WorldWideScience

Sample records for wind integration study

  1. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  2. Nebraska Statewide Wind Integration Study: April 2008 - January 2010

    Energy Technology Data Exchange (ETDEWEB)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  3. CanWEA Pan-Canadian wind integration study paper

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Martin [GL Garrad Hassan Canada Inc, Ottawa, ON (Canada); Gardner, Paul [GL Garrad Hassan and Partners, Glasgow (United Kingdom); Price, Doug; Le, Don [GL Garrad Hassan America, San Diego, CA (United States)

    2010-07-01

    GL Garrad Hassan has been contracted by CanWEA to undertake a scoping study for a future Pan-Canadian Wide-Scale Wind Integration Study. The scoping study provides the methodology and the rationale on which the actual wind integration study and request for proposals will be based on. Major system operators and owners of each Canadian Province along with experts involved in major US wind integration studies have been consulted and contributed to the decisional process. This paper provides a summary of the factors considered in the study and outline the actual methodology that was adopted for the future Pan-Canadian wind integration study. (orig.)

  4. Generic 12-Bus Test System for Wind Power Integration Studies

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Altin, Müfit; Göksu, Ömer

    2012-01-01

    High wind power penetration levels into power systems requires an appropriate power system model when assessing impact on the overall system stability. The model should capture the wide range of dynamics related to the wind integration studies, such as voltage control, synchronizing power control...... studies with different penetration scenarios....

  5. Western Wind and Solar Integration Study Phase 3: Technical Overview

    Energy Technology Data Exchange (ETDEWEB)

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  6. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  7. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibanez, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Florita, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hodge, B. -M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); King, J. [RePPAE; Lefton, S. A. [Intertek-APTECH, Houston, TX (United States); Kumar, N. [Intertek-APTECH, Houston, TX (United States); Agan, D. [Intertek-APTECH, Houston, TX (United States); Jordan, G. [GE Energy, Fairfield, CT (United States); Venkataraman, S. [GE Energy, Fairfield, CT (United States)

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  8. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  9. Western Wind and Solar Integration Study: Hydropower Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  10. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  11. Western Wind and Solar Integration Study Phase 2: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  12. Western Wind and Solar Integration Study Phase 2 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  13. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-01

    This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the study year 2024.

  14. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  15. Western Wind and Solar Integration Study: Executive Summary, May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Piwko, R.; Clark, K.; Freeman, L.; Jordan, G.; Miller, N.

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  16. Grid Integration of Offshore Wind Farms via VSC-HVDC – Dynamic Stability Study

    DEFF Research Database (Denmark)

    Liu, Hongzhi

    farms could seriously impact the operation and stability of their interconnected power system. To assist in maintaining the power system stability when large disturbances occur in the grid, modern offshore wind farms consisting of variable-speed wind turbines are required to provide ancillary services......-HVDC transmission are addressed. The main objectives have been to study the dynamic interactions between offshore wind farms and interconnected power systems, pinpoint the impact on the electrical grid while integrating large-scale offshore wind farms via VSC-HVDC link and propose potential solutions to improve...... the dynamic stability of the network. This research work starts with the modelling of full converter wind turbine and VSC-HVDC transmission system. Then, based on those models, the impact of integration of a large offshore wind farm into the power system through VSC-HVDC transmission is investigated...

  17. The Western Wind and Solar Integration Study Phase 2 (Executive Summary)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  18. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Case Western Reserve Univ., Cleveland, OH (United States); Loparo, Kenneth A. [Case Western Reserve Univ., Cleveland, OH (United States); D' Aquila, Robert [General Electric (GE), Albany, NY (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waligorski, Joseph G. [FirstEnergy, Akron, OH (United States); Baker, Scott [PJM Interconnection, Audubon, PA (United States)

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  19. Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, Christopher [Duke Energy Business Services, LLC, Charlotte, NC (United States); Piper, Orvane [Duke Energy Business Services, LLC, Charlotte, NC (United States); Hazelip, William [Duke Energy Business Services, LLC, Charlotte, NC (United States); Zhao, Yishan [Duke Energy Business Services, LLC, Charlotte, NC (United States); Salvador, Lisa [Duke Energy Business Services, LLC, Charlotte, NC (United States); Pruitt, Tom [Duke Energy Business Services, LLC, Charlotte, NC (United States); Peterson, Jeffrey [Duke Energy Business Services, LLC, Charlotte, NC (United States); Ashby, Rebecca [Duke Energy Business Services, LLC, Charlotte, NC (United States); Pierce, Bob [Duke Energy Business Services, LLC, Charlotte, NC (United States); Burner, Bob [Duke Energy Business Services, LLC, Charlotte, NC (United States); Daniel, John [ABB, Inc., Cary, NC (United States); Zhu, Jinxiang [ABB, Inc., Cary, NC (United States); Moore, Maria [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Pennock, Ken [AWS Truepower, LLC, Albany, NY (United States); Frank, Jaclyn [AWS Truepower, LLC, Albany, NY (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seim, Harvey E. [Univ. of North Carolina, Chapel Hill, NC (United States)

    2015-04-30

    Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS) which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.

  20. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, Martin H.; Hahmann, Andrea N.; Nielsen, Torben S.

    This poster presents the Public Service Obligation (PSO) funded project PSO 10464 "Integrated Wind Power Planning Tool". The project goal is to integrate a Numerical Weather Prediction (NWP) model with statistical tools in order to assess wind power fluctuations, with focus on short term...... forecasting for existing wind farms, as well as long term power system planning for future wind farms....

  1. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. W. [GE Energy Management, Schenectady, NY (United States); Shao, M. [GE Energy Management, Schenectady, NY (United States); Pajic, S. [GE Energy Management, Schenectady, NY (United States); D' Aquila, R. [GE Energy Management, Schenectady, NY (United States)

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  2. Integrated Wind Power Planning Tool

    Science.gov (United States)

    Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik

    2013-04-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy

  3. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  4. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Hahmann, Andrea N.; Nielsen, T. S.

    This poster describes the status as of April 2012 of the Public Service Obligation (PSO) funded project PSO 10464 \\Integrated Wind Power Planning Tool". The project goal is to integrate a meso scale numerical weather prediction (NWP) model with a statistical tool in order to better predict short...... term power variation from off shore wind farms, as well as to conduct forecast error assessment studies in preparation for later implementation of such a feature in an existing simulation model. The addition of a forecast error estimation feature will further increase the value of this tool, as it...

  5. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas W. [GE Energy Management, Atlanta, GA (United States); Leonardi, Bruno [GE Energy Management, Atlanta, GA (United States); D' Aquila, Robert [GE Energy Management, Atlanta, GA (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable

  6. A New Approach to Obtain Synthetic Wind Power Forecasts for Integration Studies

    Directory of Open Access Journals (Sweden)

    Jon Olauson

    2016-10-01

    Full Text Available When performing wind integration studies, synthetic wind power forecasts are key elements. Historically, data from operational forecasting systems have been used sparsely, likely due to the high costs involved. Purely statistical methods for simulating wind power forecasts are more common,but have problems mimicking all relevant aspects of actual forecasts. Consequently, a new approach to obtain wind power forecasts for integration studies is proposed, relying on long time series of freely and globally available reforecasts. In order to produce synthetic forecasts with similar properties as operational ditto, some processing (noise addition and error reduction is necessary. Validations with measurements from Belgium and Sweden show that the method is adequate; and distributions, correlations, autocorrelations and power spectral densities of forecast errors correspond well. Furthermore, abrupt changes when forecasts are updated and the existence of level and phase errors are reproduced. The influence from terrain complexity on error magnitude is promising, but more data is necessary for a proper validation.

  7. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  8. Integrated roof wind energy system

    Science.gov (United States)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  9. Challenge of Primary Voltage Control in Large Scale Wind Integrated Power System: A Danish Power System Case Study

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2013-01-01

    Grid integration of Renewable Energy (RE) at large scale poses vast majority of challenges to secure and stable operation of Power System. This paper presents the challenge of short circuit power and primary voltage control of wind integrated power system where majority of conventional generators...... of operational and future model of western Danish power system has been presented to support the effectiveness of demonstrated alternatives....... are replaced by wind generators. The impact of large scale wind integration on fast reactive power support is studied in this paper. Considering both technical and economic aspects, alternatives to address the challenge of dynamic voltage support have also been demonstrated in this paper. A case study...

  10. Wind power integration studies using a multi-stage stochastic electricity system model

    DEFF Research Database (Denmark)

    Meibom, Peter; Barth, R.; Brand, H.

    2007-01-01

    A large share of integrated wind power causes technical and financial impacts on the operation of the existing electricity system due to the fluctuating behaviour and unpredictability of wind power. The presented stochastic electricity market model optimises the unit commitment considering four...

  11. Review of relevant studies of isolated systems[Integration of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Lundsager, P.

    2000-12-01

    The report presents the results of a review of studies relating to integration of wind energy in isolated power supply systems, based on a systematic literature survey. The purpose of the study is to develop a methodology consisting of a set of guidelines for wind energy projects in isolated energy systems and a set of tools and models that are operational on an engineering level. The review is based on a literature search in the ETDE Energy Database with a main search covering the period 7/88 to 6/97 and supplemented by partial update periods. A few newer references have been included in the review, most notably the IEC/PAS 62111 specification. The amount of wind energy literature related to the subject is excessively large, and a complete review in which every relevant abstract is identified and examined is not feasible within the framework of this (or probably any other) study. The review results have been organised according to the following keywords: methods & guides, economics, concept of application, system solutions, case studies, financial programmes, dedicated software tools. None of the found references presents methods or tools that contradict the philosophy of Risoe's methodology as it is described in the report. It is therefore concluded that Risoe's methodology makes a good platform for further development. (au)

  12. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Giebel, Gregor; Nielsen, T. S.

    2012-01-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely...... statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited...... resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting...

  13. Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System

    Science.gov (United States)

    Yue, Liu; Hang, Mend

    2018-01-01

    With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.

  14. Interdisciplinary design study of a high-rise integrated roof wind energy system

    Science.gov (United States)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  15. Interdisciplinary design study of a high-rise integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Today’s market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM. Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  16. Wind power integration connection and system operational aspects

    CERN Document Server

    Fox, Brendan

    2014-01-01

    Wind Power Integration provides a wide-ranging discussion on all major aspects of wind power integration into electricity supply systems. This second edition has been fully revised and updated to take account of the significant growth in wind power deployment in the past few years. New discussions have been added to describe developments in wind turbine generator technology and control, the network integration of wind power, innovative ways to integrate wind power when its generation potential exceeds 50% of demand, case studies on how forecasting errors have affected system operation, and an update on how the wind energy sector has fared in the marketplace. Topics covered include: the development of wind power technology and its world-wide deployment; wind power technology and the interaction of various wind turbine generator types with the utility network; and wind power forecasting and the challenges faced by wind energy in modern electricity markets.

  17. Integration of the TDWR and LLWAS wind shear detection system

    Science.gov (United States)

    Cornman, Larry

    1991-01-01

    Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for integrating ground and airborne wind shear detection systems are briefly examined.

  18. Grid integration of wind energy

    CERN Document Server

    Heier, Siegfried

    2014-01-01

    This timely update provides detailed treatment of the integration of wind power into electrical power systems, including brand new material on offshore wind power farms and technologies This third English edition is based on new material from the fourth and fifth German editions (Windkraftanlagen: Systemauslegung, Netzintegration und Regelung, 5. Auflage, published by Teubner B.G. Gmbh, July 2009). It answers the question of how, with the proper control and direction, wind turbines can be made to operate more similarly to conventional power plants. The revised third edition addresses the engin

  19. Pushing the distribution system to its limits and beyond. A case study on wind integration in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Troester, Eckehard; Langanke, Stefan [Energynautics GmbH, Darmstadt (Germany); Betz, Bernhard [EWR Netz GmbH, Worms (Germany)

    2012-07-01

    In the EWR Netz distribution system the installed capacity of renewable energy sources - mainly wind - will most likely triple in the coming ten years. Due to this development it is to be determined how much of the new capacities can be integrated in the existing structure of the medium voltage distribution system. In this paper a case study is described, analyzing the issues that arise when trying to integrate a wind power plant at a size of the cable capacities into the existing infrastructure. Different aspects of the grid connection are evaluated with respect to the German medium voltage grid code: loading of assets voltage profile, power quality and necessity of curtailment. It turns out, that the wind power plant would fail for almost any aspect investigated according to the grid code. However for each aspect a solution can be found: for example, to keep the voltage in allowed limits, a wide area voltage control is recommended. In 2013 the wind power plant will be installed. The operation of the wind power plant will show whether the limits of the German MV grid code can really be safely exceeded. (orig.)

  20. Greening the Grid: Solar and Wind Grid Integration Study for the Luzon-Visayas System of the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, Clayton P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Katz, Jessica R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cochran, Jaquelin M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maclaurin, Galen J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Marollano, Mark C. [Dept. of Energy of the Philippines, Taguig (Philippines); Gabis, Mary G. [Dept. of Energy of the Philippines, Taguig (Philippines); Reyes, Noriel C. [Dept. of Energy of the Philippines, Taguig (Philippines); Munoz, Kenneth J. [Dept. of Energy of the Philippines, Taguig (Philippines); Jesus, Clarita D. [Dept. of Energy of the Philippines, Taguig (Philippines); Asedillo, Nielson [Grid Management Committee (GMC), Inc., Pasig City (Philipines); Binayug, Jake [Grid Management Committee (GMC), Inc., Pasig City (Philipines); Cubangbang, Hanzel [National Grid Corporation of the Philippines, Metro Manila (Philippines); Reyes, Rommel [National Grid Corporation of the Philippines, Metro Manila (Philippines); de la Vina, Jonathan [Philippine Electricity Market Corporation, Pasig City (Phillipines); Olmedo, Edward [Philippine Electricity Market Corporation, Pasig City (Phillipines); Leisch, Jennifer [United States Agency for International Development, Washington DC (United States)

    2018-01-24

    The Republic of the Philippines is home to abundant solar, wind, and other renewable energy (RE) resources that contribute to the national government's vision to ensure sustainable, secure, sufficient, accessible, and affordable energy. Because solar and wind resources are variable and uncertain, significant generation from these resources necessitates an evolution in power system planning and operation. To support Philippine power sector planners in evaluating the impacts and opportunities associated with achieving high levels of variable RE penetration, the Department of Energy of the Philippines (DOE) and the United States Agency for International Development (USAID) have spearheaded this study along with a group of modeling representatives from across the Philippine electricity industry, which seeks to characterize the operational impacts of reaching high solar and wind targets in the Philippine power system, with a specific focus on the integrated Luzon-Visayas grids.

  1. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  2. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2015-07-29

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting by Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.

  3. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. of Technology, Chicago, IL (United States)

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  4. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  5. Study on offshore wind farm integration mode and reactive power compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Xiaoyan; Hong, Lijun; Fu, Yang [Shanghai Univ. of Electrical Power (China). Power and Automation Engineering Dept.

    2013-07-01

    Two typical offshore wind farm grid-connected modes are introduced and dynamic characteristics under their modes are compared from the simulation by PSS/E. The result shows that offshore wind farm with VSC-HVDC has better dynamic characteristics on fault isolation, reactive power compensation, and fault ride through ability. In addition, STATCOM has been applied to the offshore wind farm, the simulation results indicates that it can improve the bus voltage stability in fault and maintain the voltage level under a small perturbation.

  6. Integrated installation for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Way, J.; Bowerman, H.

    2003-07-01

    A project to investigate the feasibility of integrating the offshore installation of foundation, turbine and tower for offshore wind turbines into one operation is described. Three separate objectives are listed. They are: (1) Telescopic tower study - reversible process incorporating lift and lock mechanisms; (2) Transportation study - technical and economic feasibility of transporting and installing a wind turbine unit via a standard barge with minimal conversion and (3) Self-burial system study - to demonstrate the feasibility of self burial of a slab foundation via controlled jetting beneath the slab. The background to the study and the proposed concepts are discussed. The work carried out to date and the costs are reported together with the findings. Recommendations for future work are listed. The work was carried out by Corus UK Ltd and is managed by Future Energy Solutions for the DTI.

  7. Study on VSC HVDC Modeling and Control Strategies for Wind Power Integration

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei

    is performed, regarding power losses, costs, equipment aspects and control capabilities. It is concluded that the VSC-HVDC system exhibits the most advantageous features for the grid connection of offshore wind farms. In addition, various topologies of the HVDC converter stations are analysed. Furthermore...

  8. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  9. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Shahryar Garmsiri

    2014-04-01

    Full Text Available The potential benefits are examined of the “Power-to-Gas” (P2G scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity, geographical dispersion, hydrogen production rate, capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined, centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.

  10. The informed application of building-integrated wind power

    Energy Technology Data Exchange (ETDEWEB)

    Breshears, J.; Briscoe, C. [Zimmer Gunsal Frasca Architects, Portland, OR (United States)

    2009-07-01

    This paper reported on an exercise that was undertaken to integrate small-scale wind turbines into the design of an urban high-rise in Portland, Oregon. Wind behaviour in the urban environment is very complex, as the flow of wind over and around buildings often triggers multiple transitions of the air from laminar flow to turbulent. The study documented the process of moving beyond a simplistic approach to a truly informed application of building-integrated wind generation. The 4 key issues addressed in the study process were quantifying the geographical wind regime; predicting wind flow over the building; turbine selection; and pragmatics regarding the design of roof mounting to accommodate structural loads and mitigate vibration. The results suggested that the turbine array should produce in the range of only 1 per cent of the electrical load of the building. 13 refs., 11 figs.

  11. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  12. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  13. Real-time simulation of wind power plants with VSC-HVDC link for network integration studies

    Energy Technology Data Exchange (ETDEWEB)

    Le-Huy, Philippe; Tremblay, Olivier; Gagnon, Richard; Giroux, Pierre [Hydro-Quebec, Varennes, QC (Canada). Research Inst.

    2011-07-01

    As large wind power plants with voltage-source converter HVDC link projects sprout, many utilities will be faced with the need to simulate this tpe of system, offline and in real time, to develop, validate and tune control schemes and coordination protocols with other nearby power equipment. Adequate simulation tools are of the utmost importance to efficiently carry out these projects. This paper presents the latest work conducted at Hydro-Quebec's research institute to adapt its simulation tools to cope with such systems. Real-time capable models for aggregate type-IV wind turbines and voltage-source converters (modular multilevel and cascaded two-level converters) are presented and their use is illustrated with a typical wind power integration scenario. (orig.)

  14. Integrated spatial assessment of wind erosion risk in Hungary

    Directory of Open Access Journals (Sweden)

    L. Pásztor

    2016-11-01

    Full Text Available Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover. Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5′ resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0–5 cm layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc., to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  15. Integrated spatial assessment of wind erosion risk in Hungary

    Science.gov (United States)

    Pásztor, László; Négyesi, Gábor; Laborczi, Annamária; Kovács, Tamás; László, Elemér; Bihari, Zita

    2016-11-01

    Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover). Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5' resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH) method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0-5 cm) layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc.), to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  16. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  17. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Brian [Evergreen Renewable Consulting, Evergreen, CO (United States); Cochran, Jaquelin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Watson, Andrea [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Katz, Jessica [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bracho, Ricardo [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-19

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generating 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.

  18. Towards smart integration of wind generation

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G.; Meibom, P. [Risoe National Lab., DTU (Denmark); Pinson, P. [Technical Univ. of Denmark, Informatics and Mathematical Modelling (Denmark); Kariniotakis, G. [ARMINES, Ecole des Mines de Paris (France)

    2007-11-15

    This paper presents the current and future challenges for the integration of wind power into the grid using short-term predictions. This includes the currently running virtual laboratories of the EU project POW'WOW as well as the research methodology of the soon-to-start EU projects ANEMOS.PLUS and SafeWind, which aim to develop advanced tools for the management of electricity grids with large-scale wind generation and to get a better handle on extreme events. Focus in ANEMOS.PLUS is given to functions such as optimal trading in electricity markets. For all of them, short-term forecasting as well as uncertainty estimation plays a major role. However, this information is not yet fully integrated in daily practices. The aim is thus to propose advanced tools for the above functions that integrate the full information on the expencted wind generation. In order to demonstrate the value of these tools for end-users, demonstration projects in eight European countries including Denmark are defined. SafeWind on the other hand is a project more focussed on research, especially research in extreme events. Those can be extreme winds, but also extreme forecast errors, requiring an extraordinary amount of reserve capacity. In order to help forecasters to estimate their models against the state-of-the-art models, a Virtual Laboratory for short-term prediction has been instantiated under the POW'WOW project. (au)

  19. Influences of Wind Energy Integration into the Distribution Network

    Directory of Open Access Journals (Sweden)

    G. M. Shafiullah

    2013-01-01

    Full Text Available Wind energy is one of the most promising renewable energy sources due to its availability and climate-friendly attributes. Large-scale integration of wind energy sources creates potential technical challenges due to the intermittent nature that needs to be investigated and mitigated as part of developing a sustainable power system for the future. Therefore, this study developed simulation models to investigate the potential challenges, in particular voltage fluctuations, zone substation, and distribution transformer loading, power flow characteristics, and harmonic emissions with the integration of wind energy into both the high voltage (HV and low voltage (LV distribution network (DN. From model analysis, it has been clearly indicated that influences of these problems increase with the increased integration of wind energy into both the high voltage and low voltage distribution network; however, the level of adverse impacts is higher in the LV DN compared to the HV DN.

  20. Case Study of Integrating an Offshore Wind Farm with Offshore Oil and Gas Platforms and with an Onshore Electrical Grid

    Directory of Open Access Journals (Sweden)

    Wei He

    2013-01-01

    Full Text Available This research project explored the technical feasibility of utilizing an offshore wind farm as a supplementary power source to several electrical grids of offshore oil and gas platforms and providing surplus power to an onshore grid. Three case studies comprising wind farms rated at 20 MW, 100 MW, and 1000 MW have been studied with the focus on (i the operation benefits of CO2/NOx emission reduction, (ii the electrical grid stability, and (iii the technical implementation feasibility. The proposed 20 MW, 100 MW, and 1000 MW wind farm cases are theoretically feasible in terms of the selected technical criteria, although further detailed design operational studies, and economical analysis are required.

  1. Technology solutions for wind integration in Ercot

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-23

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  2. Technology solutions for wind integration in ERCOT

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  3. Wind Integration into Various Generation Mixtures

    NARCIS (Netherlands)

    Maddaloni, J.D.; Rowe, A.M.; Kooten, van G.C.

    2009-01-01

    A load balance model is used to quantify the economic and environmental effects of integrating wind power into three typical generation mixtures. System operating costs over a specified period are minimized by controlling the operating schedule of the existing power generating facilities for a range

  4. Permanent magnet machines with air gap windings and integrated teeth windings

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). School of Electrical and Computer Engineering

    1996-06-01

    The Thesis deals with axial and radial flux permanent magnet machines with air gap windings and an integrated teeth winding. The aim is to develop a machine that produces a high torque per unit volume with as low losses as possible. The hypothesis is that an advanced three-phase winding, magnetized by a permanent magnet rotor should be better than other machine topologies. The finite element method is used to find favourable dimensions of the slotless winding, the integrated teeth winding and the permanent magnet rotor. Three machines were built and tested in order to verify calculations. It can be concluded that the analysis method shows good agreement with the calculated and the measured values of induced voltage and torque. The experiments showed that the slotless machine with NdFeB-magnets performs approximately like the slotted machine. A theoretical comparison of axial flux topology to radial flux topology showed that the torque production of the inner rotor radial flux machine is superior to that of the axial flux machine. An integrated teeth winding based on iron powder teeth glued to the winding was studied. The force density of a pole with integrated teeth is around three times the force density of a slotless pole. A direct drive wind power generator of 6.4 kW with integrated teeth can have the same power losses and magnet weight as a transversal flux machine. Compared to a standard induction machine the integrated teeth machine had approximately 2.5 times the power capacity of the induction machine with the same power losses and outer volume. 39 refs

  5. National Offshore Wind Energy Grid Interconnection Study

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  6. How Does Energy Storage Increase the Efficiency of an Electricity Market with Integrated Wind and Solar Power Generation?—A Case Study of Korea

    Directory of Open Access Journals (Sweden)

    Jung Youn Mo

    2017-10-01

    Full Text Available In recent years, increasing requests to reduce greenhouse gas emissions have led to renewable resources rapidly replacing conventional power sources. However, the inherent variability of renewable sources reduces the reliability of power systems. Energy storage has been proposed as a viable alternative, as it can mitigate the variability of renewable energy sources and increase the efficiency of power systems by lowering peak electricity demand. In this study, we evaluate the benefits of integrating energy storage with combined wind and solar power generation in the Korean power system through using the dynamic optimization method. Realistic wind and photovoltaic solar power generation scenarios were estimated for actual sites. The results show that the wind power-based system benefitted more from energy storage than the combined wind and solar photovoltaic power-based system. This is because the high variability of wind power was reduced when it was combined with solar power. Co-optimization for energy and reserve costs was more beneficial than optimization for energy costs alone, which suggests that the reliability offered by storage is an important cost-saving factor, in addition to the reduction of energy costs by price arbitrage. Finally, the analysis was conducted under various scenarios to determine the validity of energy storage cost effectiveness.

  7. RTE: the integration of wind energy in the power system

    Energy Technology Data Exchange (ETDEWEB)

    Glachant, Magali; Neau, Emmanuel [RTE, French TSO, Tour Initiale- 1, Terrasse Bellini, TSA 41000-92919 La Defense Cedex (France)

    2011-03-15

    The total installed capacity of wind power in France grew from a few hundred MW at the beginning of 2005 to 5500 MW at the end of 2010. This fast growth is set to continue, and the French Government's decision of 15 December 2009 on the country's long-term investment programs in power generation requires France to have at least 25 GW of installed wind capacity (including 6 GW offshore) by 2020. But the French specificities are that wind farms are largely spread over the territory, and 95 % of them have an output power below 12 MW which means they are mainly connected to the distribution network. As a consequence, this new intermittent and decentralized production is not 'naturally' observable by RTE, whereas it has nevertheless impacts on the operation of the transmission system for which RTE is responsible. The natural variability of wind power and the difficulty of its predictability require indeed a change in the traditional way of ensuring balancing between production and demand, of managing day-ahead margins and of controlling the electrical flows. Furthermore RTE operators have to be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. In this context, new tools were necessary to RTE to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production called the 'IPES system'. 'IPES' enables to get information about technical characteristics of the whole wind farms in France and to observe the wind generation by two ways: in real time with tele-metered data and in the short term with a forecast model integrated into the system. In addition, RTE currently carries out studies about the behavior and the forecasting of wind production integrated into the grids, as internal activities (about forecast methods), and in different projects (such

  8. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  9. Wind Farm Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Richard Curry; Erik Foley; DOE Project Officer - Keith Bennett

    2007-07-11

    Saint Francis University has assessed the Swallow Farm property located in Shade Township, Somerset County, Pennsylvania as a potential wind power development site. Saint Francis worked with McLean Energy Partners to have a 50-meter meteorological tower installed on the property in April 2004 and continues to conduct a meteorological assessment of the site. Results suggest a mean average wind speed at 80 meters of 17 mph with a net capacity factor of 31 - 33%. Approximate electricity generation capacity of the project is 10 megawatts. Also, the University used matching funds provided by the federal government to contract with ABR, Inc. to conduct radar studies of nocturnal migration of birds and bats during the migrations seasons in the Spring and Fall of 2005 with a mean nocturnal flight altitude of 402 meters with less than 5% of targets at altitudes of less than 125 meters. The mean nocturnal passage rate was 166 targets/km/h in the fall and 145 targets/km/h in the spring. Lastly, University faculty and students conducted a nesting bird study May - July 2006. Seventy-three (73) species of birds were observed with 65 determined to be breeding or potentially breeding species; this figure represents approximately 30% of the 214 breeding bird species in Pennsylvania. No officially protected avian species were determined to be nesting at Swallow Farm.

  10. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines......This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges...

  11. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...... variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also...

  12. TradeWind. Integrating wind. Developing Europe's power market for the large-scale integration of wind power. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-15

    Based on a single European grid and power market system, the TradeWind project explores to what extent large-scale wind power integration challenges could be addressed by reinforcing interconnections between Member States in Europe. Additionally, the project looks at the conditions required for a sound power market design that ensures a cost-effective integration of wind power at EU level. In this way, the study addresses two issues of key importance for the future integration of renewable energy, namely the weak interconnectivity levels between control zones and the inflexibility and fragmented nature of the European power market. Work on critical transmission paths and interconnectors is slow for a variety of reasons including planning and administrative barriers, lack of public acceptance, insufficient economic incentives for TSOs, and the lack of a joint European approach by the key stakeholders. (au)

  13. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  14. Operating Reserves and Wind Power Integration: An International Comparison; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O' Malley, M.; Miller, N.; Eriksen, P. B.; Gottig, A.; Rawn, B.; Gibescu, M.; Lazaro, E. G.; Robitaille, A.; Kamwa, I.

    2010-10-01

    This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on an informal International Energy Agency Task 25: Large-scale Wind Integration.

  15. Effects of massive wind power integration on short-term water resource management in central Chile - a grid-wide study

    Science.gov (United States)

    Haas, J.; Olivares, M. A.; Palma, R.

    2013-12-01

    In central Chile, water from reservoirs and streams is mainly used for irrigation and power generation. Hydropower reservoirs operation is particularly challenging because: i) decisions at each plant impact the entire power system, and ii) the existence of large storage capacity implies inter-temporal ties. An Independent System Operator (ISO) decides the grid-wide optimal allocation of water for power generation, under irrigation-related constraints. To account for the long-term opportunity cost of water, a future cost function is determined and used in the short term planning. As population growth and green policies demand increasing levels of renewable energy in power systems, deployment of wind farms and solar plants is rising quickly. However, their power output is highly fluctuating on short time scales, affecting the operation of power plants, particularly those fast responding units as hydropower reservoirs. This study addresses these indirect consequences of massive introduction of green energy sources on reservoir operations. Short-term reservoir operation, under different wind penetration scenarios, is simulated using a replica of Chile's ISO's scheduling optimization tools. Furthermore, an ongoing study is exploring the potential to augment the capacity the existing hydro-power plants to better cope with the balancing needs due to a higher wind power share in the system. As reservoir releases determine to a great extent flows at downstream locations, hourly time series of turbined flows for 24-hour periods were computed for selected combinations between new wind farms and increased capacity of existing hydropower plants. These time series are compiled into subdaily hydrologic alteration (SDHA) indexes (Zimmerman et al, 2010). The resulting sample of indexes is then analyzed using duration curves. Results show a clear increase in the SDHA for every reservoir of the system as more fluctuating renewables are integrated into the system. High

  16. Utility Wind Integration and Operating Impact - State of the Art

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. C.; Milligan, M. R.; DeMeo, E. A.; Parsons, B.

    2007-08-01

    At the end of 2005, the Power Engineering Society (PES) published a special issue of its Power & Energy Magazine that focused on integrating wind into the power system. This paper provides a summary and update on many of the salient points from that special issue about the current state of knowledge regarding utility wind integration issues.

  17. Maximizing wind power integration in distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Nursebo Salih, S.; Chen, Peiyuan; Carlson, Ola [Chalmers Univ. of Technology (Sweden)

    2011-07-01

    Due to the location of favorable wind sites and lower connection costs associated with installing wind power in a distribution system, there is a need to know the hosting capacity of a distribution system so that it can be used effectively for injecting wind power into the power system. Therefore this paper presents a methodology to investigate the wind power hosting capacity of a distribution system. Stochastic nature of wind power and customer loads is taken into account using copulas. Hence it is possible to investigate various levels of correlation among customer loads. A simple algorithm is proposed for selecting the connection points of wind power in the network. The effectiveness of active management strategies such as wind power curtailment and reactive power compensation are thoroughly investigated. The analysis shows that allowing a curtailment level of as low as 0.2% with power factor (PF) control of wind turbines could boost the hosting capacity by 118%. (orig.)

  18. Aleutian Pribilof Islands Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski

  19. Hydro power and wind integration in the northeast

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B. [New Brunswick System Operator, Fredericton, NB (Canada)

    2007-07-01

    The challenges facing the electricity market in the northeast was discussed with particular reference to the integration of wind generation into the Maritimes Area system. Load growth continues at a rate of 1.5 per cent per year in Quebec and Atlantic Canada, while the ISO-New England estimates a need for 8000 MW of new resources by 2025. In addition, the New England Governors and Eastern Canadian Premiers (NEG/ECP) have set targets for reduction of greenhouse gas (GHG) in the electricity sector by about 80 per cent by 2050. New power generation developments will therefore shift from conventional fossil fuel sources to renewable energy sources such as wind power, conventional large hydro in northern Quebec and Labrador, and new nuclear in New Brunswick. These changes will pose challenges for operational reliability and transmission access to southern load centres in New England and New York. Although wind power can provide large quantities of clean energy, it is intermittent and must rely on other generation for backup and load balancing. The potential limits on wind generation were discussed along with conventional hydro storage solutions that could maximize wind developments for Maritimes area system by improving the effectiveness and reliability of a diversified power generation system. Fast acting hydro generators can efficiently provide the system with ancillary services such as voltage support, operating reserves, load balancing and frequency control required for secure operation. The region is actively looking into transmission access to connect wind and hydro generation. A new 345 kV tie between New Brunswick and Maine will become operational in the autumn of 2007. In addition, studies are ongoing to connect Newfoundland and Labrador to the Maritimes, and studies in New England are considering Northern Maine access, Southern Maine congestion and under water HVDC projects, The regulatory issues surrounding these potential projects was also discussed.

  20. Integrated Bidding and Operating Strategies for Wind-Storage Systems

    DEFF Research Database (Denmark)

    Ding, Huajie; Pinson, Pierre; Hu, Zechun

    2016-01-01

    to perform arbitrage and to alleviate wind power deviations from day-ahead contracts. The strategy is developed with two-price balancing markets in mind. A mixed integer nonlinear optimization formulation is built to determine optimal offers by taking into account expected wind power forecasting errors......Due to their flexible charging and discharging capabilities, energy storage systems (ESS) are considered a promising complement to wind farms (WFs) participating in electricity markets. This paper presents integrated day-ahead bidding and real-time operation strategies for a wind-storage system...... profit, regardless of the temporal dependence of wind power forecasting errors....

  1. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...

  2. Spatio-temporal data analytics for wind energy integration

    CERN Document Server

    Yang, Lei; Zhang, Junshan

    2014-01-01

    This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic di

  3. The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters

    Directory of Open Access Journals (Sweden)

    Yancai Xiao

    2016-05-01

    Full Text Available In order to meet the requirements of high precision and fast response of permanent magnet direct drive (PMDD wind turbines, this paper proposes a fuzzy proportional integral (PI controller associated with a new control strategy for wind turbine converters. The purpose of the control strategy is to achieve the global optimization for the quantization factors, ke and kec, and scale factors, kup and kui, of the fuzzy PI controller by an improved particle swarm optimization (PSO method. Thus the advantages of the rapidity of the improved PSO and the robustness of the fuzzy controller can be fully applied in the control process. By conducting simulations for 2 MW PMDD wind turbines with Matlab/Simulink, the performance of the fuzzy PI controller based on the improved PSO is demonstrated to be obviously better than that of the PI controller or the fuzzy PI controller without using the improved PSO under the situation when the wind speed changes suddenly.

  4. Review of Energy Storage System for Wind Power Integration Support

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Hu, Shuju

    2015-01-01

    -discharging characteristics, Energy Storage System (ESS) is considered as an effective tool to enhance the flexibility and controllability not only of a specific wind farm, but also of the entire grid. This paper reviews the state of the art of the ESS technologies for wind power integration support from different aspects....... Firstly, the modern ESS technologies and their potential applications for wind power integration support are introduced. Secondly, the planning problem in relation to the ESS application for wind power integration is reviewed, including the selection of the ESS type, and the optimal sizing and siting...... of the ESS. Finally, the proposed operation and control strategies of the ESS for different application purposes in relation to the wind power integration support are summarized. The conclusion is drawn in the end....

  5. Investigations of a building-integrated ducted wind turbine module

    Science.gov (United States)

    Dannecker, Robert K. W.; Grant, Andrew D.

    2002-01-01

    So far, wind energy has not played a major role in the group of technologies for embedded generation in the built environment. However, the wind flow around conventional tall buildings generates differential pressures, which may cause an enhanced mass flow through a building-integrated turbine. As a first step, a prototype of a small-scale ducted wind turbine has been developed and tested, which seems to be feasible for integration into the leading roof edge of such a building. Here an experimental and numerical investigation of the flow through building-integrated ducting is presented. Pressure and wind speed measurements have been carried out on a wind tunnel model at different angles of incident wind, and different duct configurations have been tested. It was confirmed that wind speeds up to 30% higher than in the approaching freestream may be induced in the duct, and good performance was obtained for angles of incident wind up to ±60°. The experimental work proceeded in parallel with computational fluid dynamics (CFD) modelling. The geometry of the system was difficult to represent to the required level of accuracy, and modelling was restricted to a few simple cases, for which the flow field in the building-integrated duct was compared with experimental results. Generally good agreement was obtained, indicating that CFD techniques could play a major role in the design process. Predicted power of the proposed device suggests that it will compare favourably with conventional small wind turbines and photovoltaics in an urban environment.

  6. Grid Integration and Dynamic Impact of Wind Energy

    CERN Document Server

    Vittal, Vijay

    2013-01-01

    Grid Integration and Dynamic Impact of Wind Energy details the integration of wind energy resources to the electric grid worldwide. Authors Vijay Vittal and Raja Ayyanar include detailed coverage of the power converters and control used in interfacing electric machines and power converters used in wind generators, and extensive descriptions of power systems operation and control to accommodate large penetration of wind resources. Key concepts will be illustrated through extensive power electronics and power systems simulations using software like MATLAB, Simulink and PLECS. The book addresses real world problems and solutions in the area of grid integration of wind resources, and will be a valuable resource for engineers and researchers working in renewable energy and power.

  7. Supply chain integration opportunities for the offshore wind industry

    DEFF Research Database (Denmark)

    Martinez, Ivan

    2016-01-01

    with means to overcome their current supply chain challenges. Design/methodology/approach - A comprehensive literature review was conducted involving 162 articles published in 29 peer-reviewed journals. The papers were analyzed in terms of the dimensions of SCI, research methodology, unit of analysis, level...... of analysis, type of industry and manufacturing environment being studied, integrative practices, integrative barriers and the link between SCI and performance. Findings - While SCI has been evolving to become an influential topic in the field of supply chain management, scholars have overlooked industrial......Purpose - This paper surveys the literature on supply chain integration (SCI) to identify the state of research in the various types of studied industries and manufacturing environments. The purpose of this paper is to identify academic discoveries that could provide offshore wind projects...

  8. Manzanita Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Trisha Frank

    2004-09-30

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

  9. Nodal prices determination with wind integration for radial ...

    African Journals Online (AJOL)

    In this paper, a distribution system nodal pricing scheme is proposed for radial distribution system with integration of wind power in the system. The main objective of the paper is: (i) an optimal power flow based approach for determination of nodal prices for distribution system, (ii) impact of wind generation on nodal prices.

  10. Integration of offshore wind farms into the local distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, R.D. [and others

    2003-07-01

    This report summarises the results of a study developing static and dynamic models for a doubly-fed induction generator and the integration of the models into the commercially available and widely used power system analysis computer programme IPSA. Details are given of connection studies involving fixed speed, variable speed and double-fed induction machines; the development of optimal power flow and use of the Optimal Power Flow (OPF) tool; and voltage control studies. The system and offshore connection, connection studies and policies, technical problems, stability connection studies for wind farms with synchronous generators and transient stability connection studies for fixed speed and doubly-fed induction generators are discussed along with the integration of OPF into IPSA.

  11. Wind Integration National Dataset (WIND) Toolkit; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, Caroline; Hodge, Bri-Mathias

    2015-07-14

    A webinar about the Wind Integration National Dataset (WIND) Toolkit was presented by Bri-Mathias Hodge and Caroline Draxl on July 14, 2015. It was hosted by the Southern Alliance for Clean Energy. The toolkit is a grid integration data set that contains meteorological and power data at a 5-minute resolution across the continental United States for 7 years and hourly power forecasts.

  12. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  13. Power quality and integration of wind farms in weak grids in India

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.; Hauge Madsen, P. [Risoe National Lab., Roskilde (Denmark). Wind Energy and Atmospheric Physics Dept.; Vikkelsoe, A.; Koelbaek Jensen, K. [Danske Elvaerkers Forening Udredningsafdelingen (DEFU), Lyngby (Denmark); Fathima, K.A.; Unnikrishnan, A.K.

    2000-04-01

    This is the final report of a joint Danish and Indian project' Power Quality and Integration of Wind Farms in Weak Grids'. The power quality issues have been studied and analysed with the Indian conditions as a case. On the basis of meetings with Danish wind turbine industry, Indian electricity boards, nodal agencies, wind turbine industry and authorities, the critical power quality as-pects in India have been identified. Measurements on selected wind farms and wind turbines have quantified the power quality, and analyses of power quality issues, especially reactive power compensation, have been performed. Based on measurements and analyses, preliminary recommendations for grid integration of wind turbines in weak grids have been formulated. (au)

  14. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik

    2013-01-01

    integration by 8%. The application of EVs benefits from saving both energy system cost and fuel cost. However, the negative consequences of decreasing energy system efficiency and increasing the CO2 emission should be noted when applying the hydrogen fuel cell vehicle (HFCV). The results also indicate...... was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power...

  15. Wind Integration Cost and Cost-Causation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  16. Urban turbines (Part 2): Integrating wind turbines in high rise buildings[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bries, E. de

    2002-07-01

    For the majority of wind turbine designers as well as architects and civil engineers, the concept of integrating a wind turbine in buildings can be regarded a new phenomenon. Integration of two different technologies requires novel ways of thinking, and competence in dealing with complexities in cost in relation to the shape of a building and its user functions. A recently completed research project in the Netherlands at the Technical University of Delft's department of civil engineering looks at structural building aspects as well as integration of wind turbines in buildings - a so-called Wind Turbine Building (WTB) - as a means to cover a sizable part of the internal energy use. (au)

  17. Risk analysis for U.S. offshore wind farms: the need for an integrated approach.

    Science.gov (United States)

    Staid, Andrea; Guikema, Seth D

    2015-04-01

    Wind power is becoming an increasingly important part of the global energy portfolio, and there is growing interest in developing offshore wind farms in the United States to better utilize this resource. Wind farms have certain environmental benefits, notably near-zero emissions of greenhouse gases, particulates, and other contaminants of concern. However, there are significant challenges ahead in achieving large-scale integration of wind power in the United States, particularly offshore wind. Environmental impacts from wind farms are a concern, and these are subject to a number of on-going studies focused on risks to the environment. However, once a wind farm is built, the farm itself will face a number of risks from a variety of hazards, and managing these risks is critical to the ultimate achievement of long-term reductions in pollutant emissions from clean energy sources such as wind. No integrated framework currently exists for assessing risks to offshore wind farms in the United States, which poses a challenge for wind farm risk management. In this "Perspective", we provide an overview of the risks faced by an offshore wind farm, argue that an integrated framework is needed, and give a preliminary starting point for such a framework to illustrate what it might look like. This is not a final framework; substantial work remains. Our intention here is to highlight the research need in this area in the hope of spurring additional research about the risks to wind farms to complement the substantial amount of on-going research on the risks from wind farms. © 2015 Society for Risk Analysis.

  18. Wind farm repowering: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Selva, L. [Renewable Energy Eng. (Spain); Canas, M.; Gomez, E.; Pujante, A [Renewable Energy Research Inst., Dept. of Electrical, Electronic and Control Eng. (Spain)

    2007-11-15

    Wind farm repowering involves the replacement of smaller and middle sized wind turbines, with state-of-the-art multi-megawatt turbines. In this paper, a detailed study of the repowering of a wind farm is presented, by computing the generated active power from existing wind turbines and the new ones. The active power generated with the wind turbines are totalized to obtain the yearly generated energy and analyzed, thus economic studies take the repowering cost into account too. (au)

  19. Power quality and integration of wind farms in weak grids in India

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Madsen, Peter Hauge; Vikkelsø, A.

    2000-01-01

    This is the final report of a joint Danish and Indian project "Power Quality and Integration of Wind Farms in Weak Grids". The power quality issues have been studied and analysed with the Indian conditions as a case. On the basis of meetings with Danishwind turbine industry, Indian electricity...... boards, nodal agencies, wind turbine industry and authorities, the critical power quality as-pects in India have been identified. Measurements on selected wind farms and wind turbines have quantified the powerquality, and analyses of power quality issues, especially reactive power compensation, have been...

  20. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  1. Integration of Wind Power into the Danish Power System

    DEFF Research Database (Denmark)

    Rácz, Viktor J.; Yadav, Priyadarshini; Vestergaard, Niels

    Wind energy is a major player in the Danish electricity market with an ambitious goal to pursue 50% of the electricity market by 2020. This paper examines the economic impacts of increasing integration of large-scale wind power to the existing electrical grid. Firstly, we survey the literature...... the price of electricity. We have observed the degree of influence of the fossil fuel prices, total demand, wind power production and import on the electricity price and the individual co-efficiency for the years 2000, 2005 and 2010, according to the energy mix. Using a grid management model for the Western...

  2. System and market integration of wind power in Denmark

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Alberg Østergaard, Poul

    2013-01-01

    Denmark has more than 10 years’ of experience with a wind share of approximately 20 per cent. During these 10 years, electricity markets have been subject to developments with a key focus on integrating wind power as well as trading electricity with neighbouring countries. This article introduces...... been financed solely by the electricity consumers, while maintaining production prices below the EU average. The net influence from wind power has been as low as 1e3 per cent of the consumer price. © 2012 Elsevier Ltd. All rights reserved....

  3. India RE Grid Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-08

    The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India's RE targets and identify actions that may be favorable for integration.

  4. Integrated simulation challenges with the DeepWind floating vertical axis wind turbine concept

    OpenAIRE

    Verelst, David; Aagaard Madsen , Helge; Borg, Michael; Schmidt Paulsen, Uwe; Svendsen, Harald G.; Berthelsen, Petter Andreas

    2015-01-01

    - This paper presents the experiences and challenges with concurrently carrying out numerical model development, integrated simulations and design of a novel floating vertical axis wind turbine, the DeepWind concept. The floating VAWT modelling capabilities of the aero-hydro-elastic HAWC2 simulation tool are briefly described and the design approach adopted for such a challenging project was to independently design subsystems in parallel, apart from essential design specifications. Instabi...

  5. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, B. M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCaa, J. [3TIER by VAisala, Seattle, WA (United States)

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  6. Evaluation of an Integrated Roof Wind Energy System for urban environments

    Science.gov (United States)

    Patankar, B.; Tyagi, R.; Kiss, D.; Suma, A. B.

    2016-09-01

    Integrating renewable energy in the urban environment is of importance for the renewable energy goals set by the European Union. This research is to study and evaluate wind energy potential for an Integrated Roof Wind Energy System on the rooftop of the buildings of different heights and in different locations with the help of numerical modelling (CFD). The Navier-Stokes equations are solved using the SIMPLE algorithm while the turbulence is modelled using the k-ω SST equations. All the simulations are performed using OpenFOAM. Results shows that wind speed can be accelerated by ∼1.4 times till it reaches the periphery of the turbine inside the unit, which will increase wind power output considerably. This results in power factor increase of 1.7 for tall buildings. Therefore, enabling combined micro wind and solar energy systems to be a viable option for urban environments.

  7. Wind energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  8. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  9. Anechoic wind tunnel study of turbulence effects on wind turbine broadband noise

    Science.gov (United States)

    Loyd, B.; Harris, W. L.

    1995-01-01

    This paper describes recent results obtained at MIT on the experimental and theoretical modelling of aerodynamic broadband noise generated by a downwind rotor horizontal axis wind turbine. The aerodynamic broadband noise generated by the wind turbine rotor is attributed to the interaction of ingested turbulence with the rotor blades. The turbulence was generated in the MIT anechoic wind tunnel facility with the aid of biplanar grids of various sizes. The spectra and the intensity of the aerodynamic broadband noise have been studied as a function of parameters which characterize the turbulence and of wind turbine performance parameters. Specifically, the longitudinal integral scale of turbulence, the size scale of turbulence, the number of turbine blades, and free stream velocity were varied. Simultaneous measurements of acoustic and turbulence signals were made. The sound pressure level was found to vary directly with the integral scale of the ingested turbulence but not with its intensity level. A theoretical model based on unsteady aerodynamics is proposed.

  10. Wind Generation Feasibility Study in Bethel, AK

    Energy Technology Data Exchange (ETDEWEB)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  11. Study on wind turbine arrangement for offshore wind farms

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2011-01-01

    In this paper, the separation distance between two neighboring offshore wind turbines has been carried out by using the Actuator Line/Navier-Stokes technique developed at the Technical University of Denmark (DTU). Under offshore atmospheric conditions, Large Eddy Simulation has been performed...... for two Tjæreborg 2 MW wind turbines in tandem with separation distances of 4D, 5D, 6D, 7D, 8D and 10D at the design wind speed of 10 m/s. The power performance of the wake turbine showed to be about 23% of the first turbine at a separation distance of 4D while its performance reached about 50% at 7D due...... to the turbulence mixing. This study hints that the optimal separation distance between neighboring turbines for offshore wind farms should be 7 rotor diameters....

  12. Dynamic performance of a novel offshore power system integrated with a wind farm

    DEFF Research Database (Denmark)

    Orlandini, Valentina; Pierobon, Leonardo; Schløer, Signe

    2016-01-01

    Offshore wind technology is rapidly developing and a wind farm can be integrated with offshore power stations. This paper considers as case study a futuristic platform powered by a wind farm and three combined cycle units consisting of a gas turbine and an ORC (organic Rankine cycle) module. The ...... decreasing frequency oscillations and fuel consumptions of the platform, with respect to the simplified configuration. On the other hand, the dynamic response of the combined cycle units is slower due to the thermal inertia of the heat transfer equipment.......Offshore wind technology is rapidly developing and a wind farm can be integrated with offshore power stations. This paper considers as case study a futuristic platform powered by a wind farm and three combined cycle units consisting of a gas turbine and an ORC (organic Rankine cycle) module....... The first aim of this paper is to identify the maximum amount of wind power that can be integrated into the system, without compromising the electric grid balance. The stability of the grid is tested using a dynamic model of the power system based on first principles. Additionally, the dynamics...

  13. The effects of different regulation strategies on Jiangsu's wind integration

    DEFF Research Database (Denmark)

    Hong, Lixuan; Lund, Henrik; Möller, Bernd

    This paper presents the influence of different regulation strategies on wind energy integration into existing Jiangsu’s energy system. The ability of wind integration is defined in terms of the ability to avoid excess electricity production, to conserve primary energy consumptions and to reduce CO2...... are compared and analyzed in the range of a wind input from 0% to 47% of the electricity demand. It is concluded that operating power plants of existing Jiangsu’s energy system in a flexible way is...... emissions in the system. Firstly, a reference model of Jiangsu’s energy system is built by using EnergyPLAN based on the year 2009. The model results then are compared to actual values from 2009 to validate its accuracy. Based on the reference model, different regulations of Jiangsu’s energy system...

  14. Integration of large wind farms into weak power grids. Emphasis on the Ethiopian interconnected system (ICS)

    Energy Technology Data Exchange (ETDEWEB)

    Bantyirga Gessesse, Belachew

    2013-07-18

    The impact of increased wind power on the steady state and dynamic behavior of the Ethiopian power system is the main focus of this thesis. The integration of wind power to the existing grid with conventional generators introduces new set of challenges regarding system security and operational planning, the main cause of the difference arising from the uncertainty of the primary source of energy and the response time following a disturbance. For incorporating wind turbine models into the overall dynamic model of the system and investigating the effect of wind on the dynamic behavior of the wind first models of wind turbine components were put together by reviewing the current state of the art in wind turbine modeling and control concepts. The theoretical insight thus gained was applied to the Ethiopian power system as a case study. Since the models of the installed turbines were either not available or incomplete, an alternative modeling approach based on generic models was adopted. The generic model, in addition to obviating the need for technology or manufacturer specific models, reduces the complexity the dynamic model. Using this procedure, generic dynamic models for wind farm in the system were developed. The capability of dynamic models to reproduce the dynamic response of the system has been verified by comparing simulation results obtained with a detailed and generic wind farm model. It could be shown that the generic wind turbine model is simple, but accurate enough to represent any wind turbine types or entire wind farms for power system stability analysis. The next task was the study of the effect of increased wind power level on the general behavior of the Ethiopian system. It is observed that overall the impact of wind turbines on the operational indices of the system was -as could be expected- more pronounced in the vicinity of the wind farm. But the power angle oscillation following a disturbance was observed across the whole system. Further, as a

  15. Assessing the level of integration in the offshore wind industry value chain

    DEFF Research Database (Denmark)

    Martinez-Neri, Ivan; Mikkelsen, Ole Stegmann; Stentoft, Jan

    2014-01-01

    &D for the benefit of the whole industry. This work is a first step to map the state of integration of the OWI. It is intended that the re-sults will help managers in the different industries to be aware of the challenges that need to be tackled in order to make the OWI more competitive and become more integrated...... of the integration level of the offshore wind industry value chain. The work relies on a review of international peer-reviewed journals. The empirical basis of the paper is based on interviews with key players in the industry. The scope of this study covers the wind turbine generator, foundations, subsea cables......, offshore substation, installation vessels and the wind farm developer. The preliminary findings are that the different indus-trial sectors participating in the OWI are not aware of the maturity level of the sector. The fact that some developers are disintegrating the already integrated supply of some...

  16. Repowering of wind farms - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Nivedh, B.S. [Quality Engineering and Software Technologies, Bangalore (India); Devi, R.P.K. [College of Engineering. Power Systems Engineering, Guindy (India); Sreevalsan, E. [Gamesa Wind Turbines India Private Limited, Chennai (India)

    2012-07-01

    The main objective of the study is to devise a method for assessing the repowering potential and to improve the energy output from the wind farms and also to understand the impact on the power quality due to repowering. With repowering, the first-generation wind turbines can be replaced with modern multi-megawatt wind turbines. To carry-out the study an old wind farm located at Kayathar, Tamilnadu is selected. The wind farm was commissioned in 1990's with a capacity of 7.35MW, which consists of 36 Wind Turbines each with the capacity of 200kW and 225kW. The present annual energy generation of the wind farm is 7350MWhr with the plant load factor of 11.41%. The intent of this study is to predict the annual energy output of the wind farm after the repowering using WAsP (Wind Atlas Analysis Application Program). Further this study analyses the power quality issues of the various Wind Turbines. In addition, the main feeder, in which the wind farm which is taken for the study also modeled and the impact on power quality due to repowering also studied. Simulations were carried out using MATLAB. The results are analyzed to understand the significance of repowering to overcome the energy crisis of the nation since the best locations for wind in India are occupied by old wind turbines. The following are the observations and conclusions from the above study. Plant load factor (PLF) increased to 24 %, Energy yield increased to more than 4 times and the capacity of the wind farm became double. And in the view of power quality, comparing to the existing Feeder, Repowered Feeder having less reactive power consumption, voltage variations and flickers except the harmonic distortion. (Author)

  17. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    Generation expansion planning (GEP) is the problem of finding the optimal strategy to plan the Construction of new generation while satisfying technical and economical constraints. In the deregulated and competitive environment, large-scale integration of wind generation (WG) in power system has...... necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...

  18. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  19. Coordinated Control Strategies for Offshore Wind Farm Integration via VSC-HVDC for System Frequency Support

    DEFF Research Database (Denmark)

    Li, Yujun; Xu, Zhao; Østergaard, Jacob

    2017-01-01

    Coordinated control strategies to provide system inertia support for main grid from offshore wind farm that is integrated through HVdc transmission is the subject matter of this paper. The strategy that seeks to provide inertia support to the main grid through simultaneous utilization of HVdc...... scheme. Both strategies can effectively provide inertia support while the second one minimizes the control impacts on harvesting wind energy with the aid of communication between onshore and offshore ac grids. Case studies of a wind farm connecting with a HVdc system considering sudden load variations...... have been successfully conducted to compare and demonstrate the effectiveness of the control strategies in DIgSILENT/PowerFactory....

  20. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R. J. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical & Aerospace Engineering; Pryor, S. C. [Cornell Univ., Ithaca, NY (United States). Dept. of Earth and Atmospheric Sciences

    2017-09-18

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At the National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to

  1. Integrating wind turbines into the Orcas Island distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W. [Zaininger Engineering Co., Roseville, CA (United States)

    1998-09-01

    This research effort consists of two years of wind data collection and analysis to investigate the possibility of strategically locating a megawatt (MW) scale wind farm near the end of an Orcas Power and light Company (OPALCO) 25-kilovolt (kV) distribution circuit to defer the need to upgrade the line to 69 kV. The results of this study support the results of previous work in which another year of wind data and collection was performed. Both this study and the previous study show that adding a MW-scale wind farm at the Mt. Constitution site is a feasible alternative to upgrading the OPALCO 25-kV distribution circuit to 69 kV.

  2. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  3. On the integration of wind generators on weak grids and island grids; Sur l'integration des generateurs eoliens dans les reseaux faibles ou insulaires

    Energy Technology Data Exchange (ETDEWEB)

    Laverdure, N

    2005-12-15

    Wind energy is now an energy that can not be ignored. Because of intrinsic characteristics (scattered primary energy, generators with different technologies, use of power electronics interface), wind energy system integration in distribution grids leads to real problems in terms of impacts. With recent standard changes, it is necessary to study the possibilities of each technology of wind turbines to answer or not to these new constraints. This PhD thesis focuses on a comparison of the main present wind turbines concerning three points of discussion: energy quality, fault ride through, ancillary services (voltage and frequency). It insists on the possibilities in terms of control laws for variable speed wind turbines. (author)

  4. Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends

    Directory of Open Access Journals (Sweden)

    Masaō Ashtine

    2016-12-01

    Full Text Available Micro-scale/small wind turbines, unlike larger utility-scale turbines, produce electricity at a rate of 300 W to 10 kW at their rated wind speed and are typically below 30 m in hub-height. These wind turbines have much more flexibility in their costs, maintenance and siting, owing to their size, and can provided wind energy in areas much less suited for direct supply to the grid system. In the future under climate change, the energy landscape will likely shift from the present centralized electricity generation and delivery system to a more distributed and locally-generated electricity and delivery system. In the new system configuration, the role of relatively small sustainable electricity generators like small wind turbines will likely become more prominent. However, the small wind industry has been substantially slow to progress in Ontario, Canada, and there is much debate over its viability in a growing energy dependent economy. This study seeks to demonstrate the performance of a small wind turbine, and speculate on its potential power output and trend over Ontario historically over the last 33 years using the North American Regional Reanalysis (NARR data. We assessed the efficiency of a Bergey Excel 1 kW wind turbine at the pre-established Kortright Centre for Conservation test site, located north of Toronto. Using a novel approach, the Bergey optimized power curve was incorporated with reanalysis data to establish power output across Ontario at three-hour resolution. Small turbine-based wind power around the Great Lakes and eastern James Bay increased during winter and fall, contributing up to 10% of the annual electricity demand in some regions in Ontario. We purport that increases in power output are driven by long-term reductions in sea and lake ice concentrations affecting atmospheric stability in surrounding regions.

  5. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  6. Integrated simulation challenges with the DeepWind floating vertical axis wind turbine concept

    DEFF Research Database (Denmark)

    Verelst, David; Aagaard Madsen, Helge; Borg, Michael

    2015-01-01

    This paper presents the experiences and challenges with concurrently carrying out numerical model development, integrated simulations and design of a novel floating vertical axis wind turbine, the DeepWind concept. The floating VAWT modelling capabilities of the aero-hydro-elastic HAWC2 simulation...... tool are briefly described and the design approach adopted for such a challenging project was to independently design subsystems in parallel, apart from essential design specifications. Instability issues encountered when integrating all subsystems in the unified numerical model, in particular blade...... edgewise and controller instabilities, are presented and efforts to alleviate such issues are detailed. A multidisciplinary design and optimization approach is proposed to eliminate these issues and accelerate future design cycles....

  7. Design and Testing of a Novel Building Integrated Cross Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Wen Tong Chong

    2017-03-01

    Full Text Available The prospect of harnessing wind energy in urban areas is not promising owing to low wind speeds and the turbulence caused by surrounding obstacles. However, these challenges can be overcome through an improved design of wind turbine that can operate efficiently in an urban environment. This paper presents a novel design of a building integrated cross axis wind turbine (CAWT that can operate under dual wind direction, i.e., horizontal wind and vertical wind from the bottom of the turbine. The CAWT consists of six horizontal blades and three vertical blades for enhancing its self-starting behavior and overall performance. The study employed a mock-up building model with gable rooftop where both of the developed CAWT and the conventional straight-bladed vertical axis wind turbine (VAWT are mounted and tested on the rooftop. The height of the CAWT and the VAWT above the rooftop was varied from 100 to 250 mm under the same experimental conditions. The results obtained from the experimental study showed that there is significant improvement in the coefficient of power (Cp and self-starting behavior of the building integrated CAWT compared to the straight-bladed VAWT. At 100 mm height, the Cp,max value of the CAWT increased by 266%, i.e., from 0.0345 to 0.1263, at tip speed ratio (TSR (λ of 1.1 and at wind speed of 4.5 m/s. Similar improvements in performance are also observed for all condition of CAWT heights above the rooftop where the CAWT outperformed the straight-bladed VAWT by 196%, 136% and 71% at TSR of 1.16, 1.08, and 1.12 for Y = 150, 200, and 250 mm, respectively. Moreover, the CAWT performs better at 10° pitch angle of the horizontal blade compared to other pitch angles.

  8. Configuration study of large wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this thesis, layouts of various large-scale wind parks, using both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. The most interesting candidate for a DC transmission based wind park was investigated more in detail, the series DC wind park. Finally, the power quality impact in the PCC (point of common coupling) was studied. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km. Regarding the series DC wind park it was found that it is the most difficult one to control. However, a control algorithm for the series park and its turbines was derived and successfully tested. Still, several more details regarding the control of the series wind park has to be dealt with.

  9. Assessing the Impacts of Wind Integration in the Western Provinces

    Science.gov (United States)

    Sopinka, Amy

    Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.

  10. Study of the effect of wind speed on evaporation from soil through integrated modeling of atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan; Illangasekare, Tissa

    2013-04-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change, the movement of green house gases such as possible leaking of sequestered CO2 and the accurate detection of buried objects such as landmines. Soil moisture distribution in the shallow subsurface becomes a critical factor in all these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary

  11. Sault Tribe Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Toni Osterhout; Global Energy Concepts

    2005-07-31

    The Sault Tribe conducted a feasibility study on tribal lands in the Upper Peninsula of Michigan to determine the technical and economic feasibility of both small and large-scale wind power development on tribal lands. The study included a wind resource assessment, transmission system analysis, engineering and regulatory analyzes and assessments.

  12. The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT

    Directory of Open Access Journals (Sweden)

    Hassam Nasarullah Chaudhry

    2014-08-01

    Full Text Available A numerical investigation was carried out to determine the impact of structural morphology on the power generation capacity of building-integrated wind turbines. The performance of the turbines was analysed using the specifications of the Bahrain Trade Centre which was taken as the benchmark model, the results of which were compared against triangular, square and circular cross-sections of the same building. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS equations along with the momentum and continuity equations were solved for obtaining the velocity and pressure field. Simulating a reference wind speed of 6 m/s, the findings from the study quantified an estimate power generation of 6.4 kW indicating a capacity factor of 2.9 % for the benchmark model. The square and circular configurations however determined greater capacity factors of 12.2 % and 19.9 %, recording an estimated power production capability of 26.9 kW and 35.1 kW and confirming the largest extraction of the incoming wind stream. The optimum cross-sectional configuration for installing wind turbines in high-rise buildings was the circular orientation as the average wind speed at the wind turbines was accelerated by 0.3 m/s resulting in an overall augmentation of 5 %. The results from this study therefore highlighted that circular building morphology is the most viable building orientation, particularly suited to regions with a dominant prevailing wind direction.

  13. Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform

    Directory of Open Access Journals (Sweden)

    Jinsong Liu

    2018-01-01

    Full Text Available Over the past few decades, wind energy has emerged as an alternative to conventional power generation that is economical, environmentally friendly and, importantly, renewable. Specifically, offshore wind energy is being considered by a number of countries to harness the stronger and more consistent wind resource compared to that over land. To meet the projected “20% energy from wind by 2030” scenario that was announced in 2006, 54 GW of added wind energy capacity need to come from offshore according to a National Renewable Energy Laboratory (NREL study. In this study, we discuss the development of a semi-submersible floating offshore platform with a catenary mooring system to support a very large 13.2-MW wind turbine with 100-m blades. An iterative design process is applied to baseline models with Froude scaling in order to achieve preliminary static stability. Structural dynamic analyses are performed to investigate the performance of the new model using a finite element method approach for the tower and a boundary integral equation (panel method for the platform. The steady-state response of the system under uniform wind and regular waves is first studied to evaluate the performance of the integrated system. Response amplitude operators (RAOs are computed in the time domain using white-noise wave excitation; this serves to highlight nonlinear, as well as dynamic characteristics of the system. Finally, selected design load cases (DLCs and the stochastic dynamic response of the system are studied to assess the global performance for sea states defined by wind fields with turbulence and long-crested irregular waves.

  14. Optimal Siting and Sizing of Energy Storage System for Power Systems with Large-scale Wind Power Integration

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2015-01-01

    This paper proposes algorithms for optimal sitingand sizing of Energy Storage System (ESS) for the operationplanning of power systems with large scale wind power integration.The ESS in this study aims to mitigate the wind powerfluctuations during the interval between two rolling EconomicDispatches...

  15. Review of VSC HVDC Connection for Offshore Wind Power Integration

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei; Zhao, Haoran

    2016-01-01

    Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) connection has become a new trend for long distance offshore wind power transmission. It has been confirmed by a lot of research that the maximum distance of a High Voltage Alternative Current (HVAC) sub-marine cable transmission...... system is limited due to surplus charging current of the cables. The VSC HVDC transmission system has the ability to overcome the limitation and offers other advantages over the HVAC transmission system. This paper is to review the VSC HVDC transmission technology and its application for offshore wind...... power integration. Firstly, the main components, configuration and topology of the VSC HVDC transmission system are described. Secondly, the converter control system and control strategies are presented. Following that, the capabilities of the VSC HVDC technology are described. Finally, the focus...

  16. System Impact Study of the Eastern Grid of Sumba Island, Indonesia: Steady-State and Dynamic System Modeling for the Integration of One and Two 850-kW Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Oswal, R. [Innovation Wind Energy, Inc., Jacksonville, FL (United States); Jain, P. [Innovation Wind Energy, Inc., Jacksonville, FL (United States); Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hirsch, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Castermans, B. [Winrock International Inc., Little Rock, AR (United States); Chandra, J. [Winrock International Inc., Little Rock, AR (United States); Raharjo, S. [Winrock International Inc., Little Rock, AR (United States); Hardison, R. [Winrock International Inc., Little Rock, AR (United States)

    2016-01-01

    The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.

  17. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  18. Wind energy and integration into the grid; Energie eolienne et integration au reseau

    Energy Technology Data Exchange (ETDEWEB)

    Fox, B

    2009-07-01

    The development of wind power plants raises multiple challenges in terms of planning, exploitation and control of power systems. One characteristic of this energy source is its variability with time and its difficulty to be planned. This book takes stock of the theoretical and practical aspects of the question. It gives us a state-of-the-art of the existing solutions to integrate this energy source to the national grid beside other sources of different origin (nuclear, thermal..). In order to allow the reader to understand the stakes and the solutions, some basic notions of electrotechnics and wind technologies are presented first. Then it deals with the wind power impact on power system operation when the wind energy penetration reaches 10% of the whole power. The production/consumption balancing is analyzed and the problem of wind power unpredictability is approached. Beside the problems of voltage regulation of a wind farm and supply maintenance during voltage drop, the book allows to apprehend the operation of electricity markets and in particular those related to wind power (meteorology forecasts and anticipation of production). (J.S.)

  19. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition

  20. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...

  1. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  2. Development of the building integrated ducted wind turbine module

    Energy Technology Data Exchange (ETDEWEB)

    Dannecker, R.; Varela, G. Quinonez; Grant, A. [Strathclyde Univ., Dept. of Mechanical Engineering, Glasgow (United Kingdom)

    2000-07-01

    Wind is now established as a major renewable energy resource, but its exploitation is generally confined to sparsely populated areas and may in future be increasingly limited by environmental constraints. The paper describes the development of a small axial flow turbine with vertical shaft, situated in a curved duct, which is intended to be completely integrated in a high rise building in an urban environment. The design is intended to make optimal use of the differential pressures which result from wind flow around a building. A small scale model and prototypes for field trials have been tested as free standing devices and their performance shown to be competitive with conventional small machines for low power applications. The aerodynamical response to different design options is subject to computational fluid dynamic analysis and will be used in conjunction with wind tunnel testing to refine rotor, stator and duct geometries. A trial deployment will shortly commence as a demonstration project on a newly refurbished building of historical significance in the center of Glasgow. (Author)

  3. Integrated municipal wind power concepts; Windenergienutzung im staedtischen Verbund

    Energy Technology Data Exchange (ETDEWEB)

    Kolbert, D.; Richert, F. [Ventis Energietechnik GmbH, Braunschweig (Germany)

    1998-06-01

    The role of wind power in the industrial sector currently depends very much on its technical and economic integrability in existing conventional supply structures. The most important questions in this context relate to capacity effects, adapted operating methods of conventional power suppliers, and, most important of all, operational energy production costs. In some regions alternative energy supply concepts are not yet or not sufficiently available. However, these will nevertheless offer ways of installing energy systems with a large renewable segment. The chances of bringing such projects to fruition depend for one thing on the climate, which may either stimulate or deter from development work on renewables (wind power, solar energy), and for another, often in apparent opposition to the former, on the oftentimes poorly developed infrastructure and economic strength of the region in question. [Deutsch] Die Bedeutung der Windenergienutzung im industrialisierten Bereich ist derzeit verknuepft mit deren technischen und oekonomischen Integrationsfaehigkeit in bestehende, konventionelle Versorgungsstrukturen. Im Vordergrund steht hierbei die Klaerung der Fragestellungen nach Kapazitaetseffekten, angepassten Betriebsweisen konventioneller Stromerzeuger und, in erster Linie, betriebswirtschaftlichen Energieerzeugungskosten. Derzeit bieten die Regionen, in denen eine anderweitige Versorgung noch nicht oder in nicht ausreichendem Masse existieren Moeglichkeiten zur Installation von Energiesystemen mit hoher regenerativer Durchdringung. Fuer die Realisation solcher Projekte stehen sich haeufig die klimatischen Bedingungen, die einerseits z.T. die Ursache fuer den geringen Entwicklungsstand sind, andererseits aber auch guenstige Voraussetzungen fuer die Nutzung regenerativer Energien (Wind, Sonne) bieten, der meist schlechten Infrastruktur und der geringen Wirtschaftskraft gegenueber. (orig./MSK)

  4. Performance Analysis of a Savonius Wind Turbine in the Solar Integrated Rotor House

    Directory of Open Access Journals (Sweden)

    ABDUL LATIFMANGANHAR

    2017-07-01

    Full Text Available Rooftop, building integrated and building augmented micro wind systems have the potential for small scale power generation in the built environment. Nevertheless, the expansion of micro wind technology is very slow and its market is strongly affected by the low efficiency of conventional wind generators. WAG-RH (Wind Accelerating and Guiding Rotor House which is a new technique introduced to enhance the efficiency of vertical axis rotor. The present study utilizes other green energy element by integrating the WAG-RH with a solar heating system. In this effort roof of the WAG-RH has been utilized to heat air through micro solar chimney for creating buoyancy effect in the air flow channel at rotor zone in the WAG-RH. The integration is capable of improving the performance of rotor setup in the WAG-RH as well as providing hot air with sufficient air mass flow rate for space heating. The WAG-RH had brought about 138% increase in the performance coefficient(Cp of conventional three bladed Savonius rotor, whereas solar integrated WAG-RH has contributed 162% increase in the Cp of the same rotor.

  5. A Novel Integrated Algorithm for Wind Vector Retrieval from Conically Scanning Scatterometers

    Directory of Open Access Journals (Sweden)

    Xuetong Xie

    2013-11-01

    Full Text Available Due to the lower efficiency and the larger wind direction error of traditional algorithms, a novel integrated wind retrieval algorithm is proposed for conically scanning scatterometers. The proposed algorithm has the dual advantages of less computational cost and higher wind direction retrieval accuracy by integrating the wind speed standard deviation (WSSD algorithm and the wind direction interval retrieval (DIR algorithm. It adopts wind speed standard deviation as a criterion for searching possible wind vector solutions and retrieving a potential wind direction interval based on the change rate of the wind speed standard deviation. Moreover, a modified three-step ambiguity removal method is designed to let more wind directions be selected in the process of nudging and filtering. The performance of the new algorithm is illustrated by retrieval experiments using 300 orbits of SeaWinds/QuikSCAT L2A data (backscatter coefficients at 25 km resolution and co-located buoy data. Experimental results indicate that the new algorithm can evidently enhance the wind direction retrieval accuracy, especially in the nadir region. In comparison with the SeaWinds L2B Version 2 25 km selected wind product (retrieved wind fields, an improvement of 5.1° in wind direction retrieval can be made by the new algorithm for that region.

  6. Air/ground wind shear information integration: Flight test results

    Science.gov (United States)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  7. High Quality Data for Grid Integration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit; Hodge, Bri-Mathias

    2017-01-22

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.

  8. The integration of climatic data sets for wind resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.N.; Elliott, D.L.

    1997-09-01

    One barrier to wind energy development, in many regions of the world, is the lack of reliable information about the spacial distribution of the wind energy resource. The goal of the U.S. Department of Energy (DOE) Wind Energy Program`s wind resource assessment group is to improve the characterization of the wind resource in many of these regions in support of U.S. wind energy industry. NREL provides wind resource assessments for our clients in the form of reports, atlases, and wind resource maps. The assessments estimate the level of the wind resource, at wind turbine hub heights (typically 30m to 50m above ground level), for locations exposed to the prevailing winds.

  9. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying...... an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly...... to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also...

  10. An Improved Global Wind Resource Estimate for Integrated Assessment Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Eurek, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hettinger, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    This paper summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquely detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.

  11. Four essays on offshore wind power potential, development, regulatory framework, and integration

    Science.gov (United States)

    Dhanju, Amardeep

    Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware

  12. Integrating wind output with bulk power operations and wholesale electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E. [Consulting in Electric-Industry Restructuring, Oak Ridge, TN (United States)

    2002-07-01

    Wind farms have three characteristics that complicate their widespread application as an electricity resource: limited control, unpredictability and variability. Therefore the integration of wind output into bulk power electric systems is qualitatively different from that of other types of generators. The electric system operator must move other generators up or down to offset the time-varying wind fluctuations. Such movements raise the costs of fuel and maintenance for these other generators. Not only is wind power different, it is new. The operators of bulk power systems have limited experience in integrating wind output into the larger system. As a consequence, market rules that treat wind fairly - neither subsidizing nor penalizing its operation - have not yet been developed. The lack of data and analytical methods encourages wind advocates and sceptics to rely primarily on their biases and beliefs in suggesting how wind should be integrated into bulk power systems. This project helps fill this data and analysis gap. Specifically, it develops and applies a quantitative method for the integration of a wind resource into a large electric system. The method permits wind to bid its output into a short-term forward market (specifically, an hour-ahead energy market) or to appear in real time and accept only intrahour and hourly imbalance payments for the unscheduled energy it delivers to the system. Finally, the method analyses the short-term (minute-to-minute) variation in wind output to determine the regulation requirement the wind resource imposes on the electrical system. (author)

  13. Wind power integration in Alberta : a developer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mindorff, C. [West WindEau Inc., Medicine Hat, AB (Canada)

    2006-07-01

    The current status of wind energy development in Alberta was discussed along with some actions that are needed to alleviate the need for a cap on wind development from the perspective of West WindEau Inc., an Alberta-based wind developer. A wind energy plan for Alberta was presented along with comments on the Alberta Electricity System Operator's (AESO's) response to wind development in terms of providing a level playing field, power management and supply options. The wind industry in Alberta has changed significantly since deregulation. Approximately 350 MW of wind generation has been constructed in the province, with 110 MW currently under construction, 65 MW to begin construction and 375 MW waiting on transmission. It was argued that in the short-term, further accomplishments will slow due to the AESO's 900 MW cap on wind interconnections. Accomplishments will also slow in the long-term due to the lack of transmission capacity. The current challenges facing increased wind development in the electricity market centres around a lack of progress in establishing operating and market rules that will allow for widespread application of wind technology. It was emphasized that additional effort must go into integrating more wind into the Alberta electrical system. It was concluded that wind integration in the province of Alberta has stalled and should get back on track through the development of proactive renewable public policy and incentives that supports wind growth. tabs., figs.

  14. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids

    Directory of Open Access Journals (Sweden)

    Sheng Jie Shao

    2010-06-01

    Full Text Available The ever increasing development and availability of power electronic systems is the underpinning technology that enables large scale integration of wind generation plants with the electricity grid. As the size and power capacity of the wind turbine continues to increase, so is the need to place these significantly large structures at off-shore locations. DC grids and associated power transmission technologies provide opportunities for cost reduction and electricity grid impact minimization as the bulk power is concentrated at single point of entry. As a result, planning, optimization and impact can be studied and carefully controlled minimizing the risk of the investment as well as power system stability issues. This paper discusses the key technologies associated with DC grids for offshore wind farm applications.

  15. Dynamic Biogas Upgrading for Integration of Renewable Energy from Wind, Biomass and Solar

    DEFF Research Database (Denmark)

    Jurgensen, Lars

    ) combined heat and power production from biogas during periods of electricity demand, bioenergy utilization becomes a dynamic process. In such a process scheme, biomass, wind, and solar could be integrated in a local context. This thesis aims to demonstrate the feasibility of the dynamic biogas upgrading......The Sabatier process is investigated as a storage scheme for renewable energy. Hydrogen derived from fluctuating renewable energy sources like wind and solar is converted to methane by the hydrogenation/methanation of carbon oxides. Biogas from anaerobic digestion is considered in this study...... as a high concentrated source of carbon dioxide. By using the Sabatier process, the CO2 content of the biogas is converted to CH4, which is a new upgrading process for biogas. By switching between (i) this upgrading process during periods of extensive electricity production from wind and solar, and (ii...

  16. Review of Energy Storage System for Wind Power Integration Support

    OpenAIRE

    Zhao, Haoran; Wu, Qiuwei; Hu, Shuju; Xu, Honghua; Rasmussen, Claus Nygaard

    2015-01-01

    With the rapid growth of wind energy development and increasing wind power penetration level, it will be a big challenge to operate the power system with high wind power penetration securely and reliably due to the inherent variability and uncertainty of wind power. With the flexible charging-discharging characteristics, Energy Storage System (ESS) is considered as an effective tool to enhance the flexibility and controllability not only of a specific wind farm, but also of the entire grid. T...

  17. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2013-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3......-stream Mach number of 0.25 at the blade tip. Results show that these new airfoils achieve high power coefficient in a wide range of angles of attack (AOA) and they are extremely insensitive to surface roughness....

  18. On the Evolution of the Integral Length Scale in the Wake of Wind Turbines and within Wind Farms

    Science.gov (United States)

    Liu, Huiwen; Jin, Yaqing; Hayat, Imran; Chamorro, Leonardo P.

    2017-11-01

    Wind tunnel experiments were performed to characterize the evolution of integral length scale in the wake of a single turbine, and around wind farms. Hotwire anemometry was used to obtain high-resolution measurements of the streamwise velocity fluctuation at various locations. Negligible and high freestream turbulence levels were considered in the case of single turbine. The integral length scale along the rotor axis is found to grow nearly linearly with distance independent of the incoming turbulence levels, and appears to reach the incoming level in the high turbulence case at about 35-40 rotor diameters downstream. In the wind farm, results suggest that the distribution of integral length scale can be roughly described by a power-law growth with distance within consecutive turbines. Approximately past the third row, the integral length scale appears to reach equilibrium of the spatial distribution.

  19. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramanan, Giri [Univ. of Wisconsin, Madison, WI (United States); Lesieutre, Bernard [Univ. of Wisconsin, Madison, WI (United States); Jahns, Thomas [Univ. of Wisconsin, Madison, WI (United States); Desai, Ankur R [Univ. of Wisconsin, Madison, WI (United States)

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  20. Developing a wind turbine planning platform : Integration of “sound propagation model–GIS-game engine” triplet

    NARCIS (Netherlands)

    Rafiee, Azarakhsh; Van der Male, Pim; Dias, Eduardo; Scholten, Henk

    2017-01-01

    In this study, we propose an interactive information system for wind turbine siting, considering its visual and sound externalities. This system is an integration of game engine, GIS and analytical sound propagation model in a unified 3D web environment. The game engine–GIS integration provides a 3D

  1. Structural Improvements for Tall Buildings under Wind Loads: Comparative Study

    Directory of Open Access Journals (Sweden)

    Nicola Longarini

    2017-01-01

    Full Text Available The behavior of a very slender building is investigated under wind loads, to satisfy both strength and serviceability (comfort design criteria. To evaluate the wind effects, wind tunnel testing and structural analysis were conducted, by two different procedures: (i Pressure Integration Method (PIM, with finite element modeling, and (ii High Frequency Force Balance (HFFB technique. The results from both approaches are compared with those obtained from Eurocode 1 and the Italian design codes, emphasizing the need to further deepen the understanding of problems related to wind actions on such type of structure with high geometrical slenderness. In order to reduce wind induced effects, structural and damping solutions are proposed and discussed in a comparative study. These solutions include (1 height reduction, (2 steel belts, (3 tuned mass damper, (4 viscous dampers, and (5 orientation change. Each solution is studied in detail, along with its advantages and limitations, and the reductions in the design loads and structural displacements and acceleration are quantified. The study shows the potential of damping enhancement in the building to mitigate vibrations and reduce design loads and hence provide an optimal balance among resilience, serviceability, and sustainability requirements.

  2. The role of demand-side management in the grid integration of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Pedro S.; Almeida, Anibal T. de [ISR - University of Coimbra, Dep. Electrical and Computer Eng., University of Coimbra, Polo II, 3030-290 Coimbra (Portugal)

    2010-08-15

    In a scenario of large scale penetration of renewable production from wind and other intermittent resources, it is fundamental that the electric system has appropriate means to compensate the effects of the variability and randomness of the wind power availability. This concern was traditionally addressed by the promotion of wind resource studies and acting in the supply side of energy and using energy storage technologies. However, in electric system planning, other options deserve to be evaluated, namely the options related with the energy demand. The most severe problems due to the wind power intermittence happen during the peak load hours. Thus, instead of trying to replace the lost capacity due to the intermittence, other option is to act in the energy demand side, with the aim of reducing the consumption in such hours. The demand-side management technologies are an option that must be considered to reduce and manage the wind power intermittence. The present paper analyzes the possible impact of demand-side management and demand response, with the aim of enabling the integration of the growing intermittent resources in Portugal. (author)

  3. A summary of impacts of wind power integration on power system small-signal stability

    Science.gov (United States)

    Yan, Lei; Wang, Kewen

    2017-05-01

    Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.

  4. Wind power integration using individual heat pumps – Analysis of different heat storage options

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...... important step. Adding heat storages only moderately reduces the fuel consumption. Model development has been made to facilitate a technical optimisation of individual heat pumps and heat storages in integration with the energy system....

  5. Integrating Wind Power in Electricity Grids : an Economic Analysis

    NARCIS (Netherlands)

    Liu, J.; Kooten, van G.C.; Pitt, L.

    2005-01-01

    As a renewable energy source, wind power is gaining popularity as a favoured alternative to fossil fuel, nuclear and hydro power generation. In Europe, countries are required to achieve 15% of their energy consumption from wind by 2010 as the EU strives to meet its Kyoto obligations. Wind power is

  6. Offshore Wind Farm Clusters - Towards new integrated Design Tool

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Réthoré, Pierre-Elouan; Peña, Alfredo

    In EERA DTOC testing of existing wind farm wake models against four validation data test sets from large offshore wind farms is carried out. This includes Horns Rev-1 in the North Sea, Lillgrund in the Baltic Sea, Roedsand-2 in the Baltic Sea and from 10 large offshore wind farms in Northern...

  7. Impact of Large-Scale Wind Power Integration on Small Signal Stability Based on Stability Region Boundary

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2014-11-01

    Full Text Available Up until now, study results on the impact of large-scale wind power integration on small signal stability have often been in conflict. Sometimes, the conclusions are even completely opposite, making people unable to agree on which is right. The reason behind this phenomenon is that most of these studies are based on a certain grid and typical working conditions, so conclusions are reached by comparing changes in oscillation mode, one by one. This study method lacks a broader perspective, and often reflects only a part of the grid conditions. However, the small signal stability region boundary describes the critical operating range of power system small signal stability as a whole, making possible an overall evaluation of the system from a more macro perspective. Thus it is more suitable for analysis of the impact of large-scale wind power integration on small signal stability. Based on the above, using the model of wind farm integration to the single-machine infinite bus power system, this paper studies the impact of wind power integration scale and the coupling strength with synchronous generator on small signal stability through the comparison of the stability region boundaries, thus providing a new method and support for analyzing the impact of wind power integration on small signal stability.

  8. Integration of renewables and reverse osmosis desalination – Case study for the Jordanian energy system with a high share of wind and photovoltaics

    DEFF Research Database (Denmark)

    Novosel, T.; Ćosić, B.; Pukšec, T.

    2015-01-01

    Jordan is a country faced with several environmental and energy related issues. It is the Worlds' fourth most water deprived country with a water consumption of only 145m3 per capita annually, less than a third of the established severe water poverty line. Jordan is also a country rich in wind...... of the Jordanian energy system until the year 2050. The results have shown that the demonstrated configuration can increase the share of intermittent renewables in the production of electricity up to 76% resulting in a high reduction of fuel consumption, CO2 emissions and costs. These analyses have been performed...... using the EnergyPLAN advanced energy system analyses tool....

  9. Economic Evaluation of Three Available Solutions for Promotion of Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Hong-Kun Chen

    2017-01-01

    Full Text Available The limited operational flexibility of combined heat and power (CHP units is the main cause of wind power curtailment in the thermal-electrical power system of Northern China. Pumped hydrostorage (PHS, heat storage (HS, and electric boiler (EB are investigated as three alternative options for the promotion of wind power integration. On the basis of two linear models that determine the capacities of these three facilities required for integrating the curtailed wind power, economic evaluation in terms of investment costs and environmental benefits is presented. Analysis results show that HS requires the least investment and has a good performance of coal saving when accommodating the same amount of curtailed wind power. And EB has the greatest potential for wind power integration with the huge growth of installed capacity of wind power in the future.

  10. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  11. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  12. Final Report on the Creation of the Wind Integration National Dataset (WIND) Toolkit and API: October 1, 2013 - September 30, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Bri-Mathias [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-08

    The primary objective of this work was to create a state-of-the-art national wind resource data set and to provide detailed wind plant output data for specific sites based on that data set. Corresponding retrospective wind forecasts were also included at all selected locations. The combined information from these activities was used to create the Wind Integration National Dataset (WIND), and an extraction tool was developed to allow web-based data access.

  13. Wind to Hydrogen in California: Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  14. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  15. A spinner-integrated wind lidar for enhanced wind turbine control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Angelou, Nikolas; Hansen, Kasper Hjorth

    2013-01-01

    A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m rotor...... of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed-forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd....

  16. A study to solve the variability of wind generation through integration of large-scale hydraulic generation; Um estudo para resolver a variabilidade da geracao eolica atraves da integracao em larga escala com geracao hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Emmerik, Emanuel Leonardus van; Steinberger, Johann Michael; Aredes, Mauricio [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEE/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Eletrica

    2010-07-01

    The optimal deployment of wind generation with the hydro generation is being investigated as a viable option to assist in resolving the constraints coming ahead as a consequence of the tendency of recovery in the Brazilian Amazon basin for expansion of generating facilities. It is in the validity of this research that this work is focused. The value is shown of feasibility studies of using water power generation to offset the variability of wind generation when it is deployed on a large scale. Preliminary results are presented for the variability of wind generation at various cycles, the variability of the availability of hydropower. (author)

  17. A Transmission-Cost-Based Model to Estimate the Amount of Market-Integrable Wind Resources

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik

    2012-01-01

    In the pursuit of the large-scale integration of wind power production, it is imperative to evaluate plausible frictions among the stochastic nature of wind generation, electricity markets, and the investments in transmission required to accommodate larger amounts of wind. If wind producers...... are made to share the expenses in transmission derived from their integration, they may see the doors of electricity markets closed for not being competitive enough. This paper presents a model to decide the amount of wind resources that are economically exploitable at a given location from a transmission......-cost perspective. This model accounts for the uncertain character of wind by using a modeling framework based on stochastic optimization, simulates market barriers by means of a bi-level structure, and considers the financial risk of investments in transmission through the conditional value-at-risk. The major...

  18. Evaluation of wind power planning in Denmark – Towards an integrated perspective

    DEFF Research Database (Denmark)

    Sperling, Karl; Hvelplund, Frede; Mathiesen, Brian Vad

    2010-01-01

    Wind power is a maturing technology that may form an essential element of fully renewable energy systems in a number of countries. Denmark has a long history of wind power development and is planning to expand its existing capacity. If large-scale penetration of wind power is to be achieved......, an integrated framework is needed that can respond to the associated challenges. This paper argues for adopting an integrated macro perspective when evaluating and building frameworks to support wind power development. This macro perspective is applied to the case of Denmark, and more specifically to concrete...... wind power projects in the region of Northern Jutland. The results suggest that although certain elements in the current legislation have been improved, the feasibility of wind power projects cannot be guaranteed, and there is a tendency to exclude smaller turbines from development....

  19. Eastern Renewable Generation Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Townsend, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palchak, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Novacheck, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); King, Jack [RePPAE LLC, Wexford, PA (United States); Barrows, Clayton [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibanez, Eduardo [GE Energy, Denver, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jordan, Gary [GE Energy, Denver, CO (United States); Roberts, Billy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gruchalla, Kenny [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    The Eastern Interconnection (EI) is one of the largest power systems in the world, and its size and complexity have historically made it difficult to study in high levels of detail in a modeling environment. In order to understand how this system might be impacted by high penetrations (30% of total annual generation) of wind and solar photovoltaic (PV) during steady state operations, the National Renewable Energy Laboratory (NREL) and the U.S. Department of Energy (DOE) conducted the Eastern Renewable Generation Integration Study (ERGIS). This study investigates certain aspects of the reliability and economic efficiency problem faced by power system operators and planners. Specifically, the study models the ability to meet electricity demand at a 5-minute time interval by scheduling resources for known ramping events, while maintaining adequate reserves to meet random variation in supply and demand, and contingency events. To measure the ability to meet these requirements, a unit commitment and economic dispatch (UC&ED) model is employed to simulate power system operations. The economic costs of managing this system are presented using production costs, a traditional UC&ED metric that does not include any consideration of long-term fixed costs. ERGIS simulated one year of power system operations to understand regional and sub-hourly impacts of wind and PV by developing a comprehensive UC&ED model of the EI. In the analysis, it is shown that, under the study assumptions, generation from approximately 400 GW of combined wind and PV capacity can be balanced on the transmission system at a 5-minute level. In order to address the significant computational burdens associated with a model of this detail we apply novel computing techniques to dramatically reduce simulation solve time while simultaneously increasing the resolution and fidelity of the analysis. Our results also indicate that high penetrations of wind and PV (collectively variable generation (VG

  20. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  1. Integrated aeroelastic and control analysis of wind turbine blades equipped with microtabs

    OpenAIRE

    MacQuart, Terence; Maheri, Alireza

    2015-01-01

    This paper presents the results of an investigation into the performance of different controllers in active load control of wind turbine blades equipped with microtabs. A bang–bang (BB) controller, a linear quadratic regulator (LQR) a proportional integral derivative (PID) and a sliding mode controller (SMC) are synthesised for load alleviation. The performance of the synthesised controllers in load alleviation is evaluated by employing WTAC (Wind Turbine Aeroelastic and Control), a wind turb...

  2. Wind Farm Grid Integration Using VSC Based HVDC Transmission - An Overview

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay Kumar; Teodorescu, Remus; Rodriguez, Pedro

    2008-01-01

    The paper gives an overview of HVAC and HVDC connection of wind farm to the grid, with an emphasis on Voltage Source Converter (VSC)-based HVDC for large wind farms requiring long distance cable connection. Flexible control capabilities of a VSC-based HVDC system enables smooth integration of win...... farm into the power grid network while meeting the Grid Code Requirements (GCR). Operation of a wind farm with VSC-based HVDC connection is described....

  3. Increasing Integration of Wind Power in Medium Voltage Grid by Voltage Support of Smart Transformer

    OpenAIRE

    Gao, Xiang; De Carne, Giovanni; Liserre, Marco; Vournas, Costas

    2016-01-01

    The voltage rise during wind energy penetration represents a limit of the wind power integration in the distribution grid. The Smart Transformer (ST), a power electronics-based transformer, can provide additional services to the distribution grids, for instance the voltage support in MV grid by means of reactive power injection. In this paper, this service is applied to increase the hosting capacity of wind power in MV grids.

  4. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Qiuwei, Wu

    2011-01-01

    variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also...

  5. Modelling the potential for wind energy integration on China’s coal-heavy electricity grid

    Science.gov (United States)

    Davidson, Michael R.; Zhang, Da; Xiong, Weiming; Zhang, Xiliang; Karplus, Valerie J.

    2016-07-01

    Expanding the use of wind energy for electricity generation forms an integral part of China’s efforts to address degraded air quality and climate change. However, the integration of wind energy into China’s coal-heavy electricity system presents significant challenges owing to wind’s variability and the grid’s system-wide inflexibilities. Here we develop a model to predict how much wind energy can be generated and integrated into China’s electricity mix, and estimate a potential production of 2.6 petawatt-hours (PWh) per year in 2030. Although this represents 26% of total projected electricity demand, it is only 10% of the total estimated physical potential of wind resources in the country. Increasing the operational flexibility of China’s coal fleet would allow wind to deliver nearly three-quarters of China’s target of producing 20% of primary energy from non-fossil sources by 2030.

  6. Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Al Ameri

    2017-04-01

    Full Text Available The growth of electrical demand increases the need of renewable energy sources, such as wind energy, to meet that need. Electrical power losses are an important factor when wind farm location and size are selected. The capitalized cost of constant power losses during the life of a wind farm will continue to high levels. During the operation period, a method to determine if the losses meet the requirements of the design is significantly needed. This article presents a Simulink simulation of wind farm integration into the grid; the aim is to achieve a better understanding of wind variation impact on grid losses. The real power losses are set as a function of the annual variation, considering a Weibull distribution. An analytical method has been used to select the size and placement of a wind farm, taking into account active power loss reduction. It proposes a fast linear model estimation to find the optimal capacity of a wind farm based on DC power flow and graph theory. The results show that the analytical approach is capable of predicting the optimal size and location of wind turbines. Furthermore, it revealed that the annual variation of wind speed could have a strong effect on real power loss calculations. In addition to helping to improve utility efficiency, the proposed method can develop specific designs to speeding up integration of wind farms into grids.

  7. Power system integration of VSC-HVDC connected offshore wind power plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Kjær, Philip Carne

    This report presents an overview of challenges and solutions for the integration into the power system of offshore wind power plants (WPPs) connected to onshore grids through a voltage-source converter based high voltage direct current (VSC-HVDC) transmission system. Aspects that are touched upon...... introduction to justify the study, describe the state-of-art and formulate the project’s objectives, the report is essentially divided into three parts, as follows. Control principles of offshore AC networks The control of offshore AC networks relies purely on power electronics, especially if Type 4 wind...... turbine generators (WTGs) are used. Assuming the WTGs are controlled in a “standard” way (based on established literature), two state-of-art control strategies for the offshore HVDC converter are compared in different operational scenarios: (Option 1) nested voltage-current control scheme based on vector...

  8. Techniques for a Wind Energy System Integration with an Islanded Microgrid

    Science.gov (United States)

    Goyal, Megha; Fan, Yuanyuan; Ghosh, Arindam; Shahnia, Farhad

    2016-04-01

    This paper presents two different techniques of a wind energy conversion system (WECS) integration with an islanded microgrid (MG). The islanded microgrid operates in a frequency droop control where its frequency can vary around 50 Hz. The permanent magnet synchronous generator (PMSG) based variable speed WECS is considered, which converts wind energy to a low frequency ac power. Therefore it needs to be connected to the microgrid through a back to back (B2B) converter system. One way of interconnection is to synchronize the MG side converter with the MG bus at which it is connected. In this case, this converter runs at the MG frequency. The other approach is to bring back the MG frequency to 50 Hz using the isochronization concept. In this case, the MG side converter operates at 50 Hz. Both these techniques are developed in this paper. The proposed techniques are validated through extensive PSCAD/EMTDC simulation studies.

  9. Simulation of offshore wind farm integrated into power grid using VSC HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hui; Nguyen, Mau Cuong; Rudion, Krzystof; Styczynski, Zbigniew Antoni [Magdeburg Univ. (Germany). Chair for Electric Power Networks and Renewable Energy Sources

    2011-07-01

    In this paper, the integration of an offshore wind farm into a power grid is studied based on the simulation of a developed test system including an aggregated DFIG wind farm model and VSC HVDC transmission system model. This paper concentrates on the transient stability and system performance with an applied controller for DFIG and HVDC converter stations. The results are obtained by simulation of the test system subjected to severe grid disturbance, e.g. three-phase short circuit fault at the point of common coupling (PCC). Furthermore, the conformity of the system performance with the current grid code, e.g. fault-ride through capability is investigated and confirmed from the simulation results. In addition, a DC-chopper circuit is modeled to protect the HVDC-link from the overvoltage without disconnection during grid faults. Different time delays of the DC-chopper are considered and simulated to investigate its influence on the system dynamics and performance. (orig.)

  10. Beyond Classical Upscaling : Integrated Aeroservoelastic Design and Optimization of Large Offshore Wind Turbines

    NARCIS (Netherlands)

    Ashuri, T.

    2012-01-01

    Issues related to environmental concern and fossil fuel exhaustion has made wind energy the most widely accepted renewable energy resource. However, there are still several challenges to be solved such as the integrated design of wind turbines, aeroelastic response and stability prediction, grid

  11. ANEMOS: Development of a next generation wind power forecasting system for the large-scale integration of onshore and offshore wind farms.

    Science.gov (United States)

    Kariniotakis, G.; Anemos Team

    2003-04-01

    Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for

  12. Study of hydrogen production from wind power in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Aiche-Hamane, Lilia; Belhamel, Maiouf; Benyoucef, Boumedienne; Hamane, Mustapha [Centre for Development of Renewable Energies (CDER), Alger (Algeria)

    2010-07-01

    An overview of the potentiality of hydrogen production from wind power in Algeria has been given in this study. Wind resource assessment has been presented in cartographic form and windy sites have been identified for wind power application. A system constituted by a wind turbine, an electrolyser and a power conditioning device have been proposed for the study of hydrogen production in the southwest region of Algeria. For this purpose, the transient system simulation program (TRNSYS) have been used. The results obtained showed the sensitivity of hydrogen production to the wind resource trend and the importance of optimisation of the electrolyser according to the power produced by the wind turbine. (orig.)

  13. Market integration of wind power in electricity system balancing

    DEFF Research Database (Denmark)

    Sorknæs, Peter; Andersen, Anders N.; Tang, Jens

    2013-01-01

    In most countries markets for electricity are divided into wholesale markets on which electricity is traded before the operation hour, and real-time balancing markets to handle the deviations from the wholesale trading. So far, wind power has been sold only on the wholesale market and has been...... known to increase the need for balancing. This article analyses whether wind turbines in the future should participate in the balancing markets and thereby play a proactive role. The analysis is based on a real-life test of proactive participation of a wind farm in West Denmark. It is found...

  14. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  15. Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units

    Science.gov (United States)

    Ruiz, M. E.; Dasso, S.; Matthaeus, W. H.; Weygand, J. M.

    2014-10-01

    The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [ λ], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. We study the probability distribution function (PDF) of the magnetic-autocorrelation lengths observed in the solar wind at different distances from the Sun. We used observations from the Helios, ACE, and Ulysses spacecraft. We distinguished between the usual solar wind and one of its transient components (interplanetary coronal mass ejections, ICMEs), and also studied solar-wind samples with low and high proton beta [βp]. We find that in the last three regimes the PDF of λ is a log-normal function, consistent with the multiplicative and nonlinear processes that take place in the solar wind, the initial λ (before the Alfvénic point) being larger in ICMEs.

  16. Overview of Recent Grid Codes for Wind Power Integration

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Teodorescu, Remus

    2010-01-01

    As wind power penetration level increases, power system operators are challenged by the penetration impacts to maintain reliability and stability of power system. Therefore, grid codes are being published and continuously updated by transmission system operators of the countries. In this paper......, recent grid codes, which are prepared specially for the large wind power plants, are analyzed and compared. Also, harmonization of different grid codes in a common manner and future trends are assessed....

  17. Overview of recent grid codes for wind power integration

    OpenAIRE

    Altin, M; Goksu, O.; Teodorescu, Remus; Rodríguez Cortés, Pedro; Bak-Jensen, Birgitte; Helle, L.

    2010-01-01

    As wind power penetration level increases, power system operators are challenged by the penetration impacts to maintain reliability and stability of power system. Therefore, grid codes are being published and continuously updated by transmission system operators of the countries. In this paper, recent grid codes, which are prepared specially for the large wind power plants, are analyzed and compared. Also, harmonization of different grid codes in a common manner and fu...

  18. Efficient Decentralized Economic Dispatch for Microgrids with Wind Power Integration

    OpenAIRE

    Zhang, Yu; Georgios B. Giannakis

    2014-01-01

    Decentralized energy management is of paramount importance in smart microgrids with renewables for various reasons including environmental friendliness, reduced communication overhead, and resilience to failures. In this context, the present work deals with distributed economic dispatch and demand response initiatives for grid-connected microgrids with high-penetration of wind power. To cope with the challenge of the wind's intrinsically stochastic availability, a novel energy planning approa...

  19. High-quality weather data for grid integration studies

    Science.gov (United States)

    Draxl, C.

    2016-12-01

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing

  20. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  1. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  2. National Offshore Wind Energy Grid Interconnection Study Full Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  3. Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poore, R.; Lettenmaier, T.

    2003-08-01

    This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

  4. Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-01

    This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

  5. Hydropower flexibility and transmission expansion to support integration of offshore wind

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Farahmand, Hossein; Jaehnert, S.

    2016-01-01

    systems are a very good option for balancing the natural variability of wind power production, especially when installed offshore. The flexibility of hydropower systems allows power systems with a high share of RES to maintain stability. The analysis presented indicates that the value of hydropower......In 2013, offshore wind grew over 50%. This increase, concentrated in a relatively small geographical area, can lead to an increased variability of the power produced by offshore wind. The variability is one of the key issues, along transmission, in integrating offshore wind power. Hydro power...... of hydro generation can match the variability of offshore wind, allowing for larger shares of variable generation to be integrated in the power systems without decreasing its stability. The analysis includes two interrelated models, a market model and a flow-based model. The results show that hydropower...

  6. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    . For this purpose, the power system model has been developed that represents the relevant dynamic features of power plants and compensates for power imbalances caused by the forecasting error during critical weather conditions. The regulating power plan, as an input time series for the developed power system model......Secure power system operation of a highly wind power integrated power system is always at risk during critical weather conditions, e.g. in extreme high winds. The risk is even higher when 50% of the total electricity consumption has to be supplied by wind power, as the case for the future Danish......, is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor...

  7. Priority Control Strategy of VSC-MTDC System for Integrating Wind Power

    Directory of Open Access Journals (Sweden)

    Wen-ning Yan

    2015-01-01

    Full Text Available For the obvious advantages in integrating wind power, multiterminal HVDC transmission system (VSC-MTDC is widely used. The priority control strategy is proposed in this paper considering the penetration rate of wind power for the AC grid. The strategy aims to solve the problems of power allocation and DC voltage control of the DC system. The main advantage of this strategy is that the demands for wind power of different areas can be satisfied and a power reference for the wind power trade can also be provided when wind farms transmit active power to several AC grids through the DC network. The objective is that power is well distributed according to the output power of wind farm with the demand of AC system and satisfactory control performance of DC voltage is obtained.

  8. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  9. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  10. Numerical study of ocean wave effect on offshore wind farm

    Science.gov (United States)

    Shen, Lian; Yang, Di; Meneveau, Charles

    2013-11-01

    Wind power at sea has become increasingly important in renewable energy study. For energy harvesting, winds over oceans have many advantages over winds on land, for example, larger and open surface area, faster wind speed, and more wind resource close to high population regions. On the other hand, the presence of ocean waves introduces complexities to wind turbines. There is a critical need to study the dynamical interactions among marine atmospheric boundary layer, ocean wave field, and floating turbines. In this research, we study offshore wind farm by performing large-eddy simulations for winds coupled with potential-flow-theory based simulations for broadband irregular waves, with the wind turbines represented by an actuator disk model. Our results show that windseas at different development stages result in different sea-surface roughness and have an appreciable effect on wind profile and the energy extraction rate of the turbines. If swells are present, swell-to-wind momentum and energy transfer further changes the wind field to introduce oscillations in as well as modify the mean of the wind power. DY and LS acknowledge the support of NSF-CBET-1341062. CM acknowledges the support of NSF-AGS-1045189 and NSF-OISE-1243482.

  11. A New Method for Start-up of Isolated Boost Converters Using Magnetic- and Winding-Integration

    DEFF Research Database (Denmark)

    Lindberg-Poulsen, Kristian; Ouyang, Ziwei; Sen, Gökhan

    2012-01-01

    A new solution to the start-up and low output voltage operation of isolated boost family converters is presented. By the use of integrated magnetics and winding integration, the transformer secondary winding is re-used during start-up as a flyback winding coupled to the boost inductor. The tradit...

  12. Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?

    Directory of Open Access Journals (Sweden)

    Behnam Zakeri

    2015-03-01

    Full Text Available Towards low-carbon energy systems, there are countries with ongoing plans for expanding their nuclear power capacity, and simultaneously advancing the role of variable renewable energy sources (RES, namely wind and solar energy. This crossroads of capital-intensive, baseload power production and uncontrollable, intermittent RES may entail new challenges in the optimal and economic operation of power systems. This study examines this case by hourly analysis of a national-level energy system with the EnergyPLAN modeling tool, coupled with wind integration simulations (including uncertainty implemented using MATLAB. We evaluate the maximum feasible wind integration under different scenarios for nuclear power plants, energy demand, and the flexibility of energy infrastructure for a real case study (Finland. We propose wind-nuclear compromise charts to envision the impact of any mix of these two technologies on four parameters: total costs, power exchange, carbon emissions, and renewable energy integration. The results suggest that nuclear power constrains the room for maximum uptake of wind energy by a descending parabolic relationship. If nuclear power production exceeds 50% of the total power demand, wind will be unlikely to penetrate in shares over 15% of the respective demand. Moreover, we investigate the role of four flexibility options: demand side management, electrical energy storage, smart electric heating, and large-scale heat pumps (backed with thermal energy storage. Heat pumps (which are in connection with combined heat and power (CHP and district heating systems offer the highest efficiency in balancing excess power from variable RES. However, power-to-heat options offer a limited capability for absorbing excess power, as oversupply arises mainly in the periods with relatively low demand for heat. This calls for longer-term energy storage and/or other flexibility options to achieve the planned targets in wind-nuclear scenarios.

  13. Economic Impact Assessment of Wind Power Integration: A Quasi-Public Goods Property Perspective

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-08-01

    Full Text Available The integration of wind power into power grid will bring some impacts on the multiple subjects of electric power system. Economic impacts of wind power integration on multiple subjects of China’s electric power system were quantitatively assessed from Quasi-public goods property perspective in this paper. Firstly, the Quasi-public goods property of transmission services provided by power grid corporations was elaborated. Secondly, the multiple subjects of China’s electric power system, which include electricity generation enterprises (EGEs, power grid corporations (PGCs, electricity consumers (ECs, and environment, were detailed analyzed. Thirdly, based on the OPF-based nodal price model and transmission service cost allocation model, the economic impact assessment model of wind power integration was built from Quasi-public goods property perspective. Then, the IEEE-24 bus system employed in this paper was introduced according to current status of China’s electric power system, and the modeling of wind turbine was also introduced. Finally, the simulation analysis was performed, and the economic impacts of wind power integration on EGEs, PGCs, ECs and Environment were calculated. The results indicate, from Quasi-public goods property perspective, the wind power integration will bring positive impacts on EGEs, PGCs and Environment, while negative impacts on ECs. The findings can provide references for power system managers, energy planners, and policy makers.

  14. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation

    Directory of Open Access Journals (Sweden)

    Leopoldo Rodriguez Salazar

    2016-12-01

    Full Text Available This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS. The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain, was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz

  15. European and Integration Studies

    Directory of Open Access Journals (Sweden)

    N. Yu. Kaveshnikov

    2014-01-01

    Full Text Available Soviet scientific school of pan-European integration studies began to emerge in the 1960s at the Institute of World Economy and International Relations (Russian Academy of Science. Among the leading scientists who have developed methodological approaches of Soviet integration studies were M.M. Maximova, Y.A. Borko, Y. Shishkov, L.I. Capercaillie. Later, a new center for integration studies became the Institute of Europe, created in 1987. It was led by such renowned scientists as Academicians V.V. Zhurkin and N.P. Shmelev. In the 1980s the subject of the integration process in Europe attracted attention of experts from MGIMO. An important role in the development of school of integration research in the USSR was played by a MGIMO professor, head of the chair of history of international relations and foreign policy of the USSR V.B. Knyazhinskiy. His work contributed to the deliverance of the national scientific community from skepticism about the prospects for European integration. Ideas of V.B. Knyazhinsky are developed today in MGIMO by his followers A.V. Mal'gin and T.V. Ur'eva. In the mid-1990s, having retired from diplomatic service, professor Yu. Matveevskiy started to work at MGIMO. With a considerable practical experience in the field, he produced a series of monographs on the history of European integration. In his works, he analyses the development of integration processes in Western Europe from their inception to the present day, showing the gradual maturation of the necessary spiritual and material prerequisites for the start of integration and traces the various stages of the "integration". In the late 1990s, the growing demand from the domestic business and government for professionals who are capable of interacting with the European Union, has produced the necessary supply in the form of educational programs based on accumulated scientific knowledge. Setting up a discipline "European Integration" was a major step in the development

  16. Comparative Study on Wind Power using Meteorological Data and ...

    African Journals Online (AJOL)

    The power efficiency of a wind turbine may be influenced by several parameters such as wind speed and type and age of the turbine and its accessories. This study was conducted at Ashogoda village to compare the theoretically predicted power from the wind speed of Ashogoda area with electrical power generated from ...

  17. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    Energy Technology Data Exchange (ETDEWEB)

    Ram, B. [Energetics, Inc., Columbia, MD (United States)

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  18. Studying Wind Energy/Bird Interactions: A Guidance Document

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [California Energy Commission (US); Morrison, M. [California State Univ., Sacramento, CA (US); Sinclair, K. [Dept. of Energy/National Renewable Energy Lab. (US); Strickland, D. [WEST, Inc. (US)

    1999-12-01

    This guidance document is a product of the Avian Subcommittee of the National Wind Coordinating Committee (NWCC). The NWCC was formed to better understand and promote responsible, credible, and comparable avian/wind energy interaction studies. Bird mortality is a concern and wind power is a potential clean and green source of electricity, making study of wind energy/bird interactions essential. This document provides an overview for regulators and stakeholders concerned with wind energy/bird interactions, as well as a more technical discussion of the basic concepts and tools for studying such interactions.

  19. Control of modular multilevel converters for grid integration of full-scale wind energy conversion systems

    Science.gov (United States)

    Debnath, Suman

    The growing demand for wind power generation has pushed the capacity of wind turbines towards MW power levels. Higher capacity of the wind turbines necessitates operation of the generators and power electronic conversion systems at higher voltage/power levels. The power electronic conversion system of a wind energy conversion system (WECS) needs to meet the stringent requirements in terms of reliability, efficiency, scalability and ease of maintenance, power quality, and dv/dt stress on the generator/transformer. Although the multilevel converters including the neutral point clamped (NPC) converter and the active NPC converter meet most of the requirements, they fall short in reliability and scalability. Motivated by modularity/scalability feature of the modular multilevel converter (MMC), this research is to enable the MMC to meet all of the stringent requirements of the WECS by addressing their unique control challenges. This research presents systematic modeling and control of the MMC to enable it to be a potential converter topology for grid integration of full-scale WECSs. Based on the developed models, appropriate control systems for control of circulating current and capacitor voltages under fixed- and variable-frequency operations are proposed. Using the developed MMC models, a gradient-based cosimulation algorithm to optimize the gains of the developed control systems, is proposed. Performance/effectiveness of the developed models and the proposed control systems for the back-to-back MMC-based WECS are evaluated/verified based on simulations studies in the PSCAD/EMTDC software environment and experimental case studies on a laboratory-scale hardware prototype.

  20. Modelling renewable electric resources: A case study of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, S.; Biewald, B.; Hall, J.; Singh, D. [Tellus Institute, Boston, MA (United States)

    1994-07-01

    The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

  1. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  2. Gone with the Wind? Integrity and Hurricane Katrina

    Science.gov (United States)

    Lucas, Frances; Katz, Brit

    2011-01-01

    Hurricane Katrina slammed into 80 miles of Mississippi shoreline on August 29, 2005. It was the nation's worst natural disaster, a perfect storm. One hundred sixty miles-per-hour winds sent 55-foot-tall waves and a 30-foot wall of water across the shore and miles inland. It displaced 400,000 residents along the coast of the Mississippi, and…

  3. Strategic Demand-Side Response to Wind Power Integration

    DEFF Research Database (Denmark)

    Daraeepour, Ali; Kazempour, Seyyedjalal; Patiño-Echeverri, Dalia

    2016-01-01

    This paper explores the effects of allowing large, price-responsive consumers to provide reserves in a power system with significant penetration of wind energy. A bilevel optimization model represents the utility maximization problem of a large consumer, subject to a stochastic day-ahead co-optim...

  4. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces...

  5. Results from an investigation of the integration of wind energy into the El Paso Electric grid system

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, E.M.; Parks, N.J.; Swift, A.H.; Traichal, P.A. [Univ. of Texas, El Paso, TX (United States)

    1997-12-31

    This paper documents some preliminary results from an evaluation of the costs and benefits to be gained from the integration of wind generated electricity into the El Paso Electric grid system. The study focused on the utilization of the considerable known wind potential of the Guadalupe/Delaware Mountains region, but also looked at other energetic wind resources within 15 miles of El Paso Electric`s Grid. The original project`s goal was to identify the added value of wind in terms of jobs, line support, risk reduction etc., that wind energy could bring to El Paso Electric. Although these goals have not yet been achieved the potential for water savings and reductions in gaseous emissions have been documented. Thus this paper focuses mainly on the water consumption and criteria pollutant emissions that could be avoided by adding wind energy to El Paso Electric`s generation mix. Preliminary data from a renewables attitude survey indicates that, from the 338 respondents, there is overwhelming public support for utilizing such renewable sources of electricity. This case study, which should be of direct relevance to the arid southwestern states and beyond, was sponsored by the Environmental Protection Agency (EPA) and conducted in cooperation with El Paso Electric.

  6. Integrating massiv wind power in the electric system. Acciona experience in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Giraut Ruso, E.; Ruiz Guillen, J.; Quinonez-Varela, G.; Armendariz Otazu, I.; Navarrete Pablo-Romero, A.; Moreira Prada, C.; Alday Aracama, G.; Sanchez Ardoiz, R.; Moreno Fernandez, J. [Acciona Energia, Sarriguren (Spain)

    2009-07-01

    In this paper, the existing operational procedures applicable to wind and renewable generation in Spain are presented. These include remote control of renewable generators and their interaction with the TSO's Control Centre: energy production forecast and market integration, and voltage and reactive power control. Acciona Energia, as one of the largest operator and owner of renewable assets in Spain (particularly wind power plants), hat been a major player in the implementation of measures to comply with these procedures. For instance, it has worked closely with the TSO and the wind sector to help formulating Grid Code requirements, it has designed new wind turbine technologies to fulfil them and it has deployed innovative solutions to adapt older wind generators and plants to new standards (retrofitting). Acciona's experiences and technical solutions to these challenges are thoroughly discussed. (orig.)

  7. Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    2006-10-25

    The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

  8. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    Science.gov (United States)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  9. Generator Rescheduling under Congested Power System with Wind Integrated Competitive Power Market

    Directory of Open Access Journals (Sweden)

    Sadhan Gope

    2017-02-01

    Full Text Available Integration of renewable energy like wind or solar energy creates a huge pressure to the system operator (SO to ensure the congestion free transmission network under deregulated power market. Congestion Management (CM with integration of wind farm in double auction electricity market are described in this work to minimize fuel cost, system losses and locational marginal price (LMP of the system. Location of Wind Farm (WF is identified based by using Bus sensitivity factor (BSF, which is also used for selection of load bus for double auction bidding (DAB. The impacts of wind farm in congested power system under deregulated environment have been investigated in this work. Modified 39-bus New England test system is used for demonstrate the effectiveness of the presented approach by using Sequential Quadratic Programming (SQP.

  10. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  11. Stochastic Unit Commitment of Wind-Integrated Power System Considering Air-Conditioning Loads for Demand Response

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2017-11-01

    Full Text Available As a result of extensive penetration of wind farms into electricity grids, power systems face enormous challenges in daily operation because of the intermittent characteristics of wind energy. In particular, the load peak-valley gap has been dramatically widened in wind energy-integrated power systems. How to quickly and efficiently meet the peak-load demand has become an issue to practitioners. Previous literature has illustrated that the demand response (DR is an important mechanism to direct customer usage behaviors and reduce the peak load at critical times. This paper introduces air-conditioning loads (ACLs as a load shedding measure in the DR project. On the basis of the equivalent thermal parameter model for ACLs and the state-queue control method, a compensation cost calculation method for the ACL to shift peak load is proposed. As a result of the fluctuation and uncertainty of wind energy, a two-stage stochastic unit commitment (UC model is developed to analyze the ACL users’ response in the wind-integrated power system. A simulation study on residential and commercial ACLs has been performed on a 10-generator test system. The results illustrate the feasibility of the proposed stochastic programming strategy and that the system peak load can be effectively reduced through the participation of ACL users in DR projects.

  12. Review of VSC HVDC Connection for Offshore Wind Power Integration

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei; Zhao, Haoran

    2016-01-01

    Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) connection has become a new trend for long distance offshore wind power transmission. It has been confirmed by a lot of research that the maximum distance of a High Voltage Alternative Current (HVAC) sub-marine cable transmission...... system is limited due to surplus charging current of the cables. The VSC HVDC transmission system has the ability to overcome the limitation and offers other advantages over the HVAC transmission system. This paper is to review the VSC HVDC transmission technology and its application for offshore wind...... is given on the control methods of the VSC HVDC transmission system for fulfilling grid code requirements concerning Low Voltage Ride-Through (LVRT) and frequency regulation....

  13. Grid Integration Issues for Large Scale Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    transmission system operators (TSOs) over the world have come up the grid codes to request the wind power plants (WPPs) to have more or less the same operating capability as the conventional power plants. The grid codes requirements from other TSOs are under development. This paper covers the steady state...... operation and low voltage ride through (LVRT) for the WPPs. The discussion of coping with the grid codes requirements is presented to come up with the grid codes complied WPPs solutions....

  14. Study of resonance in wind parks

    OpenAIRE

    Monjo, Lluis; Sainz, Luis; Liang, Jun; Pedra, Joaquín

    2015-01-01

    Wind turbine harmonic current emissions are a well-known power quality problem. These emissions flow through wind park impedances, leading to grid voltage distortion. Parallel resonance may worsen the problem because it increases voltage distortion around the resonance frequency. Hence, it is interesting to analyze the parallel resonance phenomenon. The paper explores this phenomenon in wind parks and provides analytical expressions to determine parallel resonances. (C) 2015 The Authors. Publ...

  15. Geostrophic winds in Denmark: A preliminary study

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.

    1999-01-01

    High-precision barometers have been deployed at six sites in Denmark, four west and two east of the Great Belt. The purpose is to establish long climatological records of the geostrophic wind as a supplement to the records of tens of years of duration ofsurface observations of wind, temperature...

  16. Parametric study of composite wind turbine blades

    DEFF Research Database (Denmark)

    Kim, Taeseong; Branner, Kim; Hansen, Anders Melchior

    2011-01-01

    In this paper an anisotropic beam element for a composite wind turbine blades is developed. Eigenvalue analysis with the new beam element is conducted in order to understand its responses associated with the wind turbine performances. From the results of natural frequencies and mode shapes it is ...

  17. Integration of permanent magnet synchronous generator wind turbines into power grid

    Science.gov (United States)

    Abedini, Asghar

    , integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.

  18. Designing Trailing Edge Flaps of Wind Turbines using an Integrated Design Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    In this paper designing a controller for trailing edge flaps (TEF) as well as optimizing its position on the wind turbine blade will be considered. An integrated design approach will be used to optimize both TEF placement and controller simultaneously. Youla parameterization will be used to param......In this paper designing a controller for trailing edge flaps (TEF) as well as optimizing its position on the wind turbine blade will be considered. An integrated design approach will be used to optimize both TEF placement and controller simultaneously. Youla parameterization will be used...

  19. Review and Status of Wind Integration and Transmission in the United States. Key Issues and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kirby, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Acker, T. [Northern Arizona Univ., Flagstaff, AZ (United States); Ahlstrom, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Goggin, M. [American Wind Energy Association, Washington, DC (United States); Lasher, W. [Electric Reliability Council of Texas, Austin, TX (United States); Marquis, M. [National Oceanic and Atmospheric Adminstration, Washington, DC (United States); Osborn, D. [Midcontinent Independent System Operator, Carmel, IN (United States)

    2015-03-01

    The objective in electric power system operation is to use generation and transmission resources within organizational constraints and operational rules and regulations to reliably and costeffectively balance load and generation. To meet this objective, system operational practices have been created to accommodate the innate variability and uncertainty that comes from a variety of sources, such as uncertainty of demand forecasts, whether a specific generating unit will be available when called upon, the variability of demand from many different types of customers, and others. As more wind power is connected to the power system, operating experiences acquired during the past several years have generally confirmed the findings of wind integration studies: wind energy increases the level of variability and uncertainty that a system operator must manage.

  20. Experimental studies on power transformer model winding provided with MOVs

    Directory of Open Access Journals (Sweden)

    G.H. Kusumadevi

    2017-05-01

    Full Text Available Surge voltage distribution across a HV transformer winding due to appearance of very fast rise time (rise time of order 1 μs transient voltages is highly non-uniform along the length of the winding for initial time instant of occurrence of surge. In order to achieve nearly uniform initial time instant voltage distribution along the length of the HV winding, investigations have been carried out on transformer model winding. By connecting similar type of metal oxide varistors across sections of HV transformer model winding, it is possible to improve initial time instant surge voltage distribution across length of the HV transformer winding. Transformer windings with α values 5.3, 9.5 and 19 have been analyzed. The experimental studies have been carried out using high speed oscilloscope of good accuracy. The initial time instant voltage distribution across sections of winding with MOV remains nearly uniform along length of the winding. Also results of fault diagnostics carried out with and without connection of MOVs across sections of winding are reported.

  1. A numerical study of wind turbine-boundary layer interactions in a large offshore wind farm

    Science.gov (United States)

    Gupta, Tanvi; Baidya Roy, Somnath

    2017-04-01

    Large offshore wind farm installations are rapidly increasing all over the world driven by the availability of strong, consistent winds and the unavailability of appropriate land sites. This study quantitatively explores the interaction between wind turbines and the marine atmospheric boundary layer and its impacts on power generation in a hypothetical large offshore wind farm off the western coast of India in the Arabian Sea. The simulations are conducted using the mesoscale model WRF equipped with a wind turbine parameterization, which approximates a wind turbine as a sink of resolved kinetic energy and a source of turbulent kinetic energy. In this study, the WRF parameterization is modified to include the effects of density variations. The simulations are conducted over a 300 km x 300 km domain discretised with an 1 km grid with 10000 turbines placed in the centre. Wind turbines extract atmospheric kinetic energy and convert it into electricity. The extraction of kinetic energy from the atmospheric flow leads to two major phenomena: (1) momentum deficit in the wakes that reduce energy availability for downwind turbines and (2) enhanced vertical convergence to partly replenish the momentum deficit. Results show a 200% increase in vertical momentum convergence, with 95% of that coming from sub-grid turbulent eddies. However, the enhanced momentum convergence offsets only a small part of the momentum deficit. Consequently, there is a net reduction of almost 60% in power production for turbines in the interior of the farm compared to the turbines at the leading edge. These results suggest that a numerical model like WRF that accounts for both the momentum deficit and enhanced momentum convergence effects may provide better estimates of wind power generation than traditional wind speed density or wake model approaches.

  2. Multilink DC Transmission for Offshore Wind Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Silva, Rodrigo Da; Teodorescu, Remus

    2012-01-01

    analysis the Multi Terminal Direct Current (MTDC) operation and focuses on the sharing of active power produced by an offshore Wind Power Plant (WPP). The first objective was to model the system in PSCAD/EMTDC simulation software and then control structure tested under different situations. The second......The High Voltage Direct Current (HVDC) system gains much more flexibility on a basis of multi terminal operation. Having extra converters brings also new ideas in sharing the active power and one of the solutions is the use of virtual impedance correlated with a droop controller. This paper...... objective was to validate the simulation on a laboratory platform using 15 kW Voltage Source Converters (VSC) and a Real Time Interface (RTI). As a result, the power sharing is validated using such methodology and the influence in the parameters can be evaluated...

  3. Experimental study on durability of small wind turbine

    Science.gov (United States)

    Bao, Daorina; Shang, Wei; Wang, Huan

    2017-06-01

    Through the basic theory of durability test technology for small and medium sized wind power generation units, and the durability of 3KW wind turbine, this paper analyzed the test method of time available rate of unit and studied the power generation capability of the wind turbine. No power attenuation trend has been found, and a lot of experimental data and rich experience in engineering practice has been obtained with the success of experiments.

  4. An integrated assessment for wind energy in Lake Michigan coastal counties.

    Science.gov (United States)

    Nordman, Erik; VanderMolen, Jon; Gajewski, Betty; Isely, Paul; Fan, Yue; Koches, John; Damm, Sara; Ferguson, Aaron; Schoolmaster, Claire

    2015-04-01

    The benefits and challenges of onshore and offshore wind energy development were assessed for a 4-county area of coastal Michigan. Economic, social, environmental, and spatial dimensions were considered. The coastal counties have suitable wind resources for energy development, which could contribute toward Michigan's 10% renewable energy standard. Wind energy is cost-effective with contract prices less than the benchmark energy price of a new coal-fired power plant. Constructing a 100 MW wind farm could have a $54.7 million economic impact. A patchwork of township-level zoning ordinances regulates wind energy siting. Voluntary collaborations among adjacent townships standardizing the ordinances could reduce regulatory complexity. A Delphi Inquiry on offshore wind energy in Lake Michigan elicited considerable agreement on its challenges, but little agreement on the benefits to coastal communities. Offshore turbines could be acceptable to the participants if they reduced pollution, benefited coastal communities, involved substantial public participation, and had minimal impact on property values and tourism. The US Coast Guard will take a risk-based approach to evaluating individual offshore developments and has no plans to issue blanket restrictions around the wind farms. Models showed that using wind energy to reach the remainder of the 10% renewable energy standard could reduce SO2 , NOx , and CO2 pollution by 4% to 7%. Turbines are highly likely to impact the area's navigational and defense radar systems but planning and technological upgrades can reduce the impact. The integrated assessment shows that responsible wind energy development can enhance the quality of life by reducing air pollution and associated health problems and enhancing economic development. Policies could reduce the negative impacts to local communities while preserving the benefits to the broader region. © 2015 SETAC.

  5. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  6. Demand Response and Energy Storage Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.; Matson, Nance; Sohn, Michael D.; Rose, Cody M.; Dudley, Junqiao Han; Goli, Sasank; Kiliccote, Sila; Cappers, Peter; MacDonald, Jason; Denholm, Paul; Hummon, Marissa; Jorgenson, Jennie; Palchak, David; Starke, Michael; Alkadi, Nasr; Bhatnagar, Dhruv; Currier, Aileen; Hernandez, Jaci; Kirby, Brendan; O' Malley, Mark

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  7. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  8. Offshore system for integration of the wind energy; Sistema offshore para integracao de energia eolica

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Jan de [3E, Brussels (Belgium); Tambke, Jens [Universidade de Oldemburg (Germany). ForWind; Voelker, J. [Dena - Agencia Alema de Energia (Germany); Michalowska-Knap, Katarzyna [Instituto de Energia Renovavel (Poland)

    2010-09-15

    The Offshore Grid project aims to analyze the conditions required for the development of an offshore transmission network to integrate renewable energy (wind) to the national electrical systems, securely and efficiently. Regulatory aspects, technical, economic and political are considered, that will help the various players in the industry to have a common view on the offshore power grids in Europe.

  9. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  10. Nodal prices determination with wind integration for radial ...

    African Journals Online (AJOL)

    Like transmission pricing, distribution network pricing must also be transparent and must include tile variations based on the change in the operating state of the system, integration of renewable sources and must be real time. In this paper, a distribution system nodal pricing scheme is proposed for radial distribution system ...

  11. Integrating and Promoting Wind – Tide Energy for Renewable ...

    African Journals Online (AJOL)

    The continual decline in supply of conventional energy in Nigeria due to the depletion of the national reserve as the demand continued to increase has resulted to energy crisis with epileptic power supply, rising cost of production and food prices and threat to poverty reduction as its effects. Integrating and promoting ...

  12. Integrating GIS with fuzzy multi-criteria decision making for suitable wind farm locations

    Energy Technology Data Exchange (ETDEWEB)

    Iyappan, L.; Pandian, P.K. [Tagore Engineering College. Dept. of Civil Engineering, Tamil Nadu (India)

    2012-07-01

    Wind Energy is spatial in nature and the degree of potential wind farm locations are fuzzy i.e., the boundaries among highly, moderate and least suitable is not clear cut. The study area of this research covers entire taluk of Tirumangalam, Madurai District (India). In this study, to help wind energy companies, policy-makers and investors in evaluating potential wind farm locations in the Tirumangalam Taluk (Tamil Nadu, India), an adaptation of a Geographical Information System (GIS) and Fuzzy Multi-criteria Decision Making(FMDM) approach is attended. The entire processes were completed by using open source GIS software (Quantum GIS and GRASS GIS) with help of freely available data. The software tool takes inputs such as wind power density, Slope, Transmission lines, environmental factors, and economic factors to provide an in-depth analysis for suitable location options. (Author)

  13. Wind tunnel study of the power output spectrum in a micro wind farm

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2016-09-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies.

  14. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, Lion

    2014-11-14

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  15. Integration of Xantrex HY-100 Hybrid Inverter with an AC Induction Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Newcomb, C.; Friedly, S.

    2003-05-01

    Several issues must be addressed before solid-state inverters can be used in wind-diesel systems with larger wind turbines. This project addresses those issues by using a commercial hybrid inverter designed for PV-diesel systems and modifying the inverter for use with an AC induction wind turbine. Another approach would have entailed building an inverter specifically for use with an AC induction wind turbine, but that was beyond the scope of this project. The inverter chosen for this project was a Xantrex HY-100, an inverter designed for PV systems. The unit consists of an inverter/rectifier bridge, a generator interface contactor, a battery charge controller, a hybrid controller, and the associated control electronics. Details of the inverter may be found in Appendix A. A twofold approach was taken to integrating the existing inverter for use with an AC induction wind turbine: 1) development of a detailed model to model both steady-state and transient behavior of the system, and 2) modification and testing of the inverter with an induction wind turbine based on the modeling results. This report describes these two tasks.

  16. Innovative Offshore Wind Plant Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, William L. [Glosten Associates, Inc., Seattle, WA (United States); Nordstrom, Charles J. [Glosten Associates, Inc., Seattle, WA (United States); Morrison, Brent J. [Glosten Associates, Inc., Seattle, WA (United States)

    2013-12-18

    Technological advancements in the Glosten PelaStar floating wind turbine system have led to projected cost of energy (COE) reductions from today’s best-in-class offshore wind systems. The PelaStar system is projected to deliver a COE that is 35% lower than that delivered by the current offshore wind plants. Several technology developments have been achieved that directly target significant cost of energy reductions. These include: Application of state-of-the-art steel construction materials and methods, including fatigue-resistant welding techniques and technologies, to reduce hull steel weight; Advancements in synthetic fiber tendon design for the mooring system, which are made possible by laboratory analysis of full-scale sub-rope specimens; Investigations into selected anchor technologies to improve anchor installation methods; Refinement of the installation method, specifically through development of the PelaStar Support Barge design. Together, these technology developments drive down the capital cost and operating cost of offshore wind plants and enable access to superb wind resources in deep water locations. These technology developments also reduce the uncertainty of the PelaStar system costs, which increases confidence in the projected COE reductions.

  17. Feasibility Study for a Hopi Utility-Scale Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  18. Wind driven mobile charging of automobile battery- A case study

    African Journals Online (AJOL)

    user

    Also, while travelling if the battery gets discharged, then it can create a huge problem ... The PM generator and the circuit can be placed at the position pointed by the ..... Daniel S. A.and Gaunden,N.A. 2001, A stand alone integrated array wind ...

  19. The importance of flexible power plant operation for Jiangsu's wind integration

    DEFF Research Database (Denmark)

    Hong, Lixuan; Lund, Henrik; Möller, Bernd

    2012-01-01

    CO2 emissions in the system. Firstly, a reference model of Jiangsu’s energy system is built using the energy system analysis tool EnergyPLAN based on the year 2009. The model results are then compared to actual values from 2009 to validate their accuracy. Based on the reference model, different...... regulations of Jiangsu’s energy system are compared and analyzed in the range of a wind input from 0% to 42% of the total electricity demand. It is concluded that operating power plants in a flexible way facilitates the promotion of more intermittent wind integration....

  20. Integration of Wave and Offshore Wind Energy in a European Offshore Grid

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M.

    2010-01-01

    High wave and offshore wind energy potentials are located along the West and North coasts of Europe, respectively. In the near future, these resources should significantly contribute to the European electricity mix, but there is hardly any grid infrastructure available for large scale integration...... of offshore renewable energy sources. According to this, the paper covers i) public and private initiatives for offshore transmission networks, ii) the synergies between the wave and the offshore wind energy sector within an offshore grid, iii) power transmission options for offshore generation and iv...

  1. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

  2. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  3. Different Models for Forecasting Wind Power Generation: Case Study

    Directory of Open Access Journals (Sweden)

    David Barbosa de Alencar

    2017-11-01

    Full Text Available Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA, Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.

  4. A planar and tunable bandpass filter on a ferrite substrate with integrated windings

    KAUST Repository

    Arabi, Eyad A.

    2015-05-01

    Tunable Filters that are based on ferrite materials are often biased by external magnets or coils which are large and bulky. In this work a completely planar, CPW-based bandpass filter is presented with integrated windings. Due to these windings the size of the filter is only 26mm × 34mm × 0.38mm which is orders of magnitude smaller than the traditional designs with external windings. The filter is realized by electroplating of Copper over seed layers of Titanium and Gold over a YIG substrate. The fabricated filter achieves a tunability of 3.4% without any external magnets or coils. A good insertion loss of 2.3 dBs and rejection greater than 50 dBs have been obtained. To the best of the authors knowledge, this design is the first ferrite-based design that is completely planar and self-biased.

  5. Renewable Energy Potential by the Application of a Building Integrated Photovoltaic and Wind Turbine System in Global Urban Areas

    Directory of Open Access Journals (Sweden)

    Jaewook Lee

    2017-12-01

    Full Text Available Globally, maintaining equilibrium between energy supply and demand is critical in urban areas facing increasing energy consumption and high-speed economic development. As an alternative, the large-scale application of renewable energy, such as solar and wind power, might be a long-term solution in an urban context. This study assessed the overall utilization potential of a building-integrated photovoltaic and wind turbine (BIPvWt system, which can be applied to a building skin in global urban areas. The first step of this study was to reorganize the large volume of global annual climate data. The data were analyzed by computational fluid dynamic analysis and an energy simulation applicable to the BIPvWt system, which can generate a Pmax 300 Wp/module with a 15% conversion efficiency from a photovoltaic (PV system and a 0.149 power coefficient/module from wind turbines in categorized urban contexts and office buildings in specific cities; it was constructed to evaluate and optimize the ratio that can cover the current energy consumption. A diagram of the distribution of the solar and wind energy potential and design guidelines for a building skin were developed. The perspective of balancing the increasing energy consumption using renewable energy in urban areas can be visualized positively in the near future.

  6. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  7. Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.

    Energy Technology Data Exchange (ETDEWEB)

    Houchens, Brent C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blaylock, Myra L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-01

    The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, with numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.

  8. An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance

    Directory of Open Access Journals (Sweden)

    Mei-Sung Kang

    2011-11-01

    Full Text Available The demands for alternative energy resources have been increasing exponentially in the 21st century due to continuous industrial development, depletion of fossil fuels and emerging environmental consciousness. Renewable energy sources, including wind energy, hydropower energy, geothermal energy, solar energy, biomass energy and ocean power, have received increasing attention as alternative means of meeting global energy demands. After Japan's Fukushima nuclear plant disaster in March 2011, more and more countries are having doubt about the safety of nuclear plants. As a result, safe and renewable energy sources are attracting even more attention these days. Wind energy production, with its relatively safer and positive environmental characteristics, has evolved in the past few decades from a marginal activity into a multi-billion dollar industry. In this research, a comprehensive evaluation model is constructed to select a suitable location for developing a wind farm. The model incorporates interpretive structural modeling (ISM, benefits, opportunities, costs and risks (BOCR and fuzzy analytic network process (FANP. Experts in the field are invited to contribute their expertise in evaluating the importance of the factors and various aspects of the wind farm evaluation problem, and the most suitable wind farm can finally be generated from the model. A case study is carried out in Taiwan in evaluating the expected performance of several potential wind farms, and a recommendation is provided for selecting the most appropriate wind farm for construction.

  9. Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review

    Directory of Open Access Journals (Sweden)

    Jafar Jallad

    2017-08-01

    Full Text Available The inclusion of wind energy in a power system network is currently seeing a significant increase. However, this inclusion has resulted in degradation of the inertia response, which in turn seriously affects the stability of the power system’s frequency. This problem can be solved by using an active power reserve to stabilize the frequency within an allowable limit in the event of a sudden load increment or the loss of generators. Active power reserves can be utilized via three approaches: (1 de-loading method (pitching or over-speeding by a variable speed wind turbine (VSWT; (2 stored energy in the capacitors of voltage source converter-high voltage direct current (VSC-HVDC transmission; and (3 coordination of frequency regulation between the offshore wind farms and the VSC-HVDC transmission. This paper reviews the solutions that can be used to overcome problems related to the frequency stability of grid- integrated offshore wind turbines. It also details the permanent magnet synchronous generator (PMSG with full-scale back to back (B2B converters, its corresponding control strategies, and a typical VSC-HVDC system with an associated control system. The control methods, both on the levels of a wind turbine and the VSC-HVDC system that participate in a system’s primary frequency control and emulation inertia, are discussed.

  10. Multi-Objective Low-Carbon Economic Dispatch Considering Demand Response with Wind Power Integrated Systems

    Directory of Open Access Journals (Sweden)

    Liu Wenjuan

    2017-01-01

    Full Text Available The generation cost, carbon emissions and customers’ satisfaction are considered in this paper. On the basis of this, the multi-objective and low-carbon economic dispatch model with wind farm, this considers demand response, is established. The model user stochastic programming theory to describe the uncertainty of the wind power and converts it into an equivalent deterministic model by using distribution function of wind power output, optimizes demand side resources to adjust the next day load curve and to improve load rate and absorptive capacity of wind power, introduce customers’ satisfaction to ensure that the scheduling scheme satisfies customer and integrate the resources of source and load to unify coordination wind farm access to network and to meet the requirements of energy saving and emission reduction. The search process of artificial fish school algorithm introducing Tabu search and more targeted search mechanism, an multi-objective improved artificial fish school algorithm is proposed to solve this model. Using the technique for order preference by similarity to ideal solution (TOPSIS to sort the Pareto frontier, the optimal scheduling scheme is determined. Simulation results verify the rationality and validity of the proposed model and algorithm.

  11. Measurement-Based Investigation of Inter- and Intra-Area Effects of Wind Power Plant Integration

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Alicia J.; Singh, Mohit; Muljadi, Eduard; Santoso, Surya

    2016-12-01

    This paper has a two pronged objective: the first objective is to analyze the general effects of wind power plant (WPP) integration and the resulting displacement of conventional power plant (CPP) inertia on power system stability and the second is to demonstrate the efficacy of PMU data in power system stability analyses, specifically when knowledge of the network is incomplete. Traditionally modal analysis applies small signal stability analysis based on Eigenvalues and the assumption of complete knowledge of the network and all of its components. The analysis presented here differs because it is a measurement-based investigation and employs simulated measurement data. Even if knowledge of the network were incomplete, this methodology would allow for monitoring and analysis of modes. This allows non-utility entities and study of power system stability. To generate inter- and intra-area modes, Kundur's well-known two-area four-generator system is modeled in PSCAD/EMTDC. A doubly-fed induction generator based WPP model, based on the Western Electricity Coordination Council (WECC) standard model, is included to analyze the effects of wind power on system modes. The two-area system and WPP are connected in various configurations with respect to WPP placement, CPP inertia and WPP penetration level. Analysis is performed on the data generated by the simulations. For each simulation run, a different configuration is chosen and a large disturbance is applied. The sampling frequency is set to resemble the sampling frequency at which data is available from phasor measurement units (PMUs). The estimate of power spectral density of these signals is made using the Yule-Walker algorithm. The resulting analysis shows that the presence of a WPP does not, of itself, lead to the introduction of new modes. The analysis also shows however that displacement of inertia may lead to introduction of new modes. The effects of location of inertia displacement (i.e. the effects on

  12. Wind integration calls for collaborative response; L'integration de l'energie eolienne demande une collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-07-01

    Canada's electricity mix will require electric utilities to re-design conventional power grid and operational management strategies. A task force has been created by the North American Electric Reliability Corporation (NERC) to manage wind and other variable renewable energy sources. The Integration of Variable Generation Task Force has now issued a report that will help to support more than 145,000 MW of new variable generation over the next 10 years. Canada is still at the early stages of wind energy development, with 2440 MW currently supplying 1 per cent of the country's electricity supply. However, all 10 provinces plan to significantly boost installed capacity within their borders, and the country has an enormous amount of untapped potential. Greater flexibility is needed to manage wind power supply to the electricity grid. It was concluded that Canada's extensive hydro-electric supplies mean that generators can draw on a larger pool of generation in order to help balance the variability of wind power. 1 fig.

  13. Wind shear predictive detector technology study status

    Science.gov (United States)

    Gandolfi, C.

    1990-01-01

    Among the different elements to be investigated when considering the Wind Shear hazard, the Aeronautical Navigation Technical Service (STNA/3E), whose task is to participate in the development of new technologies and equipments, focused its effort on airborne and ground sensors for the detection of low-level wind shear. The first task, initiated in 1986, consists in the evaluation of three candidate techniques for forward-looking sensors: lidar, sodar, and radar. No development is presently foreseen for an infrared based air turbulence advance warning system although some flight experiments took place in the 70's. A Thomson infrared radiometer was then installed on an Air France Boeing 707 to evaluate its capability of detecting clear air turbulence. The conclusion showed that this technique was apparently able to detect cloud layers but that additional experiments were needed; on the other hand, the rarity of the phenomenon and the difficulty in operating on a commercial aircraft were also mentioned.

  14. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  15. Analysis of energy-saving dispatch based on energy efficiency for power system with large scale wind power integration

    Science.gov (United States)

    Zou, Lanqing; Zhou, Peng; Li, Shitong; Lin, Li

    2017-01-01

    With the increasing of wind generators and the scale of wind farm, the utilization rate of wind power decreases continually, it is essential to develop an energy-saving dispatching model for the purpose of energy conservation and emission reduction. Firstly, considering some main factors, such as generator operating costs, start-up unit costs, shutdown unit costs, oil consumption and pollutant emission, establish an energy efficiency model. Then, based on the principle of energy-saving dispatch, a model is established which objective is maximizing the energy efficiency. Moreover, in order to realize the priority dispatching of wind power, another model is established which objective is minimizing the wind power shedding. Finally, under the conditions of different installed wind power capacities being integrated into a real region grid, two models are compared and analyzed from perspectives of the society, thermal power enterprise and wind power enterprise.

  16. Wind tunnel testing of 5-bladed H-rotor wind turbine with the integration of the omni-direction-guide-vane

    Science.gov (United States)

    Fazlizan, A.; Chong, W. T.; Omar, W. Z. W.; Mansor, S.; Zain, Z. M.; Pan, K. C.; Oon, C. S.

    2012-06-01

    A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance by increasing the oncoming wind speed and guiding the wind-stream through optimum flow angles before impinging onto the turbine blades. Wind tunnel testing was performed to measure the performance of a 5-bladed H-rotor wind turbine with Wortmann FX63-137 airfoil blades, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV on a building. The diameter and height of the ODGV are 2 times larger than the VAWT's. Torque, rotational speed and power measurements were performed by using torque transducer with hysteresis brake applied to the rotor shaft. The VAWT shows an improvement on its self-starting behavior where the cut-in speed reduced to 4 m/s with the ODGV (7.35 m/s without the ODGV). Since the VAWT is able to self-start at lower wind speed, the working hour of the wind turbine would increase. At the wind speed of 6 m/s and free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor RPM by 182%. At the same wind speed (6 m/s), the ODGV helps to increase the power output by 3.48 times at peak torque. With this innovative design, the size of VAWT can be reduced for a given power output and should generate interest in the market, even for regions with weaker winds.

  17. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  18. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...... wind power. This was done by bringing together the key industry stakeholders and competent research organisations in the project....

  19. Transmission Congestion Management using a Wind Integrated Compressed Air Energy Storage System

    OpenAIRE

    S. Gope; Goswami, A. K.; P.K. Tiwari

    2017-01-01

    Transmission congestion is a vital problem in the power system security and reliability sector. To ensure the stable operation of the system, a congestion free power network is desirable. In this paper, a new Congestion Management (CM) technique, the Wind integrated Compressed Air Energy Storage (WCAES) system is used to alleviate transmission congestion and to minimize congestion mitigation cost. The CM problem has been solved by using the Generator Sensitivity Factor (GSF) and the Bus Sensi...

  20. The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT)

    OpenAIRE

    Hassam Nasarullah Chaudhry; John Kaiser Calautit; Ben Richard Hughes

    2014-01-01

    A numerical investigation was carried out to determine the impact of structural morphology on the power generation capacity of building-integrated wind turbines. The performance of the turbines was analysed using the specifications of the Bahrain Trade Centre which was taken as the benchmark model, the results of which were compared against triangular, square and circular cross-sections of the same building. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations along with the...

  1. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  2. Wind power forecasting system EOlienne SPEO : development, preliminary results and integration at Hydro-Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Forcione, A.; Roberge, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ; Yu, W.; Glazer, A.; Benoit, R.; Plante, A.; Tran, L.D.; Chardon, L. [Environment Canada, Ottawa, ON (Canada)

    2007-07-01

    Wind generation forecasting at Hydro-Quebec was discussed with particular reference to the collaborative efforts between the utility's Research Institute and Environment Canada in developing the Systeme de Prevision EOlienne (SPEO). The European ANEMOS platform was installed at Hydro-Quebec Distribution in 2006. Operational forecasts using the Global Environmental Multi-scale model (GEM) from the Canadian Meteorological Centre served as input for SPEO. This presentation evaluated the performance of the forecasting model, and presented best approaches for long term use and continuous improvement. SPEO was developed to forecast wind and other atmospheric variables, and not generated power. The development of the software began in September 2006 with the development and integration of necessary components, followed by the calibration of the system, 15 months of operational forecasts, experimentation and final analysis in 2008. The GEM-global model provides 10 days and 240 hours of hourly forecasts with 35 km resolution, while the GEM-regional model provides 2 days and 48 hours of hourly forecasts with 15 km resolution. It was shown that the development of a good forecasting system depends entirely on the availability of a maximum number of observation sources, which for SPEO includes 13 Environment Canada stations and wind farm masts. The final value of a wind forecasting system also depends on compatibility with the electric system management tools and processes. Research is ongoing to improve SPEO through validation tools, integration of newly available observations, recalibration and experimentation. Future tasks will be to extend the 48 hour horizon, to optimize the number crunching efficiency and to characterize wind farms more precisely. figs.

  3. Experimental and theoretical study of horizontal-axis wind turbines

    OpenAIRE

    Anderson, Michael Broughton

    1981-01-01

    An experimental and theoretical study of horizontal-axis wind turbines is undertaken. The theoretical analyses cover the four major areas of aerodynamics, turbulence. aeroelasticity and blade optimisation. EXisting aerodynamic theories based on blade-element theory for predicting the loads on a wind turbine blade are reviewed and extended to include non-uniform flow, tip losses and the 'turbulent wake' state. A theoretical model based on a free vortex representation of a ...

  4. Using Copulas for analysis of large datasets in renewable distributed generation: PV and wind power integration in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh Haghi, H.; Tavakoli Bina, M.; Golkar, M.A.; Moghaddas-Tafreshi, S.M. [Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Seyed Khandan, P. O. Box 16315-1355, Tehran-16314 (Iran)

    2010-09-15

    Renewable distributed generation introduced as an environmental friendly alternative energy supply while it provided the power system with ever-growing technical benefits such as loss reduction and feeder voltage improvement. The evaluation of the effects of small residential photovoltaic and wind DG systems on various system operating indices and the system net load is complicated by both the probabilistic nature of their output and the variety of their spatial allocations. The increasing penetration of renewable distributed generation in power systems necessitates the modeling of this stochastic structure in operation and planning studies. An advanced stochastic modeling of the system requires multivariate uncertainty analysis involving non-normal correlated random variables. Such an analysis is to epitomize the aggregate uncertainty corresponding to spatially spread stochastic variables. In this paper, an integration study of photovoltaics and wind turbines, distributed in a distribution network, is investigated based on the stochastic modeling using Archimedean copulas as a new efficient tool. The basic theory concerning the use of copulas for dependence modeling is presented and focus is given on an Archimedean algorithm. A comprehensive case study for Davarzan area in Iran is presented after reviewing Iran's renewable energy status. This study shows an application of the presented technique when large datasets, assuming 10-min interval between data points of PV, wind and load profiles, are involved where a deterministic study is not trivial. (author)

  5. Large-scale integration of wind power into the existing Chinese energy system

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    This paper presents the ability of the existing Chinese energy system to integrate wind power and explores how the Chinese energy system needs to prepare itself in order to integrate more fluctuating renewable energy in the future. With this purpose in mind, a model of the Chinese energy system has...... have been discussed and suggestions proposed for the Chinese energy system to integrate large-scale renewable energy in the future. It is concluded that the model constructed by the use of EnergyPLAN can accurately simulate the Chinese energy system. Based on current regulations to secure grid...... of securing grid stability, was left primarily to large coal-fired power plants. There are at least three possible solutions for the Chinese energy system to integrate large-scale fluctuating renewable energy in the long term: Redesigning the regulations to secure grid stability by means of diversifying...

  6. Environmental management framework for wind farm siting: methodology and case study.

    Science.gov (United States)

    Tegou, Leda-Ioanna; Polatidis, Heracles; Haralambopoulos, Dias A

    2010-11-01

    This paper develops an integrated framework to evaluate land suitability for wind farm siting that combines multi-criteria analysis (MCA) with geographical information systems (GIS); an application of the proposed framework for the island of Lesvos, Greece, is further illustrated. A set of environmental, economic, social, and technical constraints, based on recent Greek legislation, identifies the potential sites for wind power installation. Furthermore, the area under consideration is evaluated by a variety of criteria, such as wind power potential, land cover type, electricity demand, visual impact, land value, and distance from the electricity grid. The pair-wise comparison method in the context of the analytic hierarchy process (AHP) is applied to estimate the criteria weights in order to establish their relative importance in site evaluation. The overall suitability of the study region for wind farm siting is appraised through the weighted summation rule. Results showed that only a very small percentage of the total area of Lesvos could be suitable for wind farm installation, although favourable wind potential exists in many more areas of the island. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Flow Characteristics Study of Wind Turbine Blade with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-01-01

    Full Text Available The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blade root, and then they are calculated, respectively, with CFD method. The results show that VGs installed in the separation line upstream, with the separation line of the blade root as a benchmark, show a better effect. Pneumatic power of blades increases by 0.6% by installing VGs. Although the effect on large wind turbines is not obvious, there is a space for optimization.

  8. Predicting wind shear effects: A study of Minnesota wind data collected at heights up to 70 meters

    Energy Technology Data Exchange (ETDEWEB)

    Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)

    1997-12-31

    The Minnesota Department of Public Service (DPS) collects wind data at carefully selected sites around the state and analyzes the data to determine Minnesota`s wind power potential. DPS recently installed advanced new monitoring equipment at these sites and began to collect wind data at 30, 50, and 70 meters above ground level, with two anemometers at each level. Previously, the Department had not collected data at heights above ground level higher than 30 meters. DPS also, with the U.S. Department of Energy (DOE), installed four sophisticated monitoring sites as part of a Tall Tower Wind Shear Study that is assessing the effects of wind shear on wind power potential. At these sites, wind data are being collected at the 10, 30, 40, 50, 60, and 70 meter heights. This paper presents the preliminary results of the analysis of wind data from all sites. These preliminary results indicate that the traditional 1/7 power law does not effectively predict wind shear in Minnesota, and the result is an underestimation of Minnesota`s wind power potential at higher heights. Using a power factor of 1/5 or 1/4 may be more accurate and provide sound justification for installing wind turbines on taller towers in Minnesota.

  9. Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2016-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM theory, a structural analysis module employing the Finite Element Method (FEM and a multi-objective optimization module utilizing the non-dominated sorting genetic algorithm. The former two provide a sufficiently accurate solution of the aerodynamic and structural performances of the blade; the latter handles the design variables of the optimization problem, namely, the main geometrical shape and structural parameters of the blade, and promotes function optimization. The scope of the procedure is to achieve the best trade-off performances between the maximum Annual Energy Production (AEP and the minimum blade mass under various design requirements. To prove the efficiency and reliability of the procedure, a commercial 1.5 megawatt (MW HAWT blade is used as a case study. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  10. Study of Wind Effects on Unique Buildings

    Science.gov (United States)

    Olenkov, V.; Puzyrev, P.

    2017-11-01

    The article deals with a numerical simulation of wind effects on the building of the Church of the Intercession of the Holy Virgin in the village Bulzi of the Chelyabinsk region. We presented a calculation algorithm and obtained pressure fields, velocity fields and the fields of kinetic energy of a wind stream, as well as streamlines. Computational fluid dynamic (CFD) evolved three decades ago at the interfaces of calculus mathematics and theoretical hydromechanics and has become a separate branch of science the subject of which is a numerical simulation of different fluid and gas flows as well as the solution of arising problems with the help of methods that involve computer systems. This scientific field which is of a great practical value is intensively developing. The increase in CFD-calculations is caused by the improvement of computer technologies, creation of multipurpose easy-to-use CFD-packagers that are available to a wide group of researchers and cope with various tasks. Such programs are not only competitive in comparison with physical experiments but sometimes they provide the only opportunity to answer the research questions. The following advantages of computer simulation can be pointed out: a) Reduction in time spent on design and development of a model in comparison with a real experiment (variation of boundary conditions). b) Numerical experiment allows for the simulation of conditions that are not reproducible with environmental tests (use of ideal gas as environment). c) Use of computational gas dynamics methods provides a researcher with a complete and ample information that is necessary to fully describe different processes of the experiment. d) Economic efficiency of computer calculations is more attractive than an experiment. e) Possibility to modify a computational model which ensures efficient timing (change of the sizes of wall layer cells in accordance with the chosen turbulence model).

  11. A Standardized Based Approach to Managing Atmosphere Studies For Wind Energy Research

    Science.gov (United States)

    Stephan, E.; Sivaraman, C.

    2015-12-01

    Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. Better insight into the flow physics has the potential to reduce wind farm energy losses by up to 20%, to reduce annual operational costs by hundreds of millions of dollars, and to improve project financing terms to more closely resemble traditional capital projects. The Data Archive and Portal (DAP) is a key capability of the A2e initiative. The DAP is a cloud-based distributed system known as the 'Wind Cloud' that functions as a repository for all A2e data. This data includes numerous historic and on-going field studies involving in situ and remote sensing instruments, simulations, and scientific analysis. Significantly it is the integration and sharing of these diverse data sets through the DAP that is key to meeting the goals of A2e. This cloud will be accessible via an open and easy-to navigate user interface that facilitates community data access, interaction, and collaboration. DAP management is working with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud. Security will be provided to facilitate storage of proprietary data alongside publicly accessible data in the Wind Cloud, and the capability to generate anonymized data will be provided to facilitate using private data by non-privileged users (when appropriate). Finally, limited computing capabilities will be provided to facilitate co-located data analysis, validation, and generation of derived products in support of A2e science.

  12. Local ownership, smart energy systems and better wind power economy

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Möller, Bernd; Sperling, Karl

    2013-01-01

    Increasing wind power shares enhances the need to integrate wind power into the energy system and to improve its economy. In this study we propose two ways of achieving this end. One is to increase the value of wind power by integrating the heat and power markets, and thus ensures that wind power...... the acceptance rate of onshore wind. The economy of wind power is thus improved by both increasing its value and reducing its costs....

  13. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    Science.gov (United States)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-05-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.

  14. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Directory of Open Access Journals (Sweden)

    Jianjun He

    2012-08-01

    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  15. Comparative Study of Voltage Recovery Behaviors of Grid-Connected Wind Turbines

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    on voltage recovery of variable speed wind turbines. The models of two different kinds of variable speed wind turbines, respectively with slip control and with doubly fed induction generator (DFIG), are developed in PSCAD/EMTDC. In both wind power generation systems, control strategies are proposed to re......The fast development of wind power generation brings new requirements for wind turbine integration to the network. After the clearance of an external short-circuit fault, the voltage at the wind turbine terminal should be re-established with minimized power losses. This paper concentrates...

  16. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... is applied to a new introduced 14-busbar test system which comprises two wind turbine (WT) generators, one small power plant, and two EV-plug-in stations connected at two PQ buses. The results demonstrate the excellent performance of the HLAS for PCLF problem. New formulae to facilitate the optimal...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  17. New tool for integration of wind power forecasting into power system operation

    DEFF Research Database (Denmark)

    Gubina, Andrej F.; Keane, Andrew; Meibom, Peter

    2009-01-01

    for evaluation of the impacts that different types of wind energy forecasts (stochastic vs. deterministic vs. perfect) have on the schedules, and how the new incoming information via in-day scheduling impacts the quality of the schedules. Within the methodology, metrics to assess the quality of the schedules......The paper describes the methodology that has been developed for transmission system operators (TSOs) of Republic of Ireland, Eirgrid, and Northern Ireland, SONI the TSO in Northern Ireland, to study the effects of advanced wind power forecasting on optimal short-term power system scheduling....... The resulting schedules take into account the electricity market conditions and feature optimal reserve scheduling. The short-term wind power prediction is provided by the Anemos tool, and the scheduling function, including the reserve optimisation, by the Wilmar tool. The proposed methodology allows...

  18. Increase of the Integration Degree of Wind Power Plants into the Energy System Using Wind Forecasting and Power Consumption Predictor Models by Transmission System Operator

    Directory of Open Access Journals (Sweden)

    Manusov V.Z.

    2017-12-01

    Full Text Available Wind power plants’ (WPPs high penetration into the power system leads to various inconveniences in the work of system operators. This fact is associated with the unpredictable nature of wind speed and generated power, respectively. Due to these factors, such source of electricity must be connected to the power system to avoid detrimental effects on the stability and quality of electricity. The power generated by the WPPs is not regulated by the system operator. Accurate forecasting of wind speed and power, as well as power load can solve this problem, thereby making a significant contribution to improving the power supply systems reliability. The article presents a mathematical model for the wind speed prediction, which is based on autoregression and fuzzy logic derivation of Takagi-Sugeno. The new model of wavelet transform has been developed, which makes it possible to include unnecessary noise from the model, as well as to reveal the cycling of the processes and their trend. It has been proved, that the proposed combination of methods can be used simultaneously to predict the power consumption and the wind power plant potential power at any time interval, depending on the planning horizon. The proposed models support a new scientific concept for the predictive control system of wind power stations and increase their degree integration into the electric power system.

  19. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  20. Market-Based Indian Grid Integration Study Options: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stoltenberg, B.; Clark, K.; Negi, S. K.

    2012-03-01

    The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

  1. A New Building-Integrated Wind Turbine System Utilizing the Building

    Directory of Open Access Journals (Sweden)

    Jeongsu Park

    2015-10-01

    Full Text Available This paper proposes an innovative building-integrated wind turbine (BIWT system by directly utilizing the building skin, which is an unused and unavailable area in all conventional BIWT systems. The proposed system has been developed by combining a guide vane that is able to effectively collect the incoming wind and increase its speed and a rotor with an appropriate shape for specific conditions. To this end, several important design issues for the guide vane as well as the rotor were thoroughly investigated and accordingly addressed in this paper. A series of computational fluid dynamics (CFD analyses was performed to determine the optimal configuration of the proposed system. Finally, it is demonstrated from performance evaluation tests that the prototype with the specially designed guide vane and rotor for the proposed BIWT system accelerates the wind speed to a sufficient level and consequently increases the power coefficient significantly. Thus, it was confirmed that the proposed system is a promising environment-friendly energy production system for urban areas.

  2. Improved Adaptive Droop Control Design for Optimal Power Sharing in VSC-MTDC Integrating Wind Farms

    Directory of Open Access Journals (Sweden)

    Xiaohong Ran

    2015-07-01

    Full Text Available With the advance of insulated gate bipolar transistor (IGBT converters, Multi-Terminal DC (MTDC based on the voltage-source converter (VSC has developed rapidly in renewable and electric power systems. To reduce the copper loss of large capacity and long distance DC transmission line, an improved droop control design based on optimal power sharing in VSC-MTDC integrating offshore wind farm is proposed. The proposed approach provided a calculation method for power-voltage droop coefficients under two different scenarios either considering local load or not. The available headroom of each converter station was considered as a converter outage, to participate in the power adjustment according to their ability. A four-terminal MTDC model system including two large scale wind farms was set up in PSCAD/EMTDC. Then, the proposed control strategy was verified through simulation under the various conditions, including wind speed variation, rectifier outage and inverter outage, and a three-phase short-circuit of the converter.

  3. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL

    2010-09-01

    Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing

  4. Modeling and resonance issues of wind farm integration with related facts applications

    Science.gov (United States)

    Auddy, Soubhik

    This thesis deals with electromechanical oscillations, torsional oscillations and resonance issues in power systems fed by conventional steam-turbine generators and emerging wind turbine generators. Solutions to several of these problems are proposed using Flexible AC Transmission Systems (FACTS) Controllers. Inter-area oscillations are investigated in the IEEE 39 bus system and are damped by a novel Static VAR Compensator (SVC) control signal utilizing a weighted sum of remote generator speeds derived from bus voltage angles. The weights are calculated from participation factor analysis using commercial software Dynamic Security Assessment (DSA) Power Tools and are validated by EMTDC/PSCAD simulations. Subsynchronous resonance (SSR) in steam-turbine generators has been traditionally damped with SVC using either local signals or signals derived from a combination of local signals. This thesis proposes a novel SVC controller based on remote generator speed for alleviating SSR. This controller is shown from EMTDC/PSCAD simulations to be much more effective than the previously reported controllers for the IEEE First SSR Benchmark system. The efficacy is demonstrated for all the four critical series compensation levels. With the worldwide growth of renewable energy, large wind farms are likely to be connected to series compensated networks for evacuation of bulk power. This may lead to the potential of SSR in the wind turbine generators. For the first time, a detailed electromagnetic transient study using EMTDC/PSCAD has been conducted in this thesis to demonstrate that subsynchronous resonance can be a cause of concern in series compensated wind farms at realistic levels of power flow and series compensation levels. Novel controllers for two FACTS devices - a Static VAR Compensator (SVC) and a Thyristor Controlled Series Capacitor (TCSC) - are proposed to mitigate SSR under all realistic compensation levels in a modified IEEE First Benchmark system. It is further

  5. Assessment of existing studies of wind loading on solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, L. M.

    1981-02-01

    In developing solar collectors, wind loading is the major structural design consideration. Wind loading investigations have focused on establishing safe bounds for steady state loading and verifying rational but initial and conservative design approaches for the various solar collector concepts. As such, the effort has been very successful, and has contributed greatly to both the recognition and qualitative understanding of many of the physical phenomena involved. Loading coefficients corresponding to mean wind velocities have been derived in these prior studies to measure the expected structural loading on the various solar collectors. Current design and testing procedures for wind loading are discussed. The test results corresponding to numerous wind tests on heliostats, parabolic troughs, parabolic dishes, and field mounted photovoltaic arrays are discussed and the applicability of the findings across the various technologies is assessed. One of the most significant consistencies in the data from all the technologies is the apparent benefit provided by fences and field shielding. Taken in toto, these data show that load reductions of three or possibly more seem feasible, though a more thorough understanding of the phenomena involved must be attained before this benefit can be realized. It is recommended that the required understanding be developed to take advantage of this benefit and that field tests be conducted to correlate with both analyses and tests.

  6. Comparison study between wind turbine and power kite wakes

    Science.gov (United States)

    Haas, T.; Meyers, J.

    2017-05-01

    Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.

  7. Comparative Study Between Wind and Photovoltaic (PV) Systems

    Science.gov (United States)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  8. Wind Speed Forecasting by Wavelet Neural Networks: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Chuanan Yao

    2013-01-01

    Full Text Available Due to the environmental degradation and depletion of conventional energy, much attention has been devoted to wind energy in many countries. The intermittent nature of wind power has had a great impact on power grid security. Accurate forecasting of wind speed plays a vital role in power system stability. This paper presents a comparison of three wavelet neural networks for short-term forecasting of wind speed. The first two combined models are two types of basic combinations of wavelet transform and neural network, namely, compact wavelet neural network (CWNN and loose wavelet neural network (LWNN in this study, and the third model is a new hybrid method based on the CWNN and LWNN models. The efficiency of the combined models has been evaluated by using actual wind speed from two test stations in North China. The results show that the forecasting performances of the CWNN and LWNN models are unstable and are affected by the test stations selected; the third model is far more accurate than the other forecasting models in spite of the drawback of lower computational efficiency.

  9. Experimental study of microtabs in smart blades for wind turbines

    OpenAIRE

    Senosiain Suescun, David; Morales Goicoechea, Joseba

    2013-01-01

    The goal of this thesis is to carry out an experimental study of the performance of smart blades reducing extreme and/or cyclic loads for their use in wind turbines. First of all, theoretical research about wind turbines and smart blades was done. Some of this information is explained in the thesis in order to set the background and make it more readable and understandable (Chapters 1 to 3). The next step was to choose a blade profile that would fit well the requirements of ...

  10. Studying wildlife and wind power - pros and cons of methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, Mark

    2011-07-01

    Full text: In recent years, environmental impact studies of wildlife and wind power have increased in abundance. From the simplest visual observation of bird-wind farm collisions to high-tech remote technologies like radar and satellite tags have been applied in the search of the truth about positive and negative effects on wildlife from these turbines. This talk will present the pros and cons of the various methodologies, the state of the art of methods used so far and the potential areas for novel methodological developments for the near future. (Author)

  11. Energy Policy Case Study - Texas: Wind, Markets, and Grid Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Homer, Juliet S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    This document presents a case study of energy policies in Texas related to power system transformation, renewable energy and distributed energy resources (DERs). Texas has experienced a dramatic increase in installed wind capacity, from 116 MW in 2000 to over 15,000 MW in 2015. This achievement was enabled by the designation of Competitive Renewable Energy Zones (CREZs) and new transmission lines that transmit wind to load centers. This report highlights nascent efforts to include DERs in the ERCOT market. As costs decline and adoption rates increase, ERCOT expects distributed generation to have an increasing effect on grid operations, while bringing potentially valuable new resources to the wholesale markets.

  12. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only......The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... research, main focus is put on individual heat pumps in the residential sector and the possibilities for flexible operation, using the heat storage options available. Extensive model development is performed that significantly improves the possibilities for analysing individual heat pumps and heat storages...

  13. Crossflex: Concept and early development of a true building integrated wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Tim [Mackintosh Environmental Architecture Research Unit (MEARU), Glasgow School of Art, Glasgow, G3 6RQ, Scotland (United Kingdom); Proven, Gordon [Proven Energy Ltd. Wardhead Park, Stewarton, Ayrshire, KA3 5LH, Scotland (United Kingdom)

    2010-12-15

    This paper describes the concept development and work to date, of an innovative 'true' building integrated wind turbine. The context for this is the role of small-scale renewable energy in addressing climate change. In the UK a number of small wind turbines have reached the market, however, in almost all cases, these are existing HAWT or VAWT tower mounted systems. Due to their inherent design qualities, and issues such as planning requirements, these have much reduced output due to their form and siting and are unable to take advantage of augmented airflow around buildings. The Crossflex proposal is a radical new development of a Darrieus turbine form. As well as having a technically innovative flexible blade system, it also utilises a lightweight cowling system that can provide both augmented airflow and improved visual integration into new and existing building forms. It is a modular form that can be sited on ridges and corners of buildings to provide useful levels of generation. (author)

  14. Pressure integration technique for predicting wind-induced response in high-rise buildings

    Directory of Open Access Journals (Sweden)

    Aly Mousaad Aly

    2013-12-01

    Full Text Available This paper presents a procedure for response prediction in high-rise buildings under wind loads. The procedure is illustrated in an application example of a tall building exposed to both cross-wind and along-wind loads. The responses of the building in the lateral directions combined with torsion are estimated simultaneously. Results show good agreement with recent design standards; however, the proposed procedure has the advantages of accounting for complex mode shapes, non-uniform mass distribution, and interference effects from the surrounding. In addition, the technique allows for the contribution of higher modes. For accurate estimation of the acceleration response, it is important to consider not only the first two lateral vibrational modes, but also higher modes. Ignoring the contribution of higher modes may lead to underestimation of the acceleration response; on the other hand, it could result in overestimation of the displacement response. Furthermore, the procedure presented in this study can help decision makers, involved in a tall building design/retrofit to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, damping enhancement, and/or materials change, with an objective to improve the resiliency and the serviceability under extreme wind actions.

  15. Renewable energy integration into the Australian National Electricity Market: Characterising the energy value of wind and solar generation

    OpenAIRE

    Nicholas Boerema; Merlinde Kay; Iain MacGill

    2010-01-01

    This paper examines how key characteristics of the underlying wind and solar resources may impact on their energy value within the Australian National Electricity Market(NEM). Analysis has been performed for wind generation using half hour NEM data for South Australia over the 2008-9 financial year. The potential integration of large scale solar generation has been modelled using direct normal solar radiant energy measurements from the Bureau of Meteorology for six sites across the NEM. For w...

  16. Real-time impact of power balancing on power system operation with large scale integration of wind power

    OpenAIRE

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar; Giannopoulos, Georgios

    2017-01-01

    Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where regulating power bids are activated manually. In this article, an algorithm is developed to simulate the activation of regulating power bids, as performed in the control room, during power imbalance betwee...

  17. Modeling and investigation of Gulf El-Zayt wind farm for stability studying during extreme

    Directory of Open Access Journals (Sweden)

    Omar Noureldeen

    2014-03-01

    Full Text Available This paper investigates the impact of extreme gust wind as a case of wind speed variation on a wind farm interconnected electrical grid. The impact of extreme gust wind speed variation on active and reactive power of the wind farms is studied for variable speed wind farm equipped with Doubly Fed Induction Generators (DFIGs. A simulation model of the under implementation 120 MW wind farm at Gulf El-Zayt region, Red Sea, Egypt, is simulated as a case study. A detailed model of extreme gust wind speed variation is implemented and simulated, using MATLAB/Simulink toolbox, based on International Electrotechnical Commission IEC 61400-1 and climate characteristic of Gulf El-Zayt site. The simulation results show the influence of different extreme gust wind speed variations on the fluctuation of active power and reactive power at the Point of Common Coupling (PCC of the studied wind farm.

  18. Understanding the environmental implications of energy transitions. A case study for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Arvesen, Anders

    2013-03-01

    of recycling benefits in analyses, lack of detailed considerations of installation and use phases, and lack of future-oriented assessments. The scenario-based LCA is an initial attempt to integrate global energy scenario analysis and LCA in order to assess the economy-wide environmental costs and benefits of wind power. The study estimates aggregated global emissions caused by wind power toward 2050, following the International Energy Agency#Right Single Quotation Mark#s BLUE scenarios. It takes into account replacement at end-of-life and changing electricity mix in manufacturing, and distinguishes emissions occurring prior to, during and after the useful life of wind turbines. Results indicate emissions of 2.3 (3.5) gigatonnes Co2 from wind power in 2007-50 in a scenario with 12% (22%) share of wind in electricity supply in 2050. A second key element of the analysis is that life cycle inventories for fossil fuel-based electricity are used to evaluate emissions savings from wind power; the evaluation is performed on the assumption that additional wind electricity, compared with a baseline, displaces fossil fuel electricity. Results suggest that emissions savings grossly exceed emissions caused by wind power, and thus confirm emission benefits of wind power. Uncertainty and limitations in scope of analysis need to be borne in mind when interpreting results. The LCA of an offshore wind farm places special emphasis on marine vessel activities and supply of spare parts. The proposed Havsul I wind farm, Norway is used as a model. Total carbon footprint is estimated to 34 grams Co2 per kWh. Results indicate greater contributions from vessels and spare parts than has previously been thought: Offshore activities during installation and use phases contribute 25-35% to totals for several impact categories (e.g., climate change, acidification) and 43% for photochemical oxidant formation. Supply of spare parts causes 7% of climate impacts and 13% of freshwater ecotoxicity

  19. An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore

    Directory of Open Access Journals (Sweden)

    Mahmood Shafiee

    2014-02-01

    Full Text Available Failure mode and effects analysis (FMEA has been extensively used by wind turbine assembly manufacturers for analyzing, evaluating and prioritizing potential/known failure modes. However, several limitations are associated with its practical implementation in wind farms. First, the Risk-Priority-Number (RPN of a wind turbine system is not informative enough for wind farm managers from the perspective of criticality; second, there are variety of wind turbines with different structures and hence, it is not correct to compare the RPN values of different wind turbines with each other for prioritization purposes; and lastly, some important economical aspects such as power production losses, and the costs of logistics and transportation are not taken into account in the RPN value. In order to overcome these drawbacks, we develop a mathematical tool for risk and failure mode analysis of wind turbine systems (both onshore and offshore by integrating the aspects of traditional FMEA and some economic considerations. Then, a quantitative comparative study is carried out using the traditional and the proposed FMEA methodologies on two same type of onshore and offshore wind turbine systems. The results show that the both systems face many of the same risks, however there are some main differences worth considering.

  20. Case study of the constraints and potential contributions regarding wind curtailment in Northeast China

    DEFF Research Database (Denmark)

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad

    2016-01-01

    The wind power industry in China is faced with the obstacle of ineffective use due to severe wind curtailment recently. With detailed representation of the electricity and heat sectors in an energy-system-modeling tool, we evaluated the potential of technical improvements that could be implemented...... to increase wind integration in Northeast China. First, different regulation modes are compared and analyzed. Then, sector integration between the heat and electricity sectors is simulated assuming heat storage and large-scale heat pump utilization. While current regulation rules hamper wind integration......, there are no apparent technical barriers to ramp up/down more flexible for wind power generation in Northeast China. The results also indicate that the implementation of heat storage and heat pump could enhance the flexibility of an energy system, making it able to accommodate an increase of wind penetration. Thus...

  1. A study on the survey of wind energy resources for potential areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Ho; Kim, Keon Hoon; Yoo, Seung Won; Choi, Chang Joon; Jung Jong Ahn [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    Among the wind energy utilization projects, the siting work for wind turbine installation is one of the most important procedure because the wind energy distribution is very different regionally and wind energy density influences greatly to the feasibility of wind energy utilization. So, the potential sites of wind generating in our country must be surveyed and analyzed the feasibility of wind energy utilization. In addition to this, the technique of wind energy prediction considered of the topography, surface roughness and obstacle condition must be established for the reliable analysis of wind energy utilization. The contents carried out in this project are shown below, 1. Determining of the measuring sites of wind data - Wyoulryung-ri, Youngrag-ri, Gapa-ri in Cheju Province - Heul-ri, Gangwon Province. 2. Analysis of wind energy at measuring sites The characteristics of wind energy at the measured sites were analysed. It will be continued to measure the wind data by wind data logger. 3. A study on wind energy prediction technique It was studied how to obtain the topographic map data for using WAsP(WIndAtlas Analysis and Application Program). (author). 21 refs., 59 figs., 19 tabs.

  2. Operational and Strategic Implementation of Dynamic Line Rating for Optimized Wind Energy Generation Integration

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, Jake Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    One primary goal of rendering today’s transmission grid “smarter” is to optimize and better manage its power transfer capacity in real time. Power transfer capacity is affected by three main elements: stability, voltage limits, and thermal ratings. All three are critical, but thermal ratings represent the greatest opportunity to quickly, reliably and economically utilize the grid’s true capacity. With the “Smarter Grid”, new solutions have been sought to give operators a better grasp on real time conditions, allowing them to manage and extend the usefulness of existing transmission infrastructure in a safe and reliable manner. The objective of the INL Wind Program is to provide industry a Dynamic Line Rating (DLR) solution that is state of the art as measured by cost, accuracy and dependability, to enable human operators to make informed decisions and take appropriate actions without human or system overloading and impacting the reliability of the grid. In addition to mitigating transmission line congestion to better integrate wind, DLR also offers the opportunity to improve the grid with optimized utilization of transmission lines to relieve congestion in general. As wind-generated energy has become a bigger part of the nation’s energy portfolio, researchers have learned that wind not only turns turbine blades to generate electricity, but can cool transmission lines and increase transfer capabilities significantly, sometimes up to 60 percent. INL’s DLR development supports EERE and The Wind Energy Technology Office’s goals by informing system planners and grid operators of available transmission capacity, beyond typical Static Line Ratings (SLR). SLRs are based on a fixed set of conservative environmental conditions to establish a limit on the amount of current lines can safely carry without overheating. Using commercially available weather monitors mounted on industry informed custom brackets developed by INL in combination with Computational

  3. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control.

    Science.gov (United States)

    Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John

    2016-09-01

    This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

    2008-04-01

    Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

  5. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect......Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...

  6. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  7. A large ion beam device for laboratory solar wind studies

    Science.gov (United States)

    Ulibarri, Zach; Han, Jia; Horányi, Mihály; Munsat, Tobin; Wang, Xu; Whittall-Scherfee, Guy; Yeo, Li Hsia

    2017-11-01

    The Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.1 mA/cm2. Chamber pressure can be reduced to 4 × 10-5 Torr under operating conditions to suppress ion-neutral collisions and create a monoenergetic ion beam. The beam profile has been characterized by a Langmuir probe and an ion energy analyzer mounted on a two-dimensional translation stage. The beam profile meets the requirements for planned experiments that will study solar wind interaction with lunar magnetic anomalies, the charging and dynamics of dust in the solar wind, plasma wakes and refilling, and the wakes of topographic features such as craters or boulders. This article describes the technical details of the device, initial operation and beam characterization, and the planned experiments.

  8. Application of Virtual Synchronous Machines for Integration of Offshore Wind Turbines into the Power System of Offshore Oil and Gas Platforms

    OpenAIRE

    Mathisen, Eivind Risan

    2016-01-01

    This thesis addresses the technology known as "Virtual Synchronous Machines" and studies an application where it is used to integrate offshore wind turbines into the power systems of oil and gas platforms. The virtual synchronous machine is a technology which involves the controlling of an electric power converter in order to mimic the properties of a traditional synchronous machine. This thesis studies a fictional system where the virtual synchronous machine control strategy is applied to a ...

  9. A field application experience of integrating hydrogen technology with wind power in a remote island location

    Science.gov (United States)

    Gazey, R.; Salman, S. K.; Aklil-D'Halluin, D. D.

    This paper aims to share the field application experience related to the development of an innovative stand-alone sustainable energy system known as the PURE project. The PURE project has been developed alongside a Knowledge Transfer Partnership (KTP) scheme, which is supported by the UK Department of Trade and Industry and executed by siGEN in collaboration with The Robert Gordon University. The system has been constructed within an industrial estate on the island of Unst in Shetland, 200 miles north of the Scottish mainland. The energy system now supplies five business properties with clean reliable power and utilises wind turbine and hydrogen technology to provide a sustainable energy source. The stored hydrogen gas generated by the system is used as an energy source for periods when electrical demand within the business properties exceeds wind turbine production. The hydrogen is also utilised as a fuel source for transportation and as a transportable energy source for mobile power generation. The paper therefore gives a detailed description of the PURE project and discusses the field experience accumulated during the development and installation of the system. It also shares a number of practical issues that had to be overcome during its integration and operation. The installation of the PURE project has resulted in a number of unexpected conclusions being identified and marks a significant step forward in the accessible deployment of this technology for community use.

  10. An Integrated Framework of Drivetrain Degradation Assessment and Fault Localization for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jay Lee

    2013-01-01

    Full Text Available As wind energy proliferates in onshore and offshore applications, it has become significantly important to predict wind turbine downtime and maintain operation uptime to ensure maximal yield. Two types of data systems have been widely adopted for monitoring turbine health condition: supervisory control and data acquisition (SCADA and condition monitoring system (CMS. Provided that research and development have focused on advancing analytical techniques based on these systems independently, an intelligent model that associates information from both systems is necessary and beneficial. In this paper, a systematic framework is designed to integrate CMS and SCADA data and assess drivetrain degradation over its lifecycle. Information reference and advanced feature extraction techniques are employed to procure heterogeneous health indicators. A pattern recognition algorithm is used to model baseline behavior and measure deviation of current behavior, where a Self-organizing Map (SOM and minimum quantization error (MQE method is selected to achieve degradation assessment. Eventually, the computation and ranking of component contribution to the detected degradation offers component-level fault localization. When validated and automated by various applications, the approach is able to incorporate diverse data resources and output actionable information to advise predictive maintenance with precise fault information. The approach is validated on a 3 MW offshore turbine, where an incipient fault is detected well before existing system shuts down the unit. A radar chart is used to illustrate the fault localization result.

  11. Droop Control Design of Multi-VSC Systems for Offshore Networks to Integrate Wind Energy

    Directory of Open Access Journals (Sweden)

    Muhammad Raza

    2016-10-01

    Full Text Available This research envisages the droop control design of multi voltage source converter systems for offshore networks to integrate wind power plant with the grids. An offshore AC network is formulated by connecting several nearby wind power plants together with AC cables. The net energy in the network is transferred to onshore using voltage source high voltage direct current (VSC-HVDC transmissionsystems. In the proposed configuration, an offshore network is energized by more than one VSC-HVDC system, hereby providing redundancy to continue operation in case of failure in one of the HVDC transmission lines. The power distribution between VSC-HVDC systems is done using a droop control scheme. Frequency droop is implemented to share active power, and voltage droop is implemented to share reactive power. Furthermore, a method of calculating droop gains according to the contribution factor of each converter is presented. The system has been analyzed to evaluate the voltage profile of the network affected by the droop control. Nonlinear dynamic simulation has been performed for the verification of the control principle.

  12. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  13. A Refined Teaching-Learning Based Optimization Algorithm for Dynamic Economic Dispatch of Integrated Multiple Fuel and Wind Power Plants

    Directory of Open Access Journals (Sweden)

    Umamaheswari Krishnasamy

    2014-01-01

    Full Text Available Dynamic economic dispatch problem (DEDP for a multiple fuel power plant is a nonlinear and nonsmooth optimization problem when valve-point effects, multifuel effects, and ramp-rate limits are considered. Additionally wind energy is also integrated with the DEDP to supply the load for effective utilization of the renewable energy. Since the wind power may not be predicted, a radial basis function network (RBFN is presented to forecast a one-hour-ahead wind power to plan and ensure a reliable power supply. In this paper, a refined teaching-learning based optimization (TLBO is applied to minimize the overall cost of operation of wind-thermal power system. The TLBO is refined by integrating the sequential quadratic programming (SQP method to fine-tune the better solutions whenever discovered by the former method. To demonstrate the effectiveness of the proposed hybrid TLBO-SQP method, a standard DEDP and one practical DEDP with wind power forecasted are tested based on the practical information of wind speed. Simulation results validate the proposed methodology which is reasonable by ensuring quality solution throughout the scheduling horizon for secure operation of the system.

  14. Computation of dynamic operating balancing reserve for wind power integration for the time-horizon 1-48 hours

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlis, N.; Huneault, M. [IREQ, Varennes, QC (Canada); Robitaille, A. [Hydro-Quebec Production, Dir. Planification de la production eolienne, Direction Generale, Montreal, QC (Canada)

    2010-07-01

    Integrating wind power into the operations-planning horizon of 1 to 48 hours ahead, a challenge facing utilities is how to cope with wind forecast uncertainties, in addition to existing inherent uncertainties of load forecast errors and unavailability of generation. Utilities counter forecast uncertainties by maintaining operational reserves to ensure a high level of reliability to the system. With the advent of wind generation, additional reserves are required to cover the incremental uncertainties. In this paper, we fine tune a methodology for calculating additional balancing reserves which had reproduced accurately only an average scenario. Here, several wind forecast errors distributions are introduced corresponding to different wind forecast levels. These distributions are approximated by gamma-like distributions with time-varying parameters. The results show that modeling uncertainties as a function of wind generation levels impacts significantly the balancing reserves and associated risk, and justifies the necessity to veer towards a dynamic computation of dynamic balancing reserves that consider the imminent wind generation forecast. (orig.)

  15. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains Through Integrated Design Approaches: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.

  16. Transmission Congestion Management using a Wind Integrated Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    S. Gope

    2017-08-01

    Full Text Available Transmission congestion is a vital problem in the power system security and reliability sector. To ensure the stable operation of the system, a congestion free power network is desirable. In this paper, a new Congestion Management (CM technique, the Wind integrated Compressed Air Energy Storage (WCAES system is used to alleviate transmission congestion and to minimize congestion mitigation cost. The CM problem has been solved by using the Generator Sensitivity Factor (GSF and the Bus Sensitivity Factor (BSF. BSF is used for finding the optimal location of WCAES in the system. GSF with a Moth Flame Optimization (MFO algorithm is used for rescheduling the generators to alleviate congestion and to minimize congestion cost by improving security margin. The impact of the WCAES system is tested with a 39 bus system. To validate this approach, the same problem has been solved with a Particle Swarm Optimization (PSO algorithm and the obtained results are compared with the ones from the MFO algorithm.

  17. Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas

    2013-01-01

    in a space filling scan pattern within a full opening angle of 60° on an upwind spherical surface. The scanner is similar to the short-range WindScanner developed at the same department. However, this implementation is only using one motor with a fixed gearing between the two prism axes in order to achieve......) located at Tjæreborg Enge in western Denmark was conducted. The new two-dimensional scanning device was integrated on top of a modified ZephIR 300 continuous-wave coherent Doppler lidar (ControlZephIR) operating at a wavelength of about 1.565 µm. The lidar was modified to stream averaged Doppler spectra...

  18. Ancillary services and the integration of substantial quantities of wind power

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2006-01-01

    ]. This is unevenly distributed in the two separate electricity systems comprising Denmark, giving a 2003 share as high as 21% in Western Denmark [Eltra. http://www.Eltra.dk. Skærbæk: Eltra; 2004] compared with a more modest 8% in the more densely populated Eastern Denmark [Elkraft System. Miljøberetning 2004....... Ballerup: Elkraft System; 2004]. At the same time, Denmark has other forms of distributed generation, e.g., extensive cogeneration of heat and power (CHP) plants for district heating or for covering industrial heat demands. This results in a high fuel-efficiency but also in a technically complex energy...... as the potential impact of heat pumps used for district heating and installed for integration purposes. The analyses are made with particular focus on grid stability and delivery of ancillary services (required to control voltage and frequency) and demonstrate that it is possible to accommodate 50% or more wind...

  19. Advanced wind turbine design studies: Advanced conceptual study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P; Sherwin, R [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  20. Security and Stability Analysis of Wind Farms Integration into Distribution Network

    Science.gov (United States)

    Guan-yang, Li; Hongzhao, Wang; Guanglei, Li; Yamei, Cheng; Hong-zheng, Liu; Yi, Sun

    2017-05-01

    With the increasing share of the wind power in the power system, wind power fluctuations will cause obvious negative impacts on weak local grid. This paper firstly establish electromechanical transient simulation model for doubly fed induction wind turbine, then use Matlab/Simulink to achieve power flow calculation and transient simulation of power system including wind farms, the local synchronous generator, load, etc, finally analyze wind power on the impact of the local power grid under typical circumstances. The actual calculated results indicate that wind mutation causes little effect on the power grid, but when the three-phase short circuit fault happens, active power of wind power decreases sharply and the voltage of location of wind power into the grid also drop sharply, finally wind farm split from power system. This situation is not conducive to security and stability of the local power grid. It is necessary to develop security and stability measures in the future.

  1. Study on electricity transmission systems for offshore wind power

    OpenAIRE

    Lleonart Pizà, Aina

    2011-01-01

    This project presents the main features of each of the electricity transmission technologies available for offshore wind power and discusses their advantages and disadvantages in terms of technical, economic and environmental aspects. The transmission options studied are High Voltage Alternating Current (HVAC) and High Voltage Direct Current (HVDC). Within the HVDC there are two transmission technologies available, the classical Line Commutated Converter based HVDC and the most re...

  2. Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Jiani Heng

    2016-03-01

    Full Text Available Wind energy is increasingly considered one of the most promising sustainable energy sources for its characteristics of cleanliness without any pollution. Wind speed forecasting is a vital problem in wind power industry. However, individual forecasting models ignore the significance of data preprocessing and model parameter optimization, which may lead to poor forecasting performance. In this paper, a novel hybrid [k, Bt] -ABBP (back propagation based on adaptive strategy with parameters k and Bt model was developed based on an adaptive boosting (AB strategy that integrates several BP (back propagation neural networks for wind speed forecasting. The fast ensemble empirical mode decomposition technique is initially conducted in the preprocessing stage to reconstruct data, while a novel modified FPA (flower pollination algorithm incorporating a conjugate gradient (CG is proposed for searching for the optimal parameters of the [k, Bt] -ABBP mode. The case studies of five wind power stations in Penglai, China are used as illustrative examples for evaluating the effectiveness and efficiency of the developed hybrid forecast strategy. Numerical results show that the developed hybrid model is simple and can satisfactorily approximate the actual wind speed series. Therefore, the developed hybrid model can be an effective tool in mining and analysis for wind power plants.

  3. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Baldick, Ross; Webber, Michael; King, Carey; Garrison, Jared; Cohen, Stuart; Lee, Duehee

    2012-12-21

    This study's objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  4. Integrated analysis of DFIG drive-train and power electronics dynamics during electrical AC faults and wind disturbances

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; Sørensen, Poul Ejnar; Anaya-Lara, Olimpo

    2013-01-01

    The dynamics of a 2 MW DFIG wind turbine are studied during electrical AC faults, and wind disturbances. A simulation platform that couples HAWC2, and Matlab/Simulink was used. High frequencies of the gear box, and power electronics are neglected. It was shown that the dynamics of the dc...

  5. Real-time impact of power balancing on power system operation with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2017-01-01

    regulating power bids are activated manually. In this article, an algorithm is developed to simulate the activation of regulating power bids, as performed in the control room, during power imbalance between generation and load demand. In addition, the active power balance is also controlled through automatic......Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where...... power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed...

  6. Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland

    DEFF Research Database (Denmark)

    Meibom, Peter; Barth, R.; Hasche, B.

    2011-01-01

    A stochastic mixed integer linear optimization scheduling model minimizing system operation costs and treating load and wind power production as stochastic inputs is presented. The schedules are updated in a rolling manner as more up-to-date information becomes available. This is a fundamental ch...... of future high wind penetrations for the island of Ireland. Results show that at least 6000 MW of wind (34% of energy demand) can be integrated into the island of Ireland without significant curtailment and reliability problems....

  7. Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study

    Science.gov (United States)

    Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie

    2016-04-01

    The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to

  8. Cherokee Wind Energy Development - Feasibility and Pre-Construction Studies

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Andy [Cherokee Nation Businesses, LLC, Catoosa, OK (United States)

    2017-06-30

    Cherokee Nation Businesses (CNB) received a grant from the US Department of Energy to explore feasibility and pursue development of a wind power generation facility on Cherokee land in north-central Oklahoma. This project followed several years of initial study exploring the possibility of commercial-scale wind power generation on primarily agricultural land owned by the Cherokee Nation. This project produced detailed analysis of the legal, financial and market viability of such generation facilities, and encompassed a full technical evaluation of the engineering, environmental, and geotechnical aspects of installing this capacity. During the course of this project, information gleaned from this exploration changed CNB’s thinking about the best course of action for Cherokee participation in the development, eventually moving away from an equity-owner model and towards utilization of the land asset as a resource while mitigating Cherokee financial and operational risk.

  9. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  10. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbi...

  11. Integrating Systems Health Management with Adaptive Controls for a Utility-scale Wind Turbine

    Data.gov (United States)

    National Aeronautics and Space Administration — Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to...

  12. The relationship of an integral wind shear hazard to aircraft performance limitations

    Science.gov (United States)

    Lewis, M. S.; Robinson, P. A.; Hinton, D. A.; Bowles, R. L.

    1994-01-01

    The development and certification of airborne forward-looking wind shear detection systems has required a hazard definition stated in terms of sensor observable wind field characteristics. This paper outlines the definition of the F-factor wind shear hazard index and an average F-factor quantity, calculated over a specified averaging interval, which may be used to judge an aircraft's potential performance loss due to a given wind shear field. A technique for estimating airplane energy changes during a wind shear encounter is presented and used to determine the wind shear intensity, as a function of the averaging interval, that presents significant hazard to transport category airplanes. The wind shear hazard levels are compared to averaged F-factor values at various averaging intervals for four actual wind shear encounters. Results indicate that averaging intervals of about one kilometer could be used in a simple method to discern hazardous shears.

  13. Danish Wind Power

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Østergaard, Poul Alberg

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both......, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate...

  14. LCC based multiterminal HVDC for integration of large scale wind power

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobo; Yue, Changyan; Yao, Dawei [Corporate Research, ABB (China) Limited, Beijing (China)

    2011-07-01

    Multiterminal HVDC (MTDC) is becoming attractive for wind power transmission. Firstly, several large scale wind farm bases or wind farm clusters are possibly scattered in a vast area with abundant wind resources. Secondly, as the intermittence of wind power, it is preferable to transfer bulk wind power bundled with thermal power or hydro power to decrease the power fluctuation on the HVDC line while the bundled thermal power or hydro power may be far away from the wind power bases. Voltage source converter based multiterminal HVDC (VSC MTDC) has been identified as a preferable solution for wind power transmission as it provides more control flexibility benefited from forced commutation. However, the capacity of VSC HVDC today is still lower than that of a line commutated converter based MTDC (LCC MTDC). For large onshore scale wind farm clusters, LCC MTDC still provides an attractive solution. Generally speaking, LCC MTDC can be a parallel or series connection system. Both of these two systems are developed from point to point HVDC technology. By far only the concept with parallel converters has been used for its lower power losses and well developed technology. In this paper, based on the analysis of wind power development trend, the market prospection and application scenarios of LCC MTDC for wind application are presented. The selection criteria of LCC MTDC for wind application are introduced. (orig.)

  15. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    Science.gov (United States)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0

  16. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  17. Wind power has a capacity credit. A catalogue of 50+ supporting studies

    DEFF Research Database (Denmark)

    Giebel, Gregor

    2005-01-01

    The capacity credit of wind power in a grid has received quite some attention in the past. In the early days of wind power, the capacity credit, or rather the perceived lack thereof, was a grave concern for the large-scale development of wind power on a nation-wide basis. Therefore, a number...... of studies was made since the 1970ies, arriving at the conclusion that a) wind power has a capacity credit, and b) the capacity credit is around the mean wind power output for small penetrations of wind power in the grid, and drops to a value near the minimum wind power generation for larger penetrations....... This paper describes some different approaches to the capacity credit of wind energy, and provides links to a large number of studies, predominantly for European countries and from the earlier years of the development. Nowadays, the capacity credit is often just a sub-topic for the larger studies on how...

  18. Integrated nonthermal treatment system study

    Energy Technology Data Exchange (ETDEWEB)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  19. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems

    KAUST Repository

    Malheiro, André

    2015-05-22

    In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems. © 2015 Elsevier Ltd.

  20. Hawaii solar integration study. Solar modelling developments and study results

    Energy Technology Data Exchange (ETDEWEB)

    Piwko, Richard [GE Energy Consulting, Schenectady, NY (United States); Roose, Leon [Hawaii Natural Energy Institute, Honolulu, HI (United States); Orwig, Kirsten; Corbus, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Matsuura, Marc [Hawaiian Electric Company, Honolulu, HI (United States); Schuerger, Matt [Energy Systems Consulting Services LLC, St. Paul, MN (United States)

    2012-07-01

    The Hawaii Solar Integration Study (HSIS) is a follow up to the Oahu Wind Integration and Transmission Study (OWITS) completed in 2010. HSIS examines the impacts of higher penetrations of solar energy on the electrical grid, focusing on impacts to the operation of the bulk power transmission system and other interconnected generation resources. Issues specific to generation resource interconnection (normally the subject of a generator interconnection requirements study) and distribution system impacts of high distributed solar penetration scenarios were not the focus of the study. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-resolution (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction (NWP) model / stochastic-kinematic cloud model approach, which represents the ''sharp-edge'' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of techniques including: wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and results for the Oahu portion of the study. (orig.)

  1. Effect of Wind Turbine Noise on Workers' Sleep Disorder: A Case Study of Manjil Wind Farm in Northern Iran

    Science.gov (United States)

    Abbasi, Milad; Monnazzam, Mohammad Reza; Zakerian, Sayedabbolfazl; Yousefzadeh, Arsalan

    2015-04-01

    Noise from wind turbines is one of the most important factors affecting the health, welfare, and human sleep. This research was carried out to study the effect of wind turbine noise on workers' sleep disorder. For this, Manjil Wind Farm, because of the greater number of staff and turbines than other wind farms in Iran, was chosen as case study. A total number of 53 participants took part in this survey. They were classified into three groups of mechanics, security, and official. In this study, daytime sleepiness data of workers were gathered using Epworth Sleepiness Scales (ESS) was used to determine the level of daytime sleepiness among the workers. The 8-h equivalent sound level (LAeq,8h) was measured to determine the individuals' exposure at each occupational group. Finally, the effect of sound, age, and workers' experience on individuals' sleep disorder was analyzed through multiple regression analysis in the R software. The results showed that there was a positive and significant relationship between age, workers' experience, equivalent sound level, and the level of sleep disorder. When age is constant, sleep disorder will increase by 26% as per each 1 dB increase in equivalent sound level. In situations where equivalent sound level is constant, an increase of 17% in sleep disorder is occurred as per each year of work experience. Because of the difference in sound exposure in different occupational groups. The effect of noise in repairing group was about 6.5 times of official group and also 3.4 times of the security group. Sleep disorder effect caused by wind turbine noise in the security group is almost two times more than the official group. Unlike most studies on wind turbine noise that address the sleep disorder among inhabitants nearby wind farms, this study, for the first time in the world, examines the impact of wind turbine noise on sleep disorder of workers who are more closer to wind turbines and exposed to higher levels of noise. So despite all the

  2. Overview of the Energy Storage Systems for the Wind Power Integration Enhancement

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Teodorescu, Remus; Rasmussen, Claus Nygaard

    2010-01-01

    intermittency, partly unpredictability and variability, wind power can put the operation of power system into risk. This can lead to problems with grid stability, reliability and the energy quality. One of the possible solutions can be an addition of energy storage into wind power plant. This paper deals......As the installed worldwide wind energy capacity increases about 30% annually and Kyoto protocol that came in force in 2005, wind penetration level in power system is considered to significantly increase in near future. Due to increased penetration and nature of the wind, especially its...... with state of the art of the Energy Storage (ES) technologies and their possibility of accommodation for wind turbines. Overview of ES technologies is done in respect to its suitability for Wind Power Plant (WPP). Services that energy storage can offer both to WPP and power system are discussed. Moreover...

  3. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  4. A Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability

    Directory of Open Access Journals (Sweden)

    Rui You

    2013-11-01

    Full Text Available This paper presents a novel type of variable speed wind turbine with a new drive train different from the variable speed wind turbine commonly used nowadays. In this concept, a synchronous generator is directly coupled with the grid, therefore, the wind turbine transient overload capability and grid voltage support capability can be significantly improved. An electromagnetic coupling speed regulating device (EMCD is used to connect the gearbox high speed shaft and synchronous generator rotor shaft, transmitting torque to the synchronous generator, while decoupling the gearbox side and the synchronous generator, so the synchronous generator torque oscillations during a grid fault are not transmitted to the gearbox. The EMCD is composed of an electromagnetic coupler and a one quadrant operation converter with reduced capability and low cost. A control strategy for the new wind turbine is proposed and a 2 MW wind turbine model is built to study the wind turbine fault ride-through capability. An integrated simulation environment based on the aeroelastic code HAWC2 and software Matlab/Simulink is used to study its fault ride-through capability and the impact on the structural loads during grid three phase and two phase short circuit faults.

  5. Environmental impacts of wind power. Case study of wind turbines in living environment; Vindkraftens Miljoepaaverkan. Fallstudie av vindkraftverk i boendemiljoe

    Energy Technology Data Exchange (ETDEWEB)

    Widing, Angelica; Britse, Gunilla; Wizelius, Tore [Gotland Univ., Visby (Sweden). Windpower information centre

    2006-06-15

    The aim of this project has been to get more knowledge about the impact of noise, shadows and on the view of the landscape from wind turbines. Further to be able to increase the reliability and relevance of the methods used to calculate and evaluate nuisances from wind turbines in applications for wind power development. We have also tried to find other factors that can play a role for the evaluation of wind turbines, if they will be considered as a nuisance or not. The research has focused on a critical review of the methods and regulations that are used in Sweden and other countries, and case studies to find out how people living neighbors with wind turbines will be affected by noise, rotating shadows, visual intrusion and other factors. This report includes the case studies of wind turbine areas at Gotland. Three different areas on the island Gotland in the Baltic Sea, with wind turbines in the close neighborhood, were chosen for case studies: Naer, Klintehamn, Naesudden. In these places only persons who live close to wind turbines have been interviewed; in Nar all who live within 1100 meters from two large wind turbines, in Klintehamn a sample of those who live ESE of the turbines and get shadow flicker from them during sunset, and on Naesudden those households that live in the middle of a large wind farm with 81 turbines. In total 94 persons in 69 households have been interviewed. The acceptance of wind power among people living as close neighbors is quite high. However, the nuisance and annoyance can be reduced further, if the recommended values for noise immission etc are applied correctly. To do that the ability of project developers and authorities that grant permissions to evaluate the calculated immission has to be raised, since specialist competence and experience is necessary to do predictions of actual immission from the models used for calculations. The recommended minimum distances between wind turbines and houses that some communities have

  6. A study of valley winds using the MIUU meso-scale model

    Science.gov (United States)

    Bergström, Hans; Juuso, Nikolaus

    2006-01-01

    High winds are sometimes found in low-altitude terrain in mountain valleys. The reasons for this and the possibilities to find such sites from modelled wind fields are investigated. The higher-order closure MIUU model developed at Uppsala University is used for a general study of channelling of winds in mountain valleys. The importance of length, width and depth of the valley is investigated. Comparisons are made with wind measurements. Copyright

  7. Weak relationship between risk assessment studies and recorded mortality in wind farms

    OpenAIRE

    Ferrer, Miguel; Lucas, Manuela de; Janss, Guyonne, F.E.; Casado, Eva; Muñoz, Antonio R.; Bechard, Mark J.; Calabuig, Cecilia P.

    2012-01-01

    Wind farms generate little or no pollution. However, one of their main adverse impacts is bird mortality through collisions with turbine rotors. Environmental impact assessment (EIA) studies have been based on observations of birds before the construction of wind farms. We analysed data from 53 EIAs in relation to the actual recorded bird mortalities at 20 fully installed wind farms to determine whether this method is accurate in predicting the risk of new wind farm installations. Bird data f...

  8. Wind energy technology development and diffusion: A case study of Inner Mongolia, China

    OpenAIRE

    Xiliang, Zhang; Gan, Lin; Shuhua, Gu; Wenqiang, Liu

    1999-01-01

    This study provides an overview of the diffusion of small household wind generators and development of wind farms in Inner Mongolia, China with the emphasis on policy and institutional perspectives. It analyzes the patterns of wind technology diffusion within social, economic, and environmental contexts. It relates the diffusion of wind technology to institutional framework building, and to international investment and technology transfer. By examining the economics of windfarm development an...

  9. Are home small wind turbines worth investment? — case study

    Directory of Open Access Journals (Sweden)

    Weronika Radzikowska-Juś

    2016-09-01

    Full Text Available The paper presents comparative characteristics of small wind turbines used as generators. Firstly, wind energy resources in Poland are presented. Secondly, it has been calculated how much energy the windmills are able to produce in selected Polish regions during the year. Next, a Simple Pay Back Time, depending on the windmills’ region, has been calcu-lated. In the end, the conclusions are presented.[b]Keywords[/b]: windmills generators, small wind turbines, the use of wind energy

  10. Large eddy simulation studies of the effects of alignment and wind farm length

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2014-01-01

    Large eddy simulations of wind farms are performed to study the effects of wind turbine row alignment with respect to the incoming flow direction. Various wind farms with fixed stream-wise spacing (7.85 rotor diameters) and varying lateral displacements and span-wise turbine spacings are considered,

  11. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  12. Deterministic and Stochastic Study of Wind Farm Harmonic Currents

    DEFF Research Database (Denmark)

    Sainz, Luis; Mesas, Juan Jose; Teodorescu, Remus

    2010-01-01

    Wind farm harmonic emissions are a well-known power quality problem, but little data based on actual wind farm measurements are available in literature. In this paper, harmonic emissions of an 18 MW wind farm are investigated using extensive measurements, and the deterministic and stochastic char...

  13. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    Winds in the coastal zone have importance for near-shore wind farm planning. Recently the Danish Energy Agency gave new options for placing offshore wind farms much closer to the coastlines than previously. The new tender areas are located from 3 to 8 km from the coast. Ground-based scanning lidar...... located on land can partly cover this area out to around 15 km. In order to improve wind farm planning for near-shore coastal areas, the project‘Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models’ (RUNE) is established. The measurement campaign starts October....... The various observation types have advantages and limitations; one advantage of both the Sentinel-1 and the scanning lidar is that they both observe wind fields covering a large area and so can be combined for studying the spatial variability of winds. Sentinel-1 are being processed near-real-time at DTU Wind...

  14. Experimental study of dynamic stall on Darrieus wind turbine blades

    Science.gov (United States)

    Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    1985-12-01

    An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.

  15. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  16. Study of wind variability over Moscow city by sodar

    Science.gov (United States)

    Yushkov, V. P.

    2008-05-01

    We used sodar data to obtain spatial, diurnal and seasonal variability of wind speed variances. Comparison of measurements at two sites in Moscow megalopolis and at the rural site (45 km from Moscow) was carried out. A good agreement between sodar and in-situ measurements by ultrasonic anemometer in rural and urban observations was obtained. Variances of radial velocities measured at sodar inclined antennae were compared with vertical wind variance as well as with wind components variances by sonic data. Experience in measuring of meso-scale wind variability by averaged on short time intervals data is demonstrated. Measurement of other statistical characteristics like vertical wind variances is discussed.

  17. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  18. Huilliche energy. Experiments in integration and ontological disagreements in a wind farm

    Directory of Open Access Journals (Sweden)

    Manuel Tironi

    2017-12-01

    Full Text Available The island of Chiloé, in southern Chile, was the mise-en-scene of an unprecedented project: the development of a wind farm in which the Hulliche community, the ancestral people of the area, would own and run the operation. With the support of the Inter-American Development Bank, the aim of the project was the production of sustainable and renewable energies, but more importantly the integration of indigenous communities into the Chilean society via their participation in a high-value economic enterprise. Drawing on the idea of citizen participation as a form of experimentation, in this article we follow ethnographically the process of incubation, development and failure of this project. The case, we argue, allows a reflection about the risk of cultural aggression embedded in participatory experiments, but also about their capacities to crack open productive spaces for identity, political and ethical speculation. We coin the term “ontological disagreements” to indicate the ambivalences of participatory experiments and to debate about the future of indigenous engagement in energy projects.

  19. WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm, D. J.; Hansen, A. C.

    2006-04-01

    This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

  20. Study of optical techniques for the Ames unitary wind tunnel, part 7

    Science.gov (United States)

    Lee, George

    1993-01-01

    A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.

  1. Incentives and barriers for wind power expansion and system integration in Denmark

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Ostergaard, Poul Alberg; Meyer, Niels I

    2017-01-01

    In Denmark expansion of on-shore, near-shore and off-shore wind power is planned to increase the wind power share to 50% of electricity consumption by 2020. In this situation a continuation of past policies will not suffice, and a dual-track incentive system that both establishes incentives for i...... system needs to address these issues in order to promote further expansion of wind power in Denmark....

  2. Multi-objective Generation Expansion Planning for Integrating Largescale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Kang, Chongqing

    2013-01-01

    Due to the growth of energy consumption, the extensive use of conventional fossil fuels from the exhaustible resources and the environmental concerns, high penetration of renewable energy resources is considerably observed worldwide. Wind power generation is holding the first rank in terms...... of utilization and importance. In the last decade, the growth rate of the global installed wind capacity has been about 30% per annum. Denmark, Germany, and Spain are the first few countries generating 20% of their electricity from wind turbines....

  3. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  4. Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria

    Directory of Open Access Journals (Sweden)

    Oluseyi O. Ajayi

    2014-12-01

    Full Text Available The study assessed the wind energy potential of ten selected sites in the south western region of Nigeria and carried out a cost benefit analysis of wind power generation at those sites. Twenty four years’ (1987 to 2010 wind speed data at 10 m height obtained from the Nigerian meteorological agency were employed to classify the sites wind profiles for electricity generation. The energy cost analysis of generating wind electricity from the sites was also carried out. The outcome showed that sites in Lagos and Oyo States were adequately suited for large scale generation with average wind speeds ranged between 2.9 and 5.8 m/s. Those from other sites may be suitable for small scale generation or as wind farms, with several small turbines connected together, to generate large enough wind power. The turbine matching results shows that turbines cut-in and rated wind speeds of between 2.0 and 3.0 m/s, and between 10 and 12.0 m/s respectively will be very suited to all the sites, particularly those in locations outside Lagos and Oyo States. The energy cost analysis shows that generation cost can be as low as 0.02 €/kWh and as high as 5.03/kWh, depending on the turbine model employed.

  5. Empirical Study Of Wind Energy Potential In Calabar Cross River State Nigeria

    Directory of Open Access Journals (Sweden)

    Uquetan

    2015-08-01

    Full Text Available Abstract This paper focuses on wind energy potentials in Calabar a coastal city. The wind speed data were collected from Margaret Ekpo International Airport Calabar NIMET. The Objective of this study is to examine whether the wind energy in Calabar can generate sufficient energy to supplement electricity generation for the Calabar region. The primary data obtained is monthly mean in the form of wind speed for a period of 5year 2008 - 2012. These was used to estimate the available wind energy potential in calabar. The results show that the annual wind is 1.3 ms indicating Calabar as a low wind speed region. The wind power density value of 3.11Wm2 indicates that Calabar wind can only be used for small stand-alone wind power systems such as battery charging and for powering street light and water pumps fig 1 2 3 amp 4. The weibull probability distribution scale parameters k are higher in values and variability than the shape parameter c for the monthly distribution. Calabar wind cannot be used to generate electricity because the wind speed data at 10m height doesnt exceed 2.5ms due to the standard cut in speed.

  6. Environmental Siting Framework for Wind Farms: A Case Study in the Dodecanese Islands

    Directory of Open Access Journals (Sweden)

    Maria Panagiotidou

    2016-07-01

    Full Text Available The increasing rate of energy consumption, the depletion of conventional energy sources and the environmental degradation caused has led to thorough research on Renewable Energy Sources (RES, which have been seen as a sustainable solution to climatic change. However, RES installation has a considerable environmental impact, which should be taken into consideration. The present study deals with the development of an integrated framework so as to evaluate land environmental suitability for RES installation, especially for Wind Farm (WF siting. The proposed methodology consists of the Analytical Hierarchy Process, the Geographic Information System and Remote Sensing tools. In the first part, a set of constraints, which are based on Greek legislation and international research, identifies the potential sites for wind park installation. In the second part, a variety of criteria are employed to evaluate the area under consideration. To exemplify the utility of the methodology, an application of the proposed framework to the Dodecanese Islands is further illustrated. One of the first findings is that, despite the implemented restrictions, 1/4 of the land remains suitable for WF siting. The necessity of the method used is confirmed through the comparison of results with the already installed wind parks.

  7. Instability of outer tip vortices for a 2.5 MW wind turbine: integrating snow PIV with LES

    Science.gov (United States)

    Sotiropoulos, Fotis; Yang, Xiaolei; Hong, Jiarong; Barone, Matthew

    2015-11-01

    Recent field experiments conducted around a 2.5 MW wind turbine using super-large-scale PIV (SLPIV) using natural snow particles have revealed tip vortex cores (visualized as areas devoid of snowflakes) of complex shape, consisting of both round and elongated void patterns. Here we employ large-eddy simulation to elucidate the structure and dynamics of the complex tip vortices identified experimentally. The LES is shown to reproduce vortex cores in remarkable agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. We show that the stretched elongated vortex cores observed in 2D planes are the footprints of a second set of counter-rotating spiral vortices that emanates along the tip shear layer immediately downwind of the blades and is intertwined with the tip vortices. We argue that this large-scale instability is of centrifugal type since the mean flow characteristics in the outer tip shear layer resemble those of the Taylor-Couette flow. This study highlights the feasibility of employing snow voids to visualize tip vortices and demonstrates the enormous potential of integrating SLPIV with LES as a powerful tool for gaining novel insights into the wakes of utility scale wind turbines. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), Sandia National Laboratories and NSF Career Award (NSF-CBET-1454259) for Jiarong Hong. Computational resources were provided by SNL and MSI.

  8. An integrated system for wind energy forecast using meteorological models and statistical post-processing

    Science.gov (United States)

    Miranda, P.; Rodrigues, A.; Lopes, J.; Palma, J.; Tome, R.; Sousa, J.; Bessa, R.; Matos, J.

    2009-12-01

    With 3GW of installed wind turbines, corresponding to 23% of the total electric grid, and a 5-year plan that will grow that value above 5GW (near 40% of the grid), Portugal has been a recent success case for renewable energy development. Clearly such large share of wind energy in the national electric system implies a strong requirement for accurate wind forecasts, that can be used to forecast this highly variable energy source and allow for timely decision making in the energy markets, namely for on and off switching of alternative conventional sources. In the past 3 years, a system for 72h energy forecast in mainland Portugal was setup, using 6km resolution meteorological forecasts, forced by global GFS forecasts by NCEP. In the development phase, different boundary conditions (from NCEP and ECMWF) were tested, as well as different limited area models (namely MM5, Aladin, MesoNH and WRF) at resolutions from 12 to 2km, which were evaluated by comparison with wind observations at heights relevant for wind turbines (up to 80m) in different locations and for different synoptic conditions. The developed system, which works with a real time connection with wind farms, also includes a post-processing code that merges recent wind observations with the meteorological forecast, and converts the forecasted wind fields into forecasted energy, by incorporating empirical transfer functions of the wind farm. Wind conditions in Portugal are highly influenced by topography, as most wind farms are located in complex terrain, often in mountainous terrain, where stratification plays a significant role. Coastal effects are also highly relevant, especially during the Summer, where a strong diurnal cycle of the sea-breeze is superimposed on an equally strong boundary layer development, both with a significant impact on low level winds. These two ingredients tend to complicate wind forecasts, requiring fully developed meteorological models. In general, results from 2 full years of

  9. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  10. Inlet Unstart Propulsion Integration Wind Tunnel Test Program Completed for High-Speed Civil Transport

    Science.gov (United States)

    Porro, A. Robert

    2000-01-01

    One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to

  11. Wind and Solar Curtailment: International Experience and Practices

    DEFF Research Database (Denmark)

    Lew, Debra; Bird, Lori; Milligan, Michael

    2013-01-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusse...

  12. Active Power Dispatch Method for a Wind Farm Central Controller Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Su, Chi; N. Soltani, Mohsen

    2014-01-01

    Optimization (PSO) is used to obtain the optimal wind power for each wind turbine. A case study is carried out. The available wind power of the wind farm was compared between the traditional dispatch method and the proposed dispatch method with the consideration of the wake effect.......With the increasing integration of the wind power into the power system, wind farm are required to be controlled as a single unit and have all the same control tasks as conventional power plants. The wind farm central controller receives control orders from Transmission System Operator (TSO...... efficient of upstream wind turbines in the wind farm influences the downstream wind speed which determines the available wind power of the downstream wind turbine. Optimize the wind power production of each wind turbine in the wind farm by the optimization of the pitch angle and tip-speed-ratio of each...

  13. Design gridlines for integrated aeroelastic control of wind turbines - Task-12 report

    DEFF Research Database (Denmark)

    Mogensen, T.S.; Larsen, A.J.; Poulsen, N.K.

    The presented design guidelines for active aeroelastic control of PRVS wind turbines are derived by the partners of the project - Aeroelastic Stability and Control of Large Wind Turbines” (STABCON) partially funded by the European Commission (EC) under the contract NNK5-CT2002-00627. The objectiv...

  14. Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC

    NARCIS (Netherlands)

    Morales Espana, G.; Baldick, Ross; García-González, Javier; Ramos, Andres

    2015-01-01

    This paper proposes a power-based network-constrained unit commitment (UC) model as an alternative to the traditional deterministic UCs to deal with wind generation uncertainty. The formulation draws a clear distinction between power-capacity and ramp-capability reserves to deal with wind production

  15. A review of Danish integrated multi-energy system flexibility options for high wind power penetration

    DEFF Research Database (Denmark)

    Wang, Jiawei; Zong, Yi; You, Shi

    2017-01-01

    The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper. The reasons for why Denmark is a world leader in wind power are outlined. The Danish government is aiming to achieve 100% renewable energy generation by 2050. A major challenge is balancing load...

  16. Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-01

    This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

  17. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

    Science.gov (United States)

    Decker, Ryan; Barbre, Robert E., Jr.

    2011-01-01

    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  18. Study of wind turbine foundations in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report provides an overview of the processes at work in soil in cold climates and their effect on wind turbine foundations. Havsnaes wind farm consists of 48 turbines located in Jaemtland county in central Sweden. Havsnaes has provided an appropriate research environment to investigate the engineering challenges related to the design and construction of wind turbine foundations in sub-arctic conditions and the experienced gained from this project informs this report.

  19. Primary reserve studies for high wind power penetrated systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    2015-01-01

    With high penetration of non-synchronous wind generations replacing conventional generators, the inertia of power system will reduce. A large disturbance in such a power system can cause faster frequency change in this power system and might invoke emergency defence strategies like underfrequency....... This paper further explores the capabilities of wind turbines to provide support during underfrequency to prevent load shedding. Maximum wind penetration possible without causing load shedding following a large disturbance is also investigated....

  20. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    Science.gov (United States)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  1. Power Curves in a Wind Turbine Array: A Numerical Study

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    The impact of measuring a power curve inside a wind turbine array is investigated using computational fluid dynamics. The array consists of five aligned rotors that yaw with the free-stream wind direction. The flow-field in front of a wind turbine array changes with wind direction and hence...... the individual power output of each turbine. By incorporating the current IEC standards on power performance measurements, the bias in the power performance of turbines in an array over an isolated rotor is determined. The power change depends on the position of the turbine in the array and reaches maximally 9...

  2. BIRD MIGRATION STUDY IN THE AREA OF WIND POWERS

    Directory of Open Access Journals (Sweden)

    P. I. Gorlov

    2016-01-01

    Full Text Available The necessity to adapt traditionally accepted methods of ornithological observations for wind powers ecological management suggested on the basis of research carried out in 2009-2015. Some 18 wind powers in the Azov-Black Sea region of Ukraine were examined. The essence of such adaptations is to consider the filed data on bird behavior in different phases of the annual cycle on the infrastructure of wind turbins in the stages of planning, construction and operation of the wind farm. The long-term observations prove the increasing risks for birds during their seasonal migrations from the wind powers. To assess the possible negative impact of wind farms on the birds we designed author's technique, which served as the basis for the computer program «WebBirds» and multi-threaded Web portal for the transfer, storage, access and processing of bird data. This adapted methods of collecting field data together with computer program for evaluating the influence of wind farm on the birds and the Web portal for the transmission, storage and processing of data is the basis for the ecological management of wind parks area. Keywords: birds, wind power, ecological management, Ukraine

  3. Probabilistic modeling of wind energy sources integrated in a conventional power system; Modelagem probabilistica de fontes eolicas de energia integradas em sistema de potencia convencional

    Energy Technology Data Exchange (ETDEWEB)

    Dalence, G.W.H.

    1990-06-15

    This work describes a model capable of including non-conventional energy sources into a stochastic energy production model for conventional power sources. A wind energy system is initially considered as statistically independent of the hourly demand. The correlation between two wind systems is then considered by means of a joint wind speed distribution. The joint wind system is thereafter submitted to the stochastic energy production model considering independence between demand and wind speed. Finally the correlation wind systems and the hourly demand is studied. (author). 29 figs, 31 tabs

  4. Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms

    NARCIS (Netherlands)

    Teixeira Pinto, R.; Fragoso Rodrigues, S.; Wiggelinkhuizen, E.; Scherrer, R.; Bauer, P.; Pierik, P.

    2012-01-01

    For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is

  5. Do regional weather models contribute to better wind power forecasts? A few Norwegian case studies

    DEFF Research Database (Denmark)

    Bremnes, John Bjørnar; Giebel, Gregor

    2017-01-01

    In most operational wind power forecasting systems statistical methods are applied to map wind forecasts from numerical weather prediction (NWP) models into wind power forecasts. NWP models are complex mathematical models of the atmosphere that divide the earth’s surface into a grid. The spatial...... resolution of this grid determines how accurate meteorological processes can be modeled and thereby also limits forecast quality. In this study, two global and four regional operational NWP models with spatial horizontal resolutions ranging from 1 to 32 km were applied to make wind power forecasts up to 66...... hours ahead for one offshore and two onshore Norwegian wind farms. A statistical meta-Gaussian method was applied to generate both probabilistic and deterministic wind power forecasts based on the NWP model wind forecasts. The experiments showed that the regional NWP models with higher resolution did...

  6. Implementation of spectrum analysis in mesoscale modeling for wind energy assessment studies

    DEFF Research Database (Denmark)

    Stathopoulos, C.; Barranger, N.; Larsén, Xiaoli Guo

    2012-01-01

    Spectral analysis of wind speed is a key parameter for the characterization of the physical processes generating the fields. Especially, the mesoscale power spectrum is an important measure of accuracy of wind forecasting and extreme wind estimation for modern wind farms, which are of the size...... response to this deviation at different scales. Using simulation of the Iberian Peninsula and data experiments, we first identify the difference in wind kinetic energy spectrum between a hilly region in Spain and an offshore domain nearby the Portuguese coast. A powerful tool to determine the interaction...... between complex terrain and the wind variability is the use of 2D Fast Fourier transform applied to terrain height. From previous studies this analysis proved to be efficient in finding the proper model grid resolution for the representation of the wind variability in highly non homogeneous terrain...

  7. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    2006-09-01

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative

  8. Quality and Impact of Indian Doppler Weather Radar Wind Profiles: A Diagnostic Study

    Science.gov (United States)

    Sandeep, A.; Prasad, V. S.; Johny, C. J.

    2017-07-01

    In the tropics, efficient weather forecasts require high-quality vertical profiles of winds to overcome improper coupling of mass and wind fields and balance relationships in the region. The India Meteorological Department (IMD) operates the network of Doppler Weather Radar (DWR) in microwave frequencies (S-band or C-band) at various locations in India. The National Centre for Medium Range Weather Forecasting (NCMRWF) receives the volume velocity processing (VVP) wind profiles from all DWRs through the Global Telecommunication System (GTS) network in near real time. The radar VVP wind is a mean horizontal wind derived at different heights from radial velocities suitable for numerical weather prediction applications. Three numerical experiments, CNTL (without VVP winds), 3DVAR and HYBRID with the assimilation of VVP winds by means of 3-dimensional variational (3dvar) and hybrid data assimilation systems were conducted using the NCMRWF Global Forecast System (NGFS) model. This study had two objectives: (1) quality assessment of VVP winds and (2) investigation of the impact of VVP wind profiles on NGFS model forecast. The quality of VVP wind profiles was assessed against the NGFS model background and radiosonde wind profiles. The absolute values of zonal and meridional wind observation minus background (O-B) increased with the pressure for all DWRs. All radars exhibited the accepted (rejected) ratio as a decreasing (increasing) function of pressure. The resemblance between the zonal and meridional O-B statistics for 3DVAR and HYBRID experiments is apparently remarkable. The accepted VVP winds and radiosonde winds in both experiments (3DVAR and HYBRID) were consistent. The correlation coefficient ( R) was higher at Patna (Patiala) for zonal (meridional) winds in the 3DVAR experiment and at Patna (Jaipur) in the HYBRID experiment. At Chennai, the R value was lower in both the experiments for both wind components. However, because of the assimilation of VVP winds by

  9. Do Wind Turbines Affect Weather Conditions?: A Case Study in Indiana

    Directory of Open Access Journals (Sweden)

    Meghan F. Henschen

    2011-01-01

    Full Text Available Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and evaporation with five weather instruments at Meadow Lake Wind Farm located in White, Jasper, and Benton Counties, Indiana, from November 4 through November 18, 2010. The data show that as wind passes throughout the wind farm, the air warms during the overnight and early morning hours and cools during daytime hours. Observed lower humidity rates and higher evaporation rates downwind also demonstrate that the air dries out as it travels through the wind farm. Further research over multiple seasons is necessary to examine the effects of warmer nighttime temperatures and drier conditions progressively downwind of the installation. Nevertheless, wind turbines did not negatively affect local weather patterns in our small-scale research and may actually prevent frost, which could have important positive implications for farmers by potentially prolonging the growing season.

  10. Integrative modeling and novel particle swarm-based optimal design of wind farms

    Science.gov (United States)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by

  11. Wind farm related mortality among avian migrants - a remote sensing study and model analysis

    DEFF Research Database (Denmark)

    Desholm, M.

    -2006) of migrating birds at the Nysted offshore wind farm in the Baltic Sea, Denmark. This thesis poses and answers the following questions: a) what hazard factors do offshore wind farming pose to wild birds, b) how should one choose the key focal species to study, c) how can remote sensing techniques be applied......This thesis is the result of a PhD study on bird-wind farm collisions and consists of a synopsis, five published papers, one submitted manuscript and another ready for submission. The papers describe the fi ndings from pre- and post-construction visual, radar and thermal imaging studies (1999...... to the study of bird wind farm interactions, and d) specifi cally, how do waterbirds react when approaching an offshore wind farm? The main aim of the study was the development of a predictive bird-wind farm collision model that incorporates the avoidance rate of birds at multiple scales. Out of 235...

  12. Integration of complementary methods for monitoring stress/strain of wind turbine blades structures

    Directory of Open Access Journals (Sweden)

    Savin Adriana

    2017-01-01

    Full Text Available The most important part of wind turbine is the blade that must be tested during the fabrication and during the functioning when can be damaged by moisture absorption, fatigue, wind gusts or lightning strikes. The novelty of the paper is represented by the employing of wireless sensors embedded in a scalable wind turbine blade made from Glass Fiber Reinforced Plastics together with Fiber Bragg Gratings in order to effectuate structural health monitoring in static conditions. The sensors are placed on critical location on blade determined by FEM simulation and a comparison between the complementary methods is done.

  13. Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms

    National Research Council Canada - National Science Library

    Teixeira Pinto, R; Fragoso Roigues, S; Wiggelinkhuizen, E; Scherrer, R; Bauer, P; Pierik, P

    .... Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is desirable for several reasons...

  14. Wind driven mobile charging of automobile battery- A case study ...

    African Journals Online (AJOL)

    This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V) automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of ...

  15. Experimental study of wind-induced pressures on buildings of ...

    African Journals Online (AJOL)

    same plan area and height but having the different dimensions were tested in a closed circuit wind tunnel under boundary layer flow. The models were made from Perspex sheets at a geometrical scale of 1:300. Fluctuating values of wind pressures are measured at pressure points on all the sides of the models and mean, ...

  16. A case study of mesoscale spectra of wind and temperature

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Badger, Merete

    2011-01-01

    The spectra of the zonal and meridional winds and temperature over the mesoscale range of length-scales (10−5......The spectra of the zonal and meridional winds and temperature over the mesoscale range of length-scales (10−5...

  17. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  18. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  19. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    -dimensional plane upwind was installed in the turbine and the first results from these experiments will be presented in another EWEA 2013 contribution. The lidar logged the raw Doppler spectra and the wind speed estimation was done subsequently using software designed specifically for the blade-mounted lidar......-rotation of the telescopes and the wind turbine blade. Because of the placement 15 m down the blade the measured speeds are high, typically in excess of 25 m/s. However, the lidar can measure up to about 40 m/s and has no difficulties measuring the required speeds. In addition to providing interesting information about...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...

  20. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    OpenAIRE

    Radian Belu; Darko Koracin

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend ...

  1. On the Integration of Wind and Solar Energy to Provide a Total Energy Supply in the U.S

    Science.gov (United States)

    Liebig, E. C.; Rhoades, A.; Sloggy, M.; Mills, D.; Archer, C. L.

    2009-12-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary sources of energy in the U.S., under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the US national load on a monthly basis. Other studies have shown that solar or wind alone can power the present US grid on average. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from a particular year will be used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hydro and geothermal generation can provide additional controllable output, when needed, to fulfill the hourly electricity and/or energy needs. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental US using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra’s model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat

  2. Study of the wind intensification along the Veracruz coast using numerical modeling

    Science.gov (United States)

    Osorio-Tai, M. E.; Romero-Centeno, R.; Zavala-Hidalgo, J.

    2013-05-01

    Most of cold surges that reach the Gulf of Mexico occur from October to April causing strong impact on regional climate on the western and southern Gulf of Mexico, carrying strong rain and winds, reaching more than 20 m/s. During the occurrence of some of these events, it is observed a local intensification of winds in Veracruz. The jet that develops along the coastal area of Veracruz City is studied analyzing observations and by numerical modeling. For this purpose the Weather Research and Forecasting Model (WRF) is used. Model output is evaluated and validated with WindSAT scatterometer data and meteorological buoy information. It was found that during these events nearshore winds are more intense than those observed offshore by 7 m/s. Also the nearshore frontal winds leads those offshore. The shapes and dynamics of the strong intensification of the winds are studied using the numerical simulation.

  3. Structure Design and Service Performance Study of Low Wind-pressure Conductor

    Directory of Open Access Journals (Sweden)

    Wang Zhao Lin

    2016-01-01

    Full Text Available The low wind-pressure conductor is a dedicated conductor which obtains low wind resistance coefficient by changing the sectional shape of the conductor and has extensive application prospect in electric power transmission lines in strong wind areas. Previous wind tunnel testing results showed that the wind resistance coefficient in unit length of the low wind-pressure aluminium conductor steel reinforced was obviously lower than that of the conventional aluminium conductor steel reinforced, and the control factors of manufacturing process of the low wind-pressure conductor were proposed. In this paper, the low wind-pressure aluminium conductor steel reinforced JLX1/G1A(DFY–680/45–338 was designed based on the structure optimization of the conventional aluminium conductor steel reinforced JL/G1A–630/45–45/7, and the service performance study of the conductor was carried out. Results showed that the mechanical properties, electrical properties and construction properties of the low wind-pressure conductor fully satisfied service requirements, and the conductor can be popularized and applied for transmission lines in strong wind areas.

  4. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    Science.gov (United States)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  5. Vandenberg Air Force Base Pressure Gradient Wind Study

    Science.gov (United States)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  6. Structural optimization study of composite wind turbine blade

    DEFF Research Database (Denmark)

    Chen, Jin; Shen, Wen Zhong; Wang, Quan

    2013-01-01

    -way fluid-structure interaction method is introduced. A procedure combining finite element analysis and particle swarm algorithm to optimize composite structures of the wind turbine blade is developed. The procedure proposed not only allows thickness variation but also permits the spar cap location......In this paper the initial layout of a 2. MW composite wind turbine blade is designed first. The new airfoils families are selected to design a 2. MW wind turbine blade. The finite element parametric model for the blade is established. Based on the modified Blade Element Momentum theory, a new one...

  7. A numerical study of transient, thermally-conductive solar wind

    Science.gov (United States)

    Han, S. M.; Wu, S. T.; Dryer, M.

    1987-01-01

    A numerical analysis of transient solar wind starting at the solar surface and arriving at 1 AU is performed by an implicit numerical method. The model hydrodynamic equations include thermal conduction terms for both steady and unsteady simulations. Simulation results show significant influence of thermal conduction on both steady and time-dependent solar wind. Higher thermal conduction results in higher solar wind speed, higher temperature, but lower plasma density at 1 AU. Higher base temperature at the solar surface gives lower plasma speed, lower temperature, but higher density at 1 AU. Higher base density, on the other hand, gives lower velocity, lower temperature, but higher density at 1 AU.

  8. Integrating wind and solar power into the energy systems of the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1995-12-31

    Although they have been pursued by scientists and entrepreneurs for two decades, solar and wind energy have not yet claimed the large share of the world energy market that proponents hoped they would. Yet the past two years brought a series of developments that suggest the time has come for solar and wind energy to compete directly with fossil fuels. Wind and solar power generators are likely to contribute significant power to the electricity systems of scores of countries within the next decade, with generating costs as low as 4-5 cents per kilowatt-hour. This will require adjustment in the operation of power transmission and distribution systems to accommodate intermittent resources, as well as new time-specific pricing of electricity. The transition to more open, competitive power systems, with liberal access by independent producers, is likely to speed introduction of the new technologies. Altogether, the energy that strikes the earth`s atmosphere in the form of sunlight each year, and the winds that flow from it, represent the equivalent of nearly 1,000 trillion barrels of oil-sufficient to fuel the global economy thousands of times over. By relying on a new generation of efficient, high-tech, and mass produced energy conversion devices such as advanced wind turbines and photovoltaics, the world can rapidly reduce its dependence on oil and coal in the twenty-first century. In the more distant future, solar and wind energy have the potential not only to supply much of the world`s electricity but to displace the direct use of oil and natural gas. Solar and wind energy can be used to split water via electrolysis, producing hydrogen gas that can be substituted for liquid and gaseous fuels. (46 refs.)

  9. Before?After Field Study of Effects of Wind Turbine Noise on Polysomnographic Sleep Parameters

    OpenAIRE

    Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve

    2016-01-01

    Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the pos...

  10. A Case Study of the Wind Impact on Ship Ice-sticking

    OpenAIRE

    Jevgeni Rjazin; Ove Pärn

    2016-01-01

    In the paper, the impact of wind on a ferry sailing in ice field is described and analysed. Two ice-sticking events on the Gulf of Finland are taken for the case study. The wind, especially its direction, is stated as an important factor to entrap a vessel in the ice. The wind blowing across the vessel longitude axis caused both the ships to stick.

  11. A Case Study of the Wind Impact on Ship Ice-sticking

    Directory of Open Access Journals (Sweden)

    Jevgeni Rjazin

    2016-12-01

    Full Text Available In the paper, the impact of wind on a ferry sailing in ice field is described and analysed. Two ice-sticking events on the Gulf of Finland are taken for the case study. The wind, especially its direction, is stated as an important factor to entrap a vessel in the ice. The wind blowing across the vessel longitude axis caused both the ships to stick.

  12. Risk coordination in the computation of operating balancing reserves for wind power integration

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlis, N.; Huneault, M. [IREQ, Varennes, QC (Canada); Robitaille, A. [Hydro-Quebec Production, Montreal, QC (Canada). Dir. Planification de la production eolienne, Direction generale

    2011-07-01

    Recently, with the advent of wind generation, utilities acknowledged that they must modify their operating reserve levels to mitigate the effects of the combined inherent uncertainties. In our previous work, we presented a methodology to compute balancing reserves (BRs), for the time-horizon of 1-48 hours ahead, based on a short term reliability criterion called risk. Our methodology allowed the computation of dynamic reserves but the risk target was treated as an input. It was pointed out that these reserves have an economic value. Maintaining BRs using stand-by capacity comes at a cost, which may be split into three components: a fixed cost for maintaining capacity for BRs, a variable cost when they are deployed and an opportunity costs of power not sold to maintain the reserves beyond useful levels. Here we undertake a study of the problem of establishing adequate risk targets for the computation of BRs, and consequently of determining the amount of unused power capacity that could be freed for sale on export markets. The problem is essentially formulated as an economic problem in the particular HQ context. The solution results in a trade-off between the sale revenues and the expected cost of reserves. (orig.)

  13. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Guoyan Cao

    2015-01-01

    Full Text Available Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  14. LPV control for the full region operation of a wind turbine integrated with synchronous generator.

    Science.gov (United States)

    Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  15. Analytical Method for Estimating Energy Output of Small Wind Turbines Integrated in Urban Areas

    Directory of Open Access Journals (Sweden)

    Popovac M.

    2012-10-01

    Full Text Available This paper presents the development of the analytical approach for estimating the wind energy potential at locations around buildings in urban areas that are suitable for installing Small Wind Turbines (SWT. This development is performed in three steps. In order to analyze the flow pattern in a typical urban geometry, the first step consisted of a series of numerical simulations, where an assumed urban configuration (specified building size and respective distances between the buildings was varied with an incremental value, and for each analyzed configuration different incoming wind conditions (different reference wind velocity were incrementally imposed. In the second step the velocity profiles in the characteristic cutlines around the central building under investigation were extracted from the respective realizations of urban flow numerical solutions, and an analytical expression was derived approximating all extracted velocity profiles to fit the best an assumed flow pattern. The derived analytical expression was cross-plotted with the results of a fully three-dimensional realistic urban flow numerical solution, and the obtained matching level was satisfactory. Finally, using the derived expression, in the third step the estimation of SWT energy output was defined based on the average wind velocity information at given location and the related urban configuration characteristics.

  16. Study of Grid Code Compliance : Thanet Wind Farm

    OpenAIRE

    Sjölund, Malin

    2012-01-01

    The trend towards harmonizing grid codes within Europe will increase the demands for grid code compliance. Wind power is for several reasons not comparable to conventional power generation but will, due to large installations, need to show compliance with the grid codes. This thesis is investigating grid code requirements as proposed by National Grid (UK) and ENTSO-E. Modelling work and simulations have also been performed to investigate the grid ode compliance of Thanet offshore wind farm in...

  17. Experimental wind-driven rain erosion study on agricultural soils

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; Brings, Christine; Fister, Wolfgang; Seeger, Manuel; Ries, Johannes B.

    2014-05-01

    Wind is potentially capable to considerably increase soil erosion by rain drops. In contrast to laboratory experiments, in-situ experiments enable the measurement of soil erosion by wind and rain including the reactions of relatively intact soil surfaces and a complete body of soil. The Portable Wind and Rainfall Simulator of Trier University was applied on winter cereal fields to measure rain erosion on agricultural areas with and without the influence of wind. The test areas are situated near Pamplona, Navarre and recognized to be representative for large parts of northern Spain concerning soil, land use and climate. The soil surfaces on the fields were ploughed and sparsely covered by recently sowed winter cereals. The soil water content was close to saturation due to long lasting rainfall. Runoff was medium to high with runoff-coefficients ranging from 26 to 100%. The eroded material from rainfall simulations ranged from 14.5 to 42.5 g m² / 30min. The eroded material from wind-driven rain ranged from 28.1 to 47.3 g m² / 30 min. Compared to windless rainfall, the wind-driven rain increased erosion of soil material up to 82.2%. In one case, the eroded material decreased by 18.3%. The results indicate a strong influence of wind on rain erosion on recently seeded agricultural soils. Wind influence can be an important aspect for the general assessment of sheet erosion and supports the finding that a neglect of this factor might lead to severe underestimation of soil loss.

  18. Space Weather and Solar Wind Studies with OWFA

    Science.gov (United States)

    Manoharan, P. K.; Subrahmanya, C. R.; Chengalur, J. N.

    2017-03-01

    In this paper, we review the results of interplanetary scintillation (IPS) observations made with the legacy system of the Ooty Radio Telescope (ORT) and compare them with the possibilities opened by the upgraded ORT, the Ooty Wide Field Array (OWFA). The stability and the sensitivity of the legacy system of ORT allowed the regular monitoring of IPS on a grid of large number of radio sources and the results of these studies have been useful to understand the physical processes in the heliosphere and space weather events, such as coronal mass ejections, interaction regions and their propagation effects. In the case of OWFA, its wide bandwidth of 38 MHz, the large field-of-view of 27° and increased sensitivity provide a unique capability for the heliospheric science at 326.5 MHz. IPS observations with the OWFA would allow one to monitor more than 5000 sources per day. This, in turn, will lead to much improved studies of space weather events and solar wind plasma, overcoming the limitations faced with the legacy system. We also highlight some of the specific aspects of the OWFA, potentially relevant for the studies of coronal plasma and its turbulence characteristics.

  19. Wind Tunnel Experiments to Study Chaparral Crown Fires.

    Science.gov (United States)

    Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko

    2017-11-14

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.

  20. Aerodynamic study of a small horizontal-axis wind turbine

    Directory of Open Access Journals (Sweden)

    Cornelia NITA

    2012-06-01

    Full Text Available The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

  1. An analytical study of the longitudinal response of airplanes to positive wind shear

    Science.gov (United States)

    Sherman, W. L.

    1981-01-01

    The longitudinal response of jet transport aircraft to vertical variation of the horizontal winds is analyzed. Specific reference is given to the role of the speed (u) stability derivatives in the interaction of the airplane and its environment. The relative importance of the u stability derivatives is determined. The wind shear tolerance factor is found which can be used to determine, in a qualitative manner, the stability (tolerance) of an airplane to wind shear. A further study of the control problem shows that the criteria for good control could be reduced from two to one automatic control systems. Only a speed control system is necessary for good control in wind shear.

  2. A Study of Wind Farm Stabilization Using DFIG or STATCOM Considering Grid Requirements

    Directory of Open Access Journals (Sweden)

    K. E Okedu

    2010-01-01

    Full Text Available Recently, the grid codes require taking into account the reactive power of the wind farm in order to contribute to the networkstability, thus operating the wind farm as active compensator devices. This paper presents a comparative study of stabilizinga wind farm using (Doubly Fed Induction Generators DFIGs or using a (Static Synchronous Compensator STATCOM duringwind speed change and grid fault. Simulation results show that the wind farm could be effectively stabilized with bothsystems, but at a reduced cost with the DFIGs system because it can provide reactive power through its frequency converterswithout an external reactive power compensation unit like the STATCOM system significant.

  3. High Performance Reduced Order Models for Wind Turbines with Full-Scale Converters Applied on Grid Interconnection Studies

    Directory of Open Access Journals (Sweden)

    Heverton A. Pereira

    2014-11-01

    Full Text Available Wind power has achieved technological evolution, and Grid Code (GC requirements forced wind industry consolidation in the last three decades. However, more studies are necessary to understand how the dynamics inherent in this energy source interact with the power system. Traditional energy production usually contains few high power unit generators; however, Wind Power Plants (WPPs consist of dozens or hundreds of low-power units. Time domain simulations of WPPs may take too much time if detailed models are considered in such studies. This work discusses reduced order models used in interconnection studies of synchronous machines with full converter technology. The performance of all models is evaluated based on time domain simulations in the Simulink/MATLAB environment. A detailed model is described, and four reduced order models are compared using the performance index, Normalized Integral of Absolute Error (NIAE. Models are analyzed during wind speed variations and balanced voltage dip. During faults, WPPs must be able to supply reactive power to the grid, and this characteristic is analyzed. Using the proposed performance index, it is possible to conclude if a reduced order model is suitable to represent the WPPs dynamics on grid studies.

  4. System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Chi-Jeng Bai

    2014-11-01

    Full Text Available In designing a horizontal-axis wind turbine (HAWT blade, system integration between the blade design and the performance test of the generator is important. This study shows the aerodynamic design of a HAWT blade operating with an axial-flux permanent magnet (AFPM generator. An experimental platform was built to measure the performance curves of the AFPM generator for the purpose of designing the turbine blade. An in-house simulation code was developed based on the blade element momentum (BEM theory and was used to lay out the geometric shape of the turbine blade, including the pitch angle and chord length at each section. This simulation code was combined with the two-dimensional (2D airfoil data for predicting the aerodynamic performance of the designed blades. In addition, wind tunnel experiments were performed to verify the simulation results for the various operating conditions. By varying the rotational speeds at four wind speeds, the experimental and simulation results for the mechanical torques and powers presented good agreement. The mechanical power of the system, which maximizes at the best operating region, provided significant information for designing the HAWT blade.

  5. Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination

    Directory of Open Access Journals (Sweden)

    H. Wang

    2005-09-01

    Full Text Available Based on 1829 well-defined substorm onsets in the Northern Hemisphere, observed during a 2-year period by the FUV Imager on board the IMAGE spacecraft, a statistical study is performed. From the combination of solar wind parameter observations by ACE and magnetic field observations by the low altitude satellite CHAMP, the location of auroral breakups in response to solar illumination and solar coupling parameters are studied. Furthermore, the correspondence of the onset location with prominent large-scale field-aligned currents and electrojets are investigated. Solar illumination and the related ionospheric conductivity have significant effects on the most probable substorm onset latitude and local time. In sunlight, substorm onsets tend to occur 1h earlier in local time and 1.5° more poleward than in darkness. The solar wind input, represented by the merging electric field, integrated over 1h prior to the substorm, correlates well with the latitude of the breakup. Most poleward latitudes of the onsets are found to range around 73° magnetic latitude during very quiet times. Field-aligned and Hall currents observed concurrently with the onset are consistent with the signature of a westward travelling surge evolving out of the Harang discontinuity. The observations suggest that the ionospheric conductivity has an influence on the location of the precipitating energetic electron which causes the auroral break-up signature. Keywords. Ionosphere (Auroral ionosphere – Magnetospheric Physics (Current systems; Magnetosphereionosphere interactions

  6. Statistical study of the effect of wind characteristics on the main shaft loadings of an active-stall controlled wind turbine

    Science.gov (United States)

    Oh, Sho

    2016-09-01

    The dynamic loadings of the wind turbine main shafts are important for drivetrain components as external excitation force, and the evaluation of their dependence on wind characteristics is necessary for both the understanding of the drivetrain bahavior and the extrapolation of the loadings at different sites. In this study, the load measurements of the wind turbine main shafts were performed along with the wind field measurement. Next the multivariate regression analysis was utilized to identify the influential wind parameters that affect the statistics of the dynamic loadings of the shaft. Finally, the dependence of the load statistics on the identified wind parameters was evaluated qualitatively using the observed data. Obtained regression results showed that there were more effects of wind field parameters on shaft loadings at low and middle wind speed regions than at the high wind speed region. Among the identified parameters, the incline angle and the vertical turbulence were found to be dominant for most of the shaft loadings, though the turbulence intensity is the parameter that is generally used for characterization of a wind field. For the mean tilt bending moment and the standard deviation of the torque, which are recognized as the influential factors for the loadings of drivetrain component, the differences the identified parameters caused were about 15% and 100% respectively.

  7. Contrasting Electricity Demand with Wind Power Supply: Case Study in Hungary

    Directory of Open Access Journals (Sweden)

    Imre M. Jánosi

    2009-09-01

    Full Text Available We compare the demand of a large electricity consumer with supply given by wind farms installed at two distant geographic locations. Obviously such situation is rather unrealistic, however our main goal is a quantitative characterization of the intermittency of wind electricity. The consumption pattern consists of marked daily and weekly cycles interrupted by periods of holidays. In contrast, wind electricity production has neither short-time nor seasonal periodicities. We show that wind power integration over a restricted area cannot provide a stable baseload supply, independently of the excess capacity. Further essential result is that the statistics are almost identical for a weekly periodic pattern of consumption and a constant load of the same average value. The length of both adequate supply and shortfall intervals exhibits a scale-free (power-law frequency distribution, possible consequences are shortly discussed.

  8. Gearbox and Drivetrain Models to Study Dynamic Effects of Modern Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Girsang, I. P.; Dhupia, J. S.; Muljadi, E.; Singh, M.; Pao, L. Y.

    2013-10-01

    Wind turbine drivetrains consist of components that directly convert kinetic energy from the wind to electrical energy. Guaranteeing robust and reliable drivetrain designs is therefore important to minimize turbine downtime. Current drivetrain models often lack the ability to model both the impacts of electrical transients as well as wind turbulence and shear in one package. In this work, thecapability of the FAST wind turbine computer-aided engineering tool, developed by the National Renewable Energy Laboratory, is enhanced through integration of a dynamic model of the drivetrain. The dynamic drivetrain model is built using Simscape in the MATLAB/Simulink environment and incorporates detailed electrical generator models. This model can be used in the future to test advanced controlschemes to extend life of the gearbox.

  9. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel

    Science.gov (United States)

    Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya

    2017-04-01

    The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.

  10. Visualization of the Eastern Renewable Generation Integration Study: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron

    2016-12-01

    The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.

  11. An experimental and numerical study of the atmospheric stability impact on wind turbine wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Koblitz, Tilman

    2016-01-01

    In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Risø c...

  12. Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study

    NARCIS (Netherlands)

    Van Bussel, G.J.W.; Zaayer, M.B.

    2001-01-01

    The DOWEC projects aims at implementation of large wind turbines in large scale wind farms. part of the DOWEC project a concepts study was performed regarding the achievable reliability and availability levels. A reduction with a factor of 2 with regard to the present state of the art seems fairly

  13. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    Science.gov (United States)

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  14. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  15. Preliminary study of long-term wind characteristics of the Mexican Yucatan Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Soler-Bientz, Rolando [Centre for Renewable Energy Systems Technology, Department of Electronic and Electrical Engineering, Holywell Park, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Energy Laboratory, Faculty of Engineering, Autonomous University of Yucatan Facultad de Ingenieria, Av. Industrias no contaminantes x Anillo periferico norte s/n, Merida, Yucatan (Mexico); Watson, Simon [Centre for Renewable Energy Systems Technology, Department of Electronic and Electrical Engineering, Holywell Park, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Infield, David [Institute of Energy and Environment, University of Strathclyde, Glasgow (United Kingdom)

    2009-07-15

    Mexico's Yucatan Peninsula is one of the most promising areas for wind energy development within the Latin American region but no comprehensive assessment of wind resource has been previously published. This research presents a preliminary analysis of the meteorological parameters relevant to the wind resource in order to find patterns in their long-term behaviour and to establish a foundation for subsequent research into the wind power potential of the Yucatan Peninsula. Three meteorological stations with data measured for a period between 10 and 20 years were used in this study. The monthly trends of ambient temperature, atmospheric pressure and wind speed data were identified and are discussed. The directional behaviour of the winds, their frequency distributions and the related Weibull parameters are presented. Wind power densities for the study sites have been estimated and have been shown to be relatively low (wind power class 1), though a larger number of suitable sites needs to be studied before a definitive resource evaluation can be reported. (author)

  16. Spatiotemporal distribution of nitrogen dioxide within and around a large-scale wind farm - a numerical case study

    Science.gov (United States)

    Mo, Jingyue; Huang, Tao; Zhang, Xiaodong; Zhao, Yuan; Liu, Xiao; Li, Jixiang; Gao, Hong; Ma, Jianmin

    2017-12-01

    As a renewable and clean energy source, wind power has become the most rapidly growing energy resource worldwide in the past decades. Wind power has been thought not to exert any negative impacts on the environment. However, since a wind farm can alter the local meteorological conditions and increase the surface roughness lengths, it may affect air pollutants passing through and over the wind farm after released from their sources and delivered to the wind farm. In the present study, we simulated the nitrogen dioxide (NO2) air concentration within and around the world's largest wind farm (Jiuquan wind farm in Gansu Province, China) using a coupled meteorology and atmospheric chemistry model WRF-Chem. The results revealed an edge effect, which featured higher NO2 levels at the immediate upwind and border region of the wind farm and lower NO2 concentration within the wind farm and the immediate downwind transition area of the wind farm. A surface roughness length scheme and a wind turbine drag force scheme were employed to parameterize the wind farm in this model investigation. Modeling results show that both parameterization schemes yield higher concentration in the immediate upstream of the wind farm and lower concentration within the wind farm compared to the case without the wind farm. We infer this edge effect and the spatial distribution of air pollutants to be the result of the internal boundary layer induced by the changes in wind speed and turbulence intensity driven by the rotation of the wind turbine rotor blades and the enhancement of surface roughness length over the wind farm. The step change in the roughness length from the smooth to rough surfaces (overshooting) in the upstream of the wind farm decelerates the atmospheric transport of air pollutants, leading to their accumulation. The rough to the smooth surface (undershooting) in the downstream of the wind farm accelerates the atmospheric transport of air pollutants, resulting in lower concentration

  17. A case study of sample entropy analysis to the fault detection of bearing in wind turbine

    Directory of Open Access Journals (Sweden)

    Qing Ni

    2017-10-01

    Full Text Available Rolling bearing is an important and fragile component in the wind turbine transmission system. The failure of rolling bearing is one of the highest risk events which may result in unexpected economic loss. To give a proper condition assessment of rolling bearing, especially for early fault detection, is of great importance and become an urgent issue to the wind energy industry. In this paper, sample entropy is studied through the field data of wind turbine transmission system measured from Lu Nan Wind Farm in China. Compared with several frequently used statistical indicators, sample entropy features advantages in detecting and evaluating the progress of the early faults of the rolling bearing. The studies show that the sample entropy is an effective and practical tool for condition monitoring of rolling bearing for a wind turbine transmission system.

  18. Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Scheidat, Meike; Brasseur, Sophie; Van Polanen Petel, Tamara; Reijnders, Peter [IMARES, Department of Ecosystems, PO Box 167, 1790 AD Den Burg (Netherlands); Tougaard, Jakob; Carstensen, Jacob; Teilmann, Jonas, E-mail: meike.scheidat@wur.nl [Department of Arctic Environment, Aarhus University, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2011-04-15

    The rapid increase in development of offshore wind energy in European waters has raised concern for the possible environmental impacts of wind farms. We studied whether harbour porpoise occurrence has been affected by the presence of the Dutch offshore wind farm Egmond aan Zee. This was done by studying acoustic activity of porpoises in the wind farm and in two reference areas using stationary acoustic monitoring (with T-PODs) prior to construction (baseline: June 2003 to June 2004) and during normal operation of the wind farm (operation: April 2007 to April 2009). The results show a strong seasonal pattern, with more activity recorded during winter months. There was also an overall increase in acoustic activity from baseline to operation, in line with a general increase in porpoise abundance in Dutch waters over the last decade. The acoustic activity was significantly higher inside the wind farm than in the reference areas, indicating that the occurrence of porpoises in this area increased as well. The reasons of this apparent preference for the wind farm area are not clear. Two possible causes are discussed: an increased food availability inside the wind farm (reef effect) and/or the absence of vessels in an otherwise heavily trafficked part of the North Sea (sheltering effect).

  19. On the integration of wind and solar energy to provide a total energy supply in the USA

    Science.gov (United States)

    Archer, Cristina; Mills, David; Cheng, Weili; Sloggy, Matthew; Liebig, Edwin; Rhoades, Alan

    2010-05-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary source of energy in the USA, under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar or wind alone can power the present U.S. grid on average. Other studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the U.S. national load on a monthly basis. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from the year 2006 are used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental U.S. using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all suitable locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra's model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly and yearly energy consumption data from the Energy Information

  20. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  1. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  2. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS

  3. Boundary Condition Study for the Juncture Flow Experiment in the NASA Langley 14x22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Rumsey, C. L.; Carlson, J.-R.; Hannon, J. A.; Jenkins, L. N.; Bartram, S. M.; Pulliam, T. H.; Lee, H. C.

    2017-01-01

    Because future wind tunnel tests associated with the NASA Juncture Flow project are being designed for the purpose of CFD validation, considerable effort is going into the characterization of the wind tunnel boundary conditions, particularly at inflow. This is important not only because wind tunnel flowfield nonuniformities can play a role in integrated testing uncertainties, but also because the better the boundary conditions are known, the better CFD can accurately represent the experiment. This paper describes recent investigative wind tunnel tests involving two methods to measure and characterize the oncoming flow in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The features of each method, as well as some of their pros and cons, are highlighted. Boundary conditions and modeling tactics currently used by CFD for empty-tunnel simulations are also described, and some results using three different CFD codes are shown. Preliminary CFD parametric studies associated with the Juncture Flow model are summarized, to determine sensitivities of the flow near the wing-body juncture region of the model to a variety of modeling decisions.

  4. Interacting Winds in Eclipsing Symbiotic Systems – The Case Study ...

    Indian Academy of Sciences (India)

    instance, Tomov & Tomova (2001) performed the U light curve of the symbiotic AG. Peg by the occultation of a .... Figure 1(a–d). Eclipse modeling for a typical quiescent symbiotic system at the four orbital phases. In fact, the typical value of the orbital velocity, close to 10 km/s, does not modify altogether hot wind velocities of ...

  5. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    Energy Technology Data Exchange (ETDEWEB)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  6. Interacting Winds in Eclipsing Symbiotic Systems–The Case Study ...

    Indian Academy of Sciences (India)

    We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the ...

  7. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  8. Numerical study on small scale vertical axis wind turbine

    Science.gov (United States)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  9. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  10. Wind farm related mortality among avian migrants - a remote sensing study and model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M.

    2006-11-15

    This thesis is the result of a PhD study on bird-wind farm collisions and consists of a synopsis, five published papers, one submitted manuscript and another ready for submission. The papers describe the findings from pre- and post-construction visual, radar and thermal imaging studies (1999-2006) of migrating birds at the Nysted offshore wind farm in the Baltic Sea, Denmark. This thesis poses and answers the following questions: a) what hazard factors do offshore wind farming pose to wild birds, b) how should one choose the key focal species to study, c) how can remote sensing techniques be applied to the study of bird wind farm interactions, and d) specifically, how do water birds react when approaching an offshore wind farm? The main aim of the study was the development of a predictive bird-wind farm collision model that incorporates the avoidance rate of birds at multiple scales. Out of 235,136 migrating sea ducks only 47 individuals were predicted to collide with the wind turbine rotor-blades, equivalent to an overall mean collision risk of c. 0.02%. This thesis shows the added value of modelling in supplementing sound empirical studies in accessing the effects of major human development pressures on migratory bird populations. (au)

  11. A positron emission tomography study of wind-up pain in chronic postherniotomy pain

    DEFF Research Database (Denmark)

    Kupers, Ron; Lonsdale, Markus Georg; Aasvang, Eske Kvanner

    2011-01-01

    Many neuropathic pain conditions are characterized by abnormal responses to noxious or innocuous mechanical stimulation, including wind-up pain. Whereas previous brain imaging studies have explored the cerebral correlates of hyperalgesia and allodynia, no studies are available on mechanical...

  12. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  13. Determination of the Most Suitable Technology Transfer Strategy for Wind Turbines Using an Integrated AHP-TOPSIS Decision Model

    Directory of Open Access Journals (Sweden)

    A. Dinmohammadi

    2017-05-01

    Full Text Available The high-speed development of industrial products and goods in the world has caused “technology” to be considered as a crucial competitive advantage for most large organizations. In recent years, developing countries have considerably tended to promote their technological and innovative capabilities through importing high-tech equipment owned and operated by developed countries. There are currently a variety of solutions to transfer a particular technology from a developed country. The selection of the most profitable technology transfer strategy is a very complex decision-making problem for technology importers as it involves different technical, environmental, social, and economic aspects. In this study, a hybrid multiple-criteria decision making (MCDM model based on the analytic hierarchy process (AHP and the technique for order of preference by similarity to ideal solution (TOPSIS is proposed to evaluate and prioritise various technology transfer strategies for wind turbine systems. For this purpose, a number of criteria and sub-criteria are defined from the viewpoint of wind energy investors, wind turbine manufacturers, and wind farm operators. The relative importance of criteria and sub-criteria with respect to the ultimate goal are computed using the eigenvalue method and then, the technology transfer alternatives are ranked based on their relative closeness to the ideal solution. The model is finally applied to determine the most suitable wind turbine technology transfer strategy among four options of reverse engineering, technology skills training, turn-key contracts, and technology licensing for the renewable energy sector of Iran, and the results are compared with those obtained by classical decision-making models.

  14. Preliminary Analysis and Case Study of Transmission Constraints and Wind Energy in the West: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Berger, D. P.

    2005-05-01

    Wind developers typically need long-term transmission service to finance their projects; however, most of the capacity on several key paths is reserved by existing firm contracts. Because non-firm contracts are only offered for periods up to 1 year, obtaining financing for the wind project is generally not possible when firm capacity is unavailable. However, sufficient capacity may exist on the constrained paths for new wind projects that can risk curtailment for a small number of hours of the year. This paper presents the results of a study sponsored by the National Renewable Energy Laboratory (NREL), a work group participant in the Rocky Mountain Area Transmission Study (RMATS). Using recent historical power flow data, case studies were conducted on the constrained paths between Wyoming-Colorado (TOT3) and Montana-Northwest, coinciding with areas of exceptional wind resources. The potential curtailment frequency for hypothetical 100-MW and 500-MW wind plants was calculated using hourly wind data. The results from the study indicate that sufficient potential exists for innovative transmission products that can help bring more wind to load centers and increase the efficiency of the existing transmission network.

  15. Winds of change: A comparative study of the politics of wind energy innovation in California and Denmark

    NARCIS (Netherlands)

    van Est, Q.C.

    1999-01-01

    Tens of thousands of wind turbines are in operation worldwide today. This book gives a detailed account of the rise of modern wind energy technology in California and Denmark, its cradle. There is a world of difference between the approaches to the development of wind power in these two countries.

  16. Adaptive Contingency Control: Wind Turbine Operation Integrated with Blade Condition Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — We report here on first steps towards integrating systems health monitoring with adaptive contingency controls. In the scenario considered, the adaptive controller...

  17. Implementation of cable models for studies of compatibility of electric components in wind farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Jensen, Asger

    2011-01-01

    Study of interactions between electric components in power systems is getting more important in the view of an increasing degree of systems’ complexity and, as in the case of wind farms, risk of systematic (highly repeatable) design problems. So far there have not been many studies treating...... that problem in a sufficiently general way, trying to take into consideration different layouts of farms and different wind farm electric environments at the same time. This paper introduces a first step towards the concept of compatibility of electric components in wind farms by relating different cable...

  18. A study of current maintenance challenges in a large offshore wind farm

    DEFF Research Database (Denmark)

    Petersen, Kristian Rasmus; Madsen, Erik Skov; Bilberg, Arne

    The aim of the present research project is to obtain a better understanding of the operations and maintenance (O&M) processes that are performed in the offshore wind energy sector. So far, the focus on O&M of offshore wind parks has been very limited and is currently in its early phase....... A comparative study of the existing life cycle analysis of offshore wind parks found that the majority of these analyses do not include an O&M aspect in their calculations. In the present study the current O&M processes of a large offshore wind park is investigated. The wind park is operating in one of the most...... harsh and stochastic environments in the North Sea. The wind park is operated by one of Europe’s largest energy companies and the study gives an insight and a deeper understanding of the challenges of operating and maintaining a large offshore wind farm under very rough sea conditions. The main method...

  19. Multiobjective Optimization in Combinatorial Wind Farms System Integration and Resistive SFCL Using Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Moghadasi, Amirhasan; Sarwat, Arif; Guerrero, Josep M.

    2016-01-01

    This paper presents a positive approach for low voltage ride-through (LVRT) improvement of the permanent magnet synchronous generator (PMSG) based on a large wind power plant (WPP) of 50MW. The proposed method utilizes the conventional current control strategy to provide a reactive power......, thereby enhance the dc-link voltage smoothness, as well as the LVRT capability of the 50MW WPP. This is achieved by limiting the exceed fault current and diminishing the voltage dip level, leading to increase the voltage safety margin of the LVRT curve. Furthermore, the effect of the installed RSFCL...

  20. Offshore wind; proposed study areas; Havvind; forslag til utredningsomraader

    Energy Technology Data Exchange (ETDEWEB)

    Drivenes, Arvid; Eirum, Tale; Johnson, Nils Henrik; Mindeberg, Sigrun Kavli; Lunde, Synnoeve; Undem, Linn Silje; Veggeland, Kirsti; Veie-Rosvoll, Brit; Voksoe, Astrid

    2010-10-15

    The report suggests areas that may be suitable for establishing of offshore wind power, and should be further evaluated in a strategic environmental impact assessment, as it is designed to through Proposition. No. 107 (2008-2009). The proposed areas is shown in Figure 1 Eleven of the areas suitable for fixed installations and four sites suitable for floating installations. The work of the report has been carried out by a Directorate group led by the Norwegian Water Resources and Energy Directorate. (AG)

  1. Analytical Study of Thermonuclear Reaction Probability Integrals

    OpenAIRE

    Chaudhry, M.A.; Haubold, H. J.; Mathai, A. M.

    2000-01-01

    An analytic study of the reaction probability integrals corresponding to the various forms of the slowly varying cross-section factor $S(E)$ is attempted. Exact expressions for reaction probability integrals are expressed in terms of the extended gamma functions.

  2. Integrating Anthropology in Elementary Social Studies.

    Science.gov (United States)

    Zachlod, Michelle

    2000-01-01

    Discusses how anthropology can be integrated into the social studies classroom focusing on second and fifth grade levels. Demonstrates how different subject areas can be integrated with anthropology, such as history, geography, science, mathematics, and art. Covers topics such as foods, American Indian folklore, moonsticks, and myths and legends.…

  3. European Wind Farm Project Costs History and Projections 2008 Study

    Energy Technology Data Exchange (ETDEWEB)

    2008-10-15

    At the request of Enova (the 'Client'), Garrad Hassan and Partners Limited ('GH') has provided technical advice on capital cost expectations for wind farm developments. In summary, the work provides a survey of the present and future 5-year prognosis for costs and conditions facing developers and suppliers in the European wind power market. The report will be used as a benchmark to support tendering for future Norwegian projects. As such, it will also provide discussion of how project characteristics can influence project cost. Data Used in the Analysis GH has obtained data on the investment costs for 35 projects developed or in development in Europe. The projects represent to the extent possible the characteristics representative of potential Norwegian projects. The data used in this analysis are from actual projects in: France, Germany, Hungary, Ireland, Italy, Northern Ireland, Portugal, Scotland, Spain and Wales. The turbine capacities represented in the data are typically 2 MW or above, except in one case where a mix of turbines sizes was used at the project. GH highlights that because of high demand for turbines, the main manufacturers have recently been offering to meet delivery schedules for new orders from late 2010. For new tenders it is likely that delivery time frames offered will now be for 2011 deliveries. As a result of the current 'Seller's Market', production capacity typically relates directly to the number of turbines sold in the year; therefore for 2007 the annual production capacity was approximately 22 GW. GH is aware that turbine suppliers across the market are working to increase their production capacity in order to ease the pressure on the market, however, there are bottlenecks through the supply chain at the sub component level. As a result, increases in production capacity will likely remain at a relatively steady state in the short term. Energy Assessment The energy assessment of a project is the area

  4. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  5. Different shades of green: a case study of support for wind farms in the rural midwest.

    Science.gov (United States)

    Mulvaney, Kate K; Woodson, Patrick; Prokopy, Linda Stalker

    2013-05-01

    Benton County, in north-central Indiana, USA has successfully sited more than 500 turbines. To understand Benton County's acceptance of wind farms, a holistic case study was conducted that included a document review, a survey of local residents and interviews with key stakeholders. Survey questionnaires were sent to 750 residents asking questions about attitudes toward the wind farms, perceived benefits and impacts from the wind farms, environmental attitudes, and demographic information. Key stakeholders were also interviewed for a deeper understanding of the historical timeline and community acceptance of the wind farm development. While there is limited opposition to the turbines, on the whole the community presents a front of acceptance. Financial, rather than environmental, benefits are the main reason for the acceptance. Although significant in other case studies, transparency and participation do not play a large role in Benton County's acceptance. Most residents are not concerned with either visual impacts or noise from the wind turbines. More concrete benefits to the community, such as reduced energy bills for county residents, could help to extend acceptance even further within the community. Although there are concerns about the acceptance of wind farms and the impacts of those farms on local residents in both peer-reviewed literature and popular media, we found little evidence of those concerns in Benton County. Instead, we found Benton County to be a community largely accepting of wind farms.

  6. Modeling Studies of Wind and Thermohaline Forcing on the California Current System

    National Research Council Canada - National Science Library

    Vance, Phillip

    1997-01-01

    A high-resolution, multi-level, primitive equation model is initialized with climatological data to study the combined effects of wind and thermohaline forcing on the ocean circulation of the California Current System (CCS...

  7. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    Energy Technology Data Exchange (ETDEWEB)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  8. Electric Generators Fitted to Wind Turbine Systems: An Up-to-Date Comparative Study

    OpenAIRE

    Lebsir, A; Bentounsi, A; Benbouzid, Mohamed; Mangel, H

    2015-01-01

    International audience; This paper describes a comparative study allowing the selection of the most appropriate innovative structures for electrical machines for a wind turbine system. This study is based on an exhaustive review of the state of the art and on an effective comparison of the performances of the three main conventional electric generator in wind energy application system that are the Doubly-Fed Induction Generator (DFIG), the Squirrel-Cage Induction Generator (SCIG), the Permane...

  9. Comparative study on the wake deflection behind yawed wind turbine models

    Science.gov (United States)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  10. Experimental study of wind turbine wakes in a convective boundary layer

    Science.gov (United States)

    Zhang, W.; Markfort, C. D.; Porte-Agel, F.

    2010-12-01

    Understanding the interaction of atmospheric boundary layer (ABL) flows with wind turbines is important for optimizing the design of wind farms (maximizing energy output and mitigating fatigue loads) and improving the parameterization of wind farms in weather and climate models. Field observations have suggested that atmospheric stability affects ABL flow and its interaction with wind turbines, which in turn affects wind farm performance. However, the fluid mechanics involved has not been fully understood, highlighting the need of acquiring high quality data in clearly defined conditions. Well-controlled wind tunnel experiments of the wake of wind turbines immersed in thermally stratified or convective boundary layers are very limited. In this study, we investigate the wake structure of a miniature three-blade wind turbine model placed in a convective boundary layer (CBL) in the Saint Anthony Falls Laboratory wind tunnel. The objectives of this study are: 1) to understand how the CBL flow affects the wake behind a wind turbine in terms of tip vortices distribution, mean velocity deficit, turbulence intensities, Reynolds shear stress and heat flux modification; 2) to provide reliable data sets for validating and developing new parameterizations of turbulent fluxes and turbine-induced forces in numerical models, such as large-eddy simulation (LES). The CBL was generated by cooling the free stream air flow to 13 οC and heating up the test section floor to 80 οC. The free stream speed was set at 2.5 m/s, resulting in the Obukhov stability of δ/L=-3.15 and the bulk Richardson number about -0.16. The wake of a wind turbine model, whose height is about 1/3 the boundary layer thickness, was systematically studied using Stereo Particle Image Velocimetry (SPIV) and a hot-wire/cold-wire anemometer. Results revealed the top tip vortices (in Fig.1), noticeably degraded velocity deficit and significantly enhanced turbulence. Turbulent momentum and heat fluxes were also

  11. Study on Modelling Standardization of Double-fed Wind Turbine and Its Application

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2016-01-01

    Full Text Available Based on the standardized modelling of the International Modelling Team, study on double-fed induction generator (DFIG wind turbine is processed in this paper, aiming at capability of universally and reasonably reflecting key performance related to large scale system analysis. The standardized model proposed is of high degree of structural modularity, easy functional extension and universalization of control strategy and signal. Moreover, it is applicable for wind turbines produced by different manufacturers through model parameter adjustment. The complexity of the model can meet both needs of grid-connected characteristic simulation of wind turbine and large scale power system simulation.

  12. Study of a Wind/PV/Battery hybrid system – Case study at Plaka in Greece

    OpenAIRE

    J. G. Fantidis; D. V. Bandekas; N. Vordos

    2015-01-01

    The primary objective of this study is to determine the optimum hybrid system able to supply the necessary electrical load of a typical community in a remote location in Greece. The renewable energy systems were comprised of different combinations of PV modules and wind turbines supplemented with battery storage. A software tool, HOMER is used for the analysis. The hybrid system analysis has showed that the minimum cost of energy is 0.268 $/kWh with 10% annual capacity of shortage...

  13. Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)

    Energy Technology Data Exchange (ETDEWEB)

    Lasley, Larry C. [Sac & Fox Tribe of the Mississippi in Iowa

    2013-03-19

    1.2 Overview The Meskwaki Nation will obtain an anemometer tower. Install the tower at the site that has been pre-qualified as the site most likely to produce maximum electric power from the wind. It will collect meteorological data from the tower's sensors for a one year period, as required for due diligence to identify the site as appropriate for the installation of a wind turbine to provide electric power for the community. Have the collected data analyzed by a meteorologist and a professionally certified wind engineer to produce the reports of expected power generation at the site, for the specific wind turbine(s) under consideration for installation. 1.2.1 Goals of the Tribe The feasibility study reports, including technical and business analyses will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement. Our goal is to produce two (2) mega watts of power and to reduce the cost for electricity currently being paid by the Meskwaki Casino. 1.2.2 Project Objectives Meet the energy needs of the community with clean energy. Bring renewable energy to the settlement in a responsible, affordable manner. Maximize both the economic and the spiritual benefits to the tribe from energy independence. Integrate the Tribe's energy policies with its economic development goals. Contribute to achieving the Tribe's long-term goals of self-determination and sovereignty. 1.2.3 Project Location The precise location proposed for the tower is at the following coordinates: 92 Degrees, 38 Minutes, 46.008 Seconds West Longitude 41 Degrees, 59 Minutes, 45.311 Seconds North Latitude. A circle of radius 50.64 meters, enclosing and area of 1.98 acres in PLSS Township T83N, Range R15W, in Iowa. In relative directions, the site is 1,650 feet due west of the intersection of Highway 30 and 305th Street in Tama, Iowa, as approached from the direction of Toledo, Iowa. It is bounded on the north by Highway 30 and

  14. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  15. Design, integration and control of proton exchange membrane electrolyzer for wind based renewable energy applications

    Science.gov (United States)

    Harrison, Kevin W.

    This research endeavor began with the design and construction of a new hydrogen test facility at the National Renewable Energy Laboratory (NREL). To improve the electrical link of wind-based electrolysis the characterization of a proton exchange membrane (PEM) electrolyzer under varying input power was performed at NRELs new test facility. The commercially available electrolyzer from Proton Energy Systems (PES) was characterized using constant direct current (DC), sinusoidally varying DC, photovoltaics and variable magnitude and frequency energy from a 10 kW wind turbine. At rated stack current and ˜ 40°C the system efficiency of the commercial electrolyzer was measured to be 55%. At lower stack current it was shown that commercial electrolyzer system efficiency falls because of the continuous hydrogen purge (˜0.1 Nm3 hr-1) used to maintain the hydrogen desiccant drying system. A novel thermoelectric-based dew point controller is designed and modeled to reduce the penalty to renewable sources because they do not always operate at 100% of rated stack current. It is predicted that the thermoelectric design when operated 100% of the time at full current to the thermoelectric modules would consume 3.1 kWh kg -1 of hydrogen. Using the higher heating value of hydrogen and a stack efficiency of 60% to produce the hydrogen that is continuously vented, the desiccant system consumes about 5.7 kWh kg-1. Design of the UND electrolyzer sub-systems responsible for all aspects of water, power to the stack, and hydrogen conditioning enables more flexible and precise experimental data to be obtained than from an off-the-shelf system. Current-voltage (IV) characteristic curves were obtained on the UND system at temperatures between 7--70°C. The anode and cathode exchange current densities are fitted to 2.0 E-06 e0.043T and 0.12 e 0.026T A cm-2 respectively. Stack conductivity was fitted to 0.001T + 0.03 S cm-1. The three coefficients represent physical stack parameters and are

  16. Sand Dune Dynamics on Mars: Integration of Surface Imaging, Wind Measurements, and Orbital Remote Sensing

    Science.gov (United States)

    Bridges, N.; Sullivan, R. J., Jr.; Ewing, R. C.; Newman, C. E.; Ayoub, F.; Lapotre, M. G. A.; van Beek, J.

    2016-12-01

    In early 2016, the Mars Science Laboratory rover completed the first in situ investigation of an active dune field on another planetary body, the "Bagnold Dunes" in Gale Crater. During the campaign, a series of Mastcam and RMI time-series images of local sand patches, dump piles, ripples, and the lee face and margin of Namib Dune (a barchan in the Bagnold field) were acquired. These were at cadences of a sol or more that were generally at nearly the same local time, and intra-sol imaging bridged by continuous wind measurements from REMS. The dune field has also been imaged 16 times by HiRISE since 2008. By combining the two datasets, long term dune dynamics over the whole field can be compared to small-scale and short-term observations on the surface. From HiRISE, Namib Dune and other barchans and longitudinal dunes to the south and west migrate generally toward the south to southeast. The most active sand deposits are the longitudinal and barchans dunes, with the highest ripple migration rates found on the highest elevations. Rippled sand patches exhibit little of no motion. From MSL, the scrambling of grains on the surfaces of local rippled sand patches and Namib Dune is obvious over periods as short as a single sol, with light-toned grains showing the greatest tendency. On the lee face of Namib, images show grain scrambling, one case of modification to a secondary grainflow, and possibly ripple motion over 3-16 sols. At the dune margin, grain scrambling and one major slump on the lee face of a dune ripple are seen. The daytime REMS record shows wind speeds up to 20 m/s with confidence. As yet, we do not have a demonstrable correlation between measured wind speeds and changes, suggesting that short term gusts or non-aeolian processes acting as triggers may precede significant activity. The changes, occurring in a low flux season based on HiRISE analysis and global circulation models, indicate an active surface at all times of the year to some degree.

  17. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  18. Integrating Epigenomics into Pharmacogenomic Studies.

    Science.gov (United States)

    Zhang, Wei; Huang, R Stephanie; Dolan, M Eileen

    2008-11-01

    The goal of personalized medicine is to recommend drug treatment based on an individual's genetic makeup. Pharmacogenomic studies utilize two main approaches: candidate gene and whole-genome. Both approaches analyze genetic variants such as single nucleotide polymorphisms (SNPs) to identify associations with drug response. In addition to DNA sequence variations, non-genetic but heritable epigenetic systems have also been implicated in regulating gene expression that could influence drug response. The International HapMap Project lymphoblastoid cell lines (LCLs) have been used to study genetic determinants responsible for expression variation and drug response. Recent studies have demonstrated that common genetic variants, including both SNPs and copy number variants (CNVs) account for a substantial fraction of natural variation in gene expression. Given the critical role played by DNA methylation in gene regulation and the fact that DNA methylation is currently the most studied epigenetic system, we suggest that profiling the variation in DNA methylation in the HapMap samples will provide new insights into the regulation of gene expression as well as the mechanisms of individual drug response at a new level of complexity. Epigenomics will substantially add to our knowledge of how genetics explains gene expression and pharmacogenomics.

  19. Integrating epigenomics into pharmacogenomic studies

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2008-11-01

    Full Text Available Wei Zhang, R Stephanie Huang, M Eileen DolanSection of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USAAbstract: The goal of personalized medicine is to recommend drug treatment based on an individual’s genetic makeup. Pharmacogenomic studies utilize two main approaches: candidate gene and whole-genome. Both approaches analyze genetic variants such as single nucleotide polymorphisms (SNPs to identify associations with drug response. In addition to DNA sequence variations, nongenetic but heritable epigenetic systems have also been implicated in regulating gene expression that could influence drug response. The International HapMap Project lymphoblastoid cell lines (LCLs have been used to study genetic determinants responsible for expression variation and drug response. Recent studies have demonstrated that common genetic variants, including both SNPs and copy number variants (CNVs account for a substantial fraction of natural variation in gene expression. Given the critical role played by DNA methylationin gene regulation and the fact that DNA methylation is currently the most studied epigenetic system, we suggest that profiling the variation in DNA methylation in the HapMap samples will provide new insights into the regulation of gene expression as well as the mechanisms of individual drug response at a new level of complexity. Epigenomics will substantially add to our knowledge of how genetics explains gene expression and pharmacogenomics.Keywords: epigenetics, DNA methylation, gene expression, pharmacogenomics, HapMap, drug response

  20. Wind Power: The Economic Impact of Intermittency

    NARCIS (Netherlands)

    Kooten, van G.C.

    2010-01-01

    Wind is the fastest growing renewable energy source for generating electricity, but economic research lags behind. In this study, therefore, we examine the economics of integrating large-scale wind energy into an existing electrical grid. Using a simple grid management model to investigate the