements based on upwind horizontal rotor plane scanning of the line-of-sight variance measurements combined with ensemble-averaged Doppler spectra width...... deviations averaged over 10-min sampling periods are compared. Lidar variances are inherently more prone to noise which always yields a positive bias. The 5.3 % higher turbulence level measured by the SpinnerLidar relative to the cup anemometer may equally well be attributed to truncation of turbulent...

  1. Saginaw Bay, MI LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Saginaw Bay, MI LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01254 Woolpert Order...

  2. A Study on the Effect of Nudging on Long-Term Boundary Layer Profiles of Wind and Weibull Distribution Parameters in a Rural Coastal Area

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier

    2013-01-01

    By use of 1 yr of measurements performed with a wind lidar up to 600-m height, in combination with a tall meteorological tower, the impact of nudging on the simulated wind profile at a flat coastal site (Høvsøre) in western Denmark using the Advanced Research version of the Weather Research...

  3. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  4. Pointing Verification Method for Spaceborne Lidars

    Directory of Open Access Journals (Sweden)

    Axel Amediek

    2017-01-01

    Full Text Available High precision acquisition of atmospheric parameters from the air or space by means of lidar requires accurate knowledge of laser pointing. Discrepancies between the assumed and actual pointing can introduce large errors due to the Doppler effect or a wrongly assumed air pressure at ground level. In this paper, a method for precisely quantifying these discrepancies for airborne and spaceborne lidar systems is presented. The method is based on the comparison of ground elevations derived from the lidar ranging data with high-resolution topography data obtained from a digital elevation model and allows for the derivation of the lateral and longitudinal deviation of the laser beam propagation direction. The applicability of the technique is demonstrated by using experimental data from an airborne lidar system, confirming that geo-referencing of the lidar ground spot trace with an uncertainty of less than 10 m with respect to the used digital elevation model (DEM can be obtained.

  5. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  6. Atmospheric lidar: legislative, scientific and technological aspects; Lidar atmosferico. Aspetti legislativi, scientifici e tecnologici

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Fiorani, L.; Palucci, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy)

    2000-07-01

    The Atmospheric Lidar is one of the systems of the Mobile Laboratory of Laser Remote Sensing under development at the ENEA Research Center of Frascati. This technical report addresses the legislative, scientific and technological aspects that are the basis for the identification of the requirements, the definition of the architecture and the fixation of the specifications of the Atmospheric Lidar. The problems of air pollution are introduced in section 2. A summary of the Italian laws on that topic is then given. Section 4 provides a survey of the atmospheric measurements that can be achieved with the lidar. The sensitivity in the monitoring of pollutants is discussed in section 5. The other systems of the Mobile Laboratory of Laser Remote Sensing are shortly described in section 6. The last section is devoted to conclusions and perspectives. [Italian] Il lidar atmosferico e' uno dei sistemi del Laboratorio Mobile di Telerilevamento Laser in corso di realizzazione presso il Centro Ricerche di Frascati dell'ENEA. Questo rapporto tecnico discute gli aspetti legislativi, scientifici, tecnologici che sono alla base dell'individuazione dei requisiti, della definizione dell'architettura e della fissazione delle specifiche del Lidar atmosferico. La problematica dell'inquinamento dell'aria e' introdotta nella sezione 2. Segue un riassunto della legislazione italiana su tale tematica. La sezione 4 offre una panoramica delle misure atmosferiche realizzabili con il Lidar. La sensibilita' nel monitoraggio di inquinanti e' discussa nella sezione 5. Gli altri sistemi del Laboratorio Mobile di Telerilevamento Laser sono descritti brevemente nella sezione 6. L'ultima sezione e' dedicata alle conclusioni e alle prospettive.

  7. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  8. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Foroughi Abari, Farzad; Mann, Jakob

    2014-01-01

    A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both...... leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift...... has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2....

  9. Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska

    Directory of Open Access Journals (Sweden)

    Colin C. Triplett

    2017-01-01

    Full Text Available The meteorological control of gravity wave activity through filtering by winds and generation by spontaneous adjustment of unbalanced flows is investigated. This investigation is based on a new analysis of Rayleigh LiDAR measurements of gravity wave activity in the upper stratosphere-lower mesosphere (USLM,40–50kmon 152 nights at Poker Flat Research Range (PFRR, Chatanika, Alaska (65◦ N, 147◦ W, over 13 years between 1998 and 2014. The LiDAR measurements resolve inertia-gravity waves with observed periods between 1 h and 4 h and vertical wavelengths between 2 km and 10 km. The meteorological conditions are defined by reanalysis data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA. The gravity wave activity shows large night-to-night variability, but a clear annual cycle with a maximum in winter,and systematic interannual variability associated with stratospheric sudden warming events. The USLM gravity wave activity is correlated with the MERRA winds and is controlled by the winds in the lower stratosphere through filtering by critical layer filtering. The USLM gravity wave activity is also correlated with MERRA unbalanced flow as characterized by the residual of the nonlinear balance equation. This correlation with unbalanced flow only appears when the wind conditions are taken into account, indicating that wind filtering is the primary control of the gravity wave activity.

  10. Derivation of Sky-View Factors from LIDAR Data

    Science.gov (United States)

    Kidd, Christopher; Chapman, Lee

    2013-01-01

    The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.

  11. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    Science.gov (United States)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  12. Eu-NORSEWInD - Assessment of Viability of Open Source CFD Code for the Wind Industry

    DEFF Research Database (Denmark)

    Stickland, Matt; Scanlon, Tom; Fabre, Sylvie

    2009-01-01

    Part of the overall NORSEWInD project is the use of LiDAR remote sensing (RS) systems mounted on offshore platforms to measure wind velocity profiles at a number of locations offshore. The data acquired from the offshore RS measurements will be fed into a large and novel wind speed dataset suitab...... between the results of simulations created by the commercial code FLUENT and the open source code OpenFOAM. An assessment of the ease with which the open source code can be used is also included....

  13. Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities

    Directory of Open Access Journals (Sweden)

    Irene Suomi

    2018-04-01

    Full Text Available Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.

  14. Lidar extinction measurement in the mid infrared

    Science.gov (United States)

    Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.

    2014-11-01

    We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.

  15. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  16. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    Science.gov (United States)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  17. Lidar signal-to-noise ratio improvements: Considerations and techniques

    Science.gov (United States)

    Hassebo, Yasser Y.

    The primary objective of this study is to improve lidar signal-to-noise ratio (SNR) and hence extend attainable lidar ranges through reduction of the sky background noise (BGP), which dominates other sources of noise in daytime operations. This is particularly important for Raman lidar techniques where the Raman backscattered signal of interest is relatively weak compared with the elastic backscatter lidars. Two approaches for reduction of sky background noise are considered: (1) Improvements in lidar SNR by optimization of the design of the lidar receiver were examined by a series of simulations. This part of the research concentrated on biaxial lidar systems, where overlap between laser beam and receiver field of view (FOV) is an important aspect of noise considerations. The first optimized design evolved is a wedge shaped aperture. While this design has the virtue of greatly reducing background light, it is difficult to implement practically, requiring both changes in area and position with lidar range. A second more practical approach, which preserves some of the advantages of the wedge design, was also evolved. This uses a smaller area circular aperture optimally located in the image plane for desired ranges. Simulated numerical results for a biaxial lidar have shown that the best receiver parameters selection is one using a small circular aperture (field stop) with a small telescope focal length f, to ensure the minimum FOV that accepts all return signals over the entire lidar range while at the same time minimizing detected BGP and hence maximizing lidar SNR and attainable lidar ranges. The improvement in lidar SNR was up to 18%. (2) A polarization selection technique was implemented to reduce sky background signal for linearly polarized monostatic elastic backscatter lidar measurements. The technique takes advantage of naturally occurring polarization properties in scattered sky light, and then ensures that both the lidar transmitter and receiver track and

  18. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  19. Multiangle lidar observations of the Atmosphere

    Science.gov (United States)

    Lalitkumar Prakash, Pawar; Choukiker, Yogesh Kumar; Raghunath, K.

    2018-04-01

    Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E), India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  20. LIDAR for atmosphere research over Africa

    CSIR Research Space (South Africa)

    Sivakumar, V

    2008-11-01

    Full Text Available d’aéronomie, CNRS, Paris, France 1Email: SVenkataraman@csir.co.za – www.csir.co.za K-6665 [www.kashangroup.com] Lidar for atmospheric studies: The CSIR’s laser research into monitoring various pollutants in the lower atmosphere via... to lidar applications for atmosphere studies including pollutant monitoring. The following salient features emanated from the survey: • Around 80% of the lidars are in the northern hemisphere • Of the 20% in the southern hemisphere region...

  1. 2012 Oregon Lidar Consortium (OLC) Lidar: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  2. Laser remote sensing of water vapor: Raman lidar development

    International Nuclear Information System (INIS)

    Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.; Melfi, S.H.; Whiteman, D.N.; Ferrare, R.A.; Evans, K.D.

    1994-01-01

    The goal of this research is the development of a critical design for a Raman lidar system optimized to match ARM Program needs for profiling atmospheric water vapor at CART sites. This work has emphasized the development of enhanced daytime capabilities using Raman lidar techniques. This abstract touches briefly on the main components of the research program, summarizing results of the efforts. A detailed Raman lidar instrument model has been developed to predict the daytime and nighttime performance capabilities of Raman lidar systems. The model simulates key characteristics of the lidar system, using realistic atmospheric profiles, modeled background sky radiance, and lidar system parameters based on current instrument capabilities. The model is used to guide development of lidar systems based on both the solar-blind concept and the narrowband, narrow field-of-view concept for daytime optimization

  3. 2007 USGS Lidar: Canyon Fire (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Southern California Light Detection and Ranging (LiDAR) data is to provide high accuracy LIDAR data. These datasets will be the initial acquisition to support...

  4. Spaceborne Lidar in the Study of Marine Systems.

    Science.gov (United States)

    Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A

    2018-01-03

    Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  5. Spaceborne Lidar in the Study of Marine Systems

    Science.gov (United States)

    Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.

    2018-01-01

    Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  6. Multiangle lidar observations of the Atmosphere

    Directory of Open Access Journals (Sweden)

    Lalitkumar Prakash Pawar

    2018-01-01

    Full Text Available Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E, India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  7. Development of a High Energy Er-Fiber Amplifier for a Space-based Wind, Aerosol, and Range Lidar Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in Lidar technologies that will enhance the measurement of atmospheric and topographic parameters of the Earth, Mars, the Moon, and other...

  8. 2014 OLC Lidar DEM: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  9. Object Classification Using Airborne Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    PAN Suoyan

    2018-02-01

    Full Text Available Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM,a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

  10. 2014 PSLC Lidar: City of Redmond

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial (QSI) was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the City of...

  11. 2014 Horry County, South Carolina Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry...

  12. Elevation - LIDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  13. 2006 Volusia County Florida LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  14. 3D pulsed chaos lidar system.

    Science.gov (United States)

    Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi

    2018-04-30

    We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.

  15. Application of Short-Range LIDAR in Early Alerting for Low-Level Windshear and Turbulence at Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    K. K. Hon

    2014-01-01

    Full Text Available Hong Kong Observatory currently uses a series of meteorological instruments, including long-range LIDAR (light detection and ranging systems, to provide alerting services of low-level windshear and turbulence for Hong Kong International Airport. For some events that are smaller in spatial dimensions and are rapidly changing, such as low altitude windshear and turbulence associated with buildings or man-made structures, it would be necessary to involve meteorological instruments that offer greater spatial resolution. Therefore, the Observatory has set up a short-range LIDAR on the roof of the AsiaWorld-Expo during the summers over the past several years, conducting field research on the feasibility of strengthening early alerting for windshear and turbulence over the north runway’s eastern arrival runway (Runway 25RA and developing an automated early alerting algorithm. This paper takes the pilot reports for Runway 25RA during the 2013 field research as verification samples, using different thresholds for radial wind velocity spatial and temporal changes detected by the short-range LIDAR to calculate the relative operating characteristic (ROC curve, and analyzes its early alerting performance.

  16. An experimental and numerical study of the atmospheric stability impact on wind turbine wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Koblitz, Tilman

    2016-01-01

    campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s1 and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk–Richardson number and the Froude number. Three test cases are subsequently defined covering various...... atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed......In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Risø...

  17. 2012 USGS Lidar: Elwha River (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Elwha River, WA LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01088 Woolpert Order No....

  18. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  19. Lidar data used in the COFIN project

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Nielsen, Morten

    1999-01-01

    This report presents the Lidar data used in the COFIN project. The Lidar data have been obtained from several ground level dispersion experiments over flat and complex terrain. The method for treating the data and the conditons under which the data wereobtained are described in detail. Finally we...... describe the Tools to extract and visualize the Lidar data. Data, report, and visualisation tools are available on the Risø FTP server....

  20. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  1. ALADIN: the first european lidar in space

    Science.gov (United States)

    Morançais, Didier; Fabre, Frédéric; Schillinger, Marc; Barthès, Jean-Claude; Endemann, Martin; Culoma, Alain; Durand, Yannig

    2017-11-01

    The Atmospheric LAser Doppler INstrument (ALADIN) is the payload of the ESA's ADMAEOLUS mission, which aims at measuring wind profiles as required by the climatology and meteorology users. ALADIN belongs to a new class of Earth Observation payloads and will be the first European Lidar in space. The instrument comprises a diode-pumped high energy Nd:YAG laser and a direct detection receiver operating on aerosol and molecular backscatter signals in parallel. In addition to the Proto- Flight Model (PFM)., two instrument models are developed: a Pre-development Model (PDM) and an Opto-Structure-Thermal Model (OSTM). The flight instrument design and the industrial team has been finalised and the major equipment are now under development. This paper describes the instrument design and performance as well as the development and verification approach. The main results obtained during the PDM programme are also reported. The ALADIN instrument is developed under prime contractorship from EADS Astrium SAS with a consortium of thirty European companies.

  2. Infrastructure Investment Protection with LiDAR

    Science.gov (United States)

    2012-10-15

    The primary goal of this research effort was to explore the wide variety of uses of LiDAR technology and to evaluate their : applicability to NCDOT practices. NCDOT can use this information about LiDAR in determining how and when the : technology can...

  3. 2013 NRCS-USGS Lidar: Lauderdale (MS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:NRCS LAUDERDALE MS 0.7M NPS LIDAR. LiDAR Data Acquisition and Processing Production Task. USGS Contract No. G10PC00057. Task Order No. G12PD000125 Woolpert...

  4. 2014 USGS/NRCS Lidar: Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS-NRCS Laurel MS 0.7m NPS LIDAR Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD01086 Woolpert...

  5. Lidar-based mapping of flood control levees in south Louisiana

    Science.gov (United States)

    Thatcher, Cindy A.; Lim, Samsung; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Kimbrow, Dustin R.

    2016-01-01

    Flood protection in south Louisiana is largely dependent on earthen levees, and in the aftermath of Hurricane Katrina the state’s levee system has received intense scrutiny. Accurate elevation data along the levees are critical to local levee district managers responsible for monitoring and maintaining the extensive system of non-federal levees in coastal Louisiana. In 2012, high resolution airborne lidar data were acquired over levees in Lafourche Parish, Louisiana, and a mobile terrestrial lidar survey was conducted for selected levee segments using a terrestrial lidar scanner mounted on a truck. The mobile terrestrial lidar data were collected to test the feasibility of using this relatively new technology to map flood control levees and to compare the accuracy of the terrestrial and airborne lidar. Metrics assessing levee geometry derived from the two lidar surveys are also presented as an efficient, comprehensive method to quantify levee height and stability. The vertical root mean square error values of the terrestrial lidar and airborne lidar digital-derived digital terrain models were 0.038 m and 0.055 m, respectively. The comparison of levee metrics derived from the airborne and terrestrial lidar-based digital terrain models showed that both types of lidar yielded similar results, indicating that either or both surveying techniques could be used to monitor geomorphic change over time. Because airborne lidar is costly, many parts of the USA and other countries have never been mapped with airborne lidar, and repeat surveys are often not available for change detection studies. Terrestrial lidar provides a practical option for conducting repeat surveys of levees and other terrain features that cover a relatively small area, such as eroding cliffs or stream banks, and dunes.

  6. Applications of KHZ-CW Lidar in Ecological Entomology

    Science.gov (United States)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  7. On the spatial and temporal resolution of land cover products for applied use in wind resource mapping

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Dellwik, Ebba

    as input for modelling the wind conditions over a Danish near-coastal region. The flow model results were compared to alternative use of USGS land cover. Significant variations in the wind speed were found between the two atmospheric flow model results. Furthermore the wind speed from the flow model...... was compared to meteorological observations taken in a tall mast and from ground based remote-sensing wind profiling lidars. It is shown that simulations using CORINE provide better wind flow results close to the surface as compared to those using USGS on the investigated site. The next step towards...... improvement of flow model inputs is to investigate in further detail applied use of satellite maps in forested areas. 75% of new land-based wind farms are planned in or near forests in Europe. In forested areas the near surface atmospheric flow is more challenging to calculate than in regions with low...

  8. INTERACT-II campaign:comparison of commercial lidars and ceilometers with advanced multi-wavelength Raman lidars

    Science.gov (United States)

    Rosoldi, Marco; Madonna, Fabio; Pappalardo, Gelsomina; Vande Hey, Joshua; Zheng, Yunhui; Vaisala Team

    2017-04-01

    Knowledge of aerosol spatio-temporal distribution in troposphere is essential for the study of climate and air quality. For this purpose, global scale high resolution continuous measurements of tropospheric aerosols are needed. Global coverage high resolution networks of ground-based low-cost and low-maintenance remote sensing instruments, such as commercial automatic lidars and ceilometers, can strongly contribute to this scientific mission. Therefore, it is very interesting for scientific community to understand to which extent these instruments are able to provide reliable aerosol measurements and fill in the geographical gaps of existing networks of the advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). The INTERACT-II (INTERcomparison of Aerosol and Cloud Tracking) campaign, carried out at CIAO (CNR-IMAA Atmospheric Observatory) in Tito Scalo, Potenza, Italy (760m a.s.l., 40.60°N, 15.72°E), aims to evaluate the performances of commercial automatic lidars and ceilometers for tropospheric aerosol profiling. The campaign has been performed in the period from July 2016 to January 2017 in the framework of ACTRIS-2 (Aerosol Clouds Trace gases Research InfraStructure) H2020 research infrastructure project. Besides the commercial ceilometers operational at CIAO (VAISALA CT25K and Luftt CHM15k), the performance of a CL51 VAISALA ceilometer, a Campbell CS135 ceilometer and a mini-Micro Pulse Lidar (MPL) have been assessed using the EARLINET multi-wavelengths Raman lidars operative at CIAO as reference. Following a similar approach used in the first INTERACT campaign (Madonna et al., AMT 2015), attenuated backscatter coefficient profiles and signals obtained from all the instruments have been compared, over a vertical resolution of 60 meters and a temporal integration ranging between 1 and 2 hours, depending on the observed atmospheric scenario. CIAO lidars signals have been processed using the EARLINET Single Calculus Chain (SCC) also with the

  9. Software design of control system of CCD side-scatter lidar

    Science.gov (United States)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  10. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  11. Intercomparison of middle-atmospheric wind in observations and models

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2018-04-01

    Full Text Available Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3° N, 16.0° E. Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1 exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.

  12. Multi-wavelength Ocean Profiling and Atmospheric Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and demonstrate the world's first multi-wavelength ocean-profiling high spectral resolution lidar (HSRL). The lidar will provide profiles of...

  13. 2012 Oregon Lidar Consortium (OLC) Lidar DEM: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  14. Shipborne LiDAR system for coastal change monitoring

    Science.gov (United States)

    Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong

    2016-04-01

    Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

  15. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    Science.gov (United States)

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  16. 2010 ARRA Lidar: 4 Southeast Counties (MI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Southeast Michigan LiDAR LiDAR Data Acquisition and Processing Production Task- Monroe, St. Clair, Macomb, and Livingston Counties SEMCOG CONTRACT:...

  17. Observations of peculiar sporadic sodium structures and their relation with wind variations

    Science.gov (United States)

    Sridharan, S.; Prasanth, P. Vishnu; Kumar, Y. Bhavani; Ramkumar, Geetha; Sathishkumar, S.; Raghunath, K.

    2009-04-01

    Resonance lidar observations of sodium density in the upper mesosphere region over Gadanki (13.5°N, 79.2°E) rarely show complex structures with rapid enhancements of sodium density, completely different from normal sporadic sodium structures. The hourly averaged meteor radar zonal winds over Trivandrum (8.5°N, 76.5°E) show an eastward shear with altitude during the nights, when these events are formed. As suggested by Kane et al. [2001. Joint observations of sodium enhancements and field-aligned ionospheric irregularities. Geophysical Research Letters 28, 1375-1378], our observations show that the complex structures may be formed due to Kelvin-Helmholtz instability, which can occur in the region of strong wind shear.

  18. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  19. Lidar investigations of atmospheric aerosols over Sofia

    International Nuclear Information System (INIS)

    Dreischuh, T.; Deleva, A.; Peshev, Z.; Grigorov, I.; Kolarov, G.; Stoyanov, D.

    2016-01-01

    An overview is given of the laser remote sensing of atmospheric aerosols and related processes over the Sofia area performed in the Institute of Electronics, Bulgarian Academy of Sciences, during the last three years. Results from lidar investigations of the optical characteristics of atmospheric aerosols obtained in the frame of the European Aerosol Research Lidar Network, as well as from the lidar mapping of near-surface aerosol fields for remote monitoring of atmospheric pollutants are presented and discussed in this paper.

  20. A user friendly Lidar system based on LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats; Weibring, P.

    1996-09-01

    Mobile differential absorption lidar (DIAL) systems have been used for the last two decades. The lidar group in Lund has performed many DIAL measurements with a mobile lidar system which was first described in 1987. This report describes how that system was updated with the graphical programming language LabVIEW in order to get a user friendly system. The software controls the lidar system and analyses measurement data. The measurement results are shown as maps of species concentration. New electronics to support the new lidar program have also been installed. The report describes how all supporting electronics and the program work. A user manual for the new program is also given. 19 refs, 79 figs, 23 charts

  1. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  2. Quantifying spatial distribution of snow depth errors from LiDAR using Random Forests

    Science.gov (United States)

    Tinkham, W.; Smith, A. M.; Marshall, H.; Link, T. E.; Falkowski, M. J.; Winstral, A. H.

    2013-12-01

    There is increasing need to characterize the distribution of snow in complex terrain using remote sensing approaches, especially in isolated mountainous regions that are often water-limited, the principal source of terrestrial freshwater, and sensitive to climatic shifts and variations. We apply intensive topographic surveys, multi-temporal LiDAR, and Random Forest modeling to quantify snow volume and characterize associated errors across seven land cover types in a semi-arid mountainous catchment at a 1 and 4 m spatial resolution. The LiDAR-based estimates of both snow-off surface topology and snow depths were validated against ground-based measurements across the catchment. Comparison of LiDAR-derived snow depths to manual snow depth surveys revealed that LiDAR based estimates were more accurate in areas of low lying vegetation such as shrubs (RMSE = 0.14 m) as compared to areas consisting of tree cover (RMSE = 0.20-0.35 m). The highest errors were found along the edge of conifer forests (RMSE = 0.35 m), however a second conifer transect outside the catchment had much lower errors (RMSE = 0.21 m). This difference is attributed to the wind exposure of the first site that led to highly variable snow depths at short spatial distances. The Random Forest modeled errors deviated from the field measured errors with a RMSE of 0.09-0.34 m across the different cover types. Results show that snow drifts, which are important for maintaining spring and summer stream flows and establishing and sustaining water-limited plant species, contained 30 × 5-6% of the snow volume while only occupying 10% of the catchment area similar to findings by prior physically-based modeling approaches. This study demonstrates the potential utility of combining multi-temporal LiDAR with Random Forest modeling to quantify the distribution of snow depth with a reasonable degree of accuracy. Future work could explore the utility of Terrestrial LiDAR Scanners to produce validation of snow-on surface

  3. 2008 St. Johns County, FL Countywide Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne terrestrial LiDAR was collected for St. Johns County, FL. System Parameters/Flight Plan. The LiDAR system acquisition parameters were developed based on a...

  4. 2015 Oregon Department Forestry Lidar: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  5. LIDAR and atmosphere remote sensing [DST Space Science Initiatives

    CSIR Research Space (South Africa)

    Venkataraman, S

    2009-04-01

    Full Text Available Energy Source included in the measurement. Slide 2 © CSIR 2008 www.csir.co.za The observer can control the source Eg. Radar, Lidar, Sodar, Sonar etc. (b) Passive remote sensors. Energy source is not included in the measurement... Instrument Passive Slide 3 © CSIR 2008 www.csir.co.za Active LiDAR Principle • LIDAR (Light Detection and Ranging) • LiDAR employs a laser as a source of pulsed energy • Lasers are advantageous because – checkbld Monochromatic...

  6. 2009 Bayfield County Lake Superior Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LIDAR survey presents digital elevation data sets of a bald earth surface model and 2ft interval contours covering Bayfield County, Wisconsin. The LIDAR data was...

  7. 2007 South Carolina DNR Lidar: Dorchester County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Woolpert Inc. conducted a LiDAR survey to acquire LiDAR capable of producing a DEM for orthophoto rectification and able to support 2-foot contour specifications....

  8. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    the sensitivity of PBL schemes of mesoscale models to both lower and upper boundary conditions. We therefore run the mesoscale weather research and forecasting (WRF) model using two different roughness descriptions, two different synoptic forcings and two different PBL schemes at two vertical resolutions. When...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  9. Wind Turbine Performance Measurements by Means of Dynamic Data Analysis

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Wagner, Rozenn; Demurtas, Giorgio

    tools have been developed by authors to try to make the drift field and fixed point determination more robust. A sensitivity analysis with nacelle lidar data showed drift determination was not very dependent on the time steps applied, leading to use of time steps of 2-3 points for each dataset. Power...... bin size should be fixed. Data averaging with 5 sec data was more distinct for determination of the fixed points than 2 and 1 sec data. With the nacelle lidar the Langevin method seemed to produce a power curve that was comparable to the IEC power curve. Analysis of the Langevin method with spinner...... curves could be made faster with 1Hz dataset. In the FastWind project the Langevin power curve method was used on real power curve measurement datasets with the purpose to evaluate the method for practical use. A practical guide to application of the method to real power curve measurement data was made...

  10. Lake Michigan Wind Assessment Analysis, 2012 and 2013

    Directory of Open Access Journals (Sweden)

    Charles R Standridge

    2017-03-01

    Full Text Available A study was conducted to address the wind energy potential over Lake Michigan to support a commercial wind farm.  Lake Michigan is an inland sea in the upper mid-western United States.  A laser wind sensor mounted on a floating platform was located at the mid-lake plateau in 2012 and about 10.5 kilometers from the eastern shoreline near Muskegon Michigan in 2013.  Range gate heights for the laser wind sensor were centered at 75, 90, 105, 125, 150, and 175 meters.  Wind speed and direction were measured once each second and aggregated into 10 minute averages.  The two sample t-test and the paired-t method were used to perform the analysis.  Average wind speed stopped increasing between 105 m and 150 m depending on location.  Thus, the collected data is inconsistent with the idea that average wind speed increases with height. This result implies that measuring wind speed at wind turbine hub height is essential as opposed to using the wind energy power law to project the wind speed from lower heights.  Average speed at the mid-lake plateau is no more that 10% greater than at the location near Muskegon.  Thus, it may be possible to harvest much of the available wind energy at a lower height and closer to the shoreline than previously thought.  At both locations, the predominate wind direction is from the south-southwest.  The ability of the laser wind sensor to measure wind speed appears to be affected by a lack of particulate matter at greater heights.   Keywords: wind assessment, Lake Michigan, LIDAR wind sensor, statistical analysis. Article History: Received June 15th 2016; Received in revised form January 16th 2017; Accepted February 2nd 2017 Available online How to Cite This Article: Standridge, C., Zeitler, D., Clark, A., Spoelma, T., Nordman, E., Boezaart, T.A., Edmonson, J.,  Howe, G., Meadows, G., Cotel, A. and Marsik, F. (2017 Lake Michigan Wind Assessment Analysis, 2012 and 2013. Int. Journal of Renewable Energy Development

  11. 2015 OLC FEMA Lidar: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  12. 2007 South Carolina DNR Lidar: Anderson County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in 5 sessions, from March 7 to March 9, 2007. The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition...

  13. 2011 South Carolina DNR Lidar: York County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,500 square miles in York, Pickens, Anderson, and Oconee Counties in South Carolina. This metadata covers the LiDAR produced...

  14. 2012 NRCS-USGS Tupelo, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  15. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  16. 2013-2014 USGS Lidar: Olympic Peninsula (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS Olympic Peninsula Washington LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00849...

  17. 2015 OLC Lidar DEM: Big Wood, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Big Wood 2015 study area. This study area is located in...

  18. Elevation - LiDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  19. 2012-2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Hoh River Watershed, Washington (Deliveries 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Hoh River watershed survey area for the Puget Sound LiDAR Consortium and the...

  20. Impact of pitch angle fluctuations on airborne lidar forward sensing along the flight direction

    Science.gov (United States)

    Sergeevich Gurvich, Alexander; Alexeevich Kulikov, Victor

    2017-10-01

    Airborne lidar forward sensing along the flight direction can serve for notification of clear air turbulence (CAT) and help to prevent injuries or fatal air accidents. The validation of this concept was presented in the framework of the DELICAT (DEmonstration of LIdar-based CAT detection) project. However, the strong variations in signal level, which were observed during the DELICAT measurements but not explained, sometimes indicated the need of a better understanding the observational errors due to geometrical factors. In this paper, we discuss possible error sources pertinent to this technique, related to fluctuations of the flight parameters, which may lead to strong signal variations caused by the random deviations of the sensing beam from the forward flight trajectory. We analyze the variations in backscattered lidar signal caused by fluctuations of the most important forward-sensing flight parameter, the pitch angle. The fluctuation values considered in the paper correspond to the error limits of the compensational gyro platform used in civil aviation. The part of the pitch angle fluctuations not compensated for by the beam-steering device in the presence of aerosol concentration variations can lead to noticeable signal variations that can be mistakenly attributed to wind shear, turbulence, or fast evolution of the aerosol layer. We formulate the criteria that allow the recognition of signal variations caused by pitch angle fluctuations. Influence of these fluctuations is shown to be stronger for aerosol variations on smaller vertical scales. An example of DELICAT observations indicating a noticeable pitch angle fluctuation impact is presented.