WorldWideScience

Sample records for wind input conditions

  1. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  2. Fault tolerant control of wind turbines using unknown input observers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    This paper presents a scheme for accommodating faults in the rotor and generator speed sensors in a wind turbine. These measured values are important both for the wind turbine controller as well as the supervisory control of the wind turbine. The scheme is based on unknown input observers, which...... are also used to detect and isolate these faults. The scheme is tested on a known benchmark for FDI and FTC of wind turbines. Tests on this benchmark model show a clear potential of the proposed scheme....

  3. Wind turbine influence on surfers wind conditions at Hanstholm

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Andersen, Søren Juhl

    alter the wind conditions on the lee side, which is an important area for wind and kite surfers. The Dynamic Wake Meander Model is used to investigate the wind conditions north east of the planned new turbines at Hanstholm covering a surf area from a location called “Fish Factory” to a location called...... “Hamborg”. This model, which predicts instationary wind conditions behind one or more wind turbines, has previously been used to predict the changed power and load conditions for wind turbines in wind farm conditions. Avery fine agreement to measurements is seen and the model is therefore considered...

  4. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four......This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project...

  5. A Reexamination of the Emergy Input to a System from the Wind.

    Science.gov (United States)

    The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can hav...

  6. Far offshore wind conditions in scope of wind energy

    NARCIS (Netherlands)

    Holtslag, M.C.

    2016-01-01

    Far offshore atmospheric conditions are favourable for wind energy purposes since mean wind speeds are relatively high (i.e., high power production) while turbulence levels are relatively low (i.e., less fatigue loads) compared to onshore conditions. Offshore wind energy, however, is still expensive

  7. Wind Conditions for Wind Farm Hanstholm

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.; Mann, Jakob

    The net annual energy production (AEP) of the Hanstholm Wind Farm is 158 GWh per year for the Siemens SWT-3.6-120 turbine and 140 GWh for the Vestas V112-3.0 turbine. These values have an uncertainty (standard deviation) of 6%. This result is mainly based on the data for Risø DTU’s test station...... at Høvsøre where wind speeds are measured at approximately the same height as the turbines at Hanstholm and where the terrain is similar. On top of that meso-scale modeling has been used to extrapolate the climatology from Høvsøre to Hanstholm increasing the AEP by almost 6% compared to just using...... the Høvsøre climatology directly. This method of extrapolation is rather new, but several older investigations indicate that the wind resource at Hanstholm is slightly higher than at Høvsøre. The work is carried out for Grontmij-Carl Bro according to a contract dated January 18th 2011....

  8. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use...

  9. Wind Turbine Drivetrain Condition Monitoring - An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  10. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  11. Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole

    Science.gov (United States)

    Li, Kun; Wei, Y.; André, M.; Eriksson, A.; Haaland, S.; Kronberg, E. A.; Nilsson, H.; Maes, L.; Rong, Z. J.; Wan, W. X.

    2017-10-01

    The solar wind energy input into the Earth's magnetosphere-ionosphere system drives ionospheric outflow, which plays an important role in both the magnetospheric dynamics and evolution of the atmosphere. However, little is known about the cold ion outflow with energies lower than a few tens of eV, as the direct measurement of cold ions is difficult because a spacecraft gains a positive electric charge due to the photoemission effect, which prevents cold ions from reaching the onboard detectors. A recent breakthrough in the measurement technique using Cluster spacecraft revealed that cold ions dominate the ion population in the magnetosphere. This new technique yields a comprehensive data set containing measurements of the velocities and densities of cold ions for the years 2001-2010. In this paper, this data set is used to analyze the cold ion outflow from the ionosphere. We found that about 0.1% of the solar wind energy input is transformed to the kinetic energy of cold ion outflow at the topside ionosphere. We also found that the geomagnetic dipole tilt can significantly affect the density of cold ion outflow, modulating the outflow rate of cold ion kinetic energy. These results give us clues to study the evolution of ionospheric outflow with changing global magnetic field and solar wind condition in the history.

  12. An Exploration of Input Conditions for Virtual Teleportation

    DEFF Research Database (Denmark)

    Høeg, Emil Rosenlund; Ruder, Kevin Vignola; Nilsson, Niels Chr.

    2017-01-01

    This poster describes a within-groups study (n=17) comparing participants' experience of three different input conditions for instigating virtual teleportation (button clicking, physical jumping, and fist clenching). The results indicated that teleportation by clicking a button generally required...

  13. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  14. Ensemble standar deviation of wind speed and direction of the FDDA input to WRF

    Data.gov (United States)

    U.S. Environmental Protection Agency — NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input. variable U_NDG_OLD contains standard...

  15. Review of climatic input data for wind load design in accordance with SANS 10160-3

    CSIR Research Space (South Africa)

    Goliger, Adam MW

    2017-12-01

    Full Text Available background information on South African conditions. The need for updating the map for the free field wind speed is related also to the improved representation of the mixed and complex strong wind climate of the country. Furthermore, strong wind probability...

  16. The Inada conditions for material resource inputs reconsidered

    OpenAIRE

    Baumgärtner, Stefan

    2003-01-01

    It is shown that the thermodynamic law of conservation of mass, the so-called Materials-Balance-Principle, implies that the marginal product as well as the average product of a material resource input are bounded from above. This means that the Inada conditions, one of the standard assumptions of economic growth theory, when applied to material resource inputs are inconsistent with a basic law of nature. The analysis is based on a model of multi-level production where intermediate goods are p...

  17. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...

  18. Wind energy input into the upper ocean over a lengthening open water season

    Science.gov (United States)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  19. Unknown input observer based detection of sensor faults in a wind turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2010-01-01

    In this paper an unknown input observer is designed to detect three different sensor fault scenarios in a specified bench mark model for fault detection and accommodation of wind turbines. In this paper a subset of faults is dealt with, it are faults in the rotor and generator speed sensors as we...

  20. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  1. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...

  2. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently...

  3. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    International Nuclear Information System (INIS)

    Feng, Ju; Sheng, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades

  4. A novel implementation of kNN classifier based on multi-tupled meteorological input data for wind power prediction

    International Nuclear Information System (INIS)

    Yesilbudak, Mehmet; Sagiroglu, Seref; Colak, Ilhami

    2017-01-01

    Highlights: • An accurate wind power prediction model is proposed for very short-term horizon. • The k-nearest neighbor classifier is implemented based on the multi-tupled inputs. • The variation of wind power prediction errors is evaluated in various aspects. • Our approach shows the superior prediction performance over the persistence method. - Abstract: With the growing share of wind power production in the electric power grids, many critical challenges to the grid operators have been emerged in terms of the power balance, power quality, voltage support, frequency stability, load scheduling, unit commitment and spinning reserve calculations. To overcome such problems, numerous studies have been conducted to predict the wind power production, but a small number of them have attempted to improve the prediction accuracy by employing the multidimensional meteorological input data. The novelties of this study lie in the proposal of an efficient and easy to implement very short-term wind power prediction model based on the k-nearest neighbor classifier (kNN), in the usage of wind speed, wind direction, barometric pressure and air temperature parameters as the multi-tupled meteorological inputs and in the comparison of wind power prediction results with respect to the persistence reference model. As a result of the achieved patterns, we characterize the variation of wind power prediction errors according to the input tuples, distance measures and neighbor numbers, and uncover the most influential and the most ineffective meteorological parameters on the optimization of wind power prediction results.

  5. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Science.gov (United States)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  6. Modelling Wind Turbine Failures based on Weather Conditions

    Science.gov (United States)

    Reder, Maik; Melero, Julio J.

    2017-11-01

    A large proportion of the overall costs of a wind farm is directly related to operation and maintenance (O&M) tasks. By applying predictive O&M strategies rather than corrective approaches these costs can be decreased significantly. Here, especially wind turbine (WT) failure models can help to understand the components’ degradation processes and enable the operators to anticipate upcoming failures. Usually, these models are based on the age of the systems or components. However, latest research shows that the on-site weather conditions also affect the turbine failure behaviour significantly. This study presents a novel approach to model WT failures based on the environmental conditions to which they are exposed to. The results focus on general WT failures, as well as on four main components: gearbox, generator, pitch and yaw system. A penalised likelihood estimation is used in order to avoid problems due to for example highly correlated input covariates. The relative importance of the model covariates is assessed in order to analyse the effect of each weather parameter on the model output.

  7. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    Science.gov (United States)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  8. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  9. Assessment of Wind Turbine for Site-Specific Conditions using Probabilistic Methods

    DEFF Research Database (Denmark)

    Heras, Enrique Gómez de las; Gutiérrez, Roberto; Azagra, Elena

    2013-01-01

    This paper describes a new approach to assess the structural integrity of wind turbines for sitespecific conditions using probabilistic methods, taking into account the particular uncertainties associated to each site. This new approach intends to improve the site suitability analysis of wind...... state equation is defined making the loads and resistance depending on a set of stochastic variables representing the uncertainties. In this paper, special focus is put on the uncertainties related to the assessment of wind data, which is the main input for the sitespecific load assessment, and can...... be very dependent on the site. The uncertainties on the wind properties depend on issues like the available wind data, the quality of the measurement sensors, the type of terrain or the accuracy of the engineering models for horizontal and vertical spatial extrapolation. An example is included showing two...

  10. Determination of solar wind energy input during different form of geomagnetic disturbances.

    Science.gov (United States)

    Dahal, S.; Adhikari, B.; Narayan, C.; Shapkota, N.

    2017-12-01

    A quantitative study on solar wind energy input during different form of geomagnetic disturbances as well as during quite period was performed. To enable a quantitative analysis, we estimate Akasofu parameter which plays an important role to understand the relationships between ionosphere-magnetosphere and solar wind energy input. For comparative purpose, the total energy budget of Non storm HILDCAA event (19th to 24th April 2003), Storm preceding HILDCAA event (14th to 19th May 2005), Geomagnetic sub-storm (12nd to 16th November 2003), Geomagnetic super sub-storm (12nd to 16th November 2003) and a Quiet period (18th to 21st July 2006) were also analyzed. Among these events the highest total energy budget was found during the occurrence of storm preceding HILDCAA. This is due to significant geomagnetic field perturbation as displayed on the value of interplanetary parameters. The principal cause of geomagnetic disturbance is the magnetic reconnection, which establishes an electrodynamic coupling between the solar plasma and the magnetosphere. Although there is distinct perturbation on SYM-H index for all events but the values are different. The highest pick value of SYM-H index ( -300nT) was found for the storm preceding HILDCAA.This results suggest that the effects of HILDCAAs, displayed on the value of the SYM-H index, depends on the amount of the energy injected into the ring current. In a complementary way, fluctuation pattern of Temperature, IMF magnitude, Bx component, By component, and AE index are also studied and the possible physical interpretations for the statistical results obtained during each events were discussed. We shall report the characteristics of Bz component during each events by the implementation of discrete wavelet transform (DWT) and cross correlation analysis. We did cross-correlation between solar wind energy and Bz component of IMF and found a negative correlation between them during the main phase of geomagnetic disturbances. These

  11. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Directory of Open Access Journals (Sweden)

    Wintoft Peter

    2017-01-01

    Full Text Available We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks provide prediction lead times in the range 20–90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1 IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2 IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF

  12. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri

    2017-11-01

    We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function

  13. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  14. Influence of input data on airflow network accuracy in residential buildings with natural wind- and stack-driven ventilation

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Krzaczek, Marek; Tejchman, Jacek

    2017-01-01

    are obtained from secondary sources which are solely representative for very simplified buildings, i.e. for buildings without facade details. Although studies comparing wind pressure coefficients or discharge coefficients from different sources exist, the knowledge regarding the effect of input data on AFN......The airflow network (AFN) modeling approach provides an attractive balance between the accuracy and computational demand for naturally ventilated buildings. Its accuracy depends on input parameters such as wind pressure and opening discharge coefficients. In most cases, these parameters...... is still poor. In this paper, the influence of wind pressure data on the accuracy of a coupled AFN-BES model for a real building with natural wind- and stack-driven ventilation was analyzed. The results of 8 computation cases with different wind pressure data from secondary sources were compared...

  15. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... of the situation-specific uncertainty of point forecasts. In order to avoid a restrictive assumption on the shape of forecast error distributions, focus is given to an empirical and nonparametric approach named adapted resampling. This approach employs a fuzzy inference model that permits to integrate expertise...

  16. Wind turbine aerodynamic response under atmospheric icing conditions

    DEFF Research Database (Denmark)

    Etemaddar, M.; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    -four hours of icing, with time varying wind speed and atmospheric icing conditions, was simulated on a rotor. Computational fluid dynamics code, FLUENT, was used to estimate the aerodynamic coefficients of the blade after icing. The results were also validated against wind tunnel measurements performed at LM...... Wind Power using a NACA64618 airfoil. The effects of changes in geometry and surface roughness are considered in the simulation. A blade element momentum code WT-Perf is then used to quantify the degradation in performance curves. The dynamic responses of the wind turbine under normal and iced...

  17. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  18. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bulaevskaya, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Irons, Z. [Enel Green Power North America, Andover, MA (United States); Qualley, G. [Infigen Energy, Dallas, TX (United States); Newman, J. F. [Univ. of Oklahoma, Norman, OK (United States); Miller, W. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-28

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resource areas in the U.S. and are representative of typical wind farms found in their respective areas.

  19. European shags optimize their flight behavior according to wind conditions.

    Science.gov (United States)

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  20. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  1. Fault diagnosis and condition monitoring of wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2017-01-01

    This paper describes a model-free method for the fault diagnosis and condition monitoring of rotor systems in wind turbines. Both fault diagnosis and monitoring can be achieved without using a model for the wind turbine, applied controller, or wind profiles. The method is based on measurements from...... standard sensors on modern wind turbines, including moment sensors and rotor angle sensors. This approach will allow the method to be applied to existing wind turbines without any modifications. The method is based on the detection of asymmetries in the rotor system caused by changes or faults in the rotor...... system. A multiblade coordinate transformation is used directly on the measured flap-wise and edge-wise moments followed by signal modulation. Changes or faults in the rotor system will result in unique signatures in the set of modulation signals. These signatures are described through the amplitudes...

  2. Attentional Processing of Input in Explicit and Implicit Conditions: An Eye-Tracking Study

    Science.gov (United States)

    Indrarathne, Bimali; Kormos, Judit

    2017-01-01

    In this study we examined language learners' attentional processing of a target syntactic construction in written L2 input in different input conditions, the change in learners' knowledge of the targeted construction in these conditions, and the relationship between the change in knowledge and attentional processing. One hundred L2 learners of…

  3. Maintenance Planning of Offshore Wind Turbine using Condition Monitoring Information

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT...... incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI...

  4. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  5. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  6. On the early stages of wind wave under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2017-04-01

    Most efforts in the study of the generation and evolution of wind waves have been conducted under constant wind. The balance of the transfer of different properties has been studied mainly for situations where the wave has already reached the equilibrium with the constant wind conditions. The purpose of these experiments is to study the early stages of the generation of waves under non-stationary wind conditions and to determine a balance in the exchange at the air-water interface for non-equilibrium wind conditions. A total of 16 experiments with a characteristic acceleration and deceleration rate of wind speed were conducted in a large wind-wave facility of Institut Pythéas (Marseille-France). The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. The momentum fluxes were estimated from hot wire anemometry at station 7. Also, the free surface displacement was measured along the channel tank at 11 stations where resistance wires were installed, except at stations 1, 2, and 7 where capacitance wires were installed. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. During experiments the wind intensity was abruptly increased with a constant acceleration rate over time, reaching a constant maximum intensity of 13 m/s. This constant velocity remains some time until the intensity is again reduced suddenly. We observed that wind drag coefficient values are higher for the experiments that present the lower acceleration rate; some field data from previous studies is presented for reference (Large and Pond 1981; Ocampo-Torres et al. 2011; Smith 1980; Yelland and Taylor 1996). The empirical grow curves show that in the experiments with lower acceleration, the wave field is more developed, showing higher dimensional energy and lower dimensional peak frequency. In the evolution of the spectral wave energy, there is first high frequency energy saturation, followed by a downshift of

  7. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  8. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

    Science.gov (United States)

    Xu, B F; Wang, T G; Yuan, Y; Cao, J F

    2015-02-28

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Effect of high wind conditions on AHX performance for PFBR

    International Nuclear Information System (INIS)

    Goyal, P.; Datta, Anu; Verma, Vishnu; Singh, R.K.

    2013-05-01

    In case of normal shut down or station blackout condition the core decay heat is removed by Safety Grade Decay Heat Removal System (SGDHRS) in PFBR. The Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. SGDHRS remove decay heat from the core and dissipate it into the environment with the help of Air Heat Exchanger (AHX). SGDHRS consists of four redundant numbers of totally independent circuits capable of removing decay heat from the hot pool through natural convection in the primary and intermediate sodium sides as well as in the air side. Each circuit consists of a sodium to sodium heat exchanger (DHX) and a sodium to AHX connected to intermediate sodium circuit, AHX is located at a higher elevation compared to DHX. AHX is serpentine type finned tube compact heat exchanger with sodium in the tube side and air flowing over finned tubes. A tall stack provides the driving force for the natural convection of air flow through the AHX, when the dampers are opened. The AHX is placed outside of Reactor Control Building (RCB), on the roof of Steam Generator Building. Due to the presence of nearby buildings around the stack, the AHX performance under high wind condition may be affected. A CFD simulation using CFD-ACE+ code has been carried in which effect of high wind condition and nearby building on AHX performance have been studied. For high wind condition various orientation of wind movement was considered for parametric studies. AHX performance for all the cases were compared with the results that obtained for the absence of nearby buildings. A comparative table was prepared to understand how the AHX performance is effected with the high wind condition for various direction and with the presence of nearby building. It was observed that AHX performance is influenced by high wind conditions in most of the cases for with and without presence of nearby building. Hence to ensure the optimal performance of the AHX under high wind conditions its

  10. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  11. Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    DEFF Research Database (Denmark)

    Battistia, L.; Benini, E.; Brighenti, A.

    2016-01-01

    was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition. The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a “free jet” (open channel...

  12. Development and Verification of CFD Models for Modeling Wind Conditions on Forested Wind Turbine Sites

    DEFF Research Database (Denmark)

    Andersen, Morten Q.; Mortensen, Kasper; Nielsen, Daniel E.

    2009-01-01

    This paper describes a proposed CFD model to simulate the wind conditions on a forested site. The model introduces porous subdomains representing the forests in the terrain. Obtained simulation values are compared to field measurements in- and outside a forest. Initial results are very promising...

  13. PC index as a ground-based characteristic for the solar wind energy input into the magnetosphere

    Science.gov (United States)

    Troshichev, Oleg; Stauning, Peter

    The solar wind energy input into the magnetosphere is usually evaluated by power of the magnetic disturbances detected at the Earth and estimated by the AE(AL) and Dst indices, characterizing, correspondingly, the magnetospheric substorm and geomagnetic storm dynamics and intensity. It is generally agreed, however, that the magnetospheric substorms and magnetic storms are the result of release of the energy accumulated by that time in the magnetosphere. Theoretical estimations of the solar wind energy input, making allowance for the actually observed solar wind parameters (for example, -function of Akasofu), turned out impracticable on the reasons of their imperfection and impossibility to organize the reliable monitoring the solar wind parameters in the key points of the space. By now the only PC index is serving as an on-line ground-based indicator of the geoeffective solar wind impact on the magnetosphere. The PC index characterizes the polar cap magnetic activity, generated by the geeffective interplanetary electric field (GIEF). The index is derived by magnetic data of only two stations Thule and Vostok, located in the northern (PCN) and southern (PCS) near-pole regions. The index was put into practice about 25 years ago, but obtained his final design as late as 2006. The unified procedure provides the on-line calculation of the PCN and PCS indices consistent with the GIEF value irrespective of the UT time, season and solar cycle. The proper response of the PC index to actual changes in the interplanetary electric field and the solar wind dynamic pressure is demonstrated. The main attention is given to relationships between the PC index behavior and development of the magnetospheric substorms and geomagnetic storms. It is shown that the magnetospheric substorms intensity and the substorm growth phase duration can be predicted by the PC index growth rate, whereas the geomagnetic storms magnitude and their lenght is indicated by the PC values averaged for the

  14. Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Konrad Zolna

    2015-01-01

    Full Text Available Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis. Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a nonlinear exponential deterministic trend, and experimental data from a wind turbine drivetrain—are used to illustrate the method and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of nonlinear trends form various types of data, allowing for possible condition monitoring applications.

  15. Meteorological conditions during extreme wind erosion events on heavy soils

    Directory of Open Access Journals (Sweden)

    Bronislava Mužíková

    2010-01-01

    Full Text Available Wind erosion in the Czech Republic conditions poses relatively a lot of danger, especially for the most fertile areas, where agricultural land is more vulnerable due to the large pieces of land and inappropriate crop rotation. This process causes damage to agriculture by loss of topsoil, fertilizers, seeds and crop damage as well as sedimentation in water recipients and on roads. It also has negative impacts on human health (airborne dust. Wind erosion is especially affected by climatic elements (wind, temperature, precipitation and evaporation etc. and soil characteristics (soil type, content of erodible particles, soil moisture. Wind erosion affects mainly light and medium heavy soil. South Moravia is an example of the territories to which this rule does not apply. Although soils in the Carpathian flysch subsoil are mainly heavy, erosion has been causing damage here for many decades. Quite strong dust storms are not rare, especially at the end of winter and in early spring when the soil is not covered by vegetation.Notable cases of dust storms in the area were recorded in local chronicles, and then written in the summary publication by dr. Švehlík. Interest of this publication was focused on the most destructive cases of dust storms in Bílé Karpaty foothills. The aim was to study meteorological conditions during the period before and during the occurrence of dust storms in the area in detail and to find the relationship between weather and the intensity of wind erosion. The data of wind speed and direction, temperature, precipitation and snow were evaluated. In all cases the average daily air temperature and ground air temperature was over the freezing point or closely under it. The temperature generally increased before the dust storm occurrence and it often happened from negative to positive temperature and the soil probably defrosted. Snow cover was very small or there was no snow cover at all. In the course of April wind erosion

  16. Sample-path stability conditions for multiserver input-output processes

    Directory of Open Access Journals (Sweden)

    Muhammad El-Taha

    1994-01-01

    Full Text Available We extend our studies of sample-path stability to multiserver input-output processes with conditional output rates that may depend on the state of the system and other auxiliary processes. Our results include processes with countable as well as uncountable state spaces. We establish rate stability conditions for busy period durations as well as the input during busy periods. In addition, stability conditions for multiserver queues with possibly heterogeneous servers are given for the workload, attained service, and queue length processes. The stability conditions can be checked from parameters of primary processes, and thus can be verified a priori. Under the rate stability conditions, we provide stable versions of Little's formula for single server as well as multiserver queues. Our approach leads to extensions of previously known results. Since our results are valid pathwise, non-stationary as well as stationary processes are covered.

  17. Fundamentals for remote condition monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... necessary for the use of sensors as a structural health monitoring system for wind turbine blades. This includes creating knowledge that will allow sensor signals to be used for remotely identifying the presence and position of any damage, the damage type and severity, and a structural condition assessment...... mobile sensors), fibre optics (including a new microbend transducer design and various Bragg-grating based applications), wireless approaches involving both battery and energy harvesting options, and inertia sensor based system identification approaches able to deal with linear periodic systems...

  18. Fundamentals for remote condition monitoring of offshore wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Sørensen, Bent F.

    2007-01-01

    damage or failure in the Structural materials. The vision is of future blades containing sensors that give very early indications of any damage that is classed as critical or that is developing unacceptably rapidly. This early indication allows the option of changing operating conditions, and of a timely...... inspection, repair or replacement. The paper explores the requirements for the level of remote data Output that will allow an initial improvement in the overall management of offshore wind farms., and ultimately accurate estimates of remaining life for individual blades. The practical and theoretical...... software and hardware systems should be included. The paper also discusses the possible reasons for finding Such a proactive interest in SHM technology within offshore wind energy, where other industrial applications have exhibited more resistance....

  19. Input materials and processing conditions control compost dissolved organic carbon quality

    NARCIS (Netherlands)

    Straathof, A.L.; Comans, R.N.J.

    2015-01-01

    Dissolved organic carbon (DOC) has been proposed as an indicator of compost maturity and stability. Further fractionation of compost DOC may be useful for determining how particular composting conditions will influence DOC quality. Eleven composts ranging in input materials and processing techniques

  20. Crosslinking and condition monitoring with wind power plants; Vernetzung und Condition Monitoring bei Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Spelter, Frank [Bachmann Electronic GmbH, Feldkirch (Austria). Unternehmenskommunikation

    2010-10-15

    Condition monitoring of wind power systems is getting increasingly important, and there are various possible approaches. The Bachmann M1 automation system allows the implementation of measuring and control processes and evaluations up to comprehensive condition monitoring. In combination with an expert system, it is possible to monitor mechanical and technical components and to detect defects before these will have negative effects on the system condition. (orig.)

  1. A global condition monitoring system for wind turbines

    DEFF Research Database (Denmark)

    Schlechtingen, Meik

    The cost of energy generated from wind power plants (particular if located offshore) is challenging societies in terms of desiring cheaper and more environmentally friendly generated electrical energy. The high cost reduction targets can be aided by broad application of condition monitoring systems......, which bear the potential to support plant owners reducing turbine downtime and lowering costs. In this research a global condition monitoring system is proposed, which provides a platform to take advantage of the different information sources available to operators. One of the most common sources...... for information about the component condition is Supervisory Control And Data Acquisition (SCADA) data, e.g. temperature, current orvoltage measurements from different components. Using newly developed Adaptive Neuro-Fuzzy Interference System (ANFIS) models, a normal behavior model based approach is taken...

  2. Fundamentals for remote condition monitoring of offshore wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Sørensen, Bent F.

    2007-01-01

    knowledge synergy required to introduce a working system is also considered. Although the initial objectives of the present Study were simply to establish the fundamentals for such technology, with industrial collaboration to follow, it quickly became clear that the development of specific prototype......It is anticipated that the large offshore wind farms planed for the near future will require a level of sensor technology sufficient to monitor their general condition from on-shore stations. The continuous monitoring of operational condition and structural responses will give a higher level...... damage or failure in the Structural materials. The vision is of future blades containing sensors that give very early indications of any damage that is classed as critical or that is developing unacceptably rapidly. This early indication allows the option of changing operating conditions, and of a timely...

  3. Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building

    Directory of Open Access Journals (Sweden)

    Takaaki Kono

    2016-11-01

    Full Text Available From the viewpoint of installing small wind turbines (SWTs on rooftops, this study investigated the effects of wind direction and horizontal aspect ratio (HAR = width/length of a high-rise cuboid building on wind conditions above the roof by conducting large eddy simulations (LESs. The LES results confirmed that as HAR decreases (i.e., as the building width decreases, the variation in wind velocity over the roof tends to decrease. This tendency is more prominent as the angle between the wind direction and the normal vector of the building’s leeward face with longer roof edge increases. Moreover, at windward corners of the roof, wind conditions are generally favorable at relatively low heights. In contrast, at the midpoint of the roof's windward edge, wind conditions are generally not favorable at relatively low heights. At leeward representative locations of the roof, the bottoms of the height range of favorable wind conditions are typically higher than those at the windward representative locations, but the favorable wind conditions are much better at the leeward representative locations. When there is no prevailing wind direction, the center of the roof is more favorable for installing SWTs than the corners or the edge midpoints of the roof.

  4. Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs

    International Nuclear Information System (INIS)

    Hong, Ying-Yi; Chang, Huei-Lin; Chiu, Ching-Sheng

    2010-01-01

    Wind energy is currently one of the types of renewable energy with a large generation capacity. However, since the operation of wind power generation is challenging due to its intermittent characteristics, forecasting wind power generation efficiently is essential for economic operation. This paper proposes a new method of wind power and speed forecasting using a multi-layer feed-forward neural network (MFNN) to develop forecasting in time-scales that can vary from a few minutes to an hour. Inputs for the MFNN are modeled by fuzzy numbers because the measurement facilities provide maximum, average and minimum values. Then simultaneous perturbation stochastic approximation (SPSA) algorithm is employed to train the MFNN. Real wind power generation and wind speed data measured at a wind farm are used for simulation. Comparative studies between the proposed method and traditional methods are shown.

  5. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  6. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2004-01-01

    Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation. Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms

  7. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2004-01-01

    Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation.

    Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms

  8. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    and purposes oriented design procedures are the backbone of a cost efficient offshore wind industry. Conventional engineering procedures for the assessment of extreme event impacts, i.e. ultimate limit state (ULS) analysis of floating structures, as they have been used in the oil and gas industry, neglect two...... not be sufficient to describe realistic wave shapes and the respective loads, especially in ULS conditions. In shallow or intermediate water depth environments, i.e. when the ratio between the water depth and the wave length becomes smaller than 0.5, waves need to be described by non-linear approaches, in order...... and water depths are considered, where wave shapes in the extreme sea states deviate from the 1st order description. A design basis is developed, which defines parametric extreme sea state caused by measured cyclonic storm conditions. The sea state parameters are defined, such that their reoccurrence...

  9. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Kang, Ju Whan; Kim, Yang Seon [Mokpo National University, Muan (Korea, Republic of)

    2016-05-15

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  10. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    International Nuclear Information System (INIS)

    Choun, Young Sun; Kim, Min Kyu; Kang, Ju Whan; Kim, Yang Seon

    2016-01-01

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  11. Output Filter Design for a Novel Dual-Input PV-Wind Power Converter by Energy Balance Principle

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-09-01

    Full Text Available In this paper, a detailed and systematic derivation of the output filter in a novel dual-input photovoltaic (PV-wind converter (DIPWC is presented. The theoretical derivation is based on an energy balance principle. While the DIPWC operates in steady state, the amount of charged energy of the output filter will be equal to that of the energy pumped away within one switching cycle. From this zero net change in energy, the minimum value of the output filter can be found. With the determined value, the DIPWC is able to operate in continuous conduction for high power applications. The developed procedure of the inductance determination can be applied to other types of dual-input converters. Therefore, it makes significant contributions to the design toward a green-energy, multi-input converter. To verify the correctness of the mathematical analysis, the DIPWC—with the derived output inductance—is built and tested. Practical measurements and results have verified the inductance determination.

  12. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: Second runway; wind... TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway paving: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions...

  13. Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik; Khaliq, Abdul; Saeed-ur-Rehman

    2015-01-01

    This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies

  14. Discretizing LTI Descriptor (Regular Differential Input Systems with Consistent Initial Conditions

    Directory of Open Access Journals (Sweden)

    Athanasios D. Karageorgos

    2010-01-01

    Full Text Available A technique for discretizing efficiently the solution of a Linear descriptor (regular differential input system with consistent initial conditions, and Time-Invariant coefficients (LTI is introduced and fully discussed. Additionally, an upper bound for the error ‖x¯(kT−x¯k‖ that derives from the procedure of discretization is also provided. Practically speaking, we are interested in such kind of systems, since they are inherent in many physical, economical and engineering phenomena.

  15. Flap controllers applied on the OffshoreWindChina (OWC) 5MW reference wind turbine for Chinese typhoon conditions

    DEFF Research Database (Denmark)

    Barlas, Athanasios

    The report describes the development of flap controllers applied on the OffshoreWindChina (OWC) 5MW reference wind turbine for Chinese typhoon conditions. Optimal flap controllers are designed and tuned based on linear aeroelastic models from HawcStab2. The controllers are evaluated in normal...

  16. Impact of Solar wind plasma parameters on geomagnetic condition

    Science.gov (United States)

    Rathore, Balveer Singh; Gupta, Dinesh Chandra

    Today’s challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field conditions. A correlative studies between the Geomagnetic Storms (GMSs) and the various interplanetary field/plasma parameters have been performed to search the causes of geomagnetic activity and developing models for prediction of the occurrence of GMSs which are important for space weather predictions. In the present paper we found possible co-relation of geomagnetic storms with solar wind and IMF parameters in three different situations and also drive the linear relation equation for all parameters in three situations. On basis of present statistical study we developed an empirical model. With the help of this model we can predict all categories of geomagnetic storms. This model based on following fact. The total interplanetary magnetic field Btotal can use as alarm of geomagnetic storms, when sudden changes in total magnetic field B total, it is a first alarm on condition for storms arrival. It is observed in the present study that southward Bz-component of IMF is an important factor for geomagnetic storms. And it is the result of the paper that the magnitude of Bz is maximum neither during initial phase (at the instant of IP shock) nor during main phase (at the instant of Dst minimum). So it is seen in this study that there is a time delay between maximum value of southward Bz and Dst minimum and this time delay can be used in the prediction of the intensity of magnetic storm two -three hours before of main phase of geomagnetic storm. A linear relation have been derived between maximum value of southward component of Bz and Dst for prediction is Dst = (-0.06) + (7.65)Bz + t. Some auxiliary condition should be fulfils with this, speed of solar wind should be on average 350 km/s to 750 km/s, plasma beta should be low and most important plasma temperature should be low for intense storms if plasma

  17. Four-pulse transcranial magnetic stimulation using multiple conditioning inputs. Normative MEP responses.

    Science.gov (United States)

    Calancie, Blair; Wang, Dongliang; Young, Eufrosina; Alexeeva, Natalia

    2018-04-01

    A four-pulse pattern of transcranial magnetic stimulation (TMS) was compared to traditional dual-pulse TMS for its ability to modulate motor cortical excitability. This novel pattern consisted of a three-pulse train of subthreshold conditioning pulses followed by a suprathreshold test pulse (i.e., SC-T). The intervals between these superconditioning (SC) pulses (1, 3, or 6 ms) and the follow-on test pulse (1, 3, 10, or 25 ms) were varied, and the resultant MEPs were compared to those elicited by: (1) single-pulse TMS; and (2) dual-pulse conditioning-test (C-T) TMS with either short (3 ms) or long (10 ms) intervals to elicit short-interval intracortical inhibition (SICI) or intracortical facilitation (ICF), respectively. Testing included abductor pollicis brevis (APB) and tibialis anterior (TA) in 15 neurologically normal adults. For superconditioning inputs, 10 ms test intervals caused especially strong facilitation of the test MEP, while 1 ms test intervals were particularly effective at causing inhibition of the test response. For both muscles and across all subjects, the most effective of the 12 SC-T inputs tested for causing either facilitation or inhibition was-with rare exception-superior to the dual-pulse TMS input for causing facilitation (i.e., ICF) or inhibition (i.e., SICI), while the overall magnitude of effect was more pronounced in APB compared to TA. Nevertheless, after normalization, the impact of a superconditioning input train on the test MEP was similar in APB and TA muscles, suggesting similar mechanisms of action. Limited findings from a single subject with amyotrophic lateral sclerosis (ALS) are included to further illustrate the potential advantages of using a train of conditioning pulses preceding a TMS test pulse to selectively investigate abnormal motor cortical excitatory and inhibitory circuitry.

  18. Echolalic responses by a child with autism to four experimental conditions of sociolinguistic input.

    Science.gov (United States)

    Violette, J; Swisher, L

    1992-02-01

    Studies of the immediate verbal imitations (IVIs) of subjects with echolalia report that features of linguistic or social input alone affect the number of IVIs elicited. This experimental study of a child with echolalia and autism controlled each of these variables while introducing a systematic change in the other. The subject produced more (p less than .05) IVIs in response to unknown lexical words presented with a high degree of directiveness (Condition D) than in response to three other conditions of stimulus presentation (e.g., unknown lexical words, minimally directive style.) Thus, an interaction between the effects of linguistic and social input was demonstrated. IVIs were produced across all conditions, primarily during first presentations of lexical stimuli. Only the IVIs elicited by first presentations of the lexical stimuli during Condition D differed significantly (p less than .05) from the number of IVIs elicited by first presentations of lexical stimuli in other conditions. These findings viewed together suggest that the occurrence of IVIs was related, at least for this child, to an uncertain or informative event and that this response was significantly greater when the lexical stimuli were unknown and presented in a highly directive style.

  19. Considering capital goods in life cycle assessments by input-output analysis. Offshore wind farm as an application example

    International Nuclear Information System (INIS)

    Eickelkamp, Timo

    2013-01-01

    Capital goods are not normally taken into consideration in assessing the sustainability of products on the basis of life cycle assessments. Capital goods are machines and buildings that are used for production purposes over the course of a product's life cycle. Using an offshore wind farm as an example the present study shows how capital goods can be taken into account via a methodologically expanded input-output analysis and thus factored into the life cycle assessment. Besides comparing different calculation methods the author performs a detailed analysis of those parameters with the greatest influence on the outcome. The results show that capital goods have a substantial impact on sustainability in both energy-related and environmental terms. Capital goods should therefore be taken into consideration in life cycle assessments.

  20. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines...

  1. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    Secure power system operation of a highly wind power integrated power system is always at risk during critical weather conditions, e.g. in extreme high winds. The risk is even higher when 50% of the total electricity consumption has to be supplied by wind power, as the case for the future Danish...

  2. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors.

    Science.gov (United States)

    Guo, Zhi; Phooi, Wei Boon Alfred; Lim, Zi Jian; Tong, Yen Wah

    2015-06-01

    A study on the optimization of CO2 usage during outdoor microalgae cultivation in order to further maximize the CO2 to biomass conversion efficiency is presented. A constant supply of CO2 was found to be non-essential for culturing microalgae outdoors in 80 L (8 L×10 sets) bubble columns. Among the different CO2 input conditions that were studied, 2% CO2 with intermittent supply and 2%+4% CO2 alternation did not affect the algal growth as compared to having a constant supply of 2% CO2. However, during both input conditions, the CO2 to biomass conversion efficiency was doubled while the amount of CO2 used was reduced by 50%. The algal biomass obtained was found to have a higher carbohydrate yield but a lower protein yield as compared to previously published studies. The findings from this study could be applied for large-scale microalgae production so as to minimize cultivation and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Assessing the Implicit Achievement Motive: Effects of Input- Condition, Administration And Picture -Position

    Directory of Open Access Journals (Sweden)

    Nicole Gruber

    2015-09-01

    Full Text Available Implicit measurements are sensitive for influences of experimenter and situation. An assessment using computers could therefore avert those negative effects, if there is an adequate translation to computer (Blankenship, 2010. We split the implicit achievement motive into the two components hope of success (HS and fear of failure (FF and investigated the effects of input condition (handwritten vs. keyboard, administration (online vs. computer vs. human experimenter and picture-position for each of these two components. Therefore 140 undergraduates were randomly assigned to 18 experimental groupsof a counterbalance within-between-design and assessed with the Thematic-Apperception-Test (TAT; Heckhausen, 1963. The outcome is that handwriting increases the HS-score, whereby FF- score did not differ in typed and handwritten answers. People instructed by human experimenter show higher FF and lower HS compared tocomputer based tested people in the labor and online There is no statistical significant interaction effectof administration and input condition. There is either no position effect for any of these motive-components. The TAT seems to be more robust than commonly thought.

  4. Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm

    Science.gov (United States)

    Zhang, Ying; Qian, Zheng; Tian, Shuangshu

    2016-01-01

    The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.

  5. A wind-tunnel investigation of wind-turbine wakes in yawed conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-06-01

    Wind-tunnel experiments were performed to study the performance of a model wind turbine and its wake characteristics in a boundary layer under different operating conditions, including different yaw angles and tip speed ratios. High-resolution particle image- velocimetry (PIV) was used to measure the three velocity components in a horizontal plane at hub height covering a broad streamwise range from upstream of the turbine to the far- wake region. Additionally, thrust and power coefficients of the turbine were measured under different conditions. These power and thrust measurements, together with the highly-resolved flow measurements, enabled us to systematically study different wake properties. The near-wake region is found to have a highly complex structure influenced by different factors such as tip speed ratio and wake rotation. In particular, for higher tip speed ratios, a noticeable speed-up region is observed in the central part of near wake, which greatly affects the flow distribution in this region. In this regard, the behavior of the near wake for turbines with similar thrust coefficients but different tip speed ratios can vary widely. In contrast, it is shown that the mean streamwise velocity in the far wake of the turbine with zero yaw angle has a self-similar Gaussian distribution, and the strength of wake in this region is consistent with the magnitude of the thrust coefficient. With increasing yaw angle, as expected, the power and thrust coefficients decrease, and the wake deflection increases. The measurements also reveal that, in addition to turbulent momentum flux, lateral mean momentum flux boosts the flow entrainment in only one side of the wake, which results in a faster wake recovery in that side. It is also found that the induced velocity upstream of a yawed turbine has a non-symmetric distribution, and its distribution is in agreement with the available model in the literature. Moreover, the results suggest that in order to accurately

  6. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  7. Performance Analysis of Doubly Fed Induction Generator Based Wind turbine under Faulty and RLC Load Conditions

    OpenAIRE

    Rekha Parashar; Shashikant

    2015-01-01

    This paper presents the performance of Doubly Fed Induction Generator based wind turbine system during different types of grid fault. The doubly fed induction generator (DFIG) based wind turbine (WT) system provides better power delivery towards the demand. The design and response of the DFIG based wind turbine system during different fault conditions, various load conditions and integrated system consisting of DFIG based WT system have been verified using MATLAB/ Simulink. The simulation re...

  8. Offshore Wind Power Production in Critical Weather Conditions

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2012-01-01

    % of the electricity consumption by 2020. In the EU funded project TWENTIES, the demonstration #4 STORM MANAGEMENT aims at demonstrating that adequate coordination mechanisms between offshore wind farms and hydro power capacity available in Norway through an existing HVDC link brings viable solutions to securely...... control the power balance during offshore storm passages. The demonstration will be done on Horns Rev 2 wind farm. In the same project, the impact of a storm front passage over the system security, for the whole Danish system, and with the expected offshore wind power in 2020 will be investigated...... and quantifying the balancing reserve requirements needed in order to keep the security of the power system....

  9. Impact of an offshore wind farm on wave conditions and shoreline development

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf

    2014-01-01

    The influence of offshore wind farms on the wave conditions and impact on shoreline development is studied in a generic set-up of a coast and a shoreline. The objective was to estimate the impact of a typical sized offshore wind farm on a shoreline in a high wave energetic environment. Especially...... the shoreline’s sensitivity to the distance from the OWF to the shoreline was studied. The effect of the reduced wind speed inside and on the lee side of the offshore wind farm was incorporated in a parameterized way in a spectral wind wave model. The shoreline impact was studied with a one-line model....

  10. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  11. Influence on surfers wind conditions east of the new Hanstholm harbour/wind turbine project

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Astrup, Poul

    on the lee side, which is an important area for wind and kite surfers. In this study, both changes in mean wind velocities as well as the turbulence level are investigated for the surf area between a location called ”Fish Factory” to the location called ”Hamburg”. The interesting wind speed interval is 8-16m/s...... mainly from west, measured in 10m height. Results are extracted in several downstream locations specified by Grontmij covering the area used for surfing. It is expected that surfing mainly occurs for wind speeds above 10m/s (10m height) and the important parameters both level of mean wind speeds as well...

  12. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available Directional statistics provide design engineers with the opportunity to realise considerable cost savings, but these are not yet provided for in the South African standard for wind loading. The development of the directional statistics of extreme...

  13. Wind power and the conditions at a liberalized power market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    Wind power is undergoing a rapid development nationally as well as globally and in a number of countries covers an increasing part of the power supply. At the same time an ongoing liberalization of power markets is taking place and to an increasing extent the owners of wind power plants will themselves have to be responsible for trading the power at the spot market and financially handling the balancing. In the western part of Denmark (Jutland/Funen area), wind-generated power from time to time covers almost 100% of total power consumption. Therefore some examples are chosen from this area to analyse in more detail how well large amounts of wind power in the short-term are handled at the power spot market. It turns out that there is a tendency that more wind power in the system in the short run leads to relatively lower spot prices, while less wind power implies relatively higher spot prices, although, with the exception of December 2002, in general no strong relationship is found. A stronger relationship is found at the regulating market, where there is a fairly clear tendency that the more wind power produced, the higher is the need for down-regulation, and, correspondingly, the less wind power produced, the higher is the need for up-regulation. In general for the Jutland/Funen area the average cost of down-regulation is calculated as 1 2 c euros/kWh regulated for 2002, while the cost of up-regulation amounts to 0 7 c euros/kWh regulated. (author)

  14. Do Wind Turbines Affect Weather Conditions?: A Case Study in Indiana

    Directory of Open Access Journals (Sweden)

    Meghan F. Henschen

    2011-01-01

    Full Text Available Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and evaporation with five weather instruments at Meadow Lake Wind Farm located in White, Jasper, and Benton Counties, Indiana, from November 4 through November 18, 2010. The data show that as wind passes throughout the wind farm, the air warms during the overnight and early morning hours and cools during daytime hours. Observed lower humidity rates and higher evaporation rates downwind also demonstrate that the air dries out as it travels through the wind farm. Further research over multiple seasons is necessary to examine the effects of warmer nighttime temperatures and drier conditions progressively downwind of the installation. Nevertheless, wind turbines did not negatively affect local weather patterns in our small-scale research and may actually prevent frost, which could have important positive implications for farmers by potentially prolonging the growing season.

  15. Vertical evolution of wind meandering in a nocturnal boundary layer during low-wind speed conditions

    Science.gov (United States)

    Stefanello, Michel; Acevedo, Otávio; Mortarini, Luca; Cava, Daniela; Giostra, Umberto; Degrazia, Gervásio; Anfossi, Domenico

    2017-04-01

    In the nocturnal boundary layer episodes of horizontal wind meandering are frequent. These episodes are characterised by low-wind regimes (wind speed less than 1.5 m s-1) in which submeso motions drive the wind dynamics and turbulence is weak and often intermittent. The inception of the meandering phenomenon as well as the interaction between turbulence and the submeso oscillations are still poorly understood. In this work we study the vertical evolution of the wind meandering by analysingnight-time anemometric data. The observations were carried on at a coastal site in Espirito Santo state, south-eastern Brazil from august to November 2016. The turbulent data, divided in hourly series, were collected in a 140-m tower designed to provide micrometeorological observations with high vertical resolution and deep coverage of the lower portion of the atmospheric boundary layer. Particularly, turbulence observations of the wind components and temperature are carried at 11 vertical levels. The tower has been deployed next to a natural gas power plant, at 3 km from the ocean. The terrain is generally flat for an area of 30 km from the tower, where moderate hills exist. The meandering timescale at each level is evaluated through the Eulerian Autocorrelation Functions of the horizontal wind velocity components and temperature, while the interactions between the different scales of motions is studied using the multi-correlation analysis. Thus the vertical evolution of meandering and time scales structure can be studied.

  16. Social barriers in wind power implementation in The Netherlands: Perceptions of wind power entrepreneurs and local civil servants of institutional and social conditions in realizing wind power projects

    International Nuclear Information System (INIS)

    Agterbosch, Susanne; Glasbergen, Pieter; Vermeulen, Walter J.V.

    2007-01-01

    The primary social factors for the implementation of wind energy projects in a liberalized market are entrepreneurs willing to invest. Understanding conditions that trigger entrepreneurs to invest in these projects, and understanding conditions that determine the chance of success for entrepreneurs to implement and exploit their projects, is vital for setting up effective policies to stimulate wind electricity generation. This paper analyses the way in which wind power entrepreneurs and local civil servants experience social and institutional conditions in the operational process of realizing wind power projects, and their perceptions of policy implications. A groups support system in an electronic board room was used to analyze the perceptions. From the analysis it was concluded that wind power entrepreneurs and civil servants share the opinion that the institutionally embedded power position of local politicians, and the sensitiveness of the local political debate for the popular opinion are most critical for project realization. With regard to the proposed solutions, both groups differ in their approach. Entrepreneurs stress procedural solutions, such as limiting the possibilities to appeal, reducing the complexity of the formal authorization trajectory and using a top down planning approach. Civil servants stress more strategic solutions, such as providing more public information on the necessity of wind power for local politicians and citizens, and community involvement in planning processes. Finally, the analysis explains that steering strategies that have been developed at the national level to solve the planning problems at the operational level do not address the right problems. (author)

  17. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    Science.gov (United States)

    2016-12-22

    mean wind profile, and a minor reduction in the form drag fraction. This supports recent theoretical perspectives that propose very differing... turnover times. For the results, wind and pressure fields are made dimensionless by (u*, u* 2 ) and all lengths are made dimensionless by  where... turnover times (~ 50) owing to the reduction in the timestep on the fine grid. We found the fine mesh runs were similar in character to the coarse mesh

  18. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    for further optimization and the consequent potential to make FOWT cost competitive. Generally the study shows that the hybrid modelling approach might currently be sufficient for pre-Detailed Design stages, where higher degrees of conservatism are acceptable. However for multi-unit production the current......While the design of floating offshore wind turbines (FOWT) is still at an infant stage, the general desire to realise them is strong. According to a poll conducted by GL Garrad Hassan at the HUSUM 2012 Wind Energy Trade Fair, 62% of the attendees believed that floaters will be a part of the mix...... and will even overtake bottom fixed foundation within the coming two decades, Bossler (2011). FOWTs are believed having a large potential of lowering the cost of energy (CoE). The CoE minimization is currently the main driver for technological development in the offshore wind industry. Therefore reliable...

  19. Validation Study of Wave Breaking Influence in a Coupled Wave Model for Hurricane Wind Conditions

    Science.gov (United States)

    2008-08-27

    an essential modification to the Janssen (1991) input source term in the spirit of the notion of ’sheltering’ (e.g. Makin & Kudryavtsev , 2001...Ocean Waves, Cambridge University Press, Cambridge, 532pp. Makin, V.K. and V.N. Kudryavtsev , 2001: Coupled sea surface-atmosphere model. 1. Wind over

  20. Short-term prediction of local wind conditions

    DEFF Research Database (Denmark)

    Landberg, L.

    2001-01-01

    This paper will describe a system which predicts the expected power output of a number of wind farms. The system is automatic and operates on-line. The paper will quantify the accuracy of the predictions and will also give examples of the performance for specific storm events. An actual implement......This paper will describe a system which predicts the expected power output of a number of wind farms. The system is automatic and operates on-line. The paper will quantify the accuracy of the predictions and will also give examples of the performance for specific storm events. An actual...

  1. Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference

    Directory of Open Access Journals (Sweden)

    Francesc Pozo

    2018-03-01

    Full Text Available This article states a condition monitoring strategy for wind turbines using a statistical data-driven modeling approach by means of supervisory control and data acquisition (SCADA data. Initially, a baseline data-based model is obtained from the healthy wind turbine by means of multiway principal component analysis (MPCA. Then, when the wind turbine is monitorized, new data is acquired and projected into the baseline MPCA model space. The acquired SCADA data are treated as a random process given the random nature of the turbulent wind. The objective is to decide if the multivariate distribution that is obtained from the wind turbine to be analyzed (healthy or not is related to the baseline one. To achieve this goal, a test for the equality of population means is performed. Finally, the results of the test can determine that the hypothesis is rejected (and the wind turbine is faulty or that there is no evidence to suggest that the two means are different, so the wind turbine can be considered as healthy. The methodology is evaluated on a wind turbine fault detection benchmark that uses a 5 MW high-fidelity wind turbine model and a set of eight realistic fault scenarios. It is noteworthy that the results, for the presented methodology, show that for a wide range of significance, α ∈ [ 1 % , 13 % ] , the percentage of correct decisions is kept at 100%; thus it is a promising tool for real-time wind turbine condition monitoring.

  2. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Robert W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Bagenal, Fran [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); McComas, David J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Fowler, Christopher M., E-mail: rebert@swri.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2014-09-19

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1–4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013a), Jupiter's bow shock and magnetopause is expected to be at least 8–12% further from Jupiter, if these trends continue.

  3. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Directory of Open Access Journals (Sweden)

    Robert Wilkes Ebert

    2014-09-01

    Full Text Available We examine Ulysses solar wind and interplanetary magnetic field (IMF observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 – 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013, Jupiter’s bow shock and magnetopause is expected to be at least 8 – 12% further from Jupiter, if these trends continue.

  4. GEN-IV Benchmarking of Triso Fuel Performance Models under accident conditions modeling input data

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: • The modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release. • The modeling of the AGR-1 and HFR-EU1bis safety testing experiments. • The comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from “Case 5” of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. “Case 5” of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to “effects of the numerical calculation method rather than the physical model” [IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read

  5. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    The PhD work evaluated the performance of engineering procedures, used in the design of bottom fixed offshore wind turbines, for the hydrodynamic ULS analysis of a FOWT tension leg platform (TLP). Dynamically sensitive topsides have been included and water depths were considered, where wave shapes...

  6. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  7. Impact of an offshore wind farm on wave conditions and shoreline development

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf

    2014-01-01

    The influence of offshore wind farms on the wave conditions and impact on shoreline development is studied in a generic set-up of a coast and a shoreline. The objective was to estimate the impact of a typical sized offshore wind farm on a shoreline in a high wave energetic environment. Especially...

  8. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission...... systems. The health condition of the wind turbine gearboxes can be indicated by the quantity and size of the metal abrasive particles, which may provide very early warnings of faults/failures and benefit the condition based maintenance of the system. An improved inductive sensor probe is proposed...

  9. Dynamic modeling and control of DFIG-based wind turbines under balanced network conditions

    DEFF Research Database (Denmark)

    Mehdipour, Cyrous; Hajizadeh, Amin; Mehdipour, Iman

    2016-01-01

    The performance of wind power station is researched by utilizing a detailed model which includes a wind turbine (WT), doubly fed induction generator (DFIG) and power electronic devices. In the initial stage, a comprehensive review and definition of each part of this system are presented....... Then dynamic modeling and simulation of a sample power system are carried out. The operation of a DFIG coupled with WT under balanced condition of a power grid is investigated and stationary reference frame is utilized for analysis of a wind energy conversion system. At the second step, a wind power station...

  10. Operation of a Wind Turbine-Flywheel Energy Storage System under Conditions of Stochastic Change of Wind Energy

    OpenAIRE

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author’s opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical pa...

  11. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  12. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Directory of Open Access Journals (Sweden)

    Meng Gao

    Full Text Available In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE. Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  13. Power and loads for wind turbines in yawed conditions. Analysis of field measurements and aerodynamic predictions

    Energy Technology Data Exchange (ETDEWEB)

    Boorsma, K. [ECN Wind Energy, Petten (Netherlands)

    2012-11-15

    A description is given of the work carried out within the framework of the FLOW (Far and Large Offshore Wind) project on single turbine performance in yawed flow conditions. Hereto both field measurements as well as calculations with an aerodynamic code are analyzed. The rotors of horizontal axis wind turbines follow the changes in the wind direction for optimal performance. The reason is that the power is expected to decrease for badly oriented rotors. So, insight in the effects of the yaw angle on performance is important for optimization of the yaw control of each individual turbine. The effect of misalignment on performance and loads of a single 2.5 MW wind turbine during normal operation is investigated. Hereto measurements at the ECN Wind Turbine Test Site Wieringermeer (EWTW) are analyzed from December 2004 until April 2009. Also, the influence of yaw is studied using a design code and results from this design code are compared with wind tunnel measurements.

  14. Near-surface meteorological conditions associated with active resuspension of dust by wind erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hodgin, C.R.

    1982-01-01

    The meteorological conditions associated with extreme winds in the lee of the Colorado Rocky Mountains were studied from the viewpoint of dust resuspension and dispersion. Wind, dispersion, temperature, and dew point conditions occurring near the surface were discussed in detail for a selected event. Near-surface wind speeds were compared to observations made at a standard sampling height. These field data were developed to aid in validation and interpretation of wind tunnel observations and application of dispersion models to wind erosion resuspension. Three conclusions can immediately be drawn from this investigation. First, wind storms in nature are quite gusty, with gusts exceeding the mean speed by 50 percent or more. However, wind direction variations are small by comparison. Thus, wind tunnel studies should be able to simulate the large along-flow turbulence, while keeping cross-flow turbulence to a moderate level. This also has an application to the puff modeling of high winds. Puff models normally assume that the along-flow dispersion coefficient is equal to the cross-flow value. This study suggests that the along-flow coefficient should be much larger than its cross-flow counterpart. Another conclusion involves the usual assumption of Pasquill-Gifford stability class D. In the event studied here, the atmosphere was well mixed with near-neutral thermal stability, yet the horizontal dispersion stability class varied from G to A. Thus, an assumption of Class D horizontal dispersion during high winds would not have been valid during this case. A final conclusion involves the widely applied assumption of a logarithmic wind speed profile during high wind events. This study has indicated that such an assumption is appropriate.

  15. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  16. Operation of a Wind Turbine-Flywheel Energy Storage System under Conditions of Stochastic Change of Wind Energy

    Science.gov (United States)

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326

  17. Co-ordinated Control Strategy for Hybrid Wind Farms with PMSG and FSIG under Unbalanced Grid Voltage Condition

    DEFF Research Database (Denmark)

    Zeng, Xin; Yao, Jun; Chen, Zhiqian

    2016-01-01

    This paper investigates a control strategy for a wind farm with the direct-driven permanent-magnet synchronous generators (PMSG)-based wind turbines and the fixed speed induction generators (FSIG)-based wind turbines under unbalanced grid voltage condition. By controlling the PMSG-based wind farm...

  18. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Oyague, F.; Butterfield, S.

    2010-08-01

    The wind industry has experienced premature turbine component failures during the past years. With the increase in turbine size, these failures, especially those found in the major drivetrain components, i.e. main shaft, gearbox, and generator, have become extremely costly. Given that the gearbox is the most costly component in the drivetrain to fix, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC) to determine the causes for premature gearbox failures and subsequently, recommend improvements to gearbox design, manufacture, and operational practices. The GRC has two identical test gearboxes, which are planned for a dynamometer and a field test, respectively.

  19. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    , the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context...

  20. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  1. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  2. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    Science.gov (United States)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  3. Response Analysis of a Spar-Type Floating Offshore Wind Turbine Under Atmospheric Icing Conditions

    DEFF Research Database (Denmark)

    Etemaddar, Mahmoud; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    One of the challenges for the development of wind energy in offshore cold-climate regions is atmospheric icing. This paper examines the effects of atmospheric icing on power production, overall performance, and extreme loads of a 5-MW spar-type floating offshore wind turbine during power producti......, as are the effects of atmospheric icing on land-based and offshore wind turbines.......One of the challenges for the development of wind energy in offshore cold-climate regions is atmospheric icing. This paper examines the effects of atmospheric icing on power production, overall performance, and extreme loads of a 5-MW spar-type floating offshore wind turbine during power production......, normal and emergency rotor shutdown, extreme gusts, and survival conditions. Atmospheric icing is simulated by using the ice accretion simulation code LEWICE. A CFD method is used to estimate the blade aerodynamic degradation due to icing. The effects of icing on one, two, or three blades are compared...

  4. Assessment of wind conditions at a fjord inlet by complementary use of sonic anemometers and lidars

    DEFF Research Database (Denmark)

    Jakobsen, Jasna Bogunovic; Cheynet, Etienne; Snæbjörnsson, Jonas

    2015-01-01

    . In a pilot study in Lysefjord, Norway, a pulsed long-range lidar and two short-range WindScanners were installed at the bridge site, together with a long-term monitoring system based on sonic anemometers. The deployment of the two types of lidars is described in more details and the complementary value......Wind velocity measurement devices based on the remote optical sensing, lidars, are extensively applied in wind energy research and wind farm operation. The present paper demonstrates the relevance and potential of lidar measurements for other windsensitive structures such as long-span bridges...... of the data from all three types of the instruments is illustrated. The emphasis is on the lidars’ potential to map the wind conditions along the whole span of a bridge in a complex terrain, as opposed to ”point” measurements achievable by sonic anemometers. The challenging balance between the spatial...

  5. Analysis of winter weather conditions and their potential impact on wind farm operations

    Science.gov (United States)

    Novakovskaia, E.; Treinish, L. A.; Praino, A.

    2009-12-01

    Severe weather conditions have two primary impacts on wind farm operations. The first relates to understanding potential damage to the turbines themselves and what actions are required to mitigate the effects. The second is recognizing what conditions may lead to a full or partial shutdown of the wind farm with sufficient lead time to determine the likely inability to meet energy generation committments. Ideally, wind forecasting suitable for wind farm operations should be of sufficient fidelity to resolve features within the boundary layer that lead to either damaging conditions or useful power generation. Given the complexity of the site-specific factors that effect the boundary layer at the scale of typical land-based wind farm locations such as topography, vegetation, land use, soil conditions, etc., which may vary with turbine design and layout within the farm, enabling reliable forecasts of too little or too much wind is challenging. A potential solution should involve continuous updates of alert triggering criteria through analysis of local wind patterns and probabilistic risk assessment for each location. To evaluate this idea, we utilize our operational mesoscale prediction system, dubbed “Deep Thunder”, developed at the IBM Thomas J. Watson Research Center. In particular, we analyze winter-time near-surface winds in upstate New York, where four similar winds farms are located. Each of these farms were built at roughly the same time and utilize similar turbines. Given the relative uncertainty associated with numerical weather prediction at this scale, and the difference in risk assessment due to the two primary impacts of severe weather, probabilistic forecasts are a prerequisite. Hence, we have employed ensembles of weather scenarios, which are based on the NCAR WRF-ARW modelling system. The set of ensemble members was composed with variations in the choices of physics and parameterization schemes, and source of background fields for initial

  6. Aspects of structural health and condition monitoring of offshore wind turbines

    Science.gov (United States)

    Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A. E.; Worden, K.

    2015-01-01

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864

  7. Aspects of structural health and condition monitoring of offshore wind turbines.

    Science.gov (United States)

    Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K

    2015-02-28

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.

  8. A hybrid measure-correlate-predict method for long-term wind condition assessment

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille; Hodge, Bri-Mathias

    2014-01-01

    Highlights: • A hybrid measure-correlate-predict (MCP) methodology with greater accuracy is developed. • Three sets of performance metrics are proposed to evaluate the hybrid MCP method. • Both wind speed and direction are considered in the hybrid MCP method. • The best combination of MCP algorithms is determined. • The developed hybrid MCP method is uniquely helpful for long-term wind resource assessment. - Abstract: This paper develops a hybrid measure-correlate-predict (MCP) strategy to assess long-term wind resource variations at a farm site. The hybrid MCP method uses recorded data from multiple reference stations to estimate long-term wind conditions at a target wind plant site with greater accuracy than is possible with data from a single reference station. The weight of each reference station in the hybrid strategy is determined by the (i) distance and (ii) elevation differences between the target farm site and each reference station. In this case, the wind data is divided into sectors according to the wind direction, and the MCP strategy is implemented for each wind direction sector separately. The applicability of the proposed hybrid strategy is investigated using five MCP methods: (i) the linear regression; (ii) the variance ratio; (iii) the Weibull scale; (iv) the artificial neural networks; and (v) the support vector regression. To implement the hybrid MCP methodology, we use hourly averaged wind data recorded at five stations in the state of Minnesota between 07-01-1996 and 06-30-2004. Three sets of performance metrics are used to evaluate the hybrid MCP method. The first set of metrics analyze the statistical performance, including the mean wind speed, wind speed variance, root mean square error, and mean absolute error. The second set of metrics evaluate the distribution of long-term wind speed; to this end, the Weibull distribution and the Multivariate and Multimodal Wind Distribution models are adopted. The third set of metrics analyze

  9. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  10. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Wenna Zhang

    2016-04-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system are used widely in wind farms to obtain operation and performance information about wind turbines. The paper presents a three-way model by means of parallel factor analysis (PARAFAC for wind turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained from an operational farm. The main characteristic of this new approach is that it can be used to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding potentially relevant information for feature extraction. With K-means clustering method, the measurement data indicating normal, fault and alarm conditions of the wind turbines can be identified, and the sensor array can be optimised for effective condition monitoring.

  11. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  12. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Alpine Space wind map - Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Remund, J. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents describes the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report discusses two modelling approaches investigated for use in the definition of a wind map for the alpine area. The method chosen and its application are discussed. The various sources of information for input to the model are listed and discussed.

  13. Influence of the material used to build the blades of a wind turbine on their starting conditions

    Directory of Open Access Journals (Sweden)

    Năstase Eugen-Vlad

    2017-01-01

    Full Text Available Wind energy has been shown to be one of the most viable sources of renewable energy. Hydraulic machines that convert the energy of a fluid into mechanical energy are called turbines. A wind turbine is a device which extracts kinetic energy from the wind. With increasing energy demands is necessary to increase the size of wind turbines. Under these conditions the turbine will start only at high wind speeds. On the other hand, the control of high speed is more difficult and the reduction of the inertial forces becomes mandatory. This study presents an analysis of the material influence on the wind turbine starting conditions.

  14. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    OpenAIRE

    Li, W; Thorne, RM; Bortnik, J; Baker, DN; Reeves, GD; Kanekal, SG; Spence, HE; Green, JC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations ( > 1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly c...

  15. Identification of severe wind conditions using a Reynolds Averaged Navier-Stokes solver

    International Nuclear Information System (INIS)

    Soerensen, N N; Bechmann, A; Johansen, J; Myllerup, L; Botha, P; Vinther, S; Nielsen, B S

    2007-01-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting the flow in the complex terrain by comparing with measurements from two meteorology masts. Next, it is illustrated how levels of turbulent kinetic energy can be used to easily identify areas with severe flow conditions, relying on a high correlation between high turbulence intensity and severe flow conditions, in the form of high wind shear and directional shear which may seriously lower the lifetime of a wind turbine

  16. A wind turbine wake in changing atmospheric conditions: LES and lidar measurements

    Science.gov (United States)

    Vollmer, L.; C-Y Lee, J.; Steinfeld, G.; Lundquist, J. K.

    2017-05-01

    This work aims to reproduce the measured atmospheric conditions during one day of the CWEX-11 campaign, with a transient LES. The selected period includes several interesting atmospheric conditions for wind power generation such as a nocturnal low-level jet, a highly turbulent convective daytime boundary layer, as well as a distinct evening transition between daytime and nocturnal boundary layers. To include synoptic conditions, large-scale forcing profiles for the LES were derived from a mesoscale simulation with the WRF model. A comparison with lidar measurements shows that the trend of the wind conditions and the diurnal cycle is well replicated by the model chain. Selected periods of the day are simulated with the NREL 5MW turbine model, followed by a qualitative comparison of measured and simulated wakes. We find a strong dependency of the meandering and the shape of the wake on wind profile and turbulence, while a categorization by Obukhov length is less representative for the different conditions. As the veer in the wind profile increases, the deviation of the wind direction at hub height from the direction of the largest wake impact also increases.

  17. Calculating the wind energy input to a system using a spatially explicit method that considers atmospheric stability

    Science.gov (United States)

    Atmospheric stability has a major effect in determining the wind energy doing work in the atmospheric boundary layer (ABL); however, it is seldom considered in determining this value in emergy analyses. One reason that atmospheric stability is not usually considered is that a sui...

  18. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    systems. The health condition of the wind turbine gearboxes can be indicated by the quantity and size of the metal abrasive particles, which may provide very early warnings of faults/failures and benefit the condition based maintenance of the system. An improved inductive sensor probe is proposed...

  19. Identification of severe wind conditions using a Reynolds averaged Navier-Stokes solver

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Johansen, Jeppe

    2007-01-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting...

  20. Investigation of some conditions in a wind powered asynchronous generator by modelling

    International Nuclear Information System (INIS)

    Dimitrov, D.; Simeonov, R.

    2008-01-01

    The integrated in the program environment Matlab module Simulink is used to create models for simulating the starting and working conditions of a wind-powered asynchronous generator. A model has been created to simulate the soft starter and the switch-controlled capacitor bank. The electrical characteristics for several working conditions has been examine truth simulation. (authors)

  1. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Directory of Open Access Journals (Sweden)

    Temmer Manuela

    2018-01-01

    Full Text Available We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  2. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Science.gov (United States)

    Temmer, Manuela; Hinterreiter, Jürgen; Reiss, Martin A.

    2018-03-01

    We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008-2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ˜25-140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  3. Wind conditions in urban layout - Numerical and experimental research

    Science.gov (United States)

    Poćwierz, Marta; Zielonko-Jung, Katarzyna

    2018-01-01

    This paper presents research which compares the numerical and the experimental results for different cases of airflow around a few urban layouts. The study is concerned mostly with the analysis of parameters, such as pressure and velocity fields, which are essential in the building industry. Numerical simulations have been performed by the commercial software Fluent, with the use of a few different turbulence models, including popular k-ɛ, k-ɛ realizable or k-ω. A particular attention has been paid to accurate description of the conditions on the inlet and the selection of suitable computing grid. The pressure measurement near buildings and oil visualization were undertaken and described accordingly.

  4. Changes in erosional input and environmental conditions at Lake Gerzensee, Switzerland, during Termination 1

    Science.gov (United States)

    van Raden, U. J.; Gilli, A.; van Leeuwen, J.; Ammann, B.

    2012-04-01

    The lateglacial record from Lake Gerzensee became an iconic figure since the early days of correlating terrestrial records with the results of polar ice core studies as initiated by Siegenthaler, Eicher, Oeschger and Dansgaard in 1984. Recently, the stable isotope record of Gerzensee was refined using a new sediment core retrieved in autumn 2008 in unprecedented resolution of 0.5cm (= 8-14 years). Depending on the sedimentation rate, the inferred temporal sample resolution of this new stable isotope record is between 8 and 14 years. A robust chronology was established through wiggle matching of the δ18O records from Gerzensee and NGRIP. Primary tie points between the two records were the prominent δ18O-shifts at the beginning and end of the Bølling/Allerød (B/A) and the Younger Dryas (YD). Then, three minor oscillations (Gerzensee, GI-1c2, and Aegelsee Oscillation) clearly visible in both, the NGRIP and Gerzensee δ18O record, were correlated. XRF core scanning was then applied to the sediments of Lake Gerzensee to establish high-resolution elemental records with a spatial resolution of 2mm. These elemental concentrations allow studying the influence of the lateglacial climate pattern on the environment and the lake system in great detail. It can be observed that environmental thresholds such as vegetation density play a mayor role on the erosive input into a lake system. Detrital elements (like Al, K, Zr, Rb, and Ti) reflect the erosional influx, which strongly decreases during the Bølling/Allerød reaching lowest concentration at the onset of the GI-1c2 oscillation. This coincides precisely with the full development of a stable pine forest in the vicinity of Lake Gerzensee demonstrating the strong coupling between vegetation and erosion. A comparable study (Lauterbach et al., 2011) at Mondsee, Austria allows to compare the same linkages between erosive input and pine forest development and to elaborate regional differences in this coupling. Initiated by

  5. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  6. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  7. Influence of climate conditions on the intensity and spreading of wind erosion

    Directory of Open Access Journals (Sweden)

    Jana Dufková

    2005-01-01

    Full Text Available The influence of climate conditions on the intensity and spreading of wind erosion was considered in the area of South Moravia. For this purpose, 16 meteorological stations were selected on the basis of accessibility of required data, their adequate representativeness, homogeneity, and position of the stations. It was necessary to make the database of climatological factors (such as wind velocity, precipitation and air temperature of the period of 1961–2003 for the analyses of climatological data. The climatological data was then evaluated for the periods of 1961–2003, 1961–1990, 1991–2000, and 1971–2000. Clima- tic erosion factor, which explains potential erodibility of soil by wind, was determined through the analyses of factors influencing the wind erosion. The assessment of influence of expected climate change on the intensity and spreading of wind erosion consists in the selection of suitable climatological model and climate change scenarios on the basis of ability to model the three climatological factors (wind velocity, precipitation and air temperature. Climate change scenarios were then applied on the data of the selected climatological stations and the assessment of changes in data sets and the comparative analysis of the outputs of the scenarios with measured data from the normal period of 1961–1990 were done. The climatic erosion factor was also determined from the altered data of the scenarios.

  8. Task Performance, Attention and Classroom Behavior of Seriously Disturbed, Communication-Impaired, "Autistic"-Type Children under Conditions of Reduced Auditory Input. Interim Report.

    Science.gov (United States)

    Fassler, Joan; Bryant, N. Dale

    This study investigated attention and performance on simple tasks as well as classroom attention of seriously disturbed, communication-impaired, autistic-type children under conditions of reduced auditory input (using ear protectors) and under conditions of normal auditory input (using a placebo device). Under ear protector conditions, there was a…

  9. A Two-Stage Diagnosis Framework for Wind Turbine Gearbox Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Janet M. Twomey

    2013-01-01

    Full Text Available Advances in high performance sensing technologies enable the development of wind turbine condition monitoring system to diagnose and predict the system-wide effects of failure events. This paper presents a vibration-based two stage fault detection framework for failure diagnosis of rotating components in wind turbines. The proposed framework integrates an analytical defect detection method and a graphical verification method together to ensure the diagnosis efficiency and accuracy. The efficacy of the proposed methodology is demonstrated with a case study with the gearbox condition monitoring Round Robin study dataset provided by the National Renewable Energy Laboratory (NREL. The developed methodology successfully picked five faults out of seven in total with accurate severity levels without producing any false alarm in the blind analysis. The case study results indicated that the developed fault detection framework is effective for analyzing gear and bearing faults in wind turbine drive train system based upon system vibration characteristics.

  10. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    Science.gov (United States)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  11. Wind-driven rain as a boundary condition for HAM simulations: analysis of simplified modelling approaches

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Roels, Staf

    2007-01-01

    While the numerical simulation of moisture transfer inside building components is currently undergoing standardisation, the modelling of the atmospheric boundary conditions has received far less attention. This article analyses the modelling of the wind-driven-rain load on building facades...... though: the full variability with the perpendicular wind speed and horizontal rain intensity should be preserved, where feasible, for improved estimations of the moisture transfer in building components. In the concluding section, it is moreover shown that the dependence of the surface moisture transfer...

  12. Research on Condition Assessment Method of Transmission Tower Under the Action of Strong Wind

    Science.gov (United States)

    Huang, Ren-mou; An, Li-qiang; Zhang, Rong-lun; Wu, Jiong; Liang, Ya-feng

    2018-03-01

    Transmission towers are often subjected to the external damage of severe weather like strong wind and so on, which may cause the collapse due to the yield and fracture of the tower material. Aiming this issue, an assessment method was proposed in this paper to assess the operation condition of transmission towers under strong wind. With a reasonable assess index system established firstly, then the internal force of the tower material was solved and its stability was determined through the mechanical analysis of the transmission tower finite element model. Meanwhile, the condition risk level of the tower was finally determined by considering the difference among the influences of other factors like corrosion and loose of members, slope on the transmission tower through the analytic hierarchy process. The assessment method was applied to assess the wind-induced collapse of towers in 110kV Bao Yi II line in Wenchang City, Hainan Province, of which the result proves the method can assess the condition of transmission tower under strong wind and of guiding significance for improving the windproof capability of transmission towers.

  13. SIMULATION OF COOLING TOWER AND INFLUENCE OF AERODYNAMIC ELEMENTS ON ITS WORK UNDER CONDITIONS OF WIND

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2014-01-01

    Full Text Available Modern Cooling Towers (CT may utilize different aerodynamic elements (deflectors, windbreak walls etc. aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.

  14. Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2011-11-01

    Full Text Available Condition Monitoring (CM of wind turbines can greatly reduce the maintenance costs for wind farms, especially for offshore wind farms. A new condition monitoring method for a wind turbine gearbox using temperature trend analysis is proposed. Autoassociative Kernel Regression (AAKR is used to construct the normal behavior model of the gearbox temperature. With a proper construction of the memory matrix, the AAKR model can cover the normal working space for the gearbox. When the gearbox has an incipient failure, the residuals between AAKR model estimates and the measurement temperature will become significant. A moving window statistical method is used to detect the changes of the residual mean value and standard deviation in a timely manner. When one of these parameters exceeds predefined thresholds, an incipient failure is flagged. In order to simulate the gearbox fault, manual temperature drift is added to the initial Supervisory Control and Data Acquisitions (SCADA data. Analysis of simulated gearbox failures shows that the new condition monitoring method is effective.

  15. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    Energy Technology Data Exchange (ETDEWEB)

    Feretic, Danilo; Cavlina, Nikola [Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb (Croatia)

    2010-07-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  16. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  17. Laboratory modeling of air-sea interaction under severe wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  18. Control of variable speed pitch-regulated wind turbines in strong wind conditions using a combined feedforward and feedback technique

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2012-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines...

  19. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    DEFF Research Database (Denmark)

    Lange, B.; Waldl, H.P.; Guerrero, A.G.

    2003-01-01

    The wind farm layout program FLaP estimates the wind speed at any point in a wind farm and the power output of the turbines. The ambient flow conditions and the properties of the turbines and the farm are used as input. The core of the program is an axisymmetric wake model describing the wake...

  20. Voltage Gain Derivation Based on Energy-Balanced Criterion for a Novel Hybrid-Input PV-Wind Power Conversion System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-01-01

    Full Text Available This paper applies energy-balanced criterion to a novel hybrid-input PV-wind power conversion system (HPWPCS for voltage gain derivation. With the energy-balanced concept, complicated mathematical problems related to voltage gain derivation can be readily resolved. Based on the derived results, it is proven that the proposed HPWPCS is able to process two different kinds of renewable energy resources simultaneously. Even though the HPWPCS includes seven capacitors and three magnetic components, its voltage gain still can be found by the mathematical analysis. In the theoretical derivation, only the energy status of output inductor is dealt with such that complicated derivation procedure is avoided. This analysis method can also be applied to other hybrid green-energy conversion systems. In this paper, a 200 W 50 kHz prototype of HPWPCS is built and examined to verify the mathematical results.

  1. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems

    DEFF Research Database (Denmark)

    May, Allan; MacMillan, David; Thöns, Sebastian

    2015-01-01

    and their associated costs has been completed for the blades, drive train, tower and foundation. This paper considers what value can be obtained from integrating these additional systems into the maintenance plan. This is achieved by running simulations on an operations and maintenance model for a wind farm over a 20......The use of condition monitoring systems on offshore wind turbines has increased dramatically in recent times. However, their use is mostly restricted to vibration based monitoring systems for the gearbox, generator and drive train. A survey of commercially available condition monitoring systems...... year life cycle. The model uses Hidden Markov Models to represent both the actual system state and the observed condition monitoring state. The CM systems are modelled to include reduced failure types, false alarms, detection rates and 6 month failure warnings. The costs for system failures are derived...

  2. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  3. Efficient design and simulation of an expandable hybrid (wind-photovoltaic) power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements

    Energy Technology Data Exchange (ETDEWEB)

    Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)

    2009-09-15

    In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)

  4. Effect of the solar wind conditions on the ionospheric equivalent current systems

    Directory of Open Access Journals (Sweden)

    J. J. Zhang

    2013-03-01

    Full Text Available We employ a global magnetohydrodynamics (MHD model, namely the PPMLR-MHD model, to investigate the effect of the solar wind conditions, such as the interplanetary magnetic field (IMF clock angle, southward IMF magnitude and solar wind speed, on the average pattern of the ionospheric equivalent current systems (ECS. A new method to derive ECS from the MHD model is proposed and applied, which takes account of the oblique magnetic field line effects. The model results indicate that when the IMF is due northward, the ECS are very weak while the current over polar region is stronger than the lower latitude; when the IMF rotates southward, the two-cell current system dominates, the eastward electrojet on the afternoon sector and the westward electrojet on the dawn sector increase rapidly while the westward electrojet is stronger than the eastward electrojet. Under southward IMF, the intensity of the westward electrojet and eastward electrojet both increase with the increase of the southward IMF magnitude and solar wind speed, and the increase is very sharp for the westward electrojet. Furthermore, we compare the geomagnetic perturbations on the ground represented by the simulated average ECS with the observation-based statistical results under similar solar wind conditions. It is found that the model results generally match with the observations, but the underestimation of the eastward equivalent current on the dusk sector is the main limitation of the present model.

  5. Linear parameter varying control of wind turbines covering both partial load and full load conditions

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2009-01-01

    This paper considers the design of linear parameter varying (LPV) controllers for wind turbines in order to obtain a multivariable control law that covers the entire nominal operating trajectory.The paper first presents a controller structure for selecting a proper operating trajectory as a funct......This paper considers the design of linear parameter varying (LPV) controllers for wind turbines in order to obtain a multivariable control law that covers the entire nominal operating trajectory.The paper first presents a controller structure for selecting a proper operating trajectory...... as a function of estimated wind speed. The dynamic control law is based on LPV controller synthesis with general parameter dependency by gridding the parameter space.The controller construction can, for medium- to large-scale systems, be difficult from a numerical point of view, because the involved matrix...... operations tend to be ill-conditioned. The paper proposes a controller construction algorithm together with various remedies for improving the numerical conditioning the algorithm.The proposed algorithm is applied to the design of a LPV controller for wind turbines, and a comparison is made with a controller...

  6. Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2014-04-01

    Full Text Available As the demand for wind energy continues to grow at exponential rates, reducing operation and maintenance (OM costs and improving reliability have become top priorities in wind turbine (WT maintenance strategies. In addition to the development of more highly evolved WT designs intended to improve availability, the application of reliable and cost-effective condition-monitoring (CM techniques offers an efficient approach to achieve this goal. This paper provides a general review and classification of wind turbine condition monitoring (WTCM methods and techniques with a focus on trends and future challenges. After highlighting the relevant CM, diagnosis, and maintenance analysis, this work outlines the relationship between these concepts and related theories, and examines new trends and future challenges in the WTCM industry. Interesting insights from this research are used to point out strengths and weaknesses in today’s WTCM industry and define research priorities needed for the industry to meet the challenges in wind industry technological evolution and market growth.

  7. Comparison between vortices created and evolving during fixed and dynamic solar wind conditions

    Directory of Open Access Journals (Sweden)

    Y. M. Collado-Vega

    2013-08-01

    Full Text Available We employ Magnetohydrodynamic (MHD simulations to examine the creation and evolution of plasma vortices within the Earth's magnetosphere for steady solar wind plasma conditions. Very few vortices form during intervals of such solar wind conditions. Those that do remain in fixed positions for long periods (often hours and exhibit rotation axes that point primarily in the x or y direction, parallel (or antiparallel to the local magnetospheric magnetic field direction. Occasionally, the orientation of the axes rotates from the x direction to another direction. We compare our results with simulations previously done for unsteady solar wind conditions. By contrast, these vortices that form during intervals of varying solar wind conditions exhibit durations ranging from seconds (in the case of those with axes in the x or y direction to minutes (in the case of those with axes in the z direction and convect antisunward. The local-time dependent sense of rotation seen in these previously reported vortices suggests an interpretation in terms of the Kelvin–Helmholtz instability. For steady conditions, the biggest vortices developed on the dayside (about 6 RE in diameter, had their rotation axes aligned with the y direction and had the longest periods of duration. We attribute these vortices to the flows set up by reconnection on the high-latitude magnetopause during intervals of northward Interplanetary Magnetic Field (IMF orientation. This is the first time that vortices due to high-latitude reconnection have been visualized. The model also successfully predicts the principal characteristics of previously reported plasma vortices within the magnetosphere, namely their dimension, flow velocities, and durations.

  8. Robust Current Control of Doubly Fed Wind Turbine Generator under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Wang, Yun; Gong, Wenming; Wu, Qiuwei

    2014-01-01

    This paper presents the design of a H ∞ current controller for doubly fed induction generators (DFIGs) in order to maintain stable operation under unbalanced voltage conditions. The H ∞ current controller has a multi-input and multi-output (MIMO) structure and is designed using the loop shaping...

  9. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  10. Model-Based Load Estimation for Predictive Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pederen, Bo Juul; Grunnet, Jacob Deleuran

    The main objective of this paper is to present a Load Observer Tool (LOT) for condition monitoring of structural extreme and fatigue loads on the main wind turbine (WTG) components. LOT uses well-known methods from system identification, state estimation and fatigue analysis in a novel approach...... for application in condition monitoring. Fatigue loads are estimated online using a load observer and grey box models which include relevant WTG dynamics. Identification of model parameters and calibration of observer are performed offline using measurements from WTG prototype. Signal processing of estimated load...... signal is performed online, and a Load Indicator Signal (LIS) is formulated as a ratio between current estimated accumulated fatigue loads and its expected value based only on a priori knowledge (WTG dynamics and wind climate). LOT initialisation is based on a priori knowledge and can be obtained using...

  11. Relationship between PC index and interplanetary electric field EKL under actual conditions of varying solar wind

    Science.gov (United States)

    Troshichev, Oleg; Smirnov, Michael

    The PC index was introduced as an indicator of magnetic activity in the polar caps generated by the geoeffective interplanetary electric field E _{KL} determined in accordance with Kan and Lee [1979]. The PC index is calculated basing on magnetic data (δF) from near-pole stations Thule and Vostok with use of the statistically justified coefficients of regression α and β linking the polar cap magnetic disturbance vectors δF with the electric field E _{KL}. As a result, the PC index is defined as a value of the polar cap magnetic disturbance standardized with the intensity of the interplanetary electric field EKL regardless of season, UT and hemisphere. Statistically the appropriate values PC and E _{KL} well correlate, however in concrete situations PC and E _{KL} may be quite differ, because E _{KL} characterizes the state of the solar wind far upstream of the magnetosphere, whereas PC characterizes the energy that entered into magnetosphere, Analysis of consistencies and discrepancies between PC and E _{KL} under conditions of different solar wind parameters was carried for all events with magnetic substorms (N=1798) and magnetic storms (N=203) observed in epoch of maximal solar activity (1998-2001). Thus, the solar wind geoefficiency was estimated by independent indicators, such as AL and Dst indices characterizing magnetic activity within the magnetosphere. The essential attention was given also to geoefficiency of sudden pulses of the solar wind dynamic pressure. The results of the analysis were applied to derive the method to nowcast the magnetosphere state, including estimation of the “model PC, AL and Dst” indices calculated by actual measurement of E _{KL} in the point L1 under conditions of varying solar wind. It is demonstrated that the PC index can be successfully used to monitor space weather and the readiness of the magnetosphere to producing substorm or storm.

  12. Empowering wind power. On social and institutional conditions affecting the performance of entrepreneurs in the wind power supply market in the Netherlands

    International Nuclear Information System (INIS)

    Agterbosch, S.

    2006-01-01

    This dissertation focuses on wind energy for electricity generation, analysing the evolution of the wind power supply market in the Netherlands. We analysed different kind of wind power entrepreneurs (energy distributors, small private investors, wind cooperatives and new independent wind power producers), their capacity to implement wind energy and the social and institutional conditions that affected their investments over the period 1989-2004. Central in the analyses are the institutional regulatory dimension and the social context as explanatory variables for the emergence and performance of these wind power entrepreneurs. Special attention is given to the liberalisation of the electricity market. The primary social actors for the implementation of wind energy projects in a liberalised market are entrepreneurs willing to invest. Understanding conditions that trigger entrepreneurs to invest in these projects, and understanding conditions that determine the chance of success for entrepreneurs to implement and exploit their projects, is vital for setting up effective policies to stimulate wind electricity generation. The analytical perspective that we used to study investment behaviour of wind power entrepreneurs and their capacity to implement wind energy can be referred to as the 'new institutional perspective'. Based on this new institutional perspective the concept of implementation capacity has been developed. Implementation capacity indicates the feasibility for wind power entrepreneurs to adopt wind turbines, and enables to explain, comparatively, changing possibilities in time for different types of entrepreneurs. The development of the wind power supply market is divided into three successive market periods: Monopoly powers (1989-1995), Interbellum (1996-1997) and Free market (1998-2002). We conducted case studies on the implementation capacity of the four entrepreneurial groups in each of the three market periods. The case studies led to conclusions

  13. Generation risk assessment in volatile conditions with wind, hydro, and natural gas units

    International Nuclear Information System (INIS)

    Sahin, Cem; Shahidehpour, Mohammad; Erkmen, Ismet

    2012-01-01

    Highlights: ► Stochastic price-based unit commitment (PBUC) for a generation company (GENCO). ► Water inflow, wind, and NG interruption uncertainties are considered. ► Diversification of assets and bilateral contracts enhance payoff and decrease financial risk. ► The utilization of NG in the risk-neutral GENCO case increases as the wind uncertainty increases. ► NG utilization is lowered by the algorithm to decrease in risk-considered case. -- Abstract: This paper studies a generating company (GENCO)’s midterm (a few months to a year) scheduling payoffs and risks in volatile operating conditions. The proposed algorithm considers the integration of intermittent wind units into a GENCO’s generation assets and coordinates the GENCO’s hourly wind generation schedule with that of natural gas (NG) units (with volatile gas prices) and hydro units (with water inflow forecast) for maximizing the GENCO’s payoff. The proposed midterm GENCO model applies market price forecasts to the risk-constrained stochastic price-based unit commitment (PBUC) for calculating the GENCO’s risk in energy and ancillary services markets. The proposed PBUC minimizes the cost of (a) NG contracts, storage, startup and shutdown, (b) startup and shutdown of cascaded hydro units, and (c) penalty for defaulting on the scheduled power delivery. Simulation results show that the diversification of generating assets including bilateral contracts (BCs) could enhance the GENCO’s midterm planning by increasing the expected payoff and decreasing the financial risk.

  14. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    Science.gov (United States)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  15. An improved fuzzy synthetic condition assessment of a wind turbine generator system

    DEFF Research Database (Denmark)

    Li, H.; Hu, Y. G.; Yang, Chao

    2013-01-01

    This paper presents an improved fuzzy synthetic model that is based on a real-time condition assessment method of a grid-connected wind turbine generator system (WTGS) to improve the operational reliability and optimize the maintenance strategy. First, a condition assessment framework is proposed...... by analyzing the monitoring data of the WTGS. An improved fuzzy synthetic condition assessment method is then proposed that utilizes the concepts of deterioration degree, dynamic limited values and variable weight calculations of the assessment indices. Finally, by using on-line monitoring data of an actual...... 850 kW WTGS, real-time condition assessments are performed that utilize the proposed fuzzy synthetic method; the model’s effectiveness is also compared to a traditional fuzzy assessment method in which constant limited values and constant weights are adopted. The results show that the condition...

  16. Simulation of a Classically Conditioned Response: Components of the Input Trace and a Cerebellar Neural Network Implementation of the Sutton-Barto-Desmond Model.

    Science.gov (United States)

    1987-09-14

    inputs. Tesauro (1986) has criticized the SB model on the grounds that it is only applicable in situations where inputs are represented locally...Barto, A.G. A temporal-difference model of classical conditioning. , Technical Report TR87-509.2, GTE Labs, Waltham, Mass. (1987). Tesauro , G. Simple

  17. Determination of aerodynamic damping of twin cables in wet conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Eriksen, Mads Beedholm; Mattiello, E.; Georgakis, Christos T.

    2013-01-01

    Moderate amplitude cable vibrations continue to be reported on the cable-stayed Øresund Bridge, despite the presence of helical fillets and dampers. The vibrations are particularly notable in wet conditions, which would suggest a form of rain-wind induced vibrations (RWIV). A statistical...... operational modal analysis of the monitored vibrations revealed, in certain conditions and for specific wind velocities, the presence of negative aerodynamic damping.To investigate the observed aerodynamic damping of the twin cable arrangement further, a series of 1:2.3 scale passive-dynamic wind tunnel tests...... was performed at the DTU/FORCETechnology ClimaticWind Tunnel facility in Kgs. Lyngby, Denmark. Tests were performed for both dry and wet conditions, with and without helical fillets. The specific relative cable-wind angle tested was identified as critical from the aforementioned full-scale monitoring...

  18. Variable Input Power Supply.

    Science.gov (United States)

    An electronic power supply using pulse width modulated (PWM) voltage regulation provides a regulated output for a wide range of input voltages. Thus...switch to change the level of voltage regulation and the turns ratio of the primary winding of the power supply output transformer, thereby obtaining increased tolerance to input voltage change. (Author)

  19. When real life wind speed exceeds design wind assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Winther-Jensen, M.; Joergensen, E.R. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Most modern wind turbines are designed according to a standard or a set of standards to withstand the design loads with a defined survival probability. Mainly the loads are given by the wind conditions on the site defining the `design wind speeds`, normally including extreme wind speeds given as an average and a peak value. The extreme wind speeds are normally (e.g. in the upcoming IEC standard for wind turbine safety) defined as having a 50-year recurrence period. But what happens when the 100 or 10,000 year wind situation hits a wind turbine? Results on wind turbines of wind speeds higher than the extreme design wind speeds are presented based on experiences especially from the State of Gujarat in India. A description of the normal approach of designing wind turbines in accordance with the standards in briefly given in this paper with special focus on limitations and built-in safety levels. Based on that, other possibilities than just accepting damages on wind turbines exposed for higher than design wind speeds are mentioned and discussed. The presentation does not intend to give the final answer to this problem but is meant as an input to further investigations and discussions. (au)

  20. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    Science.gov (United States)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  1. Wind turbine condition monitoring based on SCADA data using normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    This paper proposes a system for wind turbine condition monitoring using Adaptive Neuro-Fuzzy Interference Systems (ANFIS). For this purpose: (1) ANFIS normal behavior models for common Supervisory Control And Data Acquisition (SCADA) data are developed in order to detect abnormal behavior...... of the captured signals and indicate component malfunctions or faults using the prediction error. 33 different standard SCADA signals are used and described, for which 45 normal behavior models are developed. The performance of these models is evaluated in terms of the prediction error standard deviations to show...... the applicability of ANFIS models for monitoring wind turbine SCADA signals. The computational time needed for model training is compared to Neural Network (NN) models showing the strength of ANFIS in training speed. (2) For automation of fault diagnosis Fuzzy Interference Systems (FIS) are used to analyze...

  2. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    Science.gov (United States)

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  3. Effects of wind speed on the accumulation rate of pollution on outdoor insulators under winter conditions

    International Nuclear Information System (INIS)

    Ravelomanantsoa, N.; Farzaneh, M.; Chisolm, W.A.

    2005-01-01

    A numerical model was used to show that wind speed has an important effect on pollution accumulation rates on outdoor insulator surfaces. Predictions from the model were then compared against an event in which winter flashovers occurred in Toronto, Canada. For the 24 hours prior to the flashovers, median wind speed was 56 km/h from the east, and a major overhead expressway interchange was located south and east of the station. Measurements of the substation showed that the insulator contamination levels reached 90 μg/cm 2 after exposure. The disk of a standard Institute of Electronic and Electrical Engineers (IEEE) porcelain suspension insulator was subdivided in 10 cylinders. The mean value of the air temperature was equal to -15 degrees C. Total suspended particles (TSP) represented the mass of particles of road salt contained in 1 unit of volume of air sample, ranging from 0.1 and 100 microns. Four simulations were run in order to analyze the wind speed effect, where (1) wind speed was the independent variable; (2) the median volume diameter of the particles was varied; (3) pollution accumulation rate was compiled varying the TSP, where the variation was linear, and a combination of high particles content and a high wind speed increased the risk of pollution accumulation; and (4) the effect of exposure duration was explored, showing that the mass of the pollution accumulation increased linearly with time. The simulations determined that even when the mass of accumulation was in the order of some milligrams, the consequences can be disastrous for insulators, because the accumulation can have an equivalent salt deposit density. Under winter conditions characterized by a gale force wind, road salting constitutes a potential and practical threat for high voltage line insulators. It was concluded that further theoretical studies are needed to determine the correct volume mean diameter of salt aerosol in winter conditions, and more advanced models should be extended

  4. Application of a three-dimensional aeroelastic model to study the wind-induced response of bridge stay cables in unsteady wind conditions

    Science.gov (United States)

    Raeesi, Arash; Cheng, Shaohong; Ting, David S.-K.

    2016-08-01

    The possibility of bridge stay cables experiencing violent dry inclined cable galloping raises great concern in the engineering community. Numerous experimental and analytical studies have been conducted to investigate this phenomenon, most of which were in the context of steady wind past a rigid cylindrical body. Real stay cables however, are generally long and flexible. They are exposed to more "broad" range of atmospheric boundary layer type of wind velocity profile which is also unsteady and turbulent by nature. To better understand the physics underlying this type of wind-induced cable vibration and to elucidate various contributing factors, a more realistic analytical model which is capable of addressing the above elements is imperative. In the current paper, a three-dimensional aeroelastic model is proposed to study the aerodynamic response of an inclined and/or yawed slender flexible cylindrical body subjected to unsteady mean wind, with practical application to wind-induced vibrations of bridge stay cables under no precipitation condition. The non-linear aerodynamic forces derived in the present study are combined with the cable free vibration equations available in literature to obtain the equations of motion for the wind-induced vibration of stay cables, which are solved numerically by an explicit finite difference scheme. The proposed three-dimensional aeroelastic model and numerical solution technique are validated by comparing the predicted cable free vibration responses with existing data in the literature. The mechanism which triggers dry inclined cable galloping and the required conditions for its growth are explored. In addition, the impact of different initial conditions and various unsteady mean wind scenarios on this violent cable motion are investigated. Results show that the occurrence of dry inclined cable galloping is associated with an opposite-phase relation between the relative wind speed and the aerodynamic force along the direction of

  5. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found. Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical simulation studies

  6. Do simple models give a correct description of the wind condition in a coastal area ?

    Energy Technology Data Exchange (ETDEWEB)

    Kaellstrand, B. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    When the surface conditions changes at a coastline, an internal boundary layer evolves, with a wind speed and turbulence intensity influenced by these new conditions. Aircraft measurements across the coastline, performed during near neutral conditions, are compared with a model and thirteen more simple expressions for the growth of an internal boundary layer (IBL). The majority of the expressions overestimate the IBL height, while other underestimate it. Some of the expressions give reasonable result close to the coast. The model gives good agreement, even for larger distances. The vertical potential temperature gradient turned out to be an important parameter for the growth of the IBL, even with this near neutral conditions. 21 refs, 5 figs, 1 tab

  7. Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2012-01-01

    System (ANFIS) models are employed to learn the normal behavior in a training phase, where the component condition can be considered healthy. In the application phase the trained models are applied to predict the target signals, e.g. temperatures, pressures, currents, power output, etc. The behavior......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...... the component condition Fuzzy Interference System (FIS) structures are used. Based on rules that are established with the prediction error behavior during faults previously experienced and generic rules, the FIS outputs the component condition (green, yellow and red). Furthermore a first diagnosis of the root...

  8. Experience with bicoherence of electrical power for condition monitoring of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, W.Q.; Chambers, J.A. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Electrical and Electronic Engineering; Infield, D.G. [Loughborough University (United Kingdom). Centre for Renewable Energy Systems Tehnology

    1998-12-31

    The authors explore the application of the normalised bispectrum or bicoherence to the problem of condition monitoring of wind turbine blades. Background information is provided on this type of condition monitoring, how it differs from more conventional condition monitoring of turbo machinery, and the motivation for selecting bicoherence. Bicoherence is defined and compared with the power spectral density. Complications in collecting suitable data, and estimating the bicoherence from that data are investigated; including the requirements of very long stationary data sets for consistent estimates, and computational difficulties in handling such large data sets. Comparison of the results from the power spectral density and bicoherence indicates how the bicoherence might be employed for condition monitoring purposes. (author)

  9. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    Science.gov (United States)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  10. Distinct brainstem and forebrain circuits receiving tracheal sensory neuron inputs revealed using a novel conditional anterograde transsynaptic viral tracing system.

    Science.gov (United States)

    McGovern, Alice E; Driessen, Alexandria K; Simmons, David G; Powell, Joseph; Davis-Poynter, Nicholas; Farrell, Michael J; Mazzone, Stuart B

    2015-05-06

    Sensory nerves innervating the mucosa of the airways monitor the local environment for the presence of irritant stimuli and, when activated, provide input to the nucleus of the solitary tract (Sol) and paratrigeminal nucleus (Pa5) in the medulla to drive a variety of protective behaviors. Accompanying these behaviors are perceivable sensations that, particularly for stimuli in the proximal end of the airways, can be discrete and localizable. Airway sensations likely reflect the ascending airway sensory circuitry relayed via the Sol and Pa5, which terminates broadly throughout the CNS. However, the relative contribution of the Sol and Pa5 to these ascending pathways is not known. In the present study, we developed and characterized a novel conditional anterograde transneuronal viral tracing system based on the H129 strain of herpes simplex virus 1 and used this system in rats along with conventional neuroanatomical tracing with cholera toxin B to identify subcircuits in the brainstem and forebrain that are in receipt of relayed airway sensory inputs via the Sol and Pa5. We show that both the Pa5 and proximal airways disproportionately receive afferent terminals arising from the jugular (rather than nodose) vagal ganglia and the output of the Pa5 is predominately directed toward the ventrobasal thalamus. We propose the existence of a somatosensory-like pathway from the proximal airways involving jugular ganglia afferents, the Pa5, and the somatosensory thalamus and suggest that this pathway forms the anatomical framework for sensations arising from the proximal airway mucosa. Copyright © 2015 the authors 0270-6474/15/357041-15$15.00/0.

  11. Earth, Wind and Fire. Natural air conditioning. Part 2. Research results; Earth, Wind and Fire. Natuurlijke airconditioning. Deel 2. Onderzoeksresultaten

    Energy Technology Data Exchange (ETDEWEB)

    Bronsema, B. [Afdeling Architectural Engineering en Technology, Faculteit Bouwkunde, Technische Universiteit Delft TUD, Delft (Netherlands)

    2013-07-15

    The Earth, Wind and Fire concept transforms a building into a 'climate machine' which is powered by the natural forces and energy of the sun, wind, the mass of the earth and gravity. This second part provides a brief overview of the research. The full results are included in the thesis of the author [Dutch] Het Earth, Wind en Fire-concept voor natuurlijke airconditioning biedt meer zekerheid voor het realiseren van energieneutrale kantoorgebouwen dan mogelijk zou zijn door verbetering van bestaande technieken. Het concept maakt gebruik van de omgevingsenergie van aardmassa, wind en zon. In deel 1 worden de onderzoeksdoelen en -methoden van dit concept besproken. Dit deel 2 geeft een kort overzicht van de onderzoeksresultaten. De volledige resultaten van de basale en gedetailleerde modellen, de simulaties, de metingen in de fysieke modellen en het validatieproces zijn opgenomen in het proefschrift van de auteur.

  12. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  13. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  14. Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Masoud Asgarpour

    2018-01-01

    Full Text Available Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for electricity produced by offshore wind and can be significantly reduced if existing corrective actions are performed as efficiently as possible and if future corrective actions are avoided by performing sufficient preventive actions. This paper presents an applied and generic diagnostic model for fault detection and condition based maintenance of offshore wind components. The diagnostic model is based on two probabilistic matrices; first, a confidence matrix, representing the probability of detection using each fault detection method, and second, a diagnosis matrix, representing the individual outcome of each fault detection method. Once the confidence and diagnosis matrices of a component are defined, the individual diagnoses of each fault detection method are combined into a final verdict on the fault state of that component. Furthermore, this paper introduces a Bayesian updating model based on observations collected by inspections to decrease the uncertainty of initial confidence matrix. The framework and implementation of the presented diagnostic model are further explained within a case study for a wind turbine component based on vibration, temperature, and oil particle fault detection methods. The last part of the paper will have a discussion of the case study results and present conclusions.

  15. Load alleviation on wind turbine blades using variable geometry

    DEFF Research Database (Denmark)

    Basualdo, Santiago

    2005-01-01

    ) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable...... in loads in real wind turbines. Keywords: Variable Geometry, Wind Turbine, Load Alleviation, Fatigue Load, Trailing Edge Flap....

  16. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  17. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  18. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X

    2016-01-01

    This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...... method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...... of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components....

  19. Antecedent conditions, hydrological connectivity and anthropogenic inputs: Factors affecting nitrate and phosphorus transfers to agricultural headwater streams.

    Science.gov (United States)

    Outram, Faye N; Cooper, Richard J; Sünnenberg, Gisela; Hiscock, Kevin M; Lovett, Andrew A

    2016-03-01

    This paper examines relationships between rainfall-runoff, catchment connectivity, antecedent moisture conditions and fertiliser application with nitrate-N and total phosphorus (TP) fluxes in an arable headwater catchment over three hydrological years (2012-2014). Annual precipitation totals did not vary substantially between years, yet the timing of rainfall strongly influenced runoff generation and subsequent nitrate-N and TP fluxes. The greatest nitrate-N (>250 kg N day(-1)) and TP (>10 kg TP day(-1)) fluxes only occurred when shallow groundwater was within 0.6m of the ground surface and runoff coefficients were greater than 0.1. These thresholds were reached less frequently in 2012 due to drought recovery resulting in lower annual nitrate-N (7.4 kg N ha(-1)) and TP (0.12 kg P ha(-1)) fluxes in comparison with 2013 (15.1 kg N ha(-1); 0.21 kg P ha(-1)). The wet winter of 2013 with elevated shallow groundwater levels led to more frequent activation of sub-surface pathways and tile drain flow. Throughout the period, dry antecedent conditions had a temporary effect in elevating TP loads. Evidence of TP source exhaustion after consecutive storm events can be attributed to the repeated depletion of temporarily connected critical source areas to the river network via impermeable road surfaces. Fertiliser application varied considerably across three years due to differences in crop rotation between farms, with annual N and P fertiliser inputs varying by up to 21% and 41%, respectively. Proportional reductions in annual riverine nitrate-N and TP loadings were not observed at the sub-catchment outlet as loadings were largely influenced by annual runoff. Nitrate loadings were slightly higher during fertiliser application, but there was little relationship between P fertiliser application and riverine TP load. These data indicate that this intensive arable catchment may be in a state of biogeochemical stationarity, whereby legacy stores of nutrients buffer against changes

  20. Implementation of Forest Condition Index (FCI as an input for the design of forest public policies in Mexico

    Directory of Open Access Journals (Sweden)

    Neyra Sosa Gutierrez

    2017-03-01

    Full Text Available Public policies (PP are defined as actions designed, implemented and evaluated by governments operating through programs, with the ultimate goal to improve and solve social problems in the short and long term. I theory, PP should be designed considering, among other things, basic social, economic and environmental information of the areas where such programs derived. However, a common deficiency in the design of public policies for the management of forest resources in Mexico is the lack of analysis in the complexity of a territorial context, which directly affects the results of the PP. This variable is relevant in Mexico, due to the great heterogeneity of the territory, so the results in the implementation of programs and projects arising from forest PP, usually lacks of a fundamental theoretical basis for obtaining better results. Thus, the objective of this study is the development of a methodological framework that incorporates the spatial variable to improve the design of forest PP ad hoc to each territory. The Forest Condition Index (FCI was designed and implemented as an instrument to provide a robust spatial reference by assessing forest condition in contrast to the degree of marginalization of municipal entities. The inputs for the FCI describes the dynamics of the degree of marginalization and the dynamics of plant cover during the period 2000-2010 of all municipalities in the state of Michoacan, used as a study case. The application of the FCI to the 113 municipalities in the state, results in the categorization of municipalities in 4 classes, depicting possible trends between marginalization and forest cover. The largest number of municipalities (31, which represents 35.78% of the state's land, were grouped in class IV, indicating a trend in the increase the index of marginalization and the decrease in forest cover. Only 26 municipalities were located in Class I, revealed a favorable trend with a decreasing rate of marginalization

  1. Atmospheric stability and its influence on wind turbine loads

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Barlas, Thanasis K.

    2012-01-01

    Simulations of wind turbine loads for the NREL 5 MW reference wind turbine under diabatic wind conditions are performed for mean wind speeds between 3 { 16 m/s at the turbine hub height. The loads are quantified as the cumulative sum of the damage equivalent load for different wind speeds...... that are weighted according to the wind speed and stability distribution. It is observed that atmospheric stability influences the tower and rotor loads. The difference in the calculated tower loads using diabatic wind conditions and those obtained assuming neutral conditions only is approximately 16%, whereas...... the difference for the rotor loads is up to 11%. The blade loads are hardly influenced by atmospheric stability, where the difference between the calculated loads using diabatic and neutral input wind conditions is less than 1%. The wind profiles and turbulence under diabatic conditions have contrasting...

  2. Social assessment of wind power. Part 4: International position and development conditions of the Danish wind turbine industry

    International Nuclear Information System (INIS)

    Karnoee, P.; Joergensen, U.

    1995-12-01

    Today, the Danish wind turbine industry is positioned as a global market leader on a fast growing international market. The conclusion and observation of this report are: 1. The international market for wind power is likely to grow fast over the next 5 years (a self-reinforcing development) and the Danish wind turbine industry has the potential to increase export from the present DKK 2 billion per year to DKK 4 billion per year. 2. The leading market position is achieved after the collapse of the California market in 1987. The last four years have been export-driven growth together with the development of complementary assets to support a strong product technology. 3. The Danish position might be threatened by the new competitors, but it is our view that it takes 2-3 years before they have equivalent competences, and since the Danish companies are presently also mobilizing resources and competences it is not likely that they are easily outperformed. 4. A continued installation of wind power in Denmark is important to support the sustaining of the international position in the coming years. Through, it is not the volume size of the domestic market, but rather a stable market which serves as a home base for the industry. Not only for the reference and testing of new wind turbines, but also the knowledge networks between manufacturers and suppliers and between manufacturers and the Test Station for Windmills at Risoe. (EG) 51 refs

  3. Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-10-01

    Full Text Available Condition monitoring (CM is used to assess the health status of wind turbines (WT by detecting turbine failure and predicting maintenance needs. However, fluctuating operating conditions cause variations in monitored features, therefore increasing the difficulty of CM, for example, the frequency-domain analysis may lead to an inaccurate or even incorrect prediction when evaluating the health of the WT components. In light of this challenge, this paper proposed a method for the health evaluation of WT components based on vibration signals. The proposed approach aimed to reduce the evaluation error caused by the impact of the variable operating condition. First, the vibration signal was decomposed into a set of sub-signals using variational mode decomposition (VMD. Next, the sub-signal energy and the probability distribution were obtained and normalized. Finally, the concept of entropy was introduced to evaluate the health condition of a monitored object to provide an effective guide for maintenance. In particular, the health evaluation for CM was based on a performance review over a range of operating conditions, rather than at a certain single operating condition. Experimental investigations were performed which verified the efficiency of the evaluation method, as well as a comparison with the previous method.

  4. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.

    Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical

  5. Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low-to-moderate wind conditions

    Science.gov (United States)

    Zou, Zhongshui; Zhao, Dongliang; Liu, Bin; Zhang, Jun A.; Huang, Jian

    2017-05-01

    This study explores the behavior of the exchange coefficients for wind stress (CD), sensible heat flux (CH), and water vapor flux (CE) as functions of surface wind speed (U10) and atmospheric stability using direct turbulent flux measurements obtained from a platform equipped with fast-response turbulence sensors in a low-to-moderate wind region. Turbulent fluxes are calculated using the eddy-correlation method with extensive observations. The total numbers of quality-controlled 30 min flux runs are 12,240, 5813, and 5637 for estimation of CD, CH, and CE, respectively. When adjusted to neutral stability using the Monin-Obukhov similarity theory (MOST), we found that CDN, CHN, and CEN decrease with neutral-adjusted wind speed when wind speed is less than 5 m/s. CDN is constant over the range 5 m/s 12 m/s. In contrast, CHN and CEN exhibit no clear dependence on wind speed and are generally constant, with mean values of 0.96 × 10-3 and 1.2 × 10-3, respectively. This behavior of neutral exchange coefficients is consistent with the findings of previous studies. We also found that CDN under offshore winds is generally greater than that under onshore wind conditions, which is ascribed to the younger wind waves present due to the shorter fetch in the former case. However, this behavior is not exhibited by CHN or CEN. The original CD, CH, and CE values without MOST adjustment are also investigated to develop a new parameterization based on wind speed and stability. Three stability parameters are tested, including the bulk Richardson number, stability as defined in COARE 3.0, and a simplified Richardson number using the Charnock parameter. This new parameterization is free of MOST and the associated self-correlation. Compared with previous studies and COARE 3.0 results, the new parameterization using the simplified Richardson number performs well, with an increased correlation coefficient and reduction of root-mean-square error and bias.

  6. Differential response of carbon cycling to long-term nutrient input and altered hydrological conditions in a continental Canadian peatland

    Science.gov (United States)

    Berger, Sina; Praetzel, Leandra S. E.; Goebel, Marie; Blodau, Christian; Knorr, Klaus-Holger

    2018-02-01

    Peatlands play an important role in global carbon cycling, but their responses to long-term anthropogenically changed hydrologic conditions and nutrient infiltration are not well known. While experimental manipulation studies, e.g., fertilization or water table manipulations, exist on the plot scale, only few studies have addressed such factors under in situ conditions. Therefore, an ecological gradient from the center to the periphery of a continental Canadian peatland bordering a eutrophic water reservoir, as reflected by increasing nutrient input, enhanced water level fluctuations, and increasing coverage of vascular plants, was used for a case study of carbon cycling along a sequence of four differently altered sites. We monitored carbon dioxide (CO2) and methane (CH4) surface fluxes and dissolved inorganic carbon (DIC) and CH4 concentrations in peat profiles from April 2014 through September 2015. Moreover, we studied bulk peat and pore-water quality and we applied δ13C-CH4 and δ13C-CO2 stable isotope abundance analyses to examine dominant CH4 production and emission pathways during the growing season of 2015. We observed differential responses of carbon cycling at the four sites, presumably driven by abundances of plant functional types and vicinity to the reservoir. A shrub-dominated site in close vicinity to the reservoir was a comparably weak sink for CO2 (in 1.5 years: -1093 ± 794, in 1 year: +135 ± 281 g CO2 m-2; a net release) as compared to two graminoid-moss-dominated sites and a moss-dominated site (in 1.5 years: -1552 to -2260 g CO2 m-2, in 1 year: -896 to -1282 g CO2 m-2). Also, the shrub-dominated site featured notably low DIC pore-water concentrations and comparably 13C-enriched CH4 (δ13C- CH4: -57.81 ± 7.03 ‰) and depleted CO2 (δ13C-CO2: -15.85 ± 3.61 ‰) in a more decomposed peat, suggesting a higher share of CH4 oxidation and differences in predominant methanogenic pathways. In comparison to all other sites, the graminoid

  7. Do we know the actual magnetopause position for typical solar wind conditions?

    Science.gov (United States)

    Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Å afránková, J.; Němeček, Z.; Å imůnek, J.; Sibeck, D. G.; Tóth, G.; Merkin, V. G.; Raeder, J.

    2016-07-01

    We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter >1 RE) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than nonaxisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global nonaxisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the nonaxisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for Bz=0. Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.

  8. Wind Turbine Performance in Controlled Conditions: BEM Modeling and Comparison with Experimental Results

    Directory of Open Access Journals (Sweden)

    David A. Johnson

    2016-01-01

    Full Text Available Predictions of the performance of operating wind turbines are challenging for many reasons including the unsteadiness of the wind and uncertainties in blade aerodynamic behaviour. In the current study an extended blade element momentum (BEM program was developed to compute the rotor power of an existing 4.3 m diameter turbine and compare predictions with reported controlled experimental measurements. Beginning with basic blade geometry and the iterative computation of aerodynamic properties, the method integrated the BEM analysis into the program workflow ensuring that the power production by a blade element agreed with its lift and drag data at the same Reynolds number. The parametric study using the extended BEM algorithm revealed the close association of the power curve behaviour with the aerodynamic characteristics of the blade elements, the discretization of the aerodynamic span, and the dependence on Reynolds number when the blades were stalled. Transition prediction also affected overall performance, albeit to a lesser degree. Finally, to capture blade finite area effects, the tip loss model was adjusted depending on stall conditions. The experimental power curve for the HAWT of the current study was closely matched by the extended BEM simulation.

  9. Solar wind fluctuations at large scale - A comparison between low and high solar activity conditions

    Science.gov (United States)

    Bavassano, B.; Bruno, R.

    1991-02-01

    The influence of the sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role-exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. The Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. These findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations.

  10. Numerical simulations of irregular wave ensembles affected by variable wind conditions

    Science.gov (United States)

    Slunyaev, Alexey; Sergeeva, Anna

    2014-05-01

    The numerical simulations of irregular wave trains over deep water aim at the solution of the global problem how the wind action affects the sea state in respect of the rogue wave probability associated with the non-gaussianity of the wave statistics. It has been shown that changes of the sea condition of various kinds (winds, currents, etc., see [1-5]) result in the strongly non-stationary 'fast' evolution, when the likelihood of extremely high waves increases greatly. Hence, transitional processes when the momentary Benjamin - Feir index (BFI) restores from a large value to the value of order one are considered in the present work. The departure of the BFI from the stationary value (~1) is due to the strong wind effect, similar to the study conducted in [1, 2]. In the present work the modified nonlinear Schrodinger equation with a forcing term is employed to simulate the wave dynamics. The modulational instability of a plane wave within this framework was analyzed in [6]. We estimate the rate of the wind impact which is required to destabilize the given sea state, causing larger probability of rogue waves, and compare it with some available observations of the in-situ measurements. The reported work may be considered as a simplification of the problem of shoaling nonlinear waves, when all depth-dependent coefficients of the evolution equation are put constants, and only the shoaling term causes wave statistics evolution. Irregular surface waves in basins with different water depths were simulated numerically and in a laboratory facility in [7-10]. When waves travel from deep to shallower water, two situations were shown to exist: when the waves experience a high probability of extreme waves, or when the statistical properties do not change noticeably. No conclusive recipe was formulated how to differentiate these two scenarios. Our work helps to tackle that problem. [1]. S.Y. Annenkov, V.I. Shrira, Evolution of kurtosis for wind waves. Geophys. Res. Lett. 36, L

  11. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  12. WIND project tests and analysis on the integrity of small size pipe under severe accident condition

    International Nuclear Information System (INIS)

    Nakamura, Naohiko; Hashimoto, Kazuichiro; Maruyama, Yu; Igarashi, Minoru; Hidaka, Akihide; Sugimoto, Jun

    1996-01-01

    In a severe accident of a light water reactor(LWR), fission products (FPs) released from fuel rods will be transported to the primary cooling system piping as aerosol and some of them will be deposited on the inner surface of piping. In such conditions the primary cooling system piping might be subjected to both of elevated temperature load due to decay heat of FPs and pressure load, and as a consequence the integrity of piping might be threatened. The WIND (Wide Range Piping Integrity Demonstration) Project is being performed at Japan Atomic Energy Research Institute (JAERI) to investigate the FP aerosol behavior in reactor piping and the integrity of reactor piping under severe accident condition (K. Hashimoto et al., 1994, K. Hashimoto et al., 1995). In order to meet these two objectives, the Project comprises two test series: an aerosol behavior test series and a piping integrity test series. In the piping integrity test a straight stainless steel pipe is used to simulate a partial fraction of reactor piping under severe accident conditions. In parallel with conducting the tests, test analyses are performed with ABAQUS code (Hibbitt, Karlsson and Sorensen Inc. 1989) using the test conditions to investigate the behavior of straight pipe against thermal and pressure loads. This paper describes the comparison of the scoping piping integrity test results and the analysis results with ABAQUS

  13. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert

    Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised...... limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyzes...... was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed...

  14. Convergence of Extreme Loads for Offshore Wind Turbine Support Structures

    OpenAIRE

    Stewart, Gordon; Lackner, Matthew; Arwade, Sanjay R.; Myers, Andrew T.; Hallowell, Spencer

    2015-01-01

    Extreme loads of wind turbines are historically difficult to predict through simulation due to uncertainty in input conditions as well as in the simulation models. In addition, many long time series must be simulated for the statistics of the peak loads to become stationary. Offshore wind turbines require even more simulation due to the addition of stochastic wave loading. Floating offshore wind turbines, the subject of this paper, experience free-body motion as a result of wind and wave load...

  15. Study of local winds over Tehran using WRF in ideal conditions

    Directory of Open Access Journals (Sweden)

    I Soltanzadeh

    2011-09-01

    Full Text Available   Wind is the carrier of pollutants and any other gaseous or particle matters in the atmosphere. Stable atmosphere with low wind provides favourable conditions for high contamination of pollutants in urban areas. The importance of mesoscale atmospheric flows in air pollution dispersion has been recognized in the past three decades and has been the focus of intensive research; both observational and numerical. Mesoscale or local scale circulations are more prominent when the synoptic pressure gradients are weak, allowing horizontal temperature contrasts to develop, which in turn lead to mesoscale pressure perturbations. Tehran, a city which is situated at the southern foothills of the Alborz Mountain chain has an average elevation of 1500m, and covers an area of 864 km2. Alborz Mountains have a significant influence on the dynamics and thermodynamic modification of wind regime over the city. At the same time, the Urban Heat Island effect (UHI can cause its own mesoscale flow, complicating an already complex local scale flow. The topography and the urban fabric can cause slope flows, mountain flows, and valley flows amongst many other factors. Th is paper focuses on the use of state-of-the-art atmospheric numerical model – The Weather Research and Forecasting (WRF – in an ideal situation to study the characteristics of the mesoscale flow systems that prevail over Tehran when air quality is unfavourable. So average sound of Radiosonde at Mehrabad station, for almost all the fair days of cold seasons from 2005 to 2008 was selected as an ideal initial condition and boundary condition with 10 × 10 km spatial and 12-hour temporal resolution. The simulations were carried out for a 3-day period in December 2005 when an aircraft , due to low visibility caused by high concentration of air pollution, crashed 2 miles away from the end of runway into an inhabited area. Three simulations were prepared. For the first experiment, called control run, we

  16. Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions

    Science.gov (United States)

    Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.

    2018-02-01

    Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.

  17. Intense Geomagnetic Storms Associated with Coronal Holes Under the Weak Solar-Wind Conditions of Cycle 24

    Science.gov (United States)

    Watari, S.

    2018-02-01

    The activity of Solar Cycle 24 has been extraordinarily low. The yearly averaged solar-wind speed is also lower in Cycle 24 than in Cycles 22 and 23. The yearly averaged speed in the rising phase of Cycle 21 is as low as that of Cycle 24, although the solar activity of Cycle 21 is higher than that of Cycle 24. The relationship between the solar-wind temperature and its speed is preserved under the solar-wind conditions of Cycle 24. Previous studies have shown that only a few percent of intense geomagnetic storms (minimum Dst < -100 nT) were caused by high-speed solar-wind flows from coronal holes. We identify two geomagnetic storms associated with coronal holes within the 19 intense geomagnetic storms that took place in Cycle 24.

  18. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    Science.gov (United States)

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  19. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    Science.gov (United States)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  20. Automatic Threshold Setting and Its Uncertainty Quantification in Wind Turbine Condition Monitoring System

    DEFF Research Database (Denmark)

    Marhadi, Kun Saptohartyadi; Skrimpas, Georgios Alexandros

    2015-01-01

    Setting optimal alarm thresholds in vibration based condition monitoring system is inherently difficult. There are no established thresholds for many vibration based measurements. Most of the time, the thresholds are set based on statistics of the collected data available. Often times the underly......Setting optimal alarm thresholds in vibration based condition monitoring system is inherently difficult. There are no established thresholds for many vibration based measurements. Most of the time, the thresholds are set based on statistics of the collected data available. Often times...... the underlying probability distribution that describes the data is not known. Choosing an incorrect distribution to describe the data and then setting up thresholds based on the chosen distribution could result in sub-optimal thresholds. Moreover, in wind turbine applications the collected data available may...... not represent the whole operating conditions of a turbine, which results in uncertainty in the parameters of the fitted probability distribution and the thresholds calculated. In this study, Johnson, Normal, and Weibull distributions are investigated; which distribution can best fit vibration data collected...

  1. A preliminary comparison of Na lidar and meteor radar zonal winds during geomagnetic quiet and disturbed conditions

    Science.gov (United States)

    Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.

    2018-03-01

    We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.

  2. Comparison of Organic and Chemical Inputs on Different Densities of Echium amoenum Fisch & Mey. in Mashhad Conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Behzad Amiri

    2017-02-01

    most significant resources for development of agricultural soil quality and increase in the yield of different medicinal plants. It has been reported that this ecological inputs provide favorable conditions for plant growth and development through improvement of physical, chemical and biological properties of the soil, therefore, it can be concluded that improvement of the most studied traits in the present study were due to use of organic fertilizers. It seems that plants compete with each other over scarce nutrients and water in high plant density and cause stunted growth . Some other studies have reported that suitable plant density can increase the growth and yield of some medicinal plants such as coriander (Coriandrum sativum L. (Akhani, Ajwain (Carum copticum L. , lemon balm (Melissa officinalis L. and anise (Pimpinella anisum L.. Conclusion: In general, the results of this research showed that the use of organic fertilizers in optimal plant densities can be reducing environmental risks of chemical fertilizers and develop sustainable agriculture and protect the health of the products.

  3. Empirical Doppler Characterization of Signals Scattered by Wind Turbines in the UHF Band under Near Field Condition

    Directory of Open Access Journals (Sweden)

    Itziar Angulo

    2013-01-01

    Full Text Available Time variability of the scattering signals from wind turbines may lead to degradation problems on the communication systems provided in the UHF band, especially under near field condition. In order to analyze the variability due to the rotation of the blades, this paper characterizes empirical Doppler spectra obtained from real samples of signals scattered by wind turbines with rotating blades under near field condition. A new Doppler spectrum model is proposed to fit the spectral characteristics of these signals, providing notable goodness of fit. Finally, the effect of this kind of time variability on the degradation of OFDM signals is studied.

  4. Diagnostics of bearings in presence of strong operating conditions non-stationarity—A procedure of load-dependent features processing with application to wind turbine bearings

    Science.gov (United States)

    Zimroz, Radoslaw; Bartelmus, Walter; Barszcz, Tomasz; Urbanek, Jacek

    2014-05-01

    Condition monitoring of bearings used in Wind Turbines (WT) is an important issue. In general, bearings diagnostics is a well recognized field of research; however, it is not the case for machines operating under non-stationary load. In the case of varying load/speed, vibration signal generated by rolling element bearings is affected by operation factors, and makes the diagnosis relatively difficult. These difficulties come from the variation of vibration-based diagnostic features caused mostly by load/speed variation (operation factors), low energy of sought-after features, and low signal-to-noise levels. Analysis of the signal from the main bearing is even more difficult due to a very low rotational speed of the main shaft. In the paper, a novel diagnostic approach is proposed for bearings used in wind turbines. As an input data we use parameters obtained from commercial diagnostic system (peak-to-peak and root mean square (RMS) of vibration acceleration, and generator power that is related to the operating conditions). The received data cover the period of several months.

  5. Application of lidars for assessment of wind conditions on a bridge site

    DEFF Research Database (Denmark)

    Jakobsen, J. B.; Cheynet, Etienne; Snæbjörnsson, Jonas

    2015-01-01

    Wind measurement techniques based on remote optical sensing, extensively applied in wind energy, have been exploited in civil engineering only in a limited number of studies. The present paper introduces a novel application of wind lidars in bridge engineering, and presents the findings from...... characterization. The paper presents a promising comparison of the measurements obtained by the three different sets of instruments, and discusses their complementary value....... the pilot measurement campaign on the Lysefjord Bridge in the South-West Norway. A single long-range pulsed WindScanner lidar and two short-range continuous-wave WindScanner lidars were deployed, in addition to five sonic anemometers installed on the bridge itself, the latter for long-term wind...

  6. Potential of wind turbines to elicit seizures under various meteorological conditions.

    Science.gov (United States)

    Smedley, Andrew R D; Webb, Ann R; Wilkins, Arnold J

    2010-07-01

    To determine the potential risk of epileptic seizures from wind turbine shadow flicker under various meteorologic conditions. We extend a previous model to include attenuation of sunlight by the atmosphere using the libradtran radiative transfer code. Under conditions in which observers look toward the horizon with their eyes open we find that there is risk when the observer is closer than 1.2 times the total turbine height when on land, and 2.8 times the total turbine height in marine environments, the risk limited by the size of the image of the sun's disc on the retina. When looking at the ground, where the shadow of the blade is cast, observers are at risk only when at a distance turbines rotate at a rate below that at which the flicker is likely to present a risk, although there is a risk from smaller turbines that interrupt sunlight more than three times per second. For the scenarios considered, we find the risk is negligible at a distance more than about nine times the maximum height reached by the turbine blade, a distance similar to that in guidance from the United Kingdom planning authorities.

  7. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition.

    Science.gov (United States)

    Sivamani, Seralathan; T, Micha Premkumar; Sohail, Mohammed; T, Mohan; V, Hariram

    2017-12-01

    Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E) are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s.

  8. Operating and Loading Conditions of a Three-Level Neutral-Point-Clamped Wind Power Converter Under Various Grid Faults

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    In order to fulfill the growing demands from the grid side, full-scale power converters are becoming popular in the wind turbine system. The low-voltage ride-through (LVRT) requirements may not only cause control problems but also result in overstressed components for the power converter. However...... are analytically solved and simulated. It has been found that the operating and loading conditions of the converter under LVRT strongly depend on the types/severity values of grid voltage dips and also the chosen control algorithms. The thermal distribution among the three phases of the converter may be quite......, the thermal loading of the wind power converter under various grid faults is still not yet clarified, particularly at megawatt power level. In this paper, the impacts by three types of grid faults to a three-level neutral-point-clamped (3L-NPC) wind power converter in terms of operating and loading conditions...

  9. Empowering wind power; On social and institutional conditions affecting the performance of entrepreneurs in the wind power supply market in the Netherlands

    NARCIS (Netherlands)

    Agterbosch, S.

    2006-01-01

    This dissertation focuses on wind energy for electricity generation, analysing the evolution of the wind power supply market in the Netherlands. We analysed different kind of wind power entrepreneurs (energy distributors, small private investors, wind cooperatives and new independent wind power

  10. Numerical simulation of the effect of wind removing the corona space charge over grounded structures under thunderstorm conditions

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Holbøll, Joachim

    2015-01-01

    agrounded object under thunderstorm conditions. The electric fieldcreated by the charge distribution in the thundercloud above theobject, which is in first place enhanced by its geometry, leadsto the generation and secondly upward propagation of chargefrom the object. Recent investigations underline...... facing the wind, leading toa higher probability of lightning attachment....

  11. Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions

    Science.gov (United States)

    DaNa L. Carlis; Yi-Leng Chen; Vernon R. Morris

    2010-01-01

    The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) coupled with the Noah land surface model (LSM) is employed to simulate island-scale airflow and circulations over Maui County, Hawaii, under summer trade wind conditions, during July–August 2005. The model forecasts are validated by surface observations with good agreement.

  12. Forecast skill of synoptic conditions associated with Santa Ana winds in Southern California

    Science.gov (United States)

    Charles Jones; Francis Fujioka; Leila M.V. Carvalho

    2010-01-01

    Santa Ana winds (SAW) are synoptically driven mesoscale winds observed in Southern California usually during late fall and winter. Because of the complex topography of the region, SAW episodes can sometimes be extremely intense and pose significant environmental hazards, especially during wildfire incidents. A simple set of criteria was used to identify synoptic-scale...

  13. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  14. LCT-coil design: Mechanical interaction between composite winding and steel casing under various test conditions

    International Nuclear Information System (INIS)

    Dolensky, B.; Messemer, G.; Zehlein, H.; Erb, J.

    1981-01-01

    Finite element computations for the structural design of the large superconducting toroidal field coil contributed by EURATOM to the Large Coil Test Facility (LCTF) at ORNL, USA were performed at KfK, using the ASKA code. The layout of the coil must consider different types of requirements: firstly, an optimal D-shaped contour minimizing circumferential stress gradients under normal operation in the toroidal arrangement must be defined. Secondly, the three-dimensional real design effects due to the actual support conditions, manufacturing tolerances etc. must be mastered for different basic operational and failure load cases. And, thirdly, the design must stand a single coil qualification test in the TOSKA-facility at KfK, Karlsruhe, FRG, before it is plugged into the LCTF. The emphasis of the paper is three-pronged according to these requirements: i) the 3D magnetic body forces as well as the underlying magnetic fields as computed by the HEDO-code are described. ii) The mechanical interaction between casing and winding as given elsewhere in terms of high stress regions, gaps, slide movements and contact forces for various load cases representing the LCTF test conditions is illustrated here by a juxtaposition of the operational deformations and stresses within the LCTF and the TOSKA. iii) Particular effects like the restraint imposed by a corset-type reinforcement of the coil in the TOSKA test facility to limit the breathing deformation are parametrically studied. Moreover, the possibilities to derive scaling laws which make essential results transferable to larger coils by extracting a 1D mechanical response from the 3D finite element model is also demonstrated. (orig./GG)

  15. Fuzzy Stochastic Unit Commitment Model with Wind Power and Demand Response under Conditional Value-At-Risk Assessment

    Directory of Open Access Journals (Sweden)

    Jiafu Yin

    2018-02-01

    Full Text Available With the increasing penetration of wind power and demand response integrated into the grid, the combined uncertainties from wind power and demand response have been a challenging concern for system operators. It is necessary to develop an approach to accommodate the combined uncertainties in the source side and load side. In this paper, the fuzzy stochastic conditional value-at-risk criterions are proposed as the risk measure of the combination of both wind power uncertainty and demand response uncertainty. To improve the computational tractability without sacrificing the accuracy, the fuzzy stochastic chance-constrained goal programming is proposed to transfer the fuzzy stochastic conditional value-at-risk to a deterministic equivalent. The operational risk of forecast error under fuzzy stochastic conditional value-at-risk assessment is represented by the shortage of reserve resource, which can be further divided into the load-shedding risk and the wind curtailment risk. To identify different priority levels for the different objective functions, the three-stage day-ahead unit commitment model is proposed through preemptive goal programming, in which the reliability requirement has the priority over the economic operation. Finally, a case simulation is performed on the IEEE 39-bus system to verify the effectiveness and efficiency of the proposed model.

  16. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea

    Science.gov (United States)

    Hsu, S. A.; Meindl, Eric A.; Gilhousen, David B.

    1994-01-01

    On the basis of 30 samples from near-simultaneous overwater measurements by pairs of anemometers located at different heights in the Gulf of Mexico and off the Chesapeake Bay, Virginia, the mean and standard deviation for the exponent of the power-law wind profile over the ocean under near-neutral atmospheric stability conditions were determined to be 0.11 +/- 0.03. Because this mean value is obtained from both deep and shallow water environments, it is recommended for use at sea to adjust the wind speed measurements at different heights to the standard height of 10 m above the mean sea surface. An example to apply this P value to estimate the momentum flux or wind stress is provided.

  17. Drive-train condition monitoring for offshore wind and tidal turbines

    DEFF Research Database (Denmark)

    Roshanmanesh, Sanaz; Hayati, Farzad; Kappatos, Vassilios

    investigation assessing the effectiveness of Acoustic Emission (AE) and vibration analysis (VA) in identifying different types of faults in wind and tidal turbine drive-trains. Additionally the application of advanced signal processing techniques, such as Spectral Kurtosis (SK) and wavelet analysis have been......Offshore wind and tidal turbines are complex systems consisting of several different components and subsystems. One of the most important components is the drive-train. Gearboxes in geared designs are designed to operate for the entire lifetime of a wind or tidal turbine or the equivalent of 25...

  18. Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions

    Science.gov (United States)

    Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin

    2018-03-01

    Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.

  19. Stochastic Unit Commitment of Wind-Integrated Power System Considering Air-Conditioning Loads for Demand Response

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2017-11-01

    Full Text Available As a result of extensive penetration of wind farms into electricity grids, power systems face enormous challenges in daily operation because of the intermittent characteristics of wind energy. In particular, the load peak-valley gap has been dramatically widened in wind energy-integrated power systems. How to quickly and efficiently meet the peak-load demand has become an issue to practitioners. Previous literature has illustrated that the demand response (DR is an important mechanism to direct customer usage behaviors and reduce the peak load at critical times. This paper introduces air-conditioning loads (ACLs as a load shedding measure in the DR project. On the basis of the equivalent thermal parameter model for ACLs and the state-queue control method, a compensation cost calculation method for the ACL to shift peak load is proposed. As a result of the fluctuation and uncertainty of wind energy, a two-stage stochastic unit commitment (UC model is developed to analyze the ACL users’ response in the wind-integrated power system. A simulation study on residential and commercial ACLs has been performed on a 10-generator test system. The results illustrate the feasibility of the proposed stochastic programming strategy and that the system peak load can be effectively reduced through the participation of ACL users in DR projects.

  20. A Direct Comparison of Passive Polarimetry and Scatterometry Under Low- and High-Wind Conditions

    National Research Council Canada - National Science Library

    Swift, Calvin

    1997-01-01

    The University of Massachusetts Microwave Remote Sensing Laboratory (MIRSL) gathered coincident active and passive measurements of the ocean surface from the NASA Wallops P3 during the Ocean Wind Imaging (OWI) Experiment...

  1. Regional wind-field study in complex terrain during summer sea-breeze conditions

    International Nuclear Information System (INIS)

    Porch, W.M.; Volker, P.A.; Peterson, K.R.; Weichel, R.L.; Sherman, C.

    1979-01-01

    A regional-scale data base, consisting of wind and temperature data for June and July of 1977, was developed for the greater San Francisco Bay Area and eastward to the Central Valley. Continuous meteorological measurements were made in the area of a windy pass (Patterson Pass) 3 km east of Lawrence Livermore Laboratory. This area was chosen because of its complex terrain and importance as a downwind topographic feature affecting the dispersal of possible accidental atmospheric releases from the Laboratory and as an area of high wind-energy potential. The results of this study provided the following: (1) a data base, including over 50 stations for use in numerical wind-field regional-scale-model validation; (2) characterization of summer sea breese oscillations of approx. 6 and 12 days (this analysis is useful in calculating wind-power persistence and in understanding summer sea-breeze mechanisms in the Bay Area); and (3) successful application of an optical space-averaging wind sensor over a 1-km path across a pass to provide long-path averaged data more suitable for regional, numerical wind-field models with kilometre-size grid elements

  2. Report on a wind power development field test project (detailed wind condition investigation) in the city of Choshi; Choshishi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This paper describes observation on the annual wind condition at the Yokka-ichibadai in the city of Choshi. The average wind velocities were 4.7 and 3.8 m/s at the ground height of 20 and 10 meters, respectively, not having reached the NEDO's criterion values 5.6 and 5.0 m/s. The annual wind direction emergence rate on the wind axis was 70%, meeting the criterion value of 60% or higher, and the wind direction is stable. The exponent for the vertical wind velocity distribution was 3.3, which is similar to that in the urban area. Disturbance in the wind condition was 0.18, meeting the criterion value of 0.30 or lower. The maximum momentary wind velocity was 31.9 m/s, which is well below the criterion of 60 m/s presenting no problem as a wind mill construction site. The wind energy density was 94 W/m{sup 2}, being only 63% of the criterion value, when all the azimuths were used as the object. The result of the investigation is that the average wind velocity is low and the wind energy density is also low. However, if the size of wind mill to be introduced is set to the class B (300 kW), it is possible to attain an annual operation rate of 58%, an annual energy acquisition amount of 515 MWh, and a facility utilization rate of 19.6%. If set to the class C (750 kW), an operation rate of 78%, an annual energy acquisition of 1296 MWh, and a facility utilization rate of 19.7% can be obtained, meeting the criterion value. (NEDO)

  3. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  4. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  5. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  6. Structuring expert input for a knowledge-based approach to watershed condition assessment for the Northwest Forest Plan, USA

    Science.gov (United States)

    Sean N. Gordon; Gallo. Kirsten

    2011-01-01

    Assessments of watershed condition for aquatic and riparian species often have to rely on expert opinion because of the complexity of establishing statistical relationships among the many factors involved. Such expert-based assessments can be difficult to document and apply consistently over time and space. We describe and reflect on the process of developing a...

  7. Vestas V90-3MW Wind Turbine Gearbox Health Assessment Using a Vibration-Based Condition Monitoring System

    Directory of Open Access Journals (Sweden)

    A. Romero

    2016-01-01

    Full Text Available Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.

  8. Coordinated control of a DFIG-based wind-power generation system with SGSC under distorted grid voltage conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Li, Qing; Chen, Zhe

    2013-01-01

    This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...... in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy...... strategy has been fully validated by the simulation results of a 2 MW DFIG-based wind turbine with SGSC under distorted grid voltage conditions...

  9. Azimuthally asymmetric ring current as a function of Dst and solar wind conditions

    Directory of Open Access Journals (Sweden)

    Y. P. Maltsev

    2004-09-01

    Full Text Available Based on magnetic data, spatial distribution of the westward ring current flowing at |z|<3 RE has been found under five levels of Dst, five levels of the interplanetary magnetic field (IMF z component, and five levels of the solar wind dynamic pressure Psw. The maximum of the current is located near midnight at distances 5 to 7 RE. The magnitude of the nightside and dayside parts of the westward current at distances from 4 to 9 RE can be approximated as Inight=1.75-0.041 Dst, Inoon=0.22-0.013 Dst, where the current is in MA. The relation of the nightside current to the solar wind parameters can be expressed as Inight=1.45-0.20 Bs IMF + 0.32 Psw, where BsIMF is the IMF southward component. The dayside ring current poorly correlates with the solar wind parameters.

  10. A dynamic processes study of PM retention by trees under different wind conditions.

    Science.gov (United States)

    Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan

    2018-02-01

    Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A scenario analysis of effects of reduced nitrogen input on oxygen conditions in the Kattegat and the Belt Sea

    DEFF Research Database (Denmark)

    Hansen, I.S.; Ærtebjerg, G.; Richardson, K.

    1995-01-01

    A numerical tool has been developed for analyzing the potential effects of reduced nitrogen loading to the Kattegat and the Belt Sea. The analyzed effects relate to general trends in the occurrence of hypoxia and anoxia in the water below the pycnocline during the summer and autumn. Nitrogen...... is assumed to be the nutrient controlling production in these waters. The tool is a dynamic numerical model which includes the dominant hydrodynamic processes of the study area as well as the nitrogen cycle and is linked to oxygen conditions. The model has been calibrated based on the average intraannual...... at that time. Using this model, scenarios of oxygen conditions after implementation of several different reduction plans for nitrogen loading to the area have been carried out. With the help of these scenarios, it is possible to compare different nitrogen load situations and their effect on the mass balance...

  12. Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Yun-Tao Shi

    2018-01-01

    Full Text Available Wind energy has been drawing considerable attention in recent years. However, due to the random nature of wind and high failure rate of wind energy conversion systems (WECSs, how to implement fault-tolerant WECS control is becoming a significant issue. This paper addresses the fault-tolerant control problem of a WECS with a probable actuator fault. A new stochastic model predictive control (SMPC fault-tolerant controller with the Conditional Value at Risk (CVaR objective function is proposed in this paper. First, the Markov jump linear model is used to describe the WECS dynamics, which are affected by many stochastic factors, like the wind. The Markov jump linear model can precisely model the random WECS properties. Second, the scenario-based SMPC is used as the controller to address the control problem of the WECS. With this controller, all the possible realizations of the disturbance in prediction horizon are enumerated by scenario trees so that an uncertain SMPC problem can be transformed into a deterministic model predictive control (MPC problem. Finally, the CVaR object function is adopted to improve the fault-tolerant control performance of the SMPC controller. CVaR can provide a balance between the performance and random failure risks of the system. The Min-Max performance index is introduced to compare the fault-tolerant control performance with the proposed controller. The comparison results show that the proposed method has better fault-tolerant control performance.

  13. Conditions of call for tenders on the offshore wind power plants; Conditions de l'appel d'offres portant sur des centrales eolienne en mer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the renewable energies sources development, the french government decided to launch a call for tenders for the realization of offshore wind power plants in 2007. The call for tenders conditions concern: the energetic and technical characteristics of the installations as the primary energy, the production technic, the power; the industrial implementing delay; the exploitation and the operating time; the implementing sites; the weighting and the classification principles. The main conditions concerning the utilization of the maritime public land property outside of the harbors. (A.L.B.)

  14. Heterogeneous Boundary Layers through the Diurnal Cycle: Evaluation of the WRF Wind Farm Parameterization using Scanning Lidar Observations and Wind Turbine Power Measurements during a Range of Stability Conditions

    Science.gov (United States)

    Lundquist, J. K.

    2015-12-01

    As wind energy deployment increases, questions arise regarding impacts on local climates and how these impacts evolve with the diurnal cycle of the boundary layer. Satellite observations suggest nocturnal increases of surface temperatures, and measurements of turbine wakes document stronger and more persistent reductions of wind speed and increases in turbulence downwind of turbines during stable conditions. Validations of mesoscale parameterizations of these effects have been constrained to idealized conditions defined by neutrally-stratified conditions and/or limited wind directions and wind speeds, or by comparison to idealized large-eddy simulations. Synthesis of conventional meteorological measurements and unconventional measurements can offer unique insights for validating models over a large heterogeneous domain. The CWEX-13 field experiment provides an extensive dataset for such validation at spatial scales on the order of 10 km in a range of atmospheric stability and wind conditions. CWEX-13 took place within a 300 MW wind farm in central Iowa during summer 2013 and featured strong diurnal cycles. The wind turbines are sited irregularly, creating a heterogenous "canopy". Three profiling lidars, numerous surface flux stations, and a scanning lidar sampled wakes from multiple turbines. Further, the wind farm owner/operator has provided access to turbine power production and wind speed measurement data for model validation, providing ~ 200 measurements of proxies that integrate the wind profile over the rotor disk, from 40 m to 120 m above the surface. Building on previous work that identified optimal physics options, grid configurations, and boundary condition data sets by comparison to lidar wind profile measurements, we execute simulations with the WRF Wind Farm Parameterization for a ten-day period featuring moderate winds and strong diurnal cycles. We evaluate simulations with different modeling choices (e.g., vertical resolution, approaches to

  15. Input-output cost of agronomic production of crops under rotate growing condition for applying to Mediterranean Italian buffaloes

    Directory of Open Access Journals (Sweden)

    N. Berardo

    2010-02-01

    Full Text Available Forage availability with low cost of production is the main farmer requisite for obtaining a competitive husbandry dairy product in the market. Cropping system for silage consumption differently impact the cost of Milk Feeding Unit (MFU and sustainable agronomic cultivation of herbage production. The experiment aimed to assess the analytical cost of MFU per hectare in four forage cropping system models based on two crops per year bred under irrigated and rainfed condition in a Mediterranean site with intensive buffaloes breeding pressure.

  16. New Edge Localized Modes at Marginal Input Power with Dominant RF-heating and Lithium-wall Conditioning in EAST

    DEFF Research Database (Denmark)

    Wang, H.; Xu, G.; Guo, H.

    The EAST tokamak has achieved, for the rst time, the ELMy H-mode at a connement improvement factor HITER89P 1:7, with dominant RF heating and active wall conditioning by lithium evaporation and real-time injection of Li powder. During the H-mode phase, a new small-ELM regime has been observed wit......-III ELMy crash enhances the radial electric field Er and turbulence driven Reynolds stress. Furthermore, the lament-like structure of type-III ELMs has clearly been identified as multiple peaks on the ion saturation and floating potential measurements....

  17. Bayesian based Diagnostic Model for Condition based Maintenance of Offshore Wind Farms

    DEFF Research Database (Denmark)

    Asgarpour, Masoud; Sørensen, John Dalsgaard

    2018-01-01

    Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for electricity produced by offshore wind and can be significantly reduced if existing corrective actions are performed as efficiently as possible and if future corrective actions are avoided by performing suf...

  18. Secondary current properties generated by wind-induced water waves in experimental conditions

    Directory of Open Access Journals (Sweden)

    Michio Sanjou

    2014-06-01

    Full Text Available Secondary currents such as the Langmuir circulation are of high interest in natural rivers and the ocean because they have striking impacts on scour, sedimentation, and mass transport. Basic characteristics have been well-studied in straight open-channel flows. However, little is known regarding secondary circulation induced by wind waves. The presented study describes the generation properties of wind waves observed in the laboratory tank. Wind-induced water waves are known to produce large scale circulations. The phenomenon is observed together with high-speed and low-speed streaks, convergence and divergence zones, respectively. Therefore, it is important to determine the hydrodynamic properties of secondary currents for wind-induced water waves within rivers and lakes. In this study, using two high-speed CMOS cameras, stereoscopic particle image velocimetry (PIV measurements were conducted in order to reveal the distribution of all three components of velocity vectors. The experiments allowed us to investigate the three-dimensional turbulent structure under water waves and the generation mechanism of large-scale circulations. Additionally, a third CMOS camera was used to measure the spanwise profile of thefree-surface elevation. The time-series of velocity components and the free-surface were obtained simultaneously. From our experiments, free-surface variations were found to influence the instantaneous velocity distributions of the cross-sectional plane. We also considered thegeneration process by the phase analysis related to gravity waves and compared the contribution of the apparent stress.

  19. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2011-01-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal...

  20. Migrating swans profit from favourable changes in wind conditions at low altitude

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Beekman, J.H.; Kontiokorpi, J.; Mulder, R.J.W.; Nolet, B.A.

    2004-01-01

    Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewicks swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern

  1. Migrating swans profit from favourable changes in wind conditions at low altitude

    NARCIS (Netherlands)

    Klaassen, M; Beekman, JH; Kontiokorpi, J; Mulder, RJW; Nolet, BA

    Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewick's swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern

  2. Development and Testing of an Acoustoultrasonic Inspection Device for Condition Monitoring of Wind Turbine Blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm

    2011-01-01

    a significant 10,000MW in 2010, with this rate of growth forecast to continue despite a general economic slowdown. One of the many challenges this industry has (and continues) to face concerns the polymer fiber composite material and structure utilized in the wind turbine blades. This large, complex, multi...

  3. Condition monitoring of spar-type floating wind turbine drivetrain using statistical fault diagnosis

    DEFF Research Database (Denmark)

    Ghane, Mahdi; Nejad, Amir Rasekhi; Blanke, Mogens

    2018-01-01

    Operation and maintenance costs are significant for large-scale wind turbines, and particularly so for offshore. A well-organized operation and maintenance strategy is vital to ensure the reliability, availability, and cost-effectiveness of a system. The ability to detect, isolate, estimate and p...

  4. Modeling of a Switched Reluctance Motor under Stator Winding Fault Condition

    DEFF Research Database (Denmark)

    Chen, Hao; Han, G.; Yan, Wei

    2016-01-01

    A new method for modeling stator winding fault with one shorted coil in a switched reluctance motor (SRM) is presented in this paper. The method is based on artificial neural network (ANN), incorporated with a simple analytical model in electromagnetic analysis to estimate the flux...

  5. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)

    2016-06-03

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  6. Fundamentals for remote condition monitoring of offshore wind turbines. Summary report; Fjernovervaagning af vindmoellevingers tilstand (fase II)

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Larsen, Gunner C.; Soerensen, Bent F.; Borum, K.K.; Engelhardt, J.

    2008-04-15

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis necessary for the use of sensors as a structural health monitoring system for wind turbine blades. This includes creating knowledge that will allow sensor signals to be used for remotely identifying the presence and position of any damage, the damage type and severity, and a structural condition assessment of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early development of significant damage in fibre reinforced composite, are investigated. In each case specific approaches have been proposed, developed and implemented in models or laboratory test specimens. The sensor approaches are based on acoustic emission (various passive and active applications including mobile sensors), fibre optics (including a new microbend transducer design and various Bragg-grating based applications), wireless approaches involving both battery and energy harvesting options, and inertia sensor based system identification approaches able to deal with linear periodic systems. In addition to the sensor investigations, a life-estimate approach for the wind turbines is described based on identifying and characterising critical material failure modes then integrating detailed models of damage progression rates into full scale models of the blade structure under operating loading regimes. The application of sensors is addressed during a full-scale blade test and recommendations are made regarding improvement to the commercial blade certification process of test

  7. Determining the parameters of Weibull function to estimate the wind power potential in conditions of limited source meteorological data

    Science.gov (United States)

    Fetisova, Yu. A.; Ermolenko, B. V.; Ermolenko, G. V.; Kiseleva, S. V.

    2017-04-01

    We studied the information basis for the assessment of wind power potential on the territory of Russia. We described the methodology to determine the parameters of the Weibull function, which reflects the density of distribution of probabilities of wind flow speeds at a defined basic height above the surface of the earth using the available data on the average speed at this height and its repetition by gradations. The application of the least square method for determining these parameters, unlike the use of graphical methods, allows performing a statistical assessment of the results of approximation of empirical histograms by the Weibull formula. On the basis of the computer-aided analysis of the statistical data, it was shown that, at a fixed point where the wind speed changes at different heights, the range of parameter variation of the Weibull distribution curve is relatively small, the sensitivity of the function to parameter changes is quite low, and the influence of changes on the shape of speed distribution curves is negligible. Taking this into consideration, we proposed and mathematically verified the methodology of determining the speed parameters of the Weibull function at other heights using the parameter computations for this function at a basic height, which is known or defined by the average speed of wind flow, or the roughness coefficient of the geological substrate. We gave examples of practical application of the suggested methodology in the development of the Atlas of Renewable Energy Resources in Russia in conditions of deficiency of source meteorological data. The proposed methodology, to some extent, may solve the problem related to the lack of information on the vertical profile of repeatability of the wind flow speeds in the presence of a wide assortment of wind turbines with different ranges of wind-wheel axis heights and various performance characteristics in the global market; as a result, this methodology can become a powerful tool for

  8. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  9. Lightning Location System Data from Wind Power Plants Compared to Meteorological Conditions of Warm- and Cold Thunderstorm Events

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Garolera, Anna Candela

    2016-01-01

    is a measure of lightning observations per day. Statistics about the monthly exposure of the wind turbines are provided. In order to complement the analysis, meteorological parameters related to the lightning events were analysed. Radio sounding measurements provide an analysis of the condition...... a long time period (up to 18 hours). As characteristic for cold season storms, the altitude of the charge separating -10◦ C isotherm is around 2000 meters above terrain and the wind velocity is above 12 meters per second. Warm season thunderstorms develop faster, and the overall lifetime...... of such an episode can vary from tens of minutes to several hours in the case of new storms being continuously developed in the same area. The distance of the charge separating -10◦ C and the ground is usually larger than 3000 meters. This analyse provides information about the different thunderstorm types which...

  10. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Kosmadakis, George; Manolakos, Dimitris; Papadakis, George

    2016-01-01

    Highlights: • Small-scale ORC engine with converted scroll expander is installed at laboratory. • Design suitable for supercritical operation. • ORC engine tested at temperature equal to 95 °C. • Focus is given on expansion and thermal efficiency. • Supercritical operation showed some promising performance. - Abstract: The detailed experimental investigation of an organic Rankine cycle (ORC) is presented, which is designed to operate at supercritical conditions. The net capacity of this engine is almost 3 kW and the laboratory testing of the engine includes the variation of the heat input and of the hot water temperature. The maximum heat input is 48 kW th , while the hot water temperature ranges from 65 up to 100°C. The tests are conducted at the laboratory and the heat source is a controllable electric heater, which can keep the hot water temperature constant, by switching on/off its electrical resistances. The expansion machine is a modified scroll compressor with major conversions, in order to be able to operate with safety at high pressure (or even supercritical at some conditions). The ORC engine is equipped with a dedicated heat exchanger of helical coil design, suitable for such applications. The speeds of the expander and ORC pump are regulated with frequency inverters, in order to control the cycle top pressure and heat input. The performance of all components is evaluated, while special attention is given on the supercritical heat exchanger and the scroll expander. The performance tests examined here concern the variation of the heat input, while the hot water temperature is equal to 95 °C. The aim is to examine the engine performance at the design conditions, as well as at off-design ones. Especially the latter ones are very important, since this engine will be coupled with solar collectors at the final configuration, where the available heat is varied to a great extent. The engine has been measured at the laboratory, where a thermal

  11. Evaluation of tetroon flights and turbulent diffusion under weak wind conditions during the field experiment SIESTA

    International Nuclear Information System (INIS)

    Hu Erbang; Vogt, S.

    1986-08-01

    During several days in November 1985 an international field experiment took place in the Swiss plateau region near the cities of Aarau, Olten. As indicated by the name of the project SIESTA (SF 6 International Experiments in Stagnant Air) its aim is to obtain knowledge of the general nature of turbulence advection and atmospheric dispersion processes in a cold pool with very low wind speed and undefined wind direction. An outline of the general concept of the project is followed by a more detailed description of a special research activity with Radar tracked tetroons. In the second part of the report it is shown how to determine the horizontal dispersion parameter from the trajectories of the tetroon flights. Two different methods are described and the results of the flights performed during SIESTA are presented. (orig.) [de

  12. Agronomic traits and deoxynivalenol contamination of two tetraploid wheat species (Triticum turgidum spp. durum, Triticum turgidum spp. turanicum grown strictly under low input conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Dinelli

    2014-09-01

    Full Text Available An evaluation of the agronomic performance of two tetraploid wheat varieties (Triticum turgidum spp. durum, Claudio; Triticum turgidum spp. turanicum, Kamut® grown strictly under low input conditions was carried out over three consecutive cropping years. The study reported grain yield values ranging from 1.8 to 2.6 t ha-1. Productivity showed to be primarily affected by environmental conditions, while no differences were observed between the two genotypes. The study of the yield components highlighted that the durum wheat variety had a higher plant density than Kamut®, but this discrepancy was offset by a greater number of kernels per spike and the kernel weight of khorasan wheat. The investigated wheat genotypes were also analysed to assess the mycotoxin (DON levels of wholegrain semolina and the efficiency of cleaning treatments to reduce contamination. Results showed that both wheat varieties had a good hygienic and sanitary quality with a DON content ranging from 0.35 to 1.31 mg kg-1, which was lower than the maximum acceptable level set by the European regulation at 1.75 mg kg-1. In addition, our research work investigated the effects of premilling cleaning procedures, such as water washing and brushing, on mycotoxin levels, which yielded interesting results in terms of decontamination efficiency. These methods were particularly efficient with Kamut® semolina (46-93% DON reduction, suggesting that mycotoxins accumulate in this variety at more superficial levels than in the durum wheat variety. On the whole, our study provided additional knowledge on the traits to be further improved to respond to low input requirements and to enhance the potential adaptability of wheat genotypes to organic agriculture. Our results emphasized the need to develop wheat varieties that can provide adequate performance without high levels of nitrogen inputs by selecting specific traits, such as kernel weight, spike length and kernel/spike. This may help

  13. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    Science.gov (United States)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-05-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.

  14. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum

  15. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    Science.gov (United States)

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  16. Urban Roughness Estimation Based on Digital Building Models for Urban Wind and Thermal Condition Estimation—Application of the SkyHelios Model

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Chen

    2017-12-01

    Full Text Available Roughness length is a critical parameter for estimation of wind conditions, and it is therefore also relevant for the estimation of human thermal conditions in urban areas. The high density of buildings in urban areas causes large changes in land coverage, thereby increasing surface roughness. This influence atmospheric flow and also leads to a reduction in urban air ventilation, thus increasing the risk of human thermal stress. In this study, a digital building model of Tainan city was used to calculate roughness length using an approach based on Voronoi cells by applying the microclimate model, SkyHelios. The model was also used to estimate the wind conditions, including the wind speed and wind direction. For estimation of the thermal conditions, this study obtained meteorological data for air temperature, relative humidity, globe temperature, wind speed, and wind direction on two specific days (31 July 2015 and 21 January 2016. To quantify the thermal stress, the physiologically equivalent temperature (PET was used to represent the thermal conditions. The wind conditions results obtained from the model indicate that even microscale conditions with vortices and corner flow can be represented with high precision and resolution. The thermal conditions results demonstrate that different created environments and microclimate conditions affect the thermal environment. The difference in PET can be up to 3 °C. This study confirmed that comparison of microclimate thermal conditions based on measurements and obtained from modeling using SkyHelios are in sufficient agreement and can be used in urban planning in the future.

  17. Managing Critical Weather Conditions in a Large-Scale Wind Based European Power System - The TWENTIES Project

    OpenAIRE

    Detlefsen, N.; Sørensen, Poul Ejnar; Eriksen, P.

    2011-01-01

    Experience from existing large offshore wind farms show that the geographical concentration of wind power leads to increased wind power variability, and that the response to storm front passages raises new issues: this may lead to a sudden shut down of the wind farm when the wind speed exceeds the cut-off wind speed (typically 25 m/s). Experience has shown that a large offshore wind farm in this way can be shut down from full power to zero power in less than 5 minutes. Thus, in the planned of...

  18. The physical phenomena associated with stator winding insulation condition as detected by the ramped direct high-voltage method

    Science.gov (United States)

    Rux, Lorelynn Mary

    Deregulation of the electric utility industry has increased the need to monitor the state of powerplant equipment, such as critical generators and motors, to improve availability and reduce life cycle costs via condition-based maintenance. To achieve these goals, nondestructive condition assessment and diagnostic tests are necessary to evaluate the quality and condition of a machine's stator winding insulation system. Periodic tests are generally conducted to monitor insulation aging, diagnose problems, or provide some assurance that the winding has a minimum level of electrical strength. The basic principles of insulation testing are presented herein, and the physical mechanisms that affect the current versus voltage response are described. A stator winding insulation model was developed based on this theoretical foundation for use in understanding and analyzing the macroscopic behavior of complex insulation phenomena. A comprehensive, controlled laboratory experiment was conducted on a set of stator coils that were deliberately manufactured with and without insulation defects. Specific defects were chosen to represent the types of insulation problems typically encountered during manufacture or as a result of in-service aging, and included lack of resin cure, loosely-applied insulating tapes, internal conductive contamination, reduced density of the groundwall insulation, and thermal cycling damage. Results are presented from a series of electrical tests conducted on the coil specimens to compare the effectiveness of various test methods in detecting the different insulation problems. The tests included insulation resistance, polarization index, ramped direct voltage, dissipation factor, dielectric spectroscopy, partial discharge, and recovery voltage measurements. Dielectric principles and testing experience obtained during this investigation were applied to a collection of test results obtained by the author from in-service machines during the past ten years

  19. Effects of torsional degree of freedom, geometric nonlinearity, and gravity on aeroelastic behavior of large-scale horizontal axis wind turbine blades under varying wind speed conditions

    DEFF Research Database (Denmark)

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo

    2014-01-01

    Modern horizontal axis wind turbine blades are long, slender, and flexible structures that can undergo considerable deformation, leading to blade failures (e.g., blade-tower collision). For this reason, it is important to estimate blade behaviors accurately when designing large-scale wind turbine...

  20. Coordinated Control of a DFIG-Based Wind-Power Generation System with SGSC under Distorted Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Aolin Liu

    2013-05-01

    Full Text Available This paper presents a coordinated control method for a doubly-fed induction generator (DFIG-based wind-power generation system with a series grid-side converter (SGSC under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy for the rotor-side converter (RSC, regardless of grid voltage harmonics. Meanwhile, two control targets for the parallel grid-side converter (PGSC are identified, including eliminating the oscillations in total active and reactive power entering the grid or suppressing the fifth- and seventh-order harmonic currents injected to the grid. Furthermore, the respective PI-R controller in the positive synchronous reference frame for the SGSC voltage control and PGSC current control have been developed to achieve precise and rapid regulation of the corresponding components. Finally, the proposed coordinated control strategy has been fully validated by the simulation results of a 2 MW DFIG-based wind turbine with SGSC under distorted grid voltage conditions.

  1. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis

    Science.gov (United States)

    Lillo Gallardo, Patricio Andres

    Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the

  2. Effects of wind forcing on the trophic conditions, zooplankton biomass and krill biochemical composition in the Gulf of Tehuantepec

    Science.gov (United States)

    Färber-Lorda, Jaime; Lavín, M. F.; Guerrero-Ruiz, M. A.

    2004-03-01

    The trophic conditions, the zooplankton biomass and the krill biochemical composition in the Gulf of Tehuantepec were studied in relation to spatial and temporal changes in the physical environment, caused by Norte winds. These winds, which occur mostly from October to March, are intermittent, strong wind jets that blow offshore and normal to the coast at the head of the Gulf of Tehuantepec. Ekman pumping raises the thermocline in the east and lowers it in the west of the jet axis; in the central region of the gulf, vertical mixing brings cool, nutrient-rich waters to the surface, enhancing biological productivity. Data from a January 1989 survey show that mean zooplankton biomass was highest in the central region, but there was no significant difference between the three regions (east, central and west). Among euphausiids, Euphausia lamelligera was the dominant species, with 92%. Mean particulate protein, lipids and particulate organic matter (POM = protein + carbohydrates + lipids) did not show significant differences among the three regions; however, mean particulate carbohydrates were significantly different. For the entire area, low but significant linear regressions between (ArcSin) lipids in euphausiids and lipids in POM, and between POM and (ArcSin) lipids in euphausiids were obtained. Better regressions between zooplankton biomass and POM and other variables were obtained when stations were analyzed by hydrographic regions. When data were grouped into those taken before and after a strong Norte (Leg I and Leg II, respectively), a significant positive regression was obtained between (ArcSin) krill lipids and POM for Leg I; but for Leg II, the slope, although not statistically significant, was negative. POM is apparently utilized during Leg II, but the response in the lipid content of the animals is evident only after some time has passed (during Leg I), when the animals had assimilated the food surplus.

  3. Modelling Solar Energetic Particle Propagation in Realistic Heliospheric Solar Wind Conditions Using a Combined MHD and Stochastic Differential Equation Approach

    Science.gov (United States)

    Wijsen, N.; Poedts, S.; Pomoell, J.

    2017-12-01

    Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.

  4. Analysis of the Contribution of Wind Drift Factor to Oil Slick Movement under Strong Tidal Condition: Hebei Spirit Oil Spill Case

    OpenAIRE

    Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo

    2014-01-01

    The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Wea...

  5. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  6. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults

    Science.gov (United States)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze

    2017-09-01

    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

  7. Earth, Wind and Fire. Natural air conditioning. Part 1. Research aims and methods; Earth, Wind and Fire. Natuurlijke airconditioning. Deel 1. Onderzoeksdoelen en -methoden

    Energy Technology Data Exchange (ETDEWEB)

    Bronsema, B. [Afdeling Architectural Engineering en Technology, Faculteit Bouwkunde, Technische Universiteit Delft TUD, Delft (Netherlands)

    2013-07-15

    The Earth, Wind and Fire concept transforms a building into a 'climate machine' which is powered by the natural forces and energy of the sun, wind, the mass of the earth and gravity. This concept consists of a Climate Cascade, a solar chimney and a Ventec roof, which have been tested in physical mock-ups. Simulation models have been validated on the basis of real measurements. This work has resulted in the creation of reliable tools for design practice [Dutch] Het Earth, Wind en Fire-concept voor natuurlijke airconditioning biedt meer zekerheid voor het realiseren van energieneutrale kantoorgebouwen dan mogelijk zou zijn door verbetering van bestaande technieken. Het concept maakt gebruik van de omgevingsenergie van aardmassa, wind en zon. Enerzijds wordt deze energie passief gebruikt voor het realiseren van een natuurlijke airconditioning, waarbij de gewenste luchtstromingen tot stand komen onder invloed van thermisch gedreven drukverschillen. Anderzijds worden zon en wind benut voor actieve energieopwekking, waardoor een gebouw in principe energieneutraal kan worden. Een dergelijk gebouw kan worden beschouwd als 'klimaatmachine', geactiveerd door zwaartekracht, wind en zon.

  8. Numerical simulation of the effect of wind removing the corona space charge over grounded structures under thunderstorm conditions

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Holbøll, Joachim

    2015-01-01

    Different types of tall structures are severely exposed to lightning discharges, including power lines, communicationtowers, buildings and wind turbines all over the world. Thepresent paper focuses on the numerical modelling and simulationof the effect of wind on the electric field developed over...... facing the wind, leading toa higher probability of lightning attachment....

  9. Managing Critical Weather Conditions in a Large-Scale Wind Based European Power System - The TWENTIES Project

    DEFF Research Database (Denmark)

    Detlefsen, N.; Sørensen, Poul Ejnar; Eriksen, P.

    2011-01-01

    the cut-off wind speed (typically 25 m/s). Experience has shown that a large offshore wind farm in this way can be shut down from full power to zero power in less than 5 minutes. Thus, in the planned offshore development in the North Sea, several GW of wind power could be shut down within less than one...

  10. On the question of starting conditions for frontal axisymmetric inlets tested in hot-shot wind tunnels

    Science.gov (United States)

    Gounko, Yu. P.; Mazhul, I. I.

    2017-05-01

    The work presents the results of an analysis of starting conditions for some frontal axisymmetric inlets of internal compression tested at freestream Mach numbers M = 3-8.4 in the hot-shot wind tunnels based at Khristianovich Institute of Theoretical and Applied Mechanics (ITAM). The results of these inlets test are compared with the data of numerical computations of inviscid, laminar, and turbulent flows carried out by the pseudo-unsteady method. There were determined the inlet throat areas limiting either with regard to the inlet starting or with regard to providing the maximally possible degree of geometric compression of the inlet-captured supersonic airstream at its deceleration in the already started inlet. Reshaping of computed flow patterns in the inlets depending on the variation of the minimal cross section of the inlet internal duct is analyzed.

  11. Multi-fluid MHD study of the solar wind interaction with Venus at Solar max and Solar min conditions.

    Science.gov (United States)

    Ma, Y. J.; Nagy, A. F.; Russell, C. T.; Najib, D.; Toth, G.

    2012-09-01

    We study the solar wind interaction with Venus, using a new advanced multi-fluid MHD model that has been developed recently. The model is similar to the numerical model that was successfully applied to Mars (Najib et al., 2011). Mass densities, velocities and pressures of the protons and three important ionosphere ion species (O+, O2+ and CO2+) are self-consistently calculated by solving the individual coupled continuity, momentum and energy equations. The various chemical reactions and ion-neutral collision processes are considered in the model. The simulation domain covers the region from 100 km altitude above the surface up to 16 RV in the tail. An adaptive spherical grid structure is constructed with radial resolution of about 10 km in the lower ionosphere. The model is applied to both solar-maximum and solar-minimum conditions and model results are compared in detail with multi-species single fluid model results and VEX observations.

  12. An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-04-01

    Full Text Available In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetrical grid fault conditions, an optimal integrated control scheme for the grid-side voltage-source converter (VSC of direct-driven permanent magnet synchronous generator (PMSG-based wind turbine systems is proposed in this paper. The optimal control strategy includes a main controller and an additional controller. In the main controller, a double-loop controller based on differential flatness-based theory is designed for grid-side VSC. Two parts are involved in the design process of the flatness-based controller: the reference trajectories generation of flatness output and the implementation of the controller. In the additional control aspect, an auxiliary second harmonic compensation control loop based on an improved calculation method for grid-side instantaneous transmission power is designed by the quasi proportional resonant (Quasi-PR control principle, which is able to simultaneously restrain the second harmonic components in active power and reactive power injected into the grid without the respective calculation for current control references. Moreover, to reduce the DC-link overvoltage during grid faults, the mathematical model of DC-link voltage is analyzed and a feedforward modified control factor is added to the traditional DC voltage control loop in grid-side VSC. The effectiveness of the optimal control scheme is verified in PSCAD/EMTDC simulation software.

  13. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near‐Sun Conditions With a Simple One‐Dimensional “Upwind” Scheme

    Science.gov (United States)

    Riley, Pete

    2017-01-01

    Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982

  14. Conditions for monograph projectsʼ by preservice teachers: lessons from the long and winding route

    Directory of Open Access Journals (Sweden)

    Melba Libia Cárdenas

    2011-04-01

    Full Text Available This paper is based on the analysis of the nature of monograph projects undertaken by pre-service teachers at the Universidad Nacional de Colombia. It will examine the main factors that, according to the participants of a case-study, favour or limit the development of those projects. On the basis of our findings, we highlight the conditions associated with the successful fulfilment of what students are required to do in monograph projects.

  15. Observation-based input and dissipation version of WAVEWATCH III

    Science.gov (United States)

    Zieger, Stefan; Babanin, Alexander; Rogers, Erick; Young, Ian

    2013-04-01

    Measurements collected at Lake George, Australia, resulted in new insights on the processes of wind wave interaction and white-capping dissipation and consequently new parameterisations of these source terms. The new nonlinear wind input source term accounts for dependence of the growth increment on wave steepness, for airflow separation which leads to a relative reduction of the growth under extreme wind conditions, and for negative growth rate under adverse winds. The new wave breaking and whitecapping dissipation source function features two separate terms: the inherent breaking term and a cumulative dissipation term due to influences of longer waves on wave breaking of shorter waves. Another novel feature of this dissipation is the threshold in terms of spectral density: below this threshold breaking stops and whitecapping becomes zero. In such conditions dissipation due to wave interaction with water turbulence takes over, which regime is particularly relevant for decaying seas and for swell. This paper describes these source terms implemented in WAVEWATCH III and evaluates the performance against existing source terms in duration-limited simulations and against buoy measurements for windsea-dominated conditions. Results show agreement by means of growth curves and integral parameters in the simulations and hindcast. The paper also introduces wave breaking probability as model output, along with standard wind-wave metrics.

  16. Condition monitoring of a rotor arrangement in particular a wind turbine

    DEFF Research Database (Denmark)

    2017-01-01

    the rotor arrangement rotates, recording corresponding values of azimuth angle and edgewise and flap wise root bending moments for a plurality of rotations of rotor arrangement, transforming by use of e.g. a multi blade coordinate transformation, a Park's transformation or similar transformation...... the recorded edgewise and flap wise root bending moments (q) into a coordinate system rotating with the rotational shaft, thereby obtaining transformed root bending moments (qf). The method further comprising identifying periodicity in each of the transformed root bending moments, determining the condition...... of the rotor arrangement to be faulty, in case the one or more periodicities are identified in the transformed root bending moments....

  17. A remote condition monitoring system for wind-turbine based DG systems

    Science.gov (United States)

    Ma, X.; Wang, G.; Cross, P.; Zhang, X.

    2012-05-01

    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  18. A remote condition monitoring system for wind-turbine based DG systems

    International Nuclear Information System (INIS)

    Ma, X; Wang, G; Cross, P; Zhang, X

    2012-01-01

    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  19. Using Johnson Distribution for Automatic Threshold Setting in Wind Turbine Condition Monitoring System

    DEFF Research Database (Denmark)

    Marhadi, Kun Saptohartyadi; Skrimpas, Georgios Alexandros

    2014-01-01

    not rep- resent the whole operating conditions of a turbine, which re- sults in uncertainty in the parameters of the fitted probabil- ity distribution and the thresholds calculated. In this study Johnson distribution is used to identify shape, location, and scale parameters of distribution that can best...... fit vibration data. This study shows that using Johnson distribution can elim- inate testing or fitting various distributions to the data, and have more direct approach to obtain optimal thresholds. To quantify uncertainty in the thresholds due to limited data, im- plementations with bootstrap method...

  20. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - CFD modelling evaluation - Summary of WindSim CFD modelling procedure and validation

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Cattin, R. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The report describes the development of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. The report deals with the use of computational fluid dynamics and wind simulation modelling techniques and their validation. Recommendations on the use of the results are made.

  1. Life expectancy, adapted technology and cold climate conditions : key issues for wind turbines in Canada; Duree de vie, adaptation technologique et conditions froides : un enjeu majeur pour les eoliennes au Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chaumel, J.L.; Nanta, R. [Quebec Univ., Rimouski, PQ (Canada); Golbeck, P. [Peter Golbeck Consultant, Rimouski, PQ (Canada)

    2007-07-01

    This presentation discussed the service life of wind turbines, particularly those operating in cold climates. A map of Quebec was included to indicate the potential sites for an additional 450 MW of wind energy capacity for northern Quebec, near James Bay. Different types of wind turbines were described in terms of their size and power, including those without transformers. It was noted that a 30 per cent growth in the wind power industry is anticipated annually. However, there is currently a lack of wind turbines. A 2 MW wind turbine costs $3 million and major reinvestment is needed after 10 years of service life due to component wear. It was noted that a gear box lasts less than 15 years and other generator components also require maintenance. The primary reasons for increased risk and cost include equipment failures due to component fatigue, cold weather operation, lack of maintenance and bad design for winter conditions. The components affected by failures include gearboxes, generators, pitch controls, and hydraulics. Since the industry is relatively new, there are no replacement parts available for these components and cranage costs are high. In addition, since Canada's entry into the wind industry is also relatively new, there is a lack of machine testing in Canada as well as a lack of understanding of energy capacity and the effects of cold weather. Overproduction also occurs frequently. tabs., figs.

  2. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study.

    Science.gov (United States)

    Hyks, Jiri; Astrup, Thomas

    2009-08-01

    Leaching of metals and Cl from fresh, naturally aged, and lab-scale aged bottom ashes generated during full-scale incineration experiments with different operational conditions (OC) and waste input (WI) was assessed. Although significant differences in the bulk contents of the generated bottom ashes were observed between the individual experiments, addition of 5.5 wt.% PVC, 11.1 wt.% chromated-copper-arsenate impregnated wood, 14.2 wt.% automotive shredder residue, 1.6 wt.% shoes, and 0.5 wt.% batteries to the normal municipal solid waste received at the incinerator (in six individual experiments) had no significant effect on metal leaching from the bottom ash. Likewise, changes in OC (furnace oxygen level and air distribution) could not be correlated to changes in leaching. The effects on metal leaching from ageing were generally larger than the effects from changes in OC and WI. Ash ageing caused a significant decrease in leaching of Cu, Zn, and Pb while leaching of Sb and particularly Cr increased. For Cl, a clear correlation between the bulk contents and leaching was observed for bottom ash generated in experiments with changes in WI. Comparison of leaching data obtained in this study with leaching from "typical" aged Danish bottom ash revealed no significant differences when the typical variations in leaching data over time and between different Danish incinerators were accounted. Generally, this indicates that metal leaching from bottom ash is not sensitive to limited changes in WI and OC as suggested in this paper, only Cl(-) leaching appeared to be affected.

  3. Palynology of IODP Site U1307 at the Pliocene to Pleistocene transition: sea-surface conditions in the Labrador Sea and pollen input from the Greenland vegetation

    Science.gov (United States)

    Aubry, Aurelie; de Vernal, Anne

    2016-04-01

    We investigate the marine and terrestrial palynological record from marine core sediment collected in the Labrador Sea off southwest Greenland (IODP 1307, 58.5058°N, -46.4005°W) in order to assess on the vegetation over southern Greenland from pollen and spore and reconstruct oceanic condition from dinocysts during the Pliocene to Pleistocene transition (around 2.58Ma), when permanent ice started to developed in the Northern Hemisphere. The study sequence that encompasses from 3.0 to 2.5 Ma is characterized by high species diversity of dinocysts, most of the assemblages being characterized by modern taxa. s. The dominance of Bitectatodinium sp., Operculodinium centrocarpum, Nematosphaeropsis labyrinthus and Brigantedinium sp., suggest cool, low saline environment characterized by stratified surface water mass, not unlike those prevailing presently along the the southeast Canadian margins. However, the overall palynological assemblage contains abundant acritarcha, notably Cymatiosphaera sp. and Lavradosphaera sp., which probably belong to Prasinophytes (green algae) and are often associated with epicontinental marine environments in the fossil marine records. The pollen assemblages are characterizedby high proportion of Pinus sp., which has exceptional dispersal properties often resulting in long distance transport and making it difficult to identify precisely the location of the source vegetation. Nevertheless, the occurrence of Picea sp., , Tsuga sp., Corylus sp., Alnus sp. and Betula sp. in late Pliocene assemblages suggest input from boreal-type forest located in a relatively proximal source, likely the southwest Greenland. In the early Pleistocene, lower pollen concentrations together with higher proportion of herbaceous taxa may indicate that more open tundra-like vegetation established in the source area.

  4. Analysis of the Contribution of Wind Drift Factor to Oil Slick Movement under Strong Tidal Condition: Hebei Spirit Oil Spill Case

    Science.gov (United States)

    Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo

    2014-01-01

    The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Weather System (AWS) were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR) data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area. PMID:24498094

  5. Analysis of the contribution of wind drift factor to oil slick movement under strong tidal condition: Hebei Spirit oil spill case.

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    Full Text Available The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC model and Automatic Weather System (AWS were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area.

  6. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-Saharan Africa.

    Science.gov (United States)

    Vansteelant, W M G; Kekkonen, J; Byholm, P

    2017-05-31

    Contemporary tracking studies reveal that low migratory connectivity between breeding and non-breeding ranges is common in migrant landbirds. It is unclear, however, how internal factors and early-life experiences of individual migrants shape the development of their migration routes and concomitant population-level non-breeding distributions. Stochastic wind conditions and geography may determine whether and where migrants end up by the end of their journey. We tested this hypothesis by satellite-tagging 31 fledgling honey buzzards Pernis apivorus from southern Finland and used a global atmospheric reanalysis model to estimate the wind conditions they encountered on their first outbound migration. Migration routes diverged rapidly upon departure and the birds eventually spread out across 3340 km of longitude. Using linear regression models, we show that the birds' longitudinal speeds were strongly affected by zonal wind speed, and negatively affected by latitudinal wind, with significant but minor differences between individuals. Eventually, 49% of variability in the birds' total longitudinal displacements was accounted for by wind conditions on migration. Some birds circumvented the Baltic Sea via Scandinavia or engaged in unusual downwind movements over the Mediterranean, which also affected the longitude at which these individuals arrived in sub-Saharan Africa. To understand why adult migrants use the migration routes and non-breeding sites they use, we must take into account the way in which wind conditions moulded their very first journeys. Our results present some of the first evidence into the mechanisms through which low migratory connectivity emerges. © 2017 The Authors.

  7. GAROS input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Vollan, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    This report describes the input for the programs GAROS1 and GAROS2, version 5.8 and later, February 1988. The GAROS system, developed by Arne Vollan, Omega GmbH, is used for the analysis of the mechanical and aeroelastic properties for general rotating systems. It has been specially designed to meet the requirements of aeroelastic stability and dynamic response of horizontal axis wind energy converters. Some of the special characteristics are: * The rotor may have one or more blades. * The blades may be rigidly attached to the hub, or they may be fully articulated. * The full elastic properties of the blades, the hub, the machine house and the tower are taken into account. * With the same basic model, a number of different analyses can be performed: Snap-shot analysis, Floquet method, transient response analysis, frequency response analysis etc.

  8. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  9. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  10. Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions.

    Science.gov (United States)

    Hu, Yue; Tu, Xiaotong; Li, Fucai; Meng, Guang

    2018-01-07

    Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults.

  11. Improved Control Strategies for a DFIG-Based Wind-Power Generation System with SGSC under Unbalanced and Distorted Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Yu, Mengting; Hu, Weihao

    2016-01-01

    This paper investigates an improved control strategy for a doubly-fed induction generator (DFIG) based wind-power generation system with series grid-side converter (SGSC) under network unbalance and harmonic grid voltage distortion conditions. The integrated mathematical modeling of the DFIG syst...

  12. Wind Profile, Drag Coefficient and Cross-Section over the Coastal Zone for Quasi-Homogeneous Conditions

    DEFF Research Database (Denmark)

    Geernaert, G. L.; Astrup, P.

    1999-01-01

    Proceedings of the Symposium on the Wind-Driven Air-Sea Interface. Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, Sydney, Australia, 11-15 January 1999.......Proceedings of the Symposium on the Wind-Driven Air-Sea Interface. Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, Sydney, Australia, 11-15 January 1999....

  13. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    Science.gov (United States)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  14. More homogeneous wind conditions under strong climate change decrease the potential for inter-state balancing of electricity in Europe

    Directory of Open Access Journals (Sweden)

    J. Wohland

    2017-11-01

    Full Text Available Limiting anthropogenic climate change requires the fast decarbonization of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5, we find a robust but modest increase (up to 7 % of backup energy in Europe through the end of the 21st century. The absolute increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr−1, reflecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on circulation weather types.

  15. More homogeneous wind conditions under strong climate change decrease the potential for inter-state balancing of electricity in Europe

    Science.gov (United States)

    Wohland, Jan; Reyers, Mark; Weber, Juliane; Witthaut, Dirk

    2017-11-01

    Limiting anthropogenic climate change requires the fast decarbonization of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5), we find a robust but modest increase (up to 7 %) of backup energy in Europe through the end of the 21st century. The absolute increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr-1, reflecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on circulation weather types.

  16. Determination of aerodynamic damping and force coefficients of filleted twin cables in dry conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Mattiello, E.; Eriksen, M. B.; Georgakis, Christos T.

    Moderate amplitude vibrations continue to be reported on the Øresund Bridge cables, although fitted with fillets and dampers. To further investigate the aerodynamics of the bridge’s twin-cable arrangement, 1:2.3 scale passive-dynamic wind tunnel tests of the cables were performed at the DTU....../FORCE Technology Climatic Wind Tunnel facility. The measured aerodynamic damping of the twin-cable arrangement in dry conditions was compared to the values obtained from full-scale monitoring and from an analytical model using static force coefficients. The comparison revealed broad agreement in the investigated...

  17. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  18. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions – a full-scale validation study

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Larsen, Torben J.; Chougule, A.

    2017-01-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine...... the classical Dynamic Wake Meandering model with a fundamental conjecture stating: Atmospheric boundary layer stability affects primary wake meandering dynamics driven by large turbulent scales, whereas wake expansion in the meandering frame of reference is hardly affected. Inclusion of stability (i.e. buoyancy......) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using...

  19. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  20. Comprehensive analysis of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions

    DEFF Research Database (Denmark)

    Alsmadi, Yazan M.; Xu, Longya; Blaabjerg, Frede

    2015-01-01

    ) capability of wind turbines during grid faults is one of the core requirements to ensure stability in the power grid during transients. The doubly-fed induction generators (DFIGs) offer several advantages when utilized in wind turbines, but discussions about their LVRT capabilities are limited. This paper...... presents a comprehensive study of the LVRT of grid-connected DFIG-based wind turbines. It provides a detailed investigation of the transient characteristics and the dynamic behavior of DFIGs during symmetrical and asymmetrical grid voltage sags. A detailed theoretical study supported by computer......Power generation and grid stability have become key issues in the last decade. The high penetration of large capacity wind generation into the electric power grid has led to serious concerns about their influence on the dynamic behavior of power systems. The Low-Voltage Ride-Through (LVRT...

  1. Integrated Monitoring Study (IMS) 1995: Characterization of micrometeorological phenomena mixing and diffusion in low wind speed stable conditions: Study design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Gray, H.A.; Carr, E.L.; Guo, Z. [Systems Applications International, Inc., San Rafael, CA (United States)] [and others

    1996-12-31

    The objective of the current research effort is to improve the characterization and understanding of mixing and dispersion during low wind speed periods. An outcome of the study will be the development of an enhanced modeling treatment of micrometeorological phenomena within the San Joaquin Valley of California, to be applied during stable atmospheric periods characterized by low wind speeds. The first phase of the study consisted of a literature review and assessment of the current understanding of dispersion under low wind speed conditions, including an evaluation of current modeling approaches. In the second phase of the study, recommendations were made for monitoring, data analysis, and modeling approaches that could be employed during stable low wind speed conditions to increase our understanding and fill critical data gaps. Finally, Phase III includes the execution of the measurement program and subsequent data and modeling analyses. This report presents results of Phase I and Phase II, and describes the measurement program that was conducted in Phase III. Data analysis and modeling will be presented in future reports. 24 refs., 3 figs., 4 tabs.

  2. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  3. The intOA Experiment: A Study of Ocean-Atmosphere Interactions Under Moderate to Strong Offshore Winds and Opposing Swell Conditions in the Gulf of Tehuantepec, Mexico

    Science.gov (United States)

    Ocampo-Torres, F. J.; García-Nava, H.; Durazo, R.; Osuna, P.; Díaz Méndez, G. M.; Graber, H. C.

    2011-03-01

    The Gulf of Tehuantepec air-sea interaction experiment ( intOA) took place from February to April 2005, under the Programme for the Study of the Gulf of Tehuantepec (PEGoT, Spanish acronym for Programa para el Estudio del Golfo de Tehuantepec). PEGoT is underway aiming for better knowledge of the effect of strong and persistent offshore winds on coastal waters and their natural resources, as well as performing advanced numerical modelling of the wave and surface current fields. One of the goals of the intOA experiment is to improve our knowledge on air-sea interaction processes with particular emphasis on the effect of surface waves on the momentum flux for the characteristic and unique conditions that occur when strong Tehuano winds blow offshore against the Pacific Ocean long period swell. For the field campaign, an air-sea interaction spar (ASIS) buoy was deployed in the Gulf of Tehuantepec to measure surface waves and the momentum flux between the ocean and the atmosphere. High frequency radar systems (phase array type) were in operation from two coastal sites and three acoustic Doppler current profilers were deployed near-shore. Synthetic aperture radar images were also acquired as part of the remote sensing component of the experiment. The present paper provides the main results on the wave and wind fields, addressing the direct calculation of the momentum flux and the drag coefficient, and gives an overview of the intOA experiment. Although the effect of swell has been described in recent studies, this is the first time for the very specific conditions encountered, such as swell persistently opposing offshore winds and locally generated waves, to show a clear evidence of the influence on the wind stress of the significant steepness of swell waves.

  4. Ice detection and deicing system improves the economics of a wind turbine in the arctic weather conditions

    International Nuclear Information System (INIS)

    Maekinen, J.

    1995-01-01

    The Finnish Lapland is an excellent test area for the wind turbines due to strong winds and heavy icing. Also the need of ice protection is evident, for wind turbines cannot be used in the area at all without such devices which keep the blades free of ice, rime frost or heavy snow. Labco Ice Detection Oy has been working in good cooperation with VTT and Kemijoki Oy to solve this problem technically and economically by developing an ice detector and deicing system. This system detects ice when its thickness is 0,5 mm and melts it so that the blades will stay clean during the ice accretion. The enclosed estimation process indicates that the investment in this system is economically profitable. (author)

  5. Ice detection and deicing system improves the economics of a wind turbine in the arctic weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, J. [Labko Ice Detection Oy (Finland)

    1995-12-31

    The Finnish Lapland is an excellent test area for the wind turbines due to strong winds and heavy icing. Also the need of ice protection is evident, for wind turbines cannot be used in the area at all without such devices which keep the blades free of ice, rime frost or heavy snow. Labco Ice Detection Oy has been working in good cooperation with VTT and Kemijoki Oy to solve this problem technically and economically by developing an ice detector and deicing system. This system detects ice when its thickness is 0,5 mm and melts it so that the blades will stay clean during the ice accretion. The enclosed estimation process indicates that the investment in this system is economically profitable. (author)

  6. A concept of external aerodynamic elements in improving the performance of natural smoke ventilation in wind conditions

    Science.gov (United States)

    Wegrzyński, Wojciech; Krajewski, Grzegorz; Kimbar, Grzegorz

    2018-01-01

    This paper is a proposal of a new device that may be used as a component of natural smoke ventilation systems - an external aerodynamic baffle used to limit the wind effect at the most adverse angle. Natural ventilation is not only affected by the external wind, but also dependent on the angle of wind attack. It has been proven, that at angles between 45° to 60° the performance of such device is the lowest. This is the reason why additional device is proposed - external baffle that could hypothetically increase the performance at chosen angles. The purpose of this paper is to explore this idea by numerical modelling of such external elements on a validated natural ventilator model, with use of ANSYS® Fluent® CFD model.

  7. The Effectiveness of Singing or Playing a Wind Instrument in Improving Respiratory Function in Patients with Long-Term Neurological Conditions: A Systematic Review.

    Science.gov (United States)

    Ang, Kexin; Maddocks, Matthew; Xu, Huiying; Higginson, Irene J

    2017-03-01

    Many long-term neurological conditions adversely affect respiratory function. Singing and playing wind instruments are relatively inexpensive interventions with potential for improving respiratory function; however, synthesis of current evidence is needed to inform research and clinical use of music in respiratory care. To critically appraise, analyze, and synthesize published evidence on the effectiveness of singing or playing a wind instrument to improve respiratory function in people with long-term neurological conditions. Systematic review of published randomized controlled trials and observational studies examining singing or playing wind instruments to improve respiratory function in individuals with long-term neurological conditions. Articles meeting specified inclusion criteria were identified through a search of the Medline, Embase, PsycINFO, Cochrane Library, CINAHL, Web of Science, CAIRSS for Music, WHO International Clinical Trials Registry Platform Search Portal, and AMED databases as early as 1806 through March 2015. Information on study design, clinical populations, interventions, and outcome measures was extracted and summarized using an electronic standardized coding form. Methodological quality was assessed and summarized across studies descriptively. From screening 584 references, 68 full texts were reviewed and five studies included. These concerned 109 participants. The studies were deemed of low quality, due to evidence of bias, in part due to intervention complexity. No adverse effects were reported. Overall, there was a trend toward improved respiratory function, but only one study on Parkinson's disease had significant between-group differences. The positive trend in respiratory function in people with long-term neurological conditions following singing or wind instrument therapy is of interest, and warrants further investigation. © the American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  8. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  9. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50-year wind speed (ten minute averages) under standard conditions, i.e. 10 meter over a homogeneous terrain with the roughness length 0.05 m. The sites are Skjern...

  10. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrainwith the roughness length 0.05 m. The sites...

  11. Wind Turbine Diagnosis under Variable Speed Conditions Using a Single Sensor Based on the Synchrosqueezing Transform Method.

    Science.gov (United States)

    Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin

    2017-05-18

    The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.

  12. Summary of the environmental conditions that change the sound levels in wind turbines; Synthese des conditions environnementales modifiant les niveaux sonores de bruit des eoliennes

    Energy Technology Data Exchange (ETDEWEB)

    Vuillier, G. [Quebec Univ., Rimouski, PQ (Canada). CarFor division d' Audace Technologies; Chaumel, J.L.; Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire de Recherche en Energie Eolienne

    2009-03-15

    This paper discussed the challenge of solving noise problems associated with wind turbines. Wind power is the leading source of renewable energy in the world. According to the World Council on Energy, the total installed capacity for wind energy was 59,322 MW in 2006, and increased to 150,000 MW by 2010. Noise levels, and the preconceived ideas of noise levels produced by the turbines are among the key challenges facing municipalities. Various phenomena that have an influence on the propagation of noise levels were discussed in this paper, such as geometrical divergence, atmospheric absorption, the effect of soil, topography of the soil, and weather effects. Factors that influence the propagation of acoustic waves include changing weather, atmospheric pressure, and nuisances or obstacles. Road noise, bird noise and noise produced by ice on the blades were considered to be negligible. This paper demonstrated that acoustic levels at any one point can be determined by identifying all levels of noises and their characteristics using specialized tools. 12 refs.

  13. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  14. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.

    Science.gov (United States)

    Joshuva, A; Sugumaran, V

    2017-03-01

    Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  16. Offshore Wind Power Data

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Zeni, Lorenzo

    2012-01-01

    Wind power development scenarios are critical when trying to assess the impact of the demonstration at national and European level. The work described in this report had several objectives. The main objective was to prepare and deliver the proper input necessary for assessing the impact of Demo 4...... – Storm management at national and European level. For that, detailed scenarios for offshore wind power development by 2020 and 2030 were required. The aggregation level that is suitable for the analysis to be done is at wind farm level. Therefore, the scenarios for offshore wind power development offer...... details about the wind farms such as: capacity and coordinates. Since the focus is on the impact of storm fronts passage in Northen Europe, the offshore wind power scenarios were estimated only for the countries at North and Baltic Sea. The sources used are public sources, mentioned in the reference list...

  17. Determination of aerodynamic damping and force coefficients of filleted twin cables in dry conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Mattiello, E.; Eriksen, M. B.; Georgakis, Christos T.

    Technology Climatic Wind Tunnel facility. The measured aerodynamic damping of the twin-cable arrangement in dry conditions was compared to the values obtained from full-scale monitoring and from an analytical model using static force coefficients. The comparison revealed broad agreement in the investigated...... Re range, as did the force coefficients obtained from dynamic and static tests.......Moderate amplitude vibrations continue to be reported on the Øresund Bridge cables, although fitted with fillets and dampers. To further investigate the aerodynamics of the bridge’s twin-cable arrangement, 1:2.3 scale passive-dynamic wind tunnel tests of the cables were performed at the DTU/FORCE...

  18. Analysis and Performance Comparison of Different Power Conditioning Systems for SMES-Based Energy Systems in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Francisco J. Rodríguez

    2013-03-01

    Full Text Available Suitability of energy systems based on Superconducting Magnetic Energy Storage (SMES has been widely tested in the field of wind energy, being able to supply power in cases such as low wind speeds or voltage dips, and to store energy when there are surpluses. This article analyzes and compares the performance of three SMES-based systems that differ in the topology of power converter: a two-level Voltage Source Converter (VSC, a three-level VSC and a two-level Current Source Converter (CSC. Their performance has been improved by means of an appropriate modulation strategy. To obtain a high reliability and accuracy, a co-simulation between MATLAB/Simulink® (running the control system and PSIM® (running the power system has been executed.

  19. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    Science.gov (United States)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  20. Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions

    OpenAIRE

    Edrah, Mohamed; Lo, Kwok L.; Anaya-Lara, Olimpo

    2016-01-01

    This study analyses the effect of replacing existing synchronous generators (SGs) equipped with power system stabilisers (PSS) by doubly fed induction generator (DFIG) based wind farms on the damping of power system oscillations in a multi-machine power system. A power system stabiliser was designed to enhance the capability of DFIG to damp power systems oscillations. The validity and effectiveness of the proposed controller are demonstrated on the widely used New England 10-machine 39-bus te...

  1. Spill behaviour of Maui B crude oil (offshore Taranaki, New Zealand) under simulated wind and wave conditions

    International Nuclear Information System (INIS)

    Sulzberger, C.

    2000-01-01

    The objective of this study was to improve the response capabilities of New Zealand to an oil spill by the conduct of experiments designed to identify the behaviour of indigenous crude oil when spilled in seawater. The study aimed to determine the weathering properties and the accuracy of the standard rule that oil travels at 3 per cent of the wind speed. The weathering properties, evaporation rate and the expected velocity of the oil in water were measured for the Maui B crude oil, which boasted a moderate wax and high pour point. This information was considered essential to elaborate accurate Offshore Oil Spill Contingency plans. Two cleanup aids, two chemical dispersants and one organic cleaner were evaluated to determine their suitability for clean up operations. The results showed that the behaviour of the Maui B crude oil was greatly affected by the seasonal temperature variations off the coast of Taranaki, New Zealand. The oil travelled at approximately 3 per cent of the wind velocity in the warm sea temperatures, but travelled at 3.7 per cent of the wind velocity in colder seas. In all cases, the formation of tar balls and entrained water was present. 8 refs., 9 tabs., 3 figs

  2. Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar

    2018-04-01

    Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.

  3. Laminar-Turbulent transition on Wind Turbines

    DEFF Research Database (Denmark)

    Martinez Hernandez, Gabriel Gerardo

    The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...

  4. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  5. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  6. A wind tunnel for measuring volatilization and biomineralization of environmental chemicals from the soil/plant system under field-like conditions

    International Nuclear Information System (INIS)

    Stork, A.; Fuehr, F.

    1994-01-01

    Lysimeters can provide detailed information about the long-term behaviour of pesticides under field-like conditions, exploiting the advantages of radioactive labelled substances. A significant drawback of lysimetry has been the inability to provide complete material balance due to volatile losses of chemicals and their degradates. A wind tunnel, including new analytic methods and application sprayer, has been designed and developed to measure the volatile losses of 14 C-labelled chemicals after application by methods comparable to agricultural practice. The wind-tunnel combines the advantages of laboratory facilities (use of radioisotopes) and field studies (field-like climate) and thus is a link between model chamber experiments in the laboratory and genuine field tests, and permits transfer of data to the field situation. Two wind-tunnel experiments were carried out with the herbicide diflufenican (DFF) and the insecticide parathion methyl (PM). In both experiments, insignificant amounts of 14 CO 2 were released. By the end of the experiment, nearly all of the DFF (96.7%) was in the 0-5 cm soil layer, whereas the majority of PM had volatilized (73.3%). Significant quantities of radioactivity (21.9%) also become fixed in nonextractable plant material following PM application. Results demonstrate that the new system can contribute significantly to detailed understanding of the volatilization and degradation behaviour of environmental chemicals

  7. Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications

    Science.gov (United States)

    Roussos, E.; Jackman, C. M.; Thomsen, M. F.; Kurth, W. S.; Badman, S. V.; Paranicas, C.; Kollmann, P.; Krupp, N.; Bučík, R.; Mitchell, D. G.; Krimigis, S. M.; Hamilton, D. C.; Radioti, A.

    2018-01-01

    The lack of an upstream solar wind monitor poses a major challenge to any study that investigates the influence of the solar wind on the configuration and the dynamics of Saturn's magnetosphere. Here we show how Cassini MIMI/LEMMS observations of Solar Energetic Particle (SEP) and Galactic Cosmic Ray (GCR) transients, that are both linked to energetic processes in the heliosphere such us Interplanetary Coronal Mass Ejections (ICMEs) and Corotating Interaction Regions (CIRs), can be used to trace enhanced solar wind conditions at Saturn's distance. SEP protons can be easily distinguished from magnetospheric ions, particularly at the MeV energy range. Many SEPs are also accompanied by strong GCR Forbush Decreases. GCRs are detectable as a low count-rate noise signal in a large number of LEMMS channels. As SEPs and GCRs can easily penetrate into the outer and middle magnetosphere, they can be monitored continuously, even when Cassini is not situated in the solar wind. A survey of the MIMI/LEMMS dataset between 2004 and 2016 resulted in the identification of 46 SEP events. Most events last more than two weeks and have their lowest occurrence rate around the extended solar minimum between 2008 and 2010, suggesting that they are associated to ICMEs rather than CIRs, which are the main source of activity during the declining phase and the minimum of the solar cycle. We also list of 17 time periods ( > 50 days each) where GCRs show a clear solar periodicity ( ∼ 13 or 26 days). The 13-day period that derives from two CIRs per solar rotation dominates over the 26-day period in only one of the 17 cases catalogued. This interval belongs to the second half of 2008 when expansions of Saturn's electron radiation belts were previously reported to show a similar periodicity. That observation not only links the variability of Saturn's electron belts to solar wind processes, but also indicates that the source of the observed periodicity in GCRs may be local. In this case GCR

  8. Field evaluation of vegetation and noise barriers for mitigation of near-freeway air pollution under variable wind conditions

    Science.gov (United States)

    Lee, Eon S.; Ranasinghe, Dilhara R.; Ahangar, Faraz Enayati; Amini, Seyedmorteza; Mara, Steven; Choi, Wonsik; Paulson, Suzanne; Zhu, Yifang

    2018-02-01

    Traffic-related air pollutants are a significant public health concern, particularly near freeways. Previous studies have suggested either soundwall or vegetation barriers might reduce the near-freeway air pollution. This study aims to investigate the effectiveness of a combination of both soundwall and vegetation barrier for reducing ultrafine particles (UFPs, diameter ≤ 100 nm) and PM2.5 (diameter ≤ 2.5 μm) concentrations. Concurrent data collection was carried out at both upwind and downwind fixed locations approximately 10-15 m away from the edge of two major freeways in California. This study observed that the reduction of UFP and PM2.5 was generally greater with the combination barrier than with either soundwall or vegetation alone. Since there were no non-barrier sites at the study locations, the reductions reported here are all in relative terms. The soundwall barrier was more effective for reducing PM2.5 (25-53%) than UFPs (0-5%), and was most effective (51-53% for PM2.5) when the wind speed ranged between 1 and 2 m/s. Under the same range of wind speed, the vegetation barrier had little effect (0-5%) on reducing PM2.5; but was effective at reducing UFP (up to 50%). For both types of roadside barrier, decreasing wind speed resulted in greater net reduction of UFPs (i.e., total number particle concentrations; inversely proportional). This trend was observed, however, only within specific particle size ranges (i.e., diameter effects of soundwall and vegetation barriers for near-freeway air pollution mitigation.

  9. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  10. Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This research presents a novel method to asses a crack growing/damage event in composite material, in polymer, or in structural adhesive using Fibre Bragg Grating (FBG) sensors embedded in the host material, and its application in to a composite material structure: Wind Turbine Trailing Edge....... A Structure-Material-Sensor Finite Element Method (FEM) model was developed to simulate the Fibre Bragg Grating sensor output response, when embedded in a host material (Composite material, polymer or adhesive), during a crack growing/damage event. This Structure-Material-Sensor model provides a tool...

  11. Impact of Climate Change on Natural Snow Reliability, Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Osman Cenk Demiroglu

    2016-04-01

    Full Text Available Many ski resorts worldwide are going through deteriorating snow cover conditions due to anthropogenic warming trends. As the natural and the artificially supported, i.e., technical, snow reliability of ski resorts diminish, the industry approaches a deadlock. For this reason, impact assessment studies have become vital for understanding vulnerability of ski tourism. This study considers three resorts at one of the rapidly emerging ski destinations, Northeast Turkey, for snow reliability analyses. Initially one global circulation model is dynamically downscaled by using the regional climate model RegCM4.4 for 1971–2000 and 2021–2050 periods along the RCP4.5 greenhouse gas concentration pathway. Next, the projected climate outputs are converted into indicators of natural snow reliability, snowmaking capacity, and wind conditions. The results show an overall decline in the frequencies of naturally snow reliable days and snowmaking capacities between the two periods. Despite the decrease, only the lower altitudes of one ski resort would face the risk of losing natural snow reliability and snowmaking could still compensate for forming the base layer before the critical New Year’s week. On the other hand, adverse high wind conditions improve as to reduce the number of lift closure days at all resorts. Overall, this particular region seems to be relatively resilient against climate change.

  12. Wind conditions on migration influence the annual survival of a neotropical migrant, the western yellow-breasted chat (Icteria virens auricollis).

    Science.gov (United States)

    Huang, Andrew C; Bishop, Christine A; McKibbin, René; Drake, Anna; Green, David J

    2017-08-10

    Long-distance migratory birds in North America have undergone precipitous declines over the past half-century. Although the trend is clear, for many migrating species underpinning the exact causes poses a challenge to conservation due to the numerous stressors that they encounter. Climate conditions during all phases of their annual cycle can have important consequences for their survival. Here, using 15 years of capture-recapture dataset, we determined the effects of various climate factors during the breeding, wintering, and migrating stages on the annual survival of a western yellow-breasted chat (Icteria virens auricollis) population breeding in southwestern Canada. El Niño effects over the entire annual cycle had little influence on the annual apparent survival of yellow-breasted chats. However, we found evidence that wind conditions during migration, specifically average westerly wind speed or the frequency of storm events, had significant adverse effects on adult annual apparent survival. In comparison, precipitation levels on wintering ground had little to no influence on adult annual apparent survival, whereas growing degree days on the breeding ground had moderate but positive effects. In the face of climate change and its predicted impacts on climate processes, understanding the influence of weather conditions on the survival of migrating birds can allow appropriate conservation strategies to be adopted for chats and other declining neotropical migrants.

  13. The difficult wind power

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article presents a brief survey of the conditions for wind power production in Norway and points out that several areas should be well suited. A comparison to Danish climate is made. The wind variations, turbulence problems and regional conditions are discussed

  14. Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions

    Directory of Open Access Journals (Sweden)

    J. Bartl

    2017-02-01

    Full Text Available This is a summary of the results of the fourth blind test workshop that was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at the wind tunnel of the Norwegian University of Science and Technology (NTNU. A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within computational fluid dynamics (CFD were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development with nine rotor diameters downstream at three different turbulent inflow conditions. Aside from a spatially uniform inflow field of very low-turbulence intensity (TI = 0.23 % and high-turbulence intensity (TI = 10.0 %, the turbines are exposed to a grid-generated highly turbulent shear flow (TI = 10.1 %.Five different research groups contributed their predictions using a variety of simulation models, ranging from fully resolved Reynolds-averaged Navier–Stokes (RANS models to large eddy simulations (LESs. For the three inlet conditions, the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. Prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (improved delayed detached eddy simulation model, however

  15. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  16. Impact of charging electric-powered vehicles on the management of power distribution systems at volatile wind energy input; Einfluss gesteuerten Ladens von Elektrofahrzeugen auf die Netzbetriebsfuehrung bei volatiler Windeinspeisung

    Energy Technology Data Exchange (ETDEWEB)

    Agsten, Michael

    2011-10-10

    This work summarizes findings obtained by controlled charging of Electric Vehicles (EVs) regarding volatile wind power generation. Based on the state of the art of the negotiation of the charging process between the EV and the charging point two approaches will be explained. The Wind-2-Vehicle method (W2V) is an example for using controlled EV charging in order to create a renewable supply following demand by optimizing the energy supply quota wind in each charging process. The Local Load Management (LLM) method is an example of using information from distribution grids to limit the charging power of EVs over time. In this work, two case studies are carried out to quantify the controlled/uncontrolled charging of EVs and their impact on electric power systems. The first case study describes charging of fifty EVs by a reduced W2V approach. The charging process has been analyzed from different point of views. Controlled/Uncontrolled charging results in peak demand (of EV fleets), due to synchronized charging. This may result in violation of preassigned operation limits. The utilization of the developed LLM method in the second case study shows that a small reduction of the achievable W2V quality results in an improved charging performance for small as well as large fleets. Therefore applying LLM can avoid violations of operation limits.

  17. Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This research presents a novel method to asses a crack growing/damage event in composite material, in polymer, or in structural adhesive using Fibre Bragg Grating (FBG) sensors embedded in the host material, and its application in to a composite material structure: Wind Turbine Trailing Edge....... A Structure-Material-Sensor Finite Element Method (FEM) model was developed to simulate the Fibre Bragg Grating sensor output response, when embedded in a host material (Composite material, polymer or adhesive), during a crack growing/damage event. This Structure-Material-Sensor model provides a tool...... to analyse the application of this monitoring technique in other locations/structures, by predicting the sensor output and deciding, based on this, the optimal sensor distribution/configuration....

  18. Summary of EFP07 - Methods for determining wind conditions in a complex terrain; Sammenfatning af EFP07 - Metoder til kortlaegning af vindforhold i komplekst terraen

    Energy Technology Data Exchange (ETDEWEB)

    Bechmann, A.; Berg, J.; Courtney, M.S.; Joergensen, Hans E.; Mann, J.; Soerensen, Niels N.

    2010-09-15

    This report describes the work done in the project 'Summary of EFP07 - Methods for determining wind conditions in a complex terrain' granted by the Danish Energy Agency. References to reports published during the project are given. The main purpose of the project has been to investigate micro-scale wind conditions in complex terrain using 'remote-sensing' techniques and CFD computations and validate these using measurements. The work done in the project can be divided into three parts: 1. 'The Bolund Experiment' is a measuring campaign performed on a small hill located near Risoe DTU. The experiment provides data for validating CFD models. 2. 'The blind comparison' is a comparison of more than 50 different micro-scale models and the Bolund measurements. 3. 'The Benakanahalli Experiment' is a large-scale measuring campaign that provides a complex validation case for micro-scale models. (author)

  19. Conditions of call for tenders on the wind power plants; Conditions de l'appel d'offres portant sur des centrales eolienne a terre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The call for tenders conditions concern: the energetic and technical characteristics of the installations as the primary energy, the power; the industrial implementing delay; the implementing sites; the economic and financial conditions; the weighting and the classification principles. (A.L.B.)

  20. Assay for applying super absorbent polymer in a low input corn (Zea mays L. production system aimed to reduce drought stress under Mashhad conditions

    Directory of Open Access Journals (Sweden)

    M. Jahan

    2016-05-01

    Full Text Available In order to investigate the effects of super absorbent polymer application on reduction of drought stress to corn, a split plot arrangement based on randomized complete block design with three replications was conducted at Research Field of Agriculture Faculty of Ferdowsi University of Mashhad during growing season of 2010-11. The main plot treatments were 1 application of 40 kg.ha-1 super absorbent, 2 application of 80 kg.ha-1 super absorbent and 3 no application of super absorbent polymer. Three irrigation intervals (7, 10 and 14 days assigned to sub plots. The results showed that super absorbent application affected plant height (H, and dry matter production (DM as the highest of these traits resulted from level 2 of super absorbent application (140.5 cm, and 144.5 g.m-2, respectively. H, DM, canopy temperature (CT, cob number (N, fresh yield (FY, economic yield (EY and 100-seed weight affected by irrigation intervals. There was no significant difference between 10 and 14 days irrigation interval as H, DM, CT, harvest Index (HI and 100-seed weight, these results could be important concerning to reduce used water to irrigate corn. As experimental treatments did not have any effect on Leaf Area Index (LAI, and HI, it seems the positive effects of treatments revealed due to improved soil water holding capacity, soil physical properties improvement and reduction of drought stress. Interaction between super absorbent and irrigation intervals indicates that by level 2 super absorbent applications there are no significant differences between 14 and 10 days irrigation intervals, considering all traits. The same interaction just as before happened for 7 and 14 days irrigation intervals, except of EY and DM. In the other hand, by increasing application of super absorbent it could be possible to increase corn irrigation intervals from 7 to 14 days in Mashhad conditions without any reduction in yield and yield components. In general, these results

  1. Energy input and dissipation in a temperate lake during the spring transition

    Science.gov (United States)

    Woolway, R. Iestyn; Simpson, John H.

    2017-08-01

    ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer ( Eff), defined as the ratio of the rate of working in near-surface waters ( RW) to that above the lake surface ( P 10), increased from ˜0.0013 in vertically homogenous conditions to ˜0.0064 in the first 40 days of the stratified regime. A maximum value of Eff˜0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ˜15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ˜21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.

  2. Oxygen and hydrogen ion abundance in the near-Earth magnetosphere: Statistical results on the response to the geomagnetic and solar wind activity conditions

    Science.gov (United States)

    Kronberg, E. A.; Haaland, S. E.; Daly, P. W.; Grigorenko, E. E.; Kistler, L. M.; FräNz, M.; Dandouras, I.

    2012-12-01

    The composition of ions plays a crucial role for the fundamental plasma properties in the terrestrial magnetosphere. We investigate the oxygen-to-hydrogen ratio in the near-Earth magnetosphere from -10 RE magnetic field changes. They are best correlated with the solar wind dynamic pressure and density, which is an expected effect of the magnetospheric compression; (2) ˜10 keV O+ ion intensities are more strongly affected during disturbed phase of a geomagnetic storm or substorm than >274 keV O+ ion intensities, relative to the corresponding hydrogen intensities; (3) In contrast to ˜10 keV ions, the >274 keV O+ions show the strongest acceleration during growth phase and not during the expansion phase itself. This suggests a connection between the energy input to the magnetosphere and the effective energization of energetic ions during growth phase; (4) The ratio between quiet and disturbed times for the intensities of ion ionospheric outflow is similar to those observed in the near-Earth magnetosphere at >274 keV. Therefore, the increase of the energetic ion intensity during disturbed time is likely due to the intensification and the effective acceleration of the ionospheric source. In conclusion, the energization process in the near-Earth magnetosphere is mass dependent and it is more effective for the heavier ions.

  3. Wind turbine noise modeling : a comparison of modeling methods

    International Nuclear Information System (INIS)

    Wang, L.; Strasser, A.

    2009-01-01

    All wind turbine arrays must undergo a noise impact assessment. DataKustik GmbH developed the Computer Aided Noise Abatement (Cadna/A) modeling software for calculating noise propagation to meet accepted protocols and international standards such as CONCAWE and ISO 9613 standards. The developer of Cadna/A, recommended the following 3 models for simulating wind turbine noise. These include a disk of point sources; a ring of point sources located at the tip of each blade; and a point source located at the top of the wind turbine tower hub. This paper presented an analytical comparison of the 3 models used for a typical wind turbine with a hub tower containing 3 propeller blades, a drive-train and top-mounted generator, as well as a representative wind farm, using Cadna/A. AUC, ISO and IEC criteria requirements for the meteorological input with Cadna/A for wind farm noise were also discussed. The noise predicting modelling approach was as follows: the simplest model, positioning a single point source at the top of the hub, can be used to predict sound levels for a typical wind turbine if receptors are located 250 m from the hub; a-weighted sound power levels of a wind turbine at cut-in and cut-off wind speed should be used in the models; 20 by 20 or 50 by 50 meter terrain parameters are suitable for large wind farm modeling; and ISO 9613-2 methods are recommended to predict wind farm noise with various metrological inputs based on local conditions. The study showed that the predicted sound level differences of the 3 wind turbine models using Cadna/A are less than 0.2 dB at receptors located greater than 250 m from the wind turbine hub, which fall within the accuracy range of the calculation method. All 3 models of wind turbine noise meet ISO9613-2 standards for noise prediction using Cadna/A. However, the single point source model was found to be the most efficient in terms of modeling run-time among the 3 models. 7 refs., 3 tabs., 15 figs.

  4. Wind turbine wakes; power deficit in clusters and wind farms

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca

    2012-01-01

    The purpose of this presentation is to present recent power deficit analysis based on wind farm measurements. The power deficit is used to validate wind farm prediction models for different inflow conditions......The purpose of this presentation is to present recent power deficit analysis based on wind farm measurements. The power deficit is used to validate wind farm prediction models for different inflow conditions...

  5. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  6. Trace elements and radioactivity in lunar rocks: implications for meteorite infall, solar-wind flux, and formation conditions of moon.

    Science.gov (United States)

    Keays, R R; Ganapathy, R; Laul, J C; Anders, E; Herzog, G F; Jeffery, P M

    1970-01-30

    Lunar soil and type C breccias are enriched 3-to 100-fold in Ir, Au, Zn, Cd, Ag, Br, Bi, and Tl, relative to type A, B rocks. Smaller enrichments were found for Co, Cu, Ga, Pd, Rb, and Cs. The solar wind at present intensity can account for only 3 percent of this enrichment; an upper limit to the average proton flux during the last 4.5 x 109 years thus is 8 x 10(9) cm(-2) yr(-1). The remaining enrichment seems to be due to a 1.5 to 2 percent admixture of carbonaceous-chondritelike material, corresponding to an average influx rate of meteoritic and cometary matter of 2.9 x 10(-9) g cm(-2) yr(-1) at Tranquility Base. This is about one-quarter the terrestrial rate. Type A, B rocks are depleted 10-to 100-fold in Ag, Au, Zn, Cd, In, Tl, and Bi, relative to terrestrial basalts. This suggests loss by high-temperature volatilization, before or after accretion of the moon. Positron activities due mainly to (22)Na and (26)Al range from 90 to 220 beta(+) min(-1) kg(-1) in five small rocks or fragments (9 to 29 g). The higher activities presumably indicate surface locations. Th and U contents generally agree with those found by the preliminary examination team.

  7. An atmospheric dispersion model for linear sources in calm wind, stable conditions; Un modello di dispersione atmosferica per sorgenti lineari in condizioni di vento debole

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, M. C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Buratti, D. [Rome Univ. La Sapienza, Rome (Italy). Facolta' di Scienze Statistiche; Metallo, M. C.; Poli, A.A. [ESA s.a.s., Bracciano, RM (Italy)

    1999-07-01

    In this report a dispersion model is proposed that provides an estimate of concentration of gaseous pollutants emitted by an highway, or in general by a line source, in presence of low wind speed. This aim was pursued because available models have not a satisfactory behaviour in such conditions, which is critical for dispersion of gaseous pollutants. This lack is due to difficulty of simulating dispersion turbulent component which is determined by fluctuation of wind speed and wind direction, and in presence of calm conditions it assumes values comparable with transport component. The proposed model overcomes this difficulty, as it is shown by sensitivity analysis and comparison with experimental data. The capability of simulating dispersion eve in critical conditions, like the presence of low level inversion, and the absence of source geometrical approximations make the model a tool that, properly used, may contribute to the efficient planning and management of environmental resources. [Italian] In questo rapporto viene proposto un modello per la stima delle concentrazioni di inquinanti aeriformi emessi da un'arteria stradale, o in generale da una sorgente lineare, in presenza di vento debole. Questo scopo e' stato perseguito in quanto in questa condizione, nonostante la dispersione degli inquinanti risulti fortemente problematica, i modelli disponibili in letteratura non hanno un comportamento soddisfacente. Questa mancanca e' attribuibile alla difficolta' di simulare la componente turbolenta della dispersione, dovuta alla fluttuazione della direzione e della velocita' del vento che, in presenza di vento debole, assume valori confrontabili alla componente di trasporto. Il modello qui di seguito proposto supera questa difficolta', come dimostrano l'analisi di sensibilita' e il confronto con un caso reale; la capacita' di simulare la dispersione anche in condizioni fisicamente critiche quali la presenza di inversione a

  8. Input-output supervisor

    International Nuclear Information System (INIS)

    Dupuy, R.

    1970-01-01

    The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr

  9. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  10. Control of a DFIG-based wind energy conversion system operating under harmonically distorted unbalanced grid voltage along with nonsinusoidal rotor injection conditions

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel control scheme for DFIG-based systems operating under three abnormal conditions. • Exact harmonic analysis of a DFIG operating under three abnormal conditions. • Implementation of the proposed hybrid controllers in the (dq) + and rotor (α r β r ) reference frames. - Abstract: In this study, novel hybrid proportional-integral-harmonic resonant (PI-R) controllers implemented in the both (dq) + and rotor (α r β r ) reference frames are presented to control a doubly fed induction generator (DFIG)-based wind power generation system operating simultaneously under the three conditions which are nonsinusoidal rotor voltage injection, harmonically distorted grid voltage, and unbalanced grid voltage. The contribution of this work is to present a novel control scheme implemented in the both (dq) + and rotor (α r β r ) reference frames by considering all the three mentioned conditions (no one or two of them). It will be shown that the proposed control scheme keeps the DFIG in an acceptable operation margin and furthermore, it eliminates all harmonics and pulsations components from the stator and the rotor circuits when the DFIG operates under harmonically distorted unbalanced grid voltage along with quasi-sine rotor injection conditions. The proposed control scheme is simulated in MATLAB/Simulink and simulated results are presented to validate the theoretical results. Although this work is carried out under the three mentioned conditions and other related works have been reported under only one condition, comparison between the results of this work and other works is performed to prove the excellent performances of the proposed control scheme

  11. Enhanced Control of a DFIG-Based Wind-Power Generation System With Series Grid-Side Converter Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Li, Hui; Chen, Zhe

    2013-01-01

    This paper presents an enhanced control method for a doubly fed induction generator (DFIG)-based wind-power generation system with series grid-side converter (SGSC) under unbalanced grid voltage conditions. The behaviors of the DFIG system with SGSC during network unbalance are described....... By injecting a series control voltage generated from the SGSC to balance the stator voltage, the adverse effects of voltage unbalance upon the DFIG, such as stator and rotor current unbalances, electromagnetic torque, and power pulsations, can be removed, and then the conventional vector control strategy...... to the grid. Furthermore, a precise current reference generation strategy for the PGSC has been proposed for the PGSC to further improve the operation performance of the whole system. Finally, the proposed coordinated control strategy for the DFIG system with SGSC has been validated by the simulation results...

  12. Performance Improvement of DFIG Wind Turbine Using Series Grid-Side Converter under Unbalanced Grid Voltage and Voltage Sag Conditions

    DEFF Research Database (Denmark)

    Shokri, Yunes; Ebrahimzadeh, Esmaeil; Lesani, Hamid

    2014-01-01

    Under unbalanced grid voltage conditions, the doubly fed induction generator (DFIG) stator voltage, in addition to positive sequence component has negative sequence component. The negative sequence component causes oscillations in the output power, electromagnetic torque and DC link voltage...... at twice the supply frequency. This paper presents a modified configuration of DFIG with series grid-side converter (SGSC) and its control system, which is suitable not only for unbalanced grid voltage conditions, but also for small voltage sags. The proposed configuration improves all the DFIG signals....... Matlab/Simulink is used for simulation of a 1.5-MW DFIG and the results demonstrate the good efficiency of the proposed scheme....

  13. A modelling exercise to examine variations of NOx concentrations on adjacent footpaths in a street canyon: The importance of accounting for wind conditions and fleet composition.

    Science.gov (United States)

    Gallagher, J

    2016-04-15

    Personal measurement studies and modelling investigations are used to examine pollutant exposure for pedestrians in the urban environment: each presenting various strengths and weaknesses in relation to labour and equipment costs, a sufficient sampling period and the accuracy of results. This modelling exercise considers the potential benefits of modelling results over personal measurement studies and aims to demonstrate how variations in fleet composition affects exposure results (presented as mean concentrations along the centre of both footpaths) in different traffic scenarios. A model of Pearse Street in Dublin, Ireland was developed by combining a computational fluid dynamic (CFD) model and a semi-empirical equation to simulate pollutant dispersion in the street. Using local NOx concentrations, traffic and meteorological data from a two-week period in 2011, the model were validated and a good fit was presented. To explore the long-term variations in personal exposure due to variations in fleet composition, synthesised traffic data was used to compare short-term personal exposure data (over a two-week period) with the results for an extended one-year period. Personal exposure during the two-week period underestimated the one-year results by between 8% and 65% on adjacent footpaths. The findings demonstrate the potential for relative differences in pedestrian exposure to exist between the north and south footpaths due to changing wind conditions in both peak and off-peak traffic scenarios. This modelling approach may help overcome potential under- or over-estimations of concentrations in personal measurement studies on the footpaths. Further research aims to measure pollutant concentrations on adjacent footpaths in different traffic and wind conditions and to develop a simpler modelling system to identify pollutant hotspots on our city footpaths so that urban planners can implement improvement strategies to improve urban air quality. Copyright © 2016 Elsevier B

  14. Report on a wind power development field test project (detailed wind condition investigation) at the Masari Kappu Tokyu Golf Club; Masari Kappu Tokyu Golf Club ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This paper describes observation on wind characteristics at the the Masari Kappu Tokyu Golf Club in Hokkaido. The exponent for vertical wind velocity distribution was found distributed between 2.6 and 7.1, with the average of 4.8. No problematical element can be found in wind power development. The disturbance intensity was in a medium scale at 0.24 at wind velocity of 2 m/s, satisfying the evaluation criterion of 0.30 or less applied by NEDO. The total emergence rate on the prevailing wind axis (SE-NW) was 68%, meeting the evaluation criterion of 60% or higher. Wind energy density is concentrated on the prevailing wind axis, which is suitable for wind power development. The annual average wind velocity was 4.2 m/s, not meeting the NEDO's evaluation criterion of 5.8 m/s or higher. The maximum momentary wind velocity was 24 m/s, meeting the evaluation criterion of 60 m/s or lower. The annual average for the wind energy density was 107 W/m{sup 2}, not meeting the evaluation criterion of 215 W/m{sup 2} or more. The annual average operation rates were 53, 56 and 71% (for 150, 300 and 750 kW class, respectively), meeting the evaluation criterion of 45% or more. The annual facility utilization rates were 14.0, 17.2 and 16.9% respectively, whereas the 300-kW class has barely passed the evaluation criterion, while others have not passed the criterion. (NEDO)

  15. Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2013-11-01

    Full Text Available Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD with artificial neural networks (ANN to forecast the short-term (1 h ahead wind speed/power. First, significant parameters for training the ANN are identified using the correlation coefficients. These significant parameters serve as inputs of the ANN. Owing to the volatile and intermittent wind speed/power, the historical time series of wind speed/power is decomposed into several intrinsic mode functions (IMFs and a residual function through EMD. Each IMF becomes less volatile and therefore increases the accuracy of the neural network. The final forecasting results are achieved by aggregating all individual forecasting results from all IMFs and their corresponding residual functions. Real data related to the wind speed and wind power measured at a wind-turbine generator in Taiwan are used for simulation. The wind speed forecasting and wind power forecasting for the four seasons are studied. Comparative studies between the proposed method and traditional methods (i.e., artificial neural network without EMD, autoregressive integrated moving average (ARIMA, and persistence method are also introduced.

  16. Safe use of mine winding ropes, volume 4: studies towards a code of practice for rope condition assessment.

    CSIR Research Space (South Africa)

    Borrello, M

    1996-06-01

    Full Text Available The aim of this investigation was the verification of the code of Practice for Rope Condition Assessment. Ropes were meant to be discarded according to the discard criteria as outlined in the code and then tested by the CSIR. The results...

  17. SSYST-2 input description

    International Nuclear Information System (INIS)

    Meyder, R.

    1980-11-01

    The codes system SSYST-2 is designed to analyse the thermal and mechanical behaviour of a fuel rod during a LOCA. The report contains a short introduction into the SSYST structure, a complete input-list for all modules and several tested input-list for a LOCA-analysis. (orig.) [de

  18. MDS MIC Catalog Inputs

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  19. Summertime wind climate in Yerevan: valley wind systems

    Science.gov (United States)

    Gevorgyan, Artur

    2017-03-01

    1992-2014 wind climatology analysis in Yerevan is presented with particular focus given to the summertime thermally induced valley wind systems. Persistence high winds are observed in Yerevan during July-August months when the study region is strongly affected by a heat-driven plain-plateau circulation. The local valley winds arrive in Yerevan in the evening hours, generally, from 1500 to 1800 UTC, leading to rapid enhancement of wind speeds and dramatic changes in wind direction. Valley-winds significantly impact the local climate of Yerevan, which is a densely populated city. These winds moderate evening temperatures after hot and dry weather conditions observed during summertime afternoons. On the other hand, valley winds result in significantly higher nocturnal temperatures and more frequent occurrence of warm nights (tn90p) in Yerevan due to stronger turbulent mixing of boundary layer preventing strong surface cooling and temperature drop in nighttime and morning hours. The applied WRF-ARW limited area model is able to simulate the key features of the observed spatial pattern of surface winds in Armenia associated with significant terrain channeling, wind curls, etc. By contrast, ECMWF EPS global model fails to capture mesoscale and local wind systems over Armenia. However, the results of statistical verification of surface winds in Yerevan showed that substantial biases are present in WRF 18-h wind forecasts, as well as, the temporal variability of observed surface winds is not reproduced adequately in WRF-ARW model.

  20. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    ), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide......): assuming geostrophic balance, all the wind-velocity data are transformed to friction velocity u(*) and direction at standard conditions by means of the geostrophic drag law for neutral stratification. The basic wind velocity in 30 degrees sectors are obtained through ranking of the largest values...... of the friction velocity pressure pu(*)(2)/2 taken once every two months. The main conclusion is that the basic wind velocity is significantly larger at the west coast of Jutland (25 +/- 1 m/s) than at any of the other sites (22 +/- 1 m/s). These results are in agreement with those obtained by Jensen and Franck...

  1. A robust predictive current controller for healthy and open-circuit faulty conditions of five-phase BLDC drives applicable for wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Salehi Arashloo, Ramin; Salehifar, Mehdi; Romeral, Luis; Sala, Vicent

    2015-01-01

    Highlights: • Model predictive deadbeat control of generator stator phase currents. • Fault tolerant control of five-phase BLDC generator. • Control of stator phase currents under normal and open-circuit faulty conditions. • MATLAB simulation and experimental verification of proposed control method. • Verification of robustness and fast respond of proposed controlling method. - Abstract: Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive

  2. OffWindSolver: Wind farm design tool based on actuator line/actuator disk concept in OpenFoam architecture

    Directory of Open Access Journals (Sweden)

    Panjwani Balram

    2014-01-01

    Full Text Available Wind energy is a good alternative to meet the energy requirements in some parts of the world; however the efficiency of wind farm depends on the optimized location of the wind turbines. Therefore a software tool that is capable of predicting the in-situ performance of multiple turbine installations in different operating conditions with reliable accuracy is needed. In present study wind farm layout design tool OffWindSolver is developed within the OpenFoam architecture. Unsteady PisoFoam solver is extended to account for wind turbines, where each turbine is modeled as a sink term in the momentum equation. Turbine modeling is based on actuator line concepts derived from SOWFA code, where each blade of the turbine is represented as a line. The loading on each line/blade of the turbine is estimated using the Blade Element Method (BEM. The inputs for the solver are tabulated airfoil aerodynamic data, dimension and height of the wind turbines, wind magnitude and direction. OffWindSolver is validated for a real wind farm – Lillgrund offshore facility in Sweden/Denmark operated by Vattenfall Vindkraft AB. Because of the scale of the computation, we only examine the effect of wind from one direction at one speed. In the absence of time dependent Marine Atmospheric Boundary Layer (MABL, a log wind profile with surface roughness of 0.04 is used at the inlet. The simulated power production of each turbine is compared to the field data and large-eddy simulation. The overall power of the wind farm is well predicted. The simulation shows the significant decreases of the power for those turbines that were in the wake.

  3. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    DEFF Research Database (Denmark)

    Chang, Rui; Zhu, Rong; Badger, Merete

    2014-01-01

    ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard...... deviation (SD) of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89) but a large standard deviation (SD = 42.3°) compared to in situ observations. The Weibull probability...

  4. Evolution of Super Star Cluster Winds with Strong Cooling

    Science.gov (United States)

    Wünsch, Richard; Silich, Sergiy; Palouš, Jan; Tenorio-Tagle, Guillermo; Muñoz-Tuñón, Casiana

    2011-10-01

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  5. Pricing offshore wind power

    International Nuclear Information System (INIS)

    Levitt, Andrew C.; Kempton, Willett; Smith, Aaron P.; Musial, Walt; Firestone, Jeremy

    2011-01-01

    Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available. - Highlights: → We calculate the Breakeven Price (BP) required to deploy offshore wind plants. → We determine values for cost drivers and review incentives structures in the US. → We develop 3 scenarios using today's technology but varying in industry experience. → BP differs widely by Cost Scenario; relative policy effectiveness varies by stage. → The low-range BP is below regional market values in the Northeast United States.

  6. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan [Clemson Univ., SC (United States); Fox, Curtiss [Clemson Univ., SC (United States); Hadidi, Ramtin [Clemson Univ., SC (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallen, Robb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lambert, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-26

    Historically, wind turbine prototypes were tested in the field, which was--and continues to be--a slow and expensive process. As a result, wind turbine dynamometer facilities were developed to provide a more cost-effective alternative to field testing. New turbine designs were tested and the design models were validated using dynamometers to drive the turbines in a controlled environment. Over the years, both wind turbine dynamometer testing and computer technology have matured and improved, and the two are now being joined to provide hardware-in-the-loop (HIL) testing. This type of testing uses a computer to simulate the items that are missing from a dynamometer test, such as grid stiffness, voltage, frequency, rotor, and hub. Furthermore, wind input and changing electric grid conditions can now be simulated in real time. This recent advance has greatly increased the utility of dynamometer testing for the development of wind turbine systems.

  7. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  8. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  9. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  10. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A.K.; Basu, S.K.; Kumar, R.; Sarkar, A.

    NCMRWF (National Centre for Medium Range Weather Forecast) winds assimilated with MSMR (Multi-channel Scanning Microwave Radiometer) winds are used as input to MIKE21 Offshore Spectral Wave model (OSW) which takes into account wind induced wave...

  11. PLEXOS Input Data Generator

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-01

    The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.

  12. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  13. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  14. Performance assessment of retrospective meteorological inputs for use in air quality modeling during TexAQS 2006

    Science.gov (United States)

    Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo

    2012-07-01

    To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.

  15. Effect of Low-Input Management on Pest Damage to Rice ( Oryza ...

    African Journals Online (AJOL)

    ... high-input management conditions and infection levels by diseases were also not significantly different under low-input and high-input conditions. Therefore low-input cannot be said to aggravate pest infestation or disease infection in rice. Keywords: Low-input, High-input, management, diseases, insect pests and rodents ...

  16. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  17. Effects of surface roughness and cross-sectional distortion on the wind-induced response of bridge cables in dry conditions

    DEFF Research Database (Denmark)

    Matteoni, G.; Georgakis, Christos T.

    2015-01-01

    by local alterations of their inherent surface roughness and shape. Small deviations from ideal circularity result in significant changes in the static drag and lift coefficients with Reynolds number. The present study focuses on the wind-induced response of a full-scale yawed bridge cable section model......, for varying Reynolds numbers and wind angles-of-attack. Using passive-dynamic wind tunnel tests, it is shown that the in-plane aerodynamic damping of a bridge cable section, and the overall dynamic response, is strongly affected by changes in the wind angle-of-attack. Using the drag and lift coefficients...

  18. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu

    1996-01-01

    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  19. Simulating coastal effects on an offshore wind farm

    DEFF Research Database (Denmark)

    van der Laan, Paul; Pena Diaz, Alfredo; Volker, Patrick

    Wind turbine wakes can cause energy losses in wind farms1 and their effect needs to be modeled in order to design energy efficient wind farm layouts. Wake losses in offshore wind farms are often modeled by assuming offshore conditions for all wind directions; however, many offshore wind farms...

  20. The advanced LIGO input optics.

    Science.gov (United States)

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  1. The advanced LIGO input optics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Chris L., E-mail: cmueller@phys.ufl.edu; Arain, Muzammil A.; Ciani, Giacomo; Feldbaum, David; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Martin, Rodica M.; Reitze, David H.; Tanner, David B.; Williams, Luke F.; Mueller, Guido [University of Florida, Gainesville, Florida 32611 (United States); DeRosa, Ryan T.; Effler, Anamaria; Kokeyama, Keiko [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Frolov, Valery V.; Mullavey, Adam [LIGO Livingston Observatory, Livingston, Louisiana 70754 (United States); Kawabe, Keita; Vorvick, Cheryl [LIGO Hanford Observatory, Richland, Washington 99352 (United States); King, Eleanor J. [University of Adelaide, Adelaide, SA 5005 (Australia); and others

    2016-01-15

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  2. Second wind in the offshore wind industry

    International Nuclear Information System (INIS)

    Philippe, Edouard; Neyme, Eric; Deboos, Christophe; Villageois, Jean-Remy; Gouverneur, Philippe; Gerard, Bernard; Fournier, Eric; Petrus, Raymond; Lemarquis, David; Dener, Marc; Bivaud, Jean-Pierre; Lemaire, Etienne; Nielsen, Steffen; Lafon, Xavier; Lagandre, Pierre; Nadai, Alain; Pinot de Villechenon, Edouard; Westhues, Markus; Herpers, Frederick; Bisiaux, Christophe; Sperlich, Miriam; Bales, Vincent; Vandenbroeck, Jan; His, Stephane; Derrey, Thierry; Barakat, Georges; Dakyo, Brayima; Carme, Laurent; Petit, Frederic; Ytournel, Sophie; Westhues, Markus; Diller, Armin; Premont, Antoine de; Ruer, Jacques; Lanoe, Frederic; Declercq, Jan; Holmager, Morten; Fidelin, Daniel; Guillet, Jerome; Dudziak, Gregory; Lapierre, Anne; Couturier, Ludovic; Audineau, Jean-Pierre; Rouaix, Eric; De Roeck, Yann-Herve; Quesnel, Louis; Duguet, Benjamin

    2011-06-01

    After several keynote addresses, this publication contains contributions and Power Point presentations proposed during this conference on the development of offshore wind energy. The successive sessions addressed the following issues: the offshore mass production of electricity (examples of Denmark and Belgium, laying and protecting offshore cables), the space, economic and environmental planning (the Danish experience, the role of the Coastal area integrated management, importance of the public debate, so on), the logistics of port infrastructures (simulation tools, example of Bremerhaven, issues related to project management), innovation at the core of industrial strategies (high power wind turbines, the 6 MW Alstom turbine, chain value and innovation in offshore wind energy, the Vertiwing innovating project of a floating wind turbine, a bench test in Charleston, foundations, gravity base structures, the British experience, the Danish experience), the economic and organisational conditions for development, the validation and certification of technologies

  3. Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.

    2003-12-01

    The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data represent the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.

  4. On the spatial and temporal resolution of land cover products for applied use in wind resource mapping

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Dellwik, Ebba

    as input for modelling the wind conditions over a Danish near-coastal region. The flow model results were compared to alternative use of USGS land cover. Significant variations in the wind speed were found between the two atmospheric flow model results. Furthermore the wind speed from the flow model...... improvement of flow model inputs is to investigate in further detail applied use of satellite maps in forested areas. 75% of new land-based wind farms are planned in or near forests in Europe. In forested areas the near surface atmospheric flow is more challenging to calculate than in regions with low...... vegetation because the tall vegetation to a high degree influences the atmospheric flow. Also in many forests the variation in forest plant structure is high. The forest structure depends on the tree height, the tree density, the existence of clearings, the types of leafs and branches and their structure. So...

  5. Estimation of wind characteristics at potential wind energy conversion sites

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

  6. E region neutral winds in the postmidnight diffuse aurora during the atmospheric response in aurora 1 rocket campaign

    International Nuclear Information System (INIS)

    Brinkman, D.G.; Walterscheid, R.L.; Lyons, L.R.

    1995-01-01

    Measured E region neutral winds from the Atmospheric Response in Aurora (ARIA 1) rocket campaign are compared with winds predicted by a high-resolution nonhydrostatic dynamical thermosphere model. The ARIA 1 rockets were launched into the postmidnight diffuse aurora during the recovery phase of a substorm. Simulations have shown that electrodynamical coupling between the auroral ionosphere and the thermosphere was expected to be strong during active diffuse auroral conditions. This is the first time that simulations using the time history of detailed specifications of the magnitude and latitudinal variation of the auroral forcing based on measurements have been compared to simultaneous wind measurements. Model inputs included electron densities derived from ground-based airglow measurements, precipitating electron fluxes measured by the rocket, electron densities measured on the rocket, electric fields derived from magnetometer and satellite ion drift measurements, and large-scale background winds from a thermospheric general circulation model. Our model predicted a strong jet of eastward winds at E region heights. A comparison between model predicted and observed winds showed modest agreement. Above 135 km the model predicted zonal winds with the correct sense, the correct profile shape, and the correct altitude of the peak wind. However, it overpredicted the magnitude of the eastward winds by more than a factor or 2. For the meridional winds the model predicted the general sense of the winds but was unable to predict the structure or strength of the winds seen in the observations. Uncertainties in the magnitude and latitudinal structure of the electric field and in the magnitude of the background winds are the most likely sources of error contributing to the differences between model and observed winds. Between 110 and 135 km the agreement between the model and observations was poor because of a large unmodeled jetlike feature in the observed winds

  7. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. High-latitude circulation and interplanetary magnetic field dependence

    DEFF Research Database (Denmark)

    Emmert, J.T.; Hernandez, G.; Jarvis, M.J.

    2006-01-01

    We analyze upper thermospheric (similar to 250 km) nighttime horizontal neutral wind patterns, during geomagnetically quiet (Kp <3) conditions, over the following locations: South Pole (90 degrees S), Halley (76 degrees S, 27 degrees W), Millstone Hill (43 degrees N, 72 degrees W), Sondre Stromfj...

  8. Mechanism of air-sea momentum flux from low to high winds

    Science.gov (United States)

    Zhao, Dongliang

    2017-04-01

    In the condition of wind speed less than 20 m/s, many studies have shown that drag coefficient roughly increases linearly with wind speed, which is usually extrapolated to high winds in practice. Since the pioneer work of Powell et al. (2003), both field and laboratory studies have indicated that the drag coefficient begins to decrease or saturate when wind speed is greater than a critical value such as 30 m/s. All the reduction mechanisms proposed up to now are related to the effect of sea spray induced by wave breaking in high winds. This study tries to propose another mechanism that is directly related to wave breaking. Based on the wind-wave growth relations, it is found that drag coefficient increases simultaneously with wave age and wave steepness. The reduction of drag coefficient with wave age that has been shown by previous studies mainly reflect the wind effect because the phase speeds of waves vary in a very narrow range, and can be roughly regarded as constant. It is indicated that two parameters including wave age and wave steepness together control the momentum transfer through air-sea interface. The wave age and wave steepness represent the abilities of wind input and wave receiving energy, respectively. In general, the two parameters are well correlated and can be replaced one another in the condition of low and moderate winds, in which the wave steepness decreases with the increasing wave age. In the condition of high winds, the wave steepness reaches to its upper threshold due to wave breaking, in which wave steepness cannot increase with the decreasing of wave age. At the same time, wave ages become very small, thus drag coefficients begin to decrease with wind speed. It is further suggested that there are two different upper thresholds of wave steepness for laboratory and field waves, which can be applied to explain the reduction of drag coefficient either in laboratory or in field

  9. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  10. Effect of second-order and fully nonlinear wave kinematics on a tension-leg-platform wind turbine in extreme wave conditions

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Borg, Michael; Robertson, Amy

    2017-01-01

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equa...

  11. Serial Input Output

    Energy Technology Data Exchange (ETDEWEB)

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  12. Power Flow Management in a High Penetration Wind-Diesel Hybrid Power System with Short-Term Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drouilhet, S. M.

    1999-07-29

    This paper is intended as an introduction to some of the control challenges faced by developers of high penetration wind-diesel systems, with a focus on the management of power flows in order to achieve precise regulation of frequency and voltage in the face of rapidly varying wind power input and load conditions. The control algorithms presented herein are being implemented in the National Renewable Energy Laboratory (NREL) high penetration wind-diesel system controller that will be installed in the village of Wales, Alaska, in early 2000.

  13. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  14. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  15. THE WIND AS AN IMPORTANT ASPECT AND ITS IMPACT ON POPULATION TRENDS AND DEMOGRAPHIC CONDITIONS IN TRIPOLITANIA DURING LATE PLEISTOCENE/EARLY HOLOCENE

    Directory of Open Access Journals (Sweden)

    Amran Khalifa

    2016-12-01

    Full Text Available The vast majority of Tripolitania sites are open surface sites, but after the introduction of paleoclimatology in archaeological research during 1980’s, even with the insufficient amount of research, we were given a new vision of the archaeology of the region in regards to technology, adaptation, and behaviourism. The archaeological study of the region has developed within its own right, producing individual characteristics, including the sub-regional parts of Northern Africa. From the 1990’s up through today, the archaeology of Tripolitania has benefited from these new developments with the introduction of climatology inclusive of geology, physical anthropology with genetic data, and the new methods of chronology and interpretations of cultural activities. This article will attempt to show the importance of the introduction of climatology and geomorphology in the study of surface sites where systematic excavations for whatever reasons had not been possible, yet certainly preferred. The geographical positioning of the sites in correlation with their surroundings, and the appearance and composition of the sediments in context with the archaeological artefacts, could provide us with valuable information about the connection between the cultures that inhabited this region. With these developments in research, we are now able to trace the cultural evolution of Tripolitania by paying particular attention to periods impacted by climate change (particularly wind, which had caused new geological and geomorphological conditions that forced the individuals of this culture to adapt in order to survive.

  16. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    large wind tunnels simulating the actual flight conditions as nearly as possible. Often, several wind tunnels ... wind tunnel tests can be 'scaled' to the actual velocity and actual body size using suitable scaling laws. A typical wind tunnel consists ofa test section ... tion and control positions. Some of this instrumentation like six.

  17. ColloInputGenerator

    DEFF Research Database (Denmark)

    2013-01-01

    you to input a text file with a raw list of lexemes that appear in the construction under investigation. This is converted into an a frequency with the format described above. Open this file in a spreadsheet and fill in the corpus-wide word frequencies and save the file as a text file. You can now use...

  18. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - GIS analysis methodology - Workbook and results

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, F.; Schaffner, B. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The report describes the development of basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. The report deals with the use of Geographic Information Systems (GIS) methodology, which includes three steps: the identification of limiting factors for wind power production, the compilation of a GIS layer for each of these factors and, thirdly, their aggregation into a result layer. The methodology was implemented for four case studies in Austria, Italy, Slovenia and Switzerland.

  19. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - GIS analysis Franches Montagnes, Switzerland - Documentation of GIS concepts, methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, F.; Schaffner, B. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents part of the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report documents the use of the Geographic Information Systems (GIS) methodology for the 'Franches Montagnes' Region in Switzerland, whereby the most significant of the model's layers was found to be the wind velocity layer.

  20. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  1. Wind farm production estimates

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Larsen, Gunner Chr.; Aagaard Madsen, Helge

    2012-01-01

    inves- tigated for a full polar (i.e. as function of mean inflow wind direction). This investigation relates to a mean wind speed bin defined as 8m=s±1m=s. The impact of ambient turbu- lence intensity and turbine inter spacing on the production of a wind turbine operating under full wake conditions...... is investi- gated. Four different turbine inter spacings, ranging between 3.8 and 10.4 rotor diameters, are analyzed for ambient turbu- lence intensities varying between 2% and 20%. This analysis is based on full scale production data from three other wind farms Wieringermeer [3], Horns Rev [4] and Nysted [5......]. A very satisfactory agreement between experimental data and predictions is observed. This paper finally includes additionally an analysis of the production impact caused by atmospheric stability effects. For this study, atmospheric stability conditions are defined in terms of the Monin-Obukhov length...

  2. Sensing the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining...... measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Høvsøre, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled...

  3. Wind Farm Wake

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Karagali, Ioanna; Volker, Patrick

    2017-01-01

    together to investigate the atmospheric conditions at the time of the photos by analysing local meteorological observations and wind turbine information, satellite remote sensing and nearby radiosonde data. Two wake models and one mesoscale model were used to model the case and explain what was seen.......On 25 January 2016 at 12:45 UTC several photographs of the offshore wind farm Horns Rev 2 were taken by helicopter pilot Gitte Lundorff with an iPhone. A very shallow layer of fog covered the sea. The photos of the fog over the sea dramatically pictured the offshore wind farm wake. Researchers got...

  4. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  5. Prospects for jointly using solar and wind energy for heat supply and hot water supply to private houses under the conditions of Baku

    International Nuclear Information System (INIS)

    Salamov, O. M.; Aliev, F. F.

    2013-01-01

    This paper analyzes the discovery of the potential for jointly using solar and wind energy for heat supply (HS) and hot water supply (HWS) to a one-family private house located in the Apsheron Peninsula. (authors)

  6. Experimental verification of the effect of cable length on voltage distribution in stator winding of an induction motor under surge condition

    Energy Technology Data Exchange (ETDEWEB)

    Oyegoke, B.S. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Electromechanics

    1997-12-31

    This paper presents the results of surge distribution tests performed on a stator of a 6 kV induction motor. The primary aim of these tests was to determine the wave propagation properties of the machine winding fed via cables of different lengths. Considering the measured resorts, conclusions are derived regarding the effect of cable length on the surge distribution within the stator winding of an ac motor. (orig.) 15 refs.

  7. Variability of load and net load in case of large scale distributed wind power

    OpenAIRE

    Holttinen, Hannele; Kiviluoma, J.; Estanqueiro, Ana; Gómez-Lázaro, E.; Raw, Barry; Dobschinski, Jan; Meibon, Peter; Lannoye, Eamonn; Aigner, Tobias; Wan, Yih H.; Milligan, Michael

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates),number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the...

  8. Variability of load and net load in case of large scale distributed wind power

    OpenAIRE

    Holttinen, Hannele; Kiviluoma, Juha; Estanqueiro, Ana; Aigner, Tobias; Wan, Yih-Huei; Milligan, Michael R.

    2010-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net loa...

  9. Life cycle assessment of the offshore wind farm alpha ventus

    International Nuclear Information System (INIS)

    Wagner, Hermann-Josef; Baack, Christoph; Eickelkamp, Timo; Epe, Alexa; Lohmann, Jessica; Troy, Stefanie

    2011-01-01

    Due to better wind conditions at sea, offshore wind farms have the advantage of higher electricity production compared to onshore and inland wind farms. In contrast, a greater material input, leading to increased energy consumptions and emissions during the production phase, is required to build offshore wind farms. These contrary effects are investigated for the first German offshore wind farm alpha ventus in the North Sea. In a life cycle assessment its environmental influence is compared to that of Germany's electricity mix. In comparison to the mix, alpha ventus had better indicators in nearly every investigated impact category. One kilowatt-hour electricity, generated by the wind farm, was burdened with 0.137 kWh Primary Energy-Equivalent and 32 g CO 2 -Equivalent, which represented only a small proportion of the accordant values for the mix. Furthermore, the offshore foundations as well as the submarine cable were the main energy intensive components. The energetic and greenhouse gas payback period was less than one year. Therefore, offshore wind power, even in deep water, is compatible with the switch to sustainable electricity production relying on renewable energies. Additional research, taking backup power plants as well as increasingly required energy storage systems into account, will allow further calculation. -- Highlights: → Offshore wind energy represents an environmentally friendly way of power generation. → The offshore foundations and the submarine cable are energy intensive components. → Alpha ventus emits 30 g CO 2 per kWh electricity over the entire life cycle. → Less specific emissions occur in comparison to the existing German electricity grid. → The energetic and greenhouse gas payback periods are less than one year.

  10. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].

    Science.gov (United States)

    Zhang, Ji-Li; Liu, Bo-Fei; Chu, Teng-Fei; Di, Xue-Ying; Jin, Sen

    2012-06-01

    A laboratory burning experiment was conducted to measure the fire spread speed, residual time, reaction intensity, fireline intensity, and flame length of the ground surface fuels collected from a Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) mixed stand in Maoer Mountains of Northeast China under the conditions of no wind, zero slope, and different moisture content, load, and mixture ratio of the fuels. The results measured were compared with those predicted by the extended Rothermel model to test the performance of the model, especially for the effects of two different weighting methods on the fire behavior modeling of the mixed fuels. With the prediction of the model, the mean absolute errors of the fire spread speed and reaction intensity of the fuels were 0.04 m X min(-1) and 77 kW X m(-2), their mean relative errors were 16% and 22%, while the mean absolute errors of residual time, fireline intensity and flame length were 15.5 s, 17.3 kW X m(-1), and 9.7 cm, and their mean relative errors were 55.5%, 48.7%, and 24%, respectively, indicating that the predicted values of residual time, fireline intensity, and flame length were lower than the observed ones. These errors could be regarded as the lower limits for the application of the extended Rothermel model in predicting the fire behavior of similar fuel types, and provide valuable information for using the model to predict the fire behavior under the similar field conditions. As a whole, the two different weighting methods did not show significant difference in predicting the fire behavior of the mixed fuels by extended Rothermel model. When the proportion of Korean pine fuels was lower, the predicted values of spread speed and reaction intensity obtained by surface area weighting method and those of fireline intensity and flame length obtained by load weighting method were higher; when the proportion of Korean pine needles was higher, the contrary results were obtained.

  11. Wind shear extremes at possible offshore wind turbine locations

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2003-01-01

    Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.windda...... seems to be rather conservative for an offshore location, compared to the estimated values based on measurements.......Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.......winddata.com). Three different averaging periods (2, 5 and 10 seconds) are considered, and for each averaging period a relation between the resulting extreme shear distributions and the averaging time are presented. The short-term extreme shear analysis is based on different spatial distances, and extrapolation...

  12. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  13. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat...

  14. Wind gust models derived from field data

    Science.gov (United States)

    Gawronski, W.

    1995-01-01

    Wind data measured during a field experiment were used to verify the analytical model of wind gusts. Good coincidence was observed; the only discrepancy occurred for the azimuth error in the front and back winds, where the simulated errors were smaller than the measured ones. This happened because of the assumption of the spatial coherence of the wind gust model, which generated a symmetric antenna load and, in consequence, a low azimuth servo error. This result indicates a need for upgrading the wind gust model to a spatially incoherent one that will reflect the real gusts in a more accurate manner. In order to design a controller with wind disturbance rejection properties, the wind disturbance should be known at the input to the antenna rate loop model. The second task, therefore, consists of developing a digital filter that simulates the wind gusts at the antenna rate input. This filter matches the spectrum of the measured servo errors. In this scenario, the wind gusts are generated by introducing white noise to the filter input.

  15. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  16. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  17. High wind warning system for Bordeaux, Wyoming.

    Science.gov (United States)

    2010-07-01

    "The state of Wyoming has frequent severe wind conditions, particularly in the southeast corner of the state along Interstate : 80 and Interstate 25. The high winds are problematic in many ways including, interfering with the performance of the : tra...

  18. GARFEM input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.

  19. Input or intimacy

    Directory of Open Access Journals (Sweden)

    Judit Navracsics

    2014-01-01

    Full Text Available According to the critical period hypothesis, the earlier the acquisition of a second language starts, the better. Owing to the plasticity of the brain, up until a certain age a second language can be acquired successfully according to this view. Early second language learners are commonly said to have an advantage over later ones especially in phonetic/phonological acquisition. Native-like pronunciation is said to be most likely to be achieved by young learners. However, there is evidence of accentfree speech in second languages learnt after puberty as well. Occasionally, on the other hand, a nonnative accent may appear even in early second (or third language acquisition. Cross-linguistic influences are natural in multilingual development, and we would expect the dominant language to have an impact on the weaker one(s. The dominant language is usually the one that provides the largest amount of input for the child. But is it always the amount that counts? Perhaps sometimes other factors, such as emotions, ome into play? In this paper, data obtained from an EnglishPersian-Hungarian trilingual pair of siblings (under age 4 and 3 respectively is analyzed, with a special focus on cross-linguistic influences at the phonetic/phonological levels. It will be shown that beyond the amount of input there are more important factors that trigger interference in multilingual development.

  20. FLUTAN input specifications

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Baumann, W.; Willerding, G.

    1991-05-01

    FLUTAN is a highly vectorized computer code for 3-D fluiddynamic and thermal-hydraulic analyses in cartesian and cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA. To a large extent, FLUTAN relies on basic concepts and structures imported from COMMIX-1B and COMMIX-2 which were made available to KfK in the frame of cooperation contracts in the fast reactor safety field. While on the one hand not all features of the original COMMIX versions have been implemented in FLUTAN, the code on the other hand includes some essential innovative options like CRESOR solution algorithm, general 3-dimensional rebalacing scheme for solving the pressure equation, and LECUSSO-QUICK-FRAM techniques suitable for reducing 'numerical diffusion' in both the enthalphy and momentum equations. This report provides users with detailed input instructions, presents formulations of the various model options, and explains by means of comprehensive sample input, how to use the code. (orig.) [de

  1. Fogwater Inputs to a Cloud Forest in Puerto Rico

    Science.gov (United States)

    Eugster, W.; Burkard, R.; Holwerda, F.; Bruijnzeel, S.; Scatena, F. N.; Siegwolf, R.

    2002-12-01

    Fog is highly persistent at upper elevations of humid tropical mountains and is an important pathway for water and nutrient inputs to mountain forest ecosystems. Measurements of fogwater fluxes were performed in the Luquillo mountains of Puerto Rico using the eddy covariance approach and a Caltech-type active strand cloudwater collector. Rainfall and throughfall were collected between 25 June--7 August 2002. Samples of fog, rain, stemflow and throughfall were analyzed for inorganic ion and stable isotope concentrations (δ18O and δD). Initial results indicate that fog inputs can occur during periods without rain and last for up to several days. The isotope ratios in rainwater and fogwater are rather similar, indicative of the proximity of the Carribbean Sea and the close interrelation between the origins of fog and rain at our experimental site. Largest differences in isotope ratios for fog were found between daytime convective and nighttime stable conditions. Throughfall was always exceeding rainfall, indicating (a) the relevance of fogwater inputs and (b) the potentially significant undersampling of rainfall due to relatively high wind speeds (5.7 m/s mean) and the exposition of our field site close to a mountain ridge. Our size-resolved measurements of cloud droplets (40 size bins between 2 and 50 μm aerodynamic diameter) indicate that the liquid water content of fog in the Luquillo mountains is 5 times higher than previously assumed, and thus does not differ from the values reported from other mountain ranges in other climate zones. Average deposition rates are 0.88 mm and 6.5 mm per day for fog and rain, respectively.

  2. Generation of a wind and stability atlas for the optimized utilization of offshore wind resources in the North Sea Region

    Science.gov (United States)

    Drüke, Sonja; Steinfeld, Gerald; Heinemann, Detlev; Günther, Robert

    2014-05-01

    The European Wind Energy Association expects 150 GW of installed wind capacity offshore in Europe by the year 2030. However, detailed knowledge on the atmospheric conditions offshore is still lacking. Satellite-based instruments can provide at spatial information on sea surface temperature and near-surface winds only at a low temporal resolution. Continuous in-situ observations providing vertical information on the marine boundary-layer have only been available from a handful of offshore met masts since roughly ten years, a time period too short to determine the long-term (climatological) wind resource. The lack of spatially distributed, long-term measurements in offshore regions has led to the application of mesoscale models for the derivation of information on atmospheric conditions offshore. The technique of dynamical downscaling is used in order to derive information on the meso-gamma scale from reanalysis data on the meso-beta scale. The downscaled atmospheric data gives hints which sites might be especially interesting for wind energy. The attractiveness of a site cannot be determined from the mean wind speed alone. Other criteria such as the distribution of the wind speed or the atmospheric stability should be taken into account as well. Recent analysis of data from several offshore wind farms has shown the dependency of wind farm power outputs from atmospheric stability. In the framework of the EU-funded research project ClusterDesign (www.cluster-design.eu) a wind and stability atlas (WASA) for the North Sea region based on dynamical downscaling of 21 years (1992-2012) of CFSR data with the mesoscale model WRF has been derived. Surface boundary conditions for offshore sites have been derived from the OSTIA SST data set. The WASA presented here has a spatial resolution of 2 km and is based on 10 minutes data. The WASA is a NetCDF-file that provides information on how often a combination of a certain wind speed, wind direction, air density, stability

  3. Wind height distribution influence on offshore wind farm feasibility study

    Science.gov (United States)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  4. Drift current under the action of wind and waves

    International Nuclear Information System (INIS)

    Youssef, M.; Spaulding, M.

    1993-01-01

    Accurate estimates of sea surface drift currents are critical to forecasting oil spill transport and fate. Most existing spill models employ a drift factor and deflection angle, based on local wind speed, to estimate the sea surface drift vector. The effects of wind-induced shear and wave-induced transport are lumped together in this formulation. In the present approach, the conservation of momentum, water mass, and turbulent energy equations are solved using an implicit finite difference method to predict the vertical distribution of current, turbulent energy, and eddy viscosity at one point. The model includes coupling between the wave- and shear-induced currents. Input energy from the atmosphere to the turbulent energy and current fields are represented through free-surface boundary conditions. The numerical model showed excellent agreement compared to an analytic solution of the wind-forced shear flow problem. The model was applied to predict surface drift currents for varying wind speeds and predicted results in general agreement with field observations and other numerical and theoretical studies. The model predicted drift factor F (%) and deflection angle A (degrees) decrease with increasing wind speed W (m/s), and can be approximated by the following curve fits: F=3.91-0.318W, A=23.627-7.97 log W. The model was applied to three intentional oil spills conducted on the Norwegian continental shelf in 1991 and predicted the observed trajectories with reasonable accuracy. 24 refs., 17 figs

  5. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.C.; Lundsager, P.; Bindner, H.; Hansen, L.; Frandsen, S. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  6. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  7. Detection of icing on wind turbine blades by means of vibration and power curve analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Kleani, Karolina; Mijatovic, Nenad

    2016-01-01

    accelerometers and power performance analysis. Features extracted from these two techniques serve as inputs in a decision-making scheme, allowing early activation of de-icing systems or shut down of the wind turbine. An additional parameter is the month of operation, assuring consistent outcomes in both winter...... and summer seasons. The amplitude of lateral nacelle vibration at rotor speed is the used condition indicator from vibration standpoint, which is verified by the presence of sinusoidal shape in high-resolution time waveforms. Employment of k-nearest neighbour on wind speed - power production data sets leads...

  8. Fuzzy Logic Based MPPT Controller for a Small Wind Turbine System

    DEFF Research Database (Denmark)

    Petrila, Diana; Blaabjerg, Frede; Muntean, Nicolae

    2012-01-01

    /Δω. The change of reference generator current (ΔI*) is the output variable. For small power applications, when the turbine inertia is relatively small, and the wind speed changes continuously, it is important to consider the transients in order to develop an accurate theoretical model and to attain optimal...... operation. Therefore, the mechanical power (Pm) is composed of the generator mechanical (input) power (Pg) plus the dynamic power, resulting in the dynamic power versus rotating speed curve. The controller is able to track the maximum power point for changing wind conditions, and is robust with respect...

  9. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    Four different statistical techniques,viz.,curve fitting,Auto Regressive Integrated Moving Average Model (ARIMA),extrapolation with periodic function and Artificial Neural Networks (ANN)are employed to predict wind speed.These methods require wind speeds of previous hours as input.It has been found that wind speed can ...

  10. Overall Optimization for Offshore Wind Farm Electrical System

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Cong

    2017-01-01

    Based on particle swarm optimization (PSO), an optimization platform for offshore wind farm electrical system (OWFES) is proposed in this paper, where the main components of an offshore wind farm and key technical constraints are considered as input parameters. The offshore wind farm electrical s...

  11. Modeling and Identification of Harmonic Instability Problems In Wind Farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    to identify harmonic instability problems in wind farms, where many wind turbines, cables, transformers, capacitor banks, shunt reactors, etc, typically are located. This methodology introduces the wind farm as a Multi-Input Multi-Outpur (MIMO) control system, where the linearized models of fast inner control...

  12. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve fitting,Auto Regressive ...

  13. Modal Parameter Identification from Responses of General Unknown Random Inputs

    DEFF Research Database (Denmark)

    Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune

    1996-01-01

    Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...

  14. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    Science.gov (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  15. A comparison of the performance of three types of passive fog gauges under conditions of wind-driven fog and precipitation

    NARCIS (Netherlands)

    Frumau, K.F.A.; Burkard, R.; Schmid, S.; Bruijnzeel, L.A.; Tobón, C.; Calvo-Alvado\\, J.C.

    2011-01-01

    Understanding of the 'typical' amounts of fog intercepted by different types of cloud forests is hampered by a lack of comparative information on local fog climatology. Usually some kind of 'fog gauge' is used to characterize fog occurrence and amounts. Moreover, wind-driven fog and precipitation

  16. Conditions Contributing to Adverse Loading of Wind Turbines In the Nocturnal Boundary Layer: Final Report, November 15, 2003 -- December 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Fritts, D.C.

    2005-07-01

    This report summarizes the development of a methodology to describe the characteristics of coherent turbulence in the nocturnal boundary layer that are known to induce excessive structural loads and component vibration in operating wind turbines and suggestions for applying those results in the development of techniques of real-time detection and prediction that can be used for mitigation purposes.

  17. Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions

    DEFF Research Database (Denmark)

    Rahimi, Vajiheh; Schepers, J.G.; Shen, Wen Zhong

    2018-01-01

    This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well...... and drag coefficients as a function of the angle of attack....

  18. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    The viability of modern open science norms and practices depend on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50% more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry....

  19. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    2015-01-01

    The viability of modern open science norms and practices depends on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50 % more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry...

  20. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...... directions: the meso‐analysis of the Japan Meteorological Agency (MANAL), the SeaWinds microwave scatterometer on QuikSCAT and the National Center for Environmental Prediction final operational global analysis data (NCEP FNL). In comparison with the errors of the SAR‐retrieved wind speeds obtained using...

  1. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input...... the swept rotor area would allow the determination of the electrical power as a function of an equivalent wind speed where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub...

  2. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  3. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......-based observations become available. At present preliminary results are obtained using the routine methods. The first step in the process is to retrieve raw SAR data, calibrate the images and use a priori wind direction as input to the geophysical model function. From this process the wind speed maps are produced....... The wind maps are geo-referenced. The second process is the analysis of a series of geo-referenced SAR-based wind maps. Previous research has shown that a relatively large number of images are needed for achieving certain accuracies on mean wind speed, Weibull A and k (scale and shape parameters...

  4. Fractal dimension of wind speed time series

    International Nuclear Information System (INIS)

    Chang, Tian-Pau; Ko, Hong-Hsi; Liu, Feng-Jiao; Chen, Pai-Hsun; Chang, Ying-Pin; Liang, Ying-Hsin; Jang, Horng-Yuan; Lin, Tsung-Chi; Chen, Yi-Hwa

    2012-01-01

    Highlights: ► Fractal dimension of wind speeds in Taiwan is studied considering climate factors. ► Relevant algorithms for the calculation of fractal dimension are presented graphically. ► Fractal dimension reveals negative correlation with mean wind speed. ► Fractal dimension is not lower even wind distribution is well described by Weibull pdf. - Abstract: The fluctuation of wind speed within a specific time period affects a lot the energy conversion rate of wind turbine. In this paper, the concept of fractal dimension in chaos theory is applied to investigate wind speed characterizations; numerical algorithms for the calculation of the fractal dimension are presented graphically. Wind data selected is observed at three wind farms experiencing different climatic conditions from 2006 to 2008 in Taiwan, where wind speed distribution can be properly classified to high wind season from October to March and low wind season from April to September. The variations of fractal dimensions among different wind farms are analyzed from the viewpoint of climatic conditions. The results show that the wind speeds studied are characterized by medium to high values of fractal dimension; the annual dimension values lie between 1.61 and 1.66. Because of monsoon factor, the fluctuation of wind speed during high wind months is not as significant as that during low wind months; the value of fractal dimension reveals negative correlation with that of mean wind speed, irrespective of wind farm considered. For a location where the wind distribution is well described by Weibull function, its fractal dimension is not necessarily lower. These findings are useful to wind analysis.

  5. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...

  6. Production Risk and Optimal Input Decisions

    OpenAIRE

    Bharat Ramaswami

    1992-01-01

    The paper examines the impact of production risk on a producer's optimal input decisions. Whether producers use more or fewer inputs in a yield-risky environment depends on the sign of the marginal risk premium, which is determined by risk preferences and technology. I present the weakest condition on technology that is sufficient to sign the marginal risk premium for all risk-averse preferences. If this condition fails to hold, the marginal risk premium is not of the same sign for all risk a...

  7. Turbulence for different background conditions using fuzzy logic and clustering

    Directory of Open Access Journals (Sweden)

    K. Satheesan

    2010-08-01

    Full Text Available Wind and turbulence estimated from MST radar observations in Kiruna, in Arctic Sweden are used to characterize turbulence in the free troposphere using data clustering and fuzzy logic. The root mean square velocity, νfca, a diagnostic of turbulence is clustered in terms of hourly wind speed, direction, vertical wind speed, and altitude of the radar observations, which are the predictors. The predictors are graded over an interval of zero to one through an input membership function. Subtractive data clustering has been applied to classify νfca depending on its homogeneity. Fuzzy rules are applied to the clustered dataset to establish a relationship between predictors and the predictant. The accuracy of the predicted turbulence shows that this method gives very good prediction of turbulence in the troposphere. Using this method, the behaviour of νfca for different wind conditions at different altitudes is studied.

  8. Measuring Input Thresholds on an Existing Board

    Science.gov (United States)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    temperatures to show that the interface had voltage margin under all worst case conditions. Gate input thresholds are normally measured at the manufacturer when the device is on a chip tester. A key function of this machine was duplicated on an existing flight board with no modifications to the nets to be tested, with the exception of changes in the FPGA program.

  9. Characterizing a Wind Energy Converter's Wake in distinct ABL Conditions by means of Long-Range Lidar Measurements in the Context of the Perdigão 2017 Experiment

    Science.gov (United States)

    Wildmann, N.; Kigle, S.; Hagen, M.; Gerz, T.

    2017-12-01

    As the resource wind is increasingly exploited to produce electricity, wind energy converter (WEC) deployment relocates to more complex terrain such as hilltops or mountain ridges. In that context, it is crucial to understand the interaction between the atmospheric boundary layer (ABL) flow and the WEC in order to predict downstream flow characteristics. In the context of the Perdigão 2017 experiment, the German Aerospace Center (DLR) performed full-scale wake measurements on a single WEC of type Enercon E82 with three Leosphere Windcube 200S long-range scanning lidar systems. The experimental setup covers two parallel ridges 1.4 km apart, separated by a 200 m deep valley. The ridges are oriented in NW-SE direction, perpendicular to main wind direction, which is SW. Two of the three scanning lidar systems are positioned downstream of the WEC in line with main wind direction to span a vertical plane, perpendicular to the ridges, with RHI scans. This allows investigating wake events with single or dual-doppler lidar techniques. The third lidar system, which is positioned along the WEC ridge, is used to measure the wake position outside the before mentioned measurement plane. Wake events in three different ABL regimes (neutral, stable and convective) are evaluated with respect to wake position, dispersion, propagation and the wind-speed deficit. It is found that wake position and propagation are strongly influenced by the atmospheric stability, forcing the wake to deviate from hub height, migrating to higher levels for convective regimes. For stable ABL conditions wakes descend into the valley, and are clearly detectable up to at least eight rotor diameters downstream of the WEC. The coplanar scanning strategy furthermore allows to calculate the two-dimensional wind vector in the vertical scanning plane, indicating that vertical wind components with up to 2 ms-1 play an important role in the interaction between ABL flow and WEC. With the help of the third lidar

  10. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  11. Adaptive robust polynomial regression for power curve modeling with application to wind power forecasting

    DEFF Research Database (Denmark)

    Xu, Man; Pinson, Pierre; Lu, Zongxiang

    2016-01-01

    Wind farm power curve modeling, which characterizes the relationship between meteorological variables and power production, is a crucial procedure for wind power forecasting. In many cases, power curve modeling is more impacted by the limited quality of input data rather than the stochastic nature...... of the energy conversion process. Such nature may be due the varying wind conditions, aging and state of the turbines, etc. And, an equivalent steady-state power curve, estimated under normal operating conditions with the intention to filter abnormal data, is not sufficient to solve the problem because...... of the lack of time adaptivity. In this paper, a refined local polynomial regression algorithm is proposed to yield an adaptive robust model of the time-varying scattered power curve for forecasting applications. The time adaptivity of the algorithm is considered with a new data-driven bandwidth selection...

  12. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  13. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  14. Offshore wind power in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H. [VTT Energy, Espoo (Finland)

    1998-12-31

    The objectives of the project were to estimate the technical offshore wind power potential of the Gulf of Bothnia, with cost assessments, to study icing conditions and ice loads, and to design a foundation suitable for the environmental conditions. The technical offshore potential from Vaasa to Tornio is huge, more than 40 TWh/a, although the cost of offshore wind power is still higher than on land. Wind turbines have not previously been designed for the icing conditions found in Gulf of Bothnia and the recommendations for load cases and siting of megawatt-class turbines are an important result of the project. (orig.)

  15. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  16. Structural Reliability Aspects in Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside...... the farm. Reliability analysis and optimization of wind turbines require that the special conditions for wind turbine operation are taken into account. Control of the blades implies load reductions for large wind speeds and parking for high wind speeds. In this paper basic structural failure modes for wind...

  17. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Digital relief analysis - Abstract of work package 7

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Cattin, R. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents an abstract of the development work carried out by the Swiss meteorology specialists METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report presents an abstract of the work done as part of the Work Package 7 of the Alpine Windharvest project.

  18. Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier

    Directory of Open Access Journals (Sweden)

    G. Davesne

    2017-06-01

    Full Text Available We present data on the distribution and thermophysical properties of snow collected sporadically over 4 decades along with recent data of ground surface temperature from Mont Jacques-Cartier (1268 m a.s.l., the highest summit in the Appalachians of south-eastern Canada. We demonstrate that the occurrence of contemporary permafrost is necessarily associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. The aims of this study were (i to understand the snow distribution pattern and snow thermophysical properties on the Mont Jacques-Cartier summit and (ii to investigate the impact of snow on the spatial distribution of the ground surface temperature (GST using temperature sensors deployed over the summit. Results showed that above the local treeline, the summit is characterized by a snow cover typically less than 30 cm thick which is explained by the strong westerly winds interacting with the local surface roughness created by the physiography and surficial geomorphology of the site. The snowpack structure is fairly similar to that observed on windy Arctic tundra with a top dense wind slab (300 to 450 kg m−3 of high thermal conductivity, which facilitates heat transfer between the ground surface and the atmosphere. The mean annual ground surface temperature (MAGST below this thin and wind-packed snow cover was about −1 °C in 2013 and 2014, for the higher, exposed, blockfield-covered sector of the summit characterized by a sporadic herbaceous cover. In contrast, for the gentle slopes covered with stunted spruce (krummholz, and for the steep leeward slope to the south-east of the summit, the MAGST was around 3 °C in 2013 and 2014. The study concludes that the permafrost on Mont Jacques-Cartier, most widely in the Chic-Choc Mountains and by extension in the southern highest summits of the Appalachians, is therefore likely limited to the barren wind

  19. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungsoo [Univ. of Texas, Austin, TX (United States); Manuel, Lance [Univ. of Texas, Austin, TX (United States); Curcic, Milan [Univ. of Miami, Coral Gables, FL (United States); Chen, Shuyi S. [Univ. of Miami, Coral Gables, FL (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Veers, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of the changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces

  20. Reprocessing input data validation

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs

  1. Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation

    OpenAIRE

    Saeid Nahi; Seyed Mohammad Hossein Nabavi

    2011-01-01

    Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need...

  2. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-08-02

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  3. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-06-03

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  4. ewec 2007 - Europe's premier wind energy event

    International Nuclear Information System (INIS)

    Chaviaropoulos, T.

    2007-01-01

    This online collection of papers - the ewec 2007 proceedings - reflects the various sessions and lectures presented at the ewec wind-energy convention held in Milan in 2007. The first day's sessions looked at the following topics: Renewable Energy Roadmap, the changing structure of the wind industry, politics and programmes, aerodynamics and innovation in turbine design, wind resources and site characterisation (2 sessions), energy scenarios, harmonisation of incentive schemes, structural design and materials, forecasting, integration studies, integrating wind into electricity markets, wind-turbine electrical systems and components, as well as loads, noise and wakes. The second day included sessions on offshore: developments and prospects, extreme wind conditions and forecasting techniques, small wind turbines, distributed generation and autonomous systems cost effectiveness, cost effectiveness of wind energy, financing wind energy concepts, wind and turbulence, wind power plants and grid integration, offshore technology, global challenges and opportunities, aero-elasticity, loads and control, operations and maintenance, carbon trading and the emission trading schemes, investment strategies of power producers, wind power plants and grid integration, wind turbine electrical systems and components, and wakes. The third day offered sessions on environmental issues, condition monitoring, operation and maintenance, structural design and materials, the Up-Wind workshop, winning hearts and minds, offshore technology, advances in measuring methods and advancing drive-train reliability. In a closing session the conference was summarised, awards for poster contributions were made and the Poul la Cour Prize was presented

  5. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  6. Interactive 3D geodesign tool for multidisciplinary wind turbine planning.

    Science.gov (United States)

    Rafiee, Azarakhsh; Van der Male, Pim; Dias, Eduardo; Scholten, Henk

    2018-01-01

    Wind turbine site planning is a multidisciplinary task comprising of several stakeholder groups from different domains and with different priorities. An information system capable of integrating the knowledge on the multiple aspects of a wind turbine plays a crucial role on providing a common picture to the involved groups. In this study, we have developed an interactive and intuitive 3D system (Falcon) for planning wind turbine locations. This system supports iterative design loops (wind turbine configurations), based on the emerging field of geodesign. The integration of GIS, game engine and the analytical models has resulted in an interactive platform with real-time feedback on the multiple wind turbine aspects which performs efficiently for different use cases and different environmental settings. The implementation of tiling techniques and open standard web services support flexible and on-the-fly loading and querying of different (massive) geospatial elements from different resources. This boosts data accessibility and interoperability that are of high importance in a multidisciplinary process. The incorporation of the analytical models in Falcon makes this system independent from external tools for different environmental impacts estimations and results in a unified platform for performing different environmental analysis in every stage of the scenario design. Game engine techniques, such as collision detection, are applied in Falcon for the real-time implementation of different environmental models (e.g. noise and visibility). The interactivity and real-time performance of Falcon in any location in the whole country assist the stakeholders in the seamless exploration of various scenarios and their resulting environmental effects and provides a scope for an interwoven discussion process. The flexible architecture of the system enables the effortless application of Falcon in other countries, conditional to input data availability. The embedded open web

  7. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Digital relief analysis - Abstract of work package 7; Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Digitale Relief-Analyse - Zusammenfassung von Arbeitspaket 7

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Cattin, R. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report describes the development work carried out by the Swiss meteorology specialists METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report presents a summary of work done on the digital relief analysis used in various stages of the project, its validation and use.

  8. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-12-01

    Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind

  9. Atmospheric Boundary Layer Wind Data During the Period January 1, 1998 Through January 21, 1999 at the Dallas-Fort Worth Airport. Volume 2; Data and Processing

    Science.gov (United States)

    Zak, J. Allen; Rodgers, William G., Jr.

    2000-01-01

    The NASA Langley Research Center's Aircraft Vortex Spacing System (AVOSS) requires accurate winds and turbulence to determine aircraft wake vortex behavior near the ground. Volume 1 described the wind input and quality analysis process. This volume documents the data available during the period January 1998 through January 1999 and the partitioning and concatenation of files for time of day, turbulence, non duplication, cross wind profile quality and ceiling and visibility. It provides the resultant filtered files for the first three partitions as well as identification of ceiling/visibility conditions when they were below 5000 feet and 5 miles respectively. It also includes the wind profile quality flags to permit automatic selection of files for AVOSS application using selected ceiling/visibility and wind profile quality values and flags (or no flags).

  10. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  11. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  12. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  13. WEP. A wind energy planning system

    International Nuclear Information System (INIS)

    Larsen, H.V.

    1991-11-01

    The report describes the Wind Energy Planning system (WEP). It is intended as a decision support system to be used in the economic evaluation of wind energy projects. Such projects could be minor projects with only a single wind turbine or large wind farm projects consisting of several wind turbine plants. In the WEP system, a wind turbine is described by data on initial investment, possible later reinvestments, O and M costs, expected yearly production, life time, and capacity factor. The raising of loans are modelled, too. Depending on which output report is created, the value of the wind generated electricity is calculated in two different ways: either the electricity is assumed to be sold at a price (time series) given by the user, or the alternative conventional power production is modelled by its specific investment, O and M costs, life time, effectivity, fuel mix, and time series for fuel prices. Using these data, capacity credit and saved fuel and O and M costs are calculated. Due to the flexible data structure of the model, the user can easily create a scenario that models a large scale introduction of wind power. In such a scenario the gradual build up through several years of the wind power capacity can be modelled. The report describes in detail the menu structure, the input facilities, the output reports, and the organization of data. Also included is an example with full input documentation and output reports. (au)

  14. Sensitive Period for the Recovery of the Response Rate of the Wind-Evoked Escape Behavior of Unilaterally Cercus-Ablated Crickets (Gryllus bimaculatus).

    Science.gov (United States)

    Takuwa, Hiroyuki; Kanou, Masamichi

    2015-04-01

    We examined the compensational recovery of the response rate (relative occurrence) of the wind-evoked escape behavior in unilaterally cercus-ablated crickets (Gryllus bimaculatus) and elucidated the existence of a sensitive period for such recovery by rearing the crickets under different conditions. In one experiment, each cricket was reared in an apparatus called a walking inducer (WI) to increase the sensory input to the remaining cercus, i.e., the self-generated wind caused by walking. In another experiment, each cricket was reared in a small plastic case separate from the outside atmosphere (wind-free: WF). In this rearing condition, the cricket did not experience self-generated wind as walking was prohibited. During the recovery period after the unilateral cercus ablation, the crickets were reared under either the WI or WF condition to investigate the role of the sensory inputs on the compensational recovery of the response rate. The compensational recovery of the response rate occurred only in the crickets reared under the WI condition during the early period after the ablation. In particular, WI rearing during the first three days after the ablation resulted in the largest compensational recovery in the response rate. In contrast, no compensational recovery was observed in the crickets reared under the WF condition during the first three days. These results suggest that a sensitive period exists in which sensory inputs from the remaining cercus affect the compensational recovery of the response rate more effectively than during other periods.

  15. An investigation on wind turbine resonant vibrations

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Kim, Taeseong; Larsen, Torben J.

    2016-01-01

    Wind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind...... turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes....... Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore...

  16. Moment of Inertia Dependence of Vertical Axis Wind Turbines in Pulsating Winds

    Directory of Open Access Journals (Sweden)

    Yutaka Hara

    2012-01-01

    Full Text Available Vertical Axis Wind Turbines (VAWTs are unaffected by changes in wind direction, and they have a simple structure and the potential for high efficiency due to their lift driving force. However, VAWTs are affected by changes in wind speed, owing to effects originating from the moment of inertia. In this study, changes in the rotational speed of a small VAWT in pulsating wind, generated by an unsteady wind tunnel, are investigated by varying the wind cycle and amplitude parameters. It is shown that the responses observed experimentally agree with simulations based on torque characteristics obtained under steady rotational conditions. Additionally, a simple equation expressing the relationship between the rotational change width and amplitude of the pulsating wind is presented. The energy efficiency in a pulsating wind remains constant with changes in both the moment of inertia and the wind cycle; however, the energy efficiency decreases when the wind amplitude is large.

  17. SDR Input Power Estimation Algorithms

    Science.gov (United States)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  18. Intermediate inputs and economic productivity.

    Science.gov (United States)

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  19. Forecasting volatility of wind power production

    OpenAIRE

    Zhiwei Shen; Matthias Ritter

    2015-01-01

    Abstract: The increasing share of wind energy in the portfolio of energy sources highlights its uncertainties due to changing weather conditions. To account for the uncertainty in predicting wind power production, this article examines the volatility forecasting abilities of different GARCH-type models for wind power production. Moreover, due to characteristic features of the wind power process, such as heteroscedasticity and nonlinearity, we also investigate the use of a Markov regime-switch...

  20. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.