WorldWideScience

Sample records for wind imaging interferometer

  1. UARS Wind Imaging Interferometer (WINDII) Level 3AL V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wind Imaging Interferometer (WINDII) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of meridional and zonal wind...

  2. UARS Wind Imaging Interferometer (WINDII) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wind Imaging Interferometer (WINDII) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of meridional and zonal wind...

  3. UARS Wind Imaging Interferometer (WINDII) Level 3AL V011 (UARWI3AL) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wind Imaging Interferometer (WINDII) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of meridional and zonal wind...

  4. UARS Wind Imaging Interferometer (WINDII) Level 3AT V011 (UARWI3AT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wind Imaging Interferometer (WINDII) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of meridional and zonal wind...

  5. Simulation of the fixed optical path difference of near infrared wind imaging interferometer

    Science.gov (United States)

    Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen

    2017-02-01

    As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.

  6. First mesospheric wind images using the Michelson interferometer for airglow dynamics imaging.

    Science.gov (United States)

    Langille, J A; Ward, W E; Nakamura, T

    2016-12-10

    The Michelson interferometer for airglow dynamics imaging (MIADI) is a ground-based instrument that combines an imaging capability with the Doppler Michelson interferometry in order to remotely detect motions in the mesopause region using spectrally isolated airglow emissions: the O(S1) emission at 557.73 nm and the OH (6, 2) P1 (2) at 839.918 nm. A measurement and analysis approach has been developed that allows simultaneous images of the line-of-sight Doppler wind field and irradiance field to be obtained. A working field instrument was installed and tested at a field site outside Fredericton, NB (45.96 N, 66.65 W) during the summer of 2014. Successful measurements over a 6 h period were obtained on 31 July 2014. This paper describes the MIADI measurement and analysis approach and presents the work that has been done to extract images of the line-of-sight Doppler wind field and irradiances from these observations. The imaging capability is validated by identifying the presence of large-scale and small-scale geophysical perturbations in the images.

  7. Multispectral infrared imaging interferometer

    Science.gov (United States)

    Potter, A. E., Jr.

    1971-01-01

    Device permitting simultaneous viewing of infrared images at different wavelengths consists of imaging lens, Michelson interferometer, array of infrared detectors, data processing equipment for Fourier transformation of detector signal, and image display unit. Invention is useful in earth resources applications, nondestructive testing, and medical diagnoses.

  8. Design of a monolithic Michelson interferometer for fringe-imaging in a near-field, UV, direct detection Doppler wind lidar

    OpenAIRE

    Herbst, Jonas; Vrancken, Patrick

    2016-01-01

    The low-biased, fast, airborne, short-range, and range-resolved determination of atmospheric wind speeds plays a key role in wake vortex and turbulence mitigation strategies and would improve flight safety, comfort, and economy. In this work, a concept for an airborne, UV, direct-detection Doppler wind lidar receiver is presented. A monolithic, tilted, field-widened, fringe-imaging Michelson interferometer (FWFIMI) combines the Advantages of low angular sensitivity, high thermo-mecha...

  9. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test

    Science.gov (United States)

    Harlander, John M.; Englert, Christoph R.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Zastera, Vaz; Bach, Bernhard W.; Mende, Stephen B.

    2017-10-01

    The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

  10. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  11. Design of a monolithic Michelson interferometer for fringe imaging in a near-field, UV, direct-detection Doppler wind lidar.

    Science.gov (United States)

    Herbst, Jonas; Vrancken, Patrick

    2016-09-01

    The low-biased, fast, airborne, short-range, and range-resolved determination of atmospheric wind speeds plays a key role in wake vortex and turbulence mitigation strategies and would improve flight safety, comfort, and economy. In this work, a concept for an airborne, UV, direct-detection Doppler wind lidar receiver is presented. A monolithic, tilted, field-widened, fringe-imaging Michelson interferometer (FWFIMI) combines the advantages of low angular sensitivity, high thermo-mechanical stability, independence of the specific atmospheric conditions, and potential for fast data evaluation. Design and integration of the FWFIMI into a lidar receiver concept are described. Simulations help to evaluate the receiver design and prospect sufficient performance under different atmospheric conditions.

  12. Interferometer predictions with triangulated images

    DEFF Research Database (Denmark)

    Brinch, Christian; Dullemond, C. P.

    2014-01-01

    the synthetic model images. To get the correct values of these integrals, the model images must have the right size and resolution. Insufficient care in these choices can lead to wrong results. We present a new general-purpose scheme for the computation of visibilities of radiative transfer images. Our method...

  13. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    Science.gov (United States)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  14. Wide angle Michelson Doppler imaging interferometer. [measuring atmospheric emissions

    Science.gov (United States)

    Shepherd, G. G.

    1980-01-01

    The optical system, stepping control, phase and modulation depth, array detector, and directions sensor are described for a specialized type of Michelson interferometer which works at sufficiently high resolution to measure the line widths and Doppler shifts of naturally occurring atmospheric emissions. With its imaging capability, the instrument can potentially supply this data independently for each element of the 100 x 100 detector array. The experiment seeks: (1) to obtain vertical profiles of atmospheric winds and temperatures as functions of latitude by observing near the limb; (2) to acquire exploratory wind and temperature data on smaller scale structures in airglow irregularities and in auroral forms; and (3) to collaborate with other Spacelab experiments, such as barium cloud releases, in providing wind and temperature data.

  15. A prototype imaging second harmonic interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bretz, N.L.

    1997-01-01

    We have built a prototype imaging second harmonic interferometer, which is intended to test critical elements of a design for a tangential array interferometer on C-Mod 6 . The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB 3 O 5 doublers, a fan beam created by a cylindrical lens, four retroreflector elements, and a CCD camera as a detector. The prototype also uses a polarization scheme in which the interference information is eventually carried by two second harmonic beams with crossed polarization. These are vector summed and differenced, and separated, by a Wollaston prism, to give two spots on the CCD. There is a pair of these spots for each retroreflector used. The phase information is directly available as the ratio of the difference to sum the intensities of the two spots. We have tested a single channel configuration of this prototype, varying the phase by changing the pressure in an air cell, and we have obtained a 5:1 light to dark ratio, and a clear sinusoidal variation of the ratio as a function of pressure change. copyright 1997 American Institute of Physics

  16. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  17. Ground-based airglow imaging interferometer. Part 1: instrument and observation.

    Science.gov (United States)

    Gao, Haiyang; Tang, Yuanhe; Hua, Dengxin; Liu, Hanchen; Cao, Xiangang; Duan, Xiaodong; Jia, Qijie; Qu, Ouyang; Wu, Yong

    2013-12-20

    A ground-based airglow imaging interferometer (GBAII) is proposed to measure simultaneously the temperature and wind in the mesopause region by using airglow emissions of the O2(0-1) band. Since it employs a wide angle Michelson interferometer with a large air gap, combined with the rotational temperature measurement, both the phase and spectral information can be obtained from the imaging results. Based on the optimization and calibrations for the optical system in the laboratory, we developed and assembled a prototype of a GBAII, and carried out one observation at the observatory of Xi'an University of Technology on 12 June 2012. The observed temperatures fall mainly on the range of 167-196 K, while both the zonal and meridional winds faintly show the feature of half-day oscillation. The consistent trends between the observation results and the standard atmospheric models suggest that the GBAII has achieved our basic design goals.

  18. Calibration and validation of the advanced E-Region Wind Interferometer

    Directory of Open Access Journals (Sweden)

    S. K. Kristoffersen

    2013-07-01

    Full Text Available The advanced E-Region Wind Interferometer (ERWIN II combines the imaging capabilities of a CCD detector with the wide field associated with field-widened Michelson interferometry. This instrument is capable of simultaneous multi-directional wind observations for three different airglow emissions (oxygen green line (O(1S at a height of ~97 km, the PQ(7 and P(7 emission lines in the O2(0–1 atmospheric band at ~93 km and P1(3 emission line in the (6, 2 hydroxyl Meinel band at ~87 km on a three minute cadence. In each direction, for 45 s measurements for typical airglow volume emission rates, the instrument is capable of line-of-sight wind precisions of ~1 m s−1 for hydroxyl and O(1S and ~4 m s−1 for O2. This precision is achieved using a new data analysis algorithm which takes advantage of the imaging capabilities of the CCD detector along with knowledge of the instrument phase variation as a function of pixel location across the detector. This instrument is currently located in Eureka, Nunavut as part of the Polar Environment Atmospheric Research Laboratory (PEARL (80°N, 86° W. The details of the physical configuration, the data analysis algorithm, the measurement calibration and validation of the observations from December 2008 and January 2009 are described. Field measurements which demonstrate the capabilities of this instrument are presented. To our knowledge, the wind determinations with this instrument are the most accurate and have the highest observational cadence for airglow wind observations of this region of the atmosphere and match the capabilities of other wind-measuring techniques.

  19. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  20. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  1. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  2. The Fizeau Interferometer Testbed (FIT) for Stellar Imager

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Mazzuca, Lisa M.; Solyar, Gregory; Mundy, Lee G.; Armstrong, J. T.; Zhang, Xiaolei; Marzouk, Joe

    2003-01-01

    Goddard Space Flight Center is pursuing the development of space-based, long-baseline (less than 0.5km) UV-optical Fizeau imaging interferometers to enable the next major stride toward very high angular resolution astronomical observations. This effort includes the development and operation of the Fizeau Interferometer Testbed (FIT), in collaboration with the Naval Research Lab/NPOI, Univ. of MD, and Sigma Space Corporation. The FIT will be used to explore the principles of and requirements for the Stellar Imager (SI) mission concept (http://hires.gsfc.nasa.gov/-si) and other such Fizeau Interferometers/Sparse Aperture Telescope missions. The primary FIT goal is to demonstrate closed-loop control of a many-element (7 - 30) system which keeps the optical beams in phase and thus enables high quality imaging. The FIT will also be used to assess various wavefront reconstruction and sensing and image reconstruction algorithms for utility and accuracy by application to real data generated by the Testbed. In this paper, we describe the design and goals of the system, provide a status report on its construction, and note our future plans. The FIT development is supported by NASA-ROSS/SARA grants to GSFC, UMD, and NRL and by internal GSFC R&D funds.

  3. ALISEO on MIOSat: an imaging interferometer for earth observation

    Science.gov (United States)

    Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.

    2017-11-01

    The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.

  4. Design of a space-based infrared imaging interferometer

    Science.gov (United States)

    Hart, Michael; Hope, Douglas; Romeo, Robert

    2017-07-01

    Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.

  5. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  6. A Tiny Fabry-Perot Interferometer with Postpositional Filter for Measurement of the Thermospheric Wind

    Science.gov (United States)

    Wang, Houmao; Wang, Yongmei; Fu, Jianguo

    2016-12-01

    A tiny and low-cost ground-based Fabry-Perot interferometer (FPI) was designed using a filter behind etalon and Galilean telescope system for the thermospheric wind observation with OI 630.0 nm nightglow emissions ( 250 km). Based on the instrument, experiments were carried out at Langfang (39.40° N, 116.65° E) site for a rough comparison and Kelan (38.71° N, 111.58° E) site for a detailed validation. Wind results of Langfang experiment are well consistent with measurements of two other FPIs deployed at Xinglong (40.40° N, 117.59° E) and Kelan which are retrieved by the American National Center for Atmospheric Research (A-NCAR). In Kelan experiment, the averaged wind deviation between our FPI and A-NCAR FPI is 11.8 m/s. The averaged deviation of wind measurement error between them is 2.9 m/s. The comparisons suggest good agreement. Then, the analysis of influencing factors was made. The center determination offset has an exponential relation with wind deviation, while the radius calculation offset is linear with wind deviation.

  7. Snapshot imaging spectrometry with a heterodyned Savart plate interferometer

    Science.gov (United States)

    Maione, Bryan; Brickson, Leandra; Escuti, Michael; Kudenov, Michael

    2017-08-01

    Imaging spectrometers are frequently used in remote sensing for their increased target discrimination capabilities over conventional imaging. Increasing the spectral resolution of these sensors further enables the system's ability to discriminate certain targets and adds the potential for monitoring narrow-line spectral features. We describe a high spectral resolution (Δλ=1.1 nm full-width at half maximum) snapshot imaging spectrometer capable of distinguishing two narrowly separated bands in the red-visible spectrum. A theoretical model is provided to detail the first polarization grating-based spatial heterodyning of a Savart plate interferometer. Following this discussion, the experimental conditions of the narrow-line imaging spectrometer (NLIS) are provided. Finally, calibration and target identification methods are applied and quantified. Ultimately it is demonstrated that in a full spectral acquisition the NLIS sensor is capable of less than 3.5% error in reconstruction. Additionally, it is demonstrated that neural networks provide greater than 99% reduction in crosstalk when compared to pseudoinversion and expectation maximization in single target identification.

  8. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  9. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    Science.gov (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  10. High spectral resolution lidar based on quad mach zehnder interferometer for aerosols and wind measurements on board space missions

    Directory of Open Access Journals (Sweden)

    Mariscal Jean-François

    2018-01-01

    Full Text Available We present the measurement principle and the optical design of a Quad Mach Zehnder (QMZ interferometer as HSRL technique, allowing simultaneous measurements of particle backscattering and wind velocity. Key features of this concept is to operate with a multimodal laser and do not require any frequency stabilization. These features are relevant especially for space applications for which high technical readiness level is required.

  11. Anholt offshore wind farm winds investigated from satellite images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Volker, Patrick

    , i.e. before the wind farm was constructed. Based on these data the wind resource is estimated. Concurrent Sentinel-1 SAR data and available SCADA and lidar data, kindly provided by DONG Energy and partners, for the period January 2013 to June 2015 account for ~70 images, while ~300 images...... are available for Sentinel-1 from July 2015 to February 2017. The Sentinel-1 wind maps are investigated for wind farm wake effects. Furthermore the results on wind resources and wakes are compared to the SCADA and model results from WRF, Park, Fuga and RANS models....

  12. Three dimensional phase imaging using a scanning optical fiber interferometer

    International Nuclear Information System (INIS)

    Walford, J.N.; Nugent, K.A.; Roberts, A.; Scholten, R.E.

    1998-01-01

    A quantitative method for measuring phase in three dimensions using a scanning optical fiber interferometer is described. By exploiting phase modulation in the reference arm, this technique is insensitive to large variations in the intensity of the field being studied, and is therefore highly suitable for measurement of phase within spatially confined optical beams. It uses only a single detector, and is not reliant on lock-in electronics. The technique is applied to the measurement of the near field of a cleaved optical fiber and shown to produce results in good agreement with theory. (authors)

  13. Fabry-Perot interferometer measurements of neutral winds and F2 layer variations at the magnetic equator

    Directory of Open Access Journals (Sweden)

    P. Vila

    1998-06-01

    Full Text Available This letter presents some night-time observations of neutral wind variations at F2 layer levels near the dip equator, measured by the Fabry-Perot interferometer set up in 1994 at Korhogo (Ivory Coast, geographic latitude 9.25°N, longitude 355°E, dip latitude –2.5°. Our instrument uses the 630 nm (O1D line to determine radial Doppler velocities of the oxygen atoms between 200 and 400 km altitude. First results for November 1994 to March 1995 reveal persistent eastward flows, and frequent intervals of southward winds of larger than 50 ms–1 velocity. Compared with the simultaneous ionospheric patterns deduced from the three West African equatorial ionosondes at Korhogo, Ouagadougou (Burkina-Faso, dip latitude +1.5° and Dakar (Sénégal, dip latitude +5°, they illustrate various impacts of the thermospheric winds on F2 layer density: (1 on the mesoscale evolution (a few 103 km and a few 100 minutes scales and (2 on local fluctuations (hundreds of km and tens of minutes characteristic times. We report on these fluctuations and discuss the opportunity to improve the time-resolution of the Fabry-Perot interferometer at Korhogo.Key words. Ionosphere (Equatorial ionosphere; Ionosphere-atmosphere interaction · Meteorology and Atmospheric Dynamics (General circulation

  14. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    Science.gov (United States)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  15. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    Science.gov (United States)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  16. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......-based observations become available. At present preliminary results are obtained using the routine methods. The first step in the process is to retrieve raw SAR data, calibrate the images and use a priori wind direction as input to the geophysical model function. From this process the wind speed maps are produced....... The wind maps are geo-referenced. The second process is the analysis of a series of geo-referenced SAR-based wind maps. Previous research has shown that a relatively large number of images are needed for achieving certain accuracies on mean wind speed, Weibull A and k (scale and shape parameters...

  17. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  18. Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer

    Science.gov (United States)

    2015-09-18

    Imaging stellar surfaces requires aperture diameters of sometimes hundreds of meters. In general, the diffraction limited angular resolution of an aper ...many practical complications of large aper - tures, ranging from the mechanical problems of building and supporting large mirrors to the computational...appropriate observatory layout and a data ac- quisition system tailored to the types of observations, as well as specific data processing techniques

  19. Stable fiber interferometer

    International Nuclear Information System (INIS)

    Izmajlov, G.N.; Nikolaev, F.A.; Ozolin, V.V.; Grigor'yants, V.V.; Chamorovskij, Yu.K.

    1989-01-01

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  20. Data processing method of imaging velocity interferometer system for any reflector

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun

    2009-01-01

    The data processing procedure for imaging Velocity Interferometer System for Any Reflector(VISAR) has been listed with Fourier transform method. Fringe loss problem in shock wave experiment with imaging VISAR technique has been researched. The fringe loss image from the reference has been processed with Fourier transform method. The fringe image should be clear and uniform, and the one-dimensional Fourier transform method is recommended to reduce the difficulty in filtering the image. The method to confirm the loss point in the fringe loss has been provided. The difference between interference fringes for the opaque and transparent targets is discussed. It is concluded that the fringe from the transparent target should be preprocessed with extension technique before using the normal data processing procedure. (authors)

  1. Equatorial thermospheric winds: New results using data from a network of three Fabry-Perot interferometers located in central Peru

    Science.gov (United States)

    Meriwether, J. W.; Dominquez, L. N.; Milla, M. A.; Chau, J. L.; Makela, J. J.; Fisher, D.

    2013-12-01

    A new observing strategy aimed at improving our understanding of the properties of the equatorial thermosphere wind field, such as the vorticity and divergence, has been developed to generate maps of the thermospheric wind field. Estimates of the neutral wind are obtained from measurements of the Doppler shift of the thermospheric 630.0-nm emission obtained from a sequence of eight evenly spaced azimuthal directions for each of the three Fabry-Perot interferometer (FPI) observatories located in central Peru (Jicamarca, Nazca, and Arequipa). Measurements towards the zenith and a frequency-stabilized laser reference are also included in each sequence, which takes ~25 minutes to complete. Six of the off-zenith observing directions from the Nazca FPI observatory are used to make common volume (CV) measurements, where two of the FPIs observe the same thermospheric volume with a centroid height of ~250 km at orthogonal angles. These CV positions are located ~225 km north and south of the Nazca FPI observatory. The data obtained during a coordinated observation of the two FPIs observing the same CV location are used to compute estimates of the zonal (u) and meridional (v) wind components. The set of Doppler shifts measured by the three FPIs during a single sequence is used to produce a map of the neutral wind field for that period of time. The construction of this map is based upon the use of a first-order polynomial expansion of the neutral wind field relative to the site coordinates of each FPI location. This expansion includes the first-order gradients of u and v with respect to the zonal (x) and meridional (y) directions. Computation of the best fit in a linear least squares sense of the model expansion parameters to the Doppler shift data for all three sites determines the values of these gradient parameters. Results obtained for mid-winter 2013 show the anti-cyclonic circulation expected near the terminator generated by the day-to-night pressure gradient. Sequences

  2. ADL ORVIS: an air-delay-leg, line-imaging optically recording velocity interferometer system.

    Science.gov (United States)

    Trott, Wayne M; Castañeda, Jaime N; Cooper, Marcia A

    2014-04-01

    An interferometry system that enables acquisition of spatially resolved velocity-time profiles with very high velocity sensitivity has been designed and applied to two diverse, instructive experimental problems: (1) measurement of low-amplitude reverberations in laser-driven flyer plates and (2) measurement of ramp-wave profiles in symmetric impact studies of fused silica. The delay leg in this version of a line-imaging optically recording velocity interferometer system (ORVIS) consists of a long air path that includes relay optics to transmit the optical signal through the interferometer cavity. Target image quality from the delay path at the image recombination plane is preserved by means of a compact and flexible optical design utilizing two parabolic reflectors (serving as the relay optics) in a folded path. With an instrument tuned to a velocity per fringe constant of 22.4 m s(-1) fringe(-1), differences of 1-2 m s(-1) across the probe line segment can be readily distinguished. Measurements that capture small spatial variations in flyer velocity are presented and briefly discussed. In the fused silica impact experiments, the ramp-wave profile observed by this air-delay instrument compares favorably to the profile recorded simultaneously by a conventional line-imaging ORVIS.

  3. A hyperspectral imager based on a Fabry-Perot interferometer with dielectric mirrors.

    Science.gov (United States)

    Zucco, Massimo; Pisani, Marco; Caricato, Valentina; Egidi, Andrea

    2014-01-27

    In this paper we present a new hyperspectral imager based on a Fabry-Perot interferometer with low reflectivity dielectric mirrors. This set-up has been validated by measuring hypercubes of scenes containing emitting bodies and reflective surfaces in the visible region and compared with success with reference spectra. The system is based on dielectric mirrors which, with respect to similar systems based on metallic mirrors, have lower losses at lower cost and are available off-the-shelf. The spectra calculation is carried out with a Fourier transform based algorithm which takes into account the not negligible dispersion of the mirrors.

  4. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  5. Mid-latitude thermospheric wind changes during the St. Patrick's Day storm of 2015 observed by two Fabry-Perot interferometers in China

    Science.gov (United States)

    Huang, Cong; Xu, Ji-Yao; Zhang, Xiao-Xin; Liu, Dan-Dan; Yuan, Wei; Jiang, Guo-Ying

    2018-04-01

    In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick's Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75 m/s and the equatorward wind enhanced to a peak value of over 100 m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.

  6. Optical design constrains in triangular Sagnac imaging interferometers for earth observation

    Science.gov (United States)

    Barducci, A.; Guzzi, D.; Lastri, C.; Nardino, V.; Pippi, I.

    2017-11-01

    The Italian Space Agency selected the imaging interferometer ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation) as the main payload for a technological optical mission based on the small satellite MIOsat. The simple design of such an instrument, based on Sagnac configuration, makes it a promising for Earth observation missions. The ALISEO instrument acquires an image of 10 Km by 10 Km with a spatial resolution better than 10 m and a spectral resolution of 200 cm-1 (7 nm @ 0.6 μm) in the 0.4 - 1 μm spectral range. ALISEO does not employ any moving part to generate the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles corresponding to different Optical Path Differences (OPDs). In this paper various optical configurations are analyzed in order to meet the mission requirements. Optical configurations are discussed taking into account: detector size, spatial resolution, and entrance pupil aperture. The proposed configurations should avoid vignetting, reduce geometric and chromatic aberrations, and comply with the size and weight constrains requested by space mission. Optical configurations, based on both refractive and reflective focusing elements, are presented and discussed. Finally, some properties pertaining to the selected Sagnac configuration are discussed in conjunction with spectral estimations and data processing.

  7. Imaging of cochlear tissue with a grating interferometer and hard X-rays

    International Nuclear Information System (INIS)

    Richter, Claus-Peter; Shintani-Smith, Stephanie; Fishman, Andrew; David, Christian; Robinson, Ian; Rau, Christoph

    2009-01-01

    This article addresses an important current development in medical and biological imaging: the possibility of imaging soft tissue at resolutions in the micron range using hard X-rays. Challenging environments, including the cochlea, require the imaging of soft tissue structure surrounded by bone. We demonstrate that cochlear soft tissue structures can be imaged with hard X-ray phase contrast. Furthermore, we show that only a thin slice of the tissue is required to introduce a large phase shift. It is likely that the phase contrast image of the soft tissue structures is sufficient to image the structures even if surrounded by bone. For the present set of experiments, structures with low-absorption contrast have been visualized using in-line phase contrast imaging and a grating interferometer. The experiments have been performed at the Advanced Photon Source at Argonne National Laboratories, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high-photon flux (>10 12 photons/s) at high-photon energies (5-70 keV). Radiographic and light microscopy images of the gerbil cochlear slice samples were compared. It has been determined that a 20-(micro)m thick tissue slice induces a phase shift between 1/3π and 2/3π.

  8. Optical stream-cipher-like system for image encryption based on Michelson interferometer.

    Science.gov (United States)

    Yang, Bing; Liu, Zhengjun; Wang, Bo; Zhang, Yan; Liu, Shutian

    2011-01-31

    A novel optical image encryption scheme based on interference is proposed. The original image is digitally encoded into one phase-only mask by employing an improved Gerchberg-Saxton phase retrieval algorithm together with another predefined random phase mask which serves as the encryption key. The decryption process can be implemented optically based on Michelson interferometer by using the same key. The scheme can be regarded as a stream-cipher-like encryption system, the encryption and decryption keys are the same, however the operations are different. The position coordinates and light wavelength can also be used as additional keys during the decryption. Numerical simulations have demonstrated the validity and robustness of the proposed method.

  9. Nondestructive imaging inspection of defects for a nuclear fuel plate by using an active laser interferometer

    International Nuclear Information System (INIS)

    Park, Nak Kyu; Park, Seung Kyu; Baik, Sung Hoon; Lee, Yoon Sang; Cheong, Yong Moo; Kang, Young June

    2012-01-01

    Most research reactors have adopted the use of plate type nuclear fuel, which consists of a fuel core in aluminum alloy. The production quality of nuclear fuel is an important part for an efficient and stable generation of thermal energy in research reactors. Thus, a nondestructive quality inspection for the internal defects of plate type nuclear fuel is a key process during the production of nuclear fuel for safety insurance. Nondestructive quality inspections based on X rays and ultrasounds have been widely used for the defect detection of plate type nuclear fuel. X ray testing is a simple and fast inspection method, and provides an image as the inspection results. Thus, the testing can be carried out by a non expert field worker. However, it is hard to detect closed type defects because the X ray image is made from the density differences of the materials. Thus, an X ray inspection is usually used for inspection of the filling status of nuclear fuel in aluminum alloy. Ultrasonic testing is a powerful tool to detect internal defects including open type and closed type defects in plate type nuclear fuel. The testing can also provide thickness information for each internal plate of the fuel. A high frequency ultrasonic signal of over than 20 MHz is usually adopted because the thickness of each plate in plate type nuclear fuel is about a millimeter to sub millimeters thin. Thus, the inspection process is complicated because an immersion test should be carried out in a water tank. It is also a time consuming inspection method because area testing is based on the scanning of the point by point inspections. In addition, this testing method needs to be carried out by an expert since the detection capability is greatly dependent on the inspector's knowledge.In this paper, an optical imaging technique using an active laser speckle interferometer with periodic thermal power was developed to visually detect internal defects. The laser speckle interferometer is an optical

  10. Measurements of Thermospheric Winds and Temperatures with a Fabry-Perot Interferometer Network: Results from NATION, South America, and Alaska

    Science.gov (United States)

    Meriwether, J. W.; Makela, J. J.; Ridley, A. J.

    2014-12-01

    Results in recent years have demonstrated that studies of thermospheric dynamics over small or large spatial scales are enhanced when measurements of the wind and temperature fields are obtained as a part of a network of Fabry-Perot interferometers (FPI). In contrast to the all-sky FPI design used in the polar region by Conde and colleagues, these FPIs are narrow-field instruments that utilize a SkyScanner to observe in a series of directions over a region 500-800 km in diameter. The sensitivity of these instruments has increased dramatically over older FPIs, allowing new and interesting phenomena to be investigated. When two or more FPIs are utilized, different observing strategies may then offer advantages regarding the ability to study the thermospheric-ionosphere system response over small and large scale sizes that can not be achieved by a single FPI observatory. Examples of results obtained by the North American Thermospheric and Ionospheric Observing Network (NATION), the five FPIs operating in South America, and the three FPIs observing in Alaska will illustrate the system science advantages provided by such networks.

  11. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    Science.gov (United States)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  12. 3D Reconfigurable NoC Multiprocessor Imaging Interferometer for Space Climate

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the development of an imaging interferometer for long-term observations of solar activity related events. Heliospheric physics phenomena are responsible for causing irregularities to the ionospheric-magnetospheric plasmasphere. Distinct signatures of these events are captured and studied over long periods of time deducting crucial conclusions about the short-term Space Weather and in the long run about Space Climate. The new prototype features an eight-channel implementation. The available hardware resources permit a 256- channel configuration for accurate beam scanning of the Earth's plasmasphere. A dual-polarization scheme has been implemented for obtaining accurate measurements. The system is based on state-of-the-art three-dimensional reconfigurable logic and exhibits a performance increase in the range of 70% compared to similar instruments in operation. Special circuits allow measurements of the most intense heliospheric physics events to be fully captured and analyzed.

  13. Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings.

    Science.gov (United States)

    Wen, Han; Gomella, Andrew A; Patel, Ajay; Lynch, Susanna K; Morgan, Nicole Y; Anderson, Stasia A; Bennett, Eric E; Xiao, Xianghui; Liu, Chian; Wolfe, Douglas E

    2013-01-01

    Hard X-ray phase-contrast imaging characterizes the electron density distribution in an object without the need for radiation absorption. The power of phase contrast to resolve subtle changes, such as those in soft tissue structures, lies in its ability to detect minute refractive bending of X-rays. Here we report a far-field, two-arm interferometer based on the new nanometric phase gratings, which can detect X-ray refraction with subnanoradian sensitivity, and at the same time overcomes the fundamental limitation of ultra-narrow bandwidths (Δλ/λ~10⁻⁴) of the current, most sensitive methods based on crystal interferometers. On a 1.5% bandwidth synchrotron source, we demonstrate clear visualization of blood vessels in unstained mouse organs in simple projection views, with over an order-of-magnitude higher phase contrast than current near-field grating interferometers.

  14. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    Science.gov (United States)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  15. Imaging beyond the fringe: an update on the LINC-NIRVANA Fizeau interferometer for the LBT

    Science.gov (United States)

    Herbst, T. M.; Ragazzoni, R.; Eckart, A.; Weigelt, G.

    2010-07-01

    We present an update on the construction and integration of LINC-NIRVANA, a Fizeau-mode imaging interferometer for the Large Binocular Telescope (LBT). The LBT is a unique platform for interferometry, since its two, co-mounted 8.4 meter primary mirrors present an orientation-independent entrance pupil. This allows Fizeau-mode beam combination, providing 23-meter spatial resolution and 12-meter effective collecting area for panoramic imagery LINC-NIRVANA will sit at one of the shared, bent focal stations, receiving light from both mirrors of the LBT. The instrument uses visible wavelength radiation for wavefront control, and the near-infrared bands for science and fringe tracking. LINC-NIRVANA employs a number of innovative technologies, including multi-conjugated adaptive optics, state-of-the-art materials, low vibration mechanical coolers, active and passive control, and sophisticated software for data analysis. The instrument is in its final construction and integration phase. This paper reports on overall progress, including insights gained on large instrument assembly, software integration, science planning, and vibration control. A number of additional contributions to this conference focus on individual subsystems and integration-related issues.

  16. Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer.

    Science.gov (United States)

    Naik, Dinesh N; Ezawa, Takahiro; Singh, Rakesh Kumar; Miyamoto, Yoko; Takeda, Mitsuo

    2012-08-27

    We propose a new technique for achromatic 3-D field correlation that makes use of the characteristics of both axial and lateral magnifications of imaging through a common-path Sagnac shearing interferometer. With this technique, we experimentally demonstrate, for the first time to our knowledge, 3-D image reconstruction of coherence holography with generic thermal light. By virtue of the achromatic axial shearing implemented by the difference in axial magnifications in imaging, the technique enables coherence holography to reconstruct a 3-D object with an axial depth beyond the short coherence length of the thermal light.

  17. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    Science.gov (United States)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an

  18. Imaging with LINC-NIRVANA, the Fizeau interferometer of the Large Binocular Telescope: state of the art and open problems

    Science.gov (United States)

    Bertero, M.; Boccacci, P.; La Camera, A.; Olivieri, C.; Carbillet, M.

    2011-11-01

    LINC-NIRVANA (LN) is the Fizeau interferometer of the Large Binocular Telescope which consists of two 8.4 m mirrors with a center-to-center distance of 14.4 m, hence providing a maximum path of 22.8 m in the direction of the baseline joining the two centers. LN is a true imager since interference occurs in the focal plane and not in the aperture plane as with essentially all the existing interferometers. However, an LN image is characterized by an anisotropic resolution: that of a 22.8 m mirror in the direction of the baseline and that of a 8.4 m mirror in the orthogonal direction. In order to obtain a unique image with a high and isotropic resolution, several images must be detected with different orientations of the baseline and suitably processed. Therefore, the instrument will routinely require the use of image reconstruction methods for providing astronomical images with unprecedented resolution, in principle ten times the resolution of the Hubble Space Telescope. This review concerns the image reconstruction problem for LN and is based essentially on our work. After a description of the main features of the telescope and of the interferometer, it contains a discussion of the problem and of the approximations introduced in its formulation. In short, it is reduced to multiple-image deconvolution with Poisson data. Similarity with the image reconstruction problem in emission tomography is stressed and utilized for introducing suitable iterative reconstruction methods. These methods are extended to regularized versions of the problem. Efficiency is another important issue because the size of LN images is of the order of 4.2 megapixels; therefore, acceleration methods are also discussed. All methods are tested on synthetic images because, even if the instrument is in an advanced stage of realization, it will be presumably operative in 2014. The algorithms of the proposed image reconstruction methods are implemented in the Software Package AIRY (astronomical image

  19. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [School of Physics and Telecom Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie; Wu, Yongbo [School of Physics and Telecom Engineering, South China Normal University, Guangzhou 510006 (China); GuangDong Province Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, IMOT, Guangzhou 510006 (China); Wang, Yi [School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-04-15

    We designed, fabricated, and tested a rapid and noncontact photoacoustic tomography (PAT) imaging system using a low-coherence interferometer with high-speed phase modulation technique. Such a rapid and noncontact probing system can greatly decrease the time of imaging. The proposed PAT imaging system is experimentally verified by capturing images of a simulated tissue sample and the blood vessels within the ear flap of a mouse (pinna) in vivo. The axial and lateral resolutions of the system are evaluated at 45 and ∼15 μm, respectively. The imaging depth of the system is 1 mm in a special phantom. Our results show that the proposed system opens a promising way to realize noncontact, real-time PAT.

  20. Beckers Effect in a Fabry-Pérot Imaging Interferometer and Its Effects on Magnetic Field Measurements

    Science.gov (United States)

    Robinson, Brian; Balasubramaniam, K.; Gary, G.

    2012-05-01

    The Beckers effect and its impact on the optical performance of a triple-etalon Fabry-Pérot imaging spectral interferometer, such as that intended for use in the Advanced Technology Solar Telescope visible tunable filter, are analyzed in terms of its impacts on line profiles and spatial resolution. In this multi-etalon design, the interferometer is mounted in a telecentric beam. The Beckers effect refers to the pupil apodization in this configuration caused by the dependence of the spectral transmittance of Fabry-Pérot etalons on the angle of incidence of impinging rays. We find that the effect on the imaging and spectral performance can be significant even for the high F-number intermediate images required for narrowband imaging. We go on to explore the impact on Stokes line profiles at 6303Å as well as the cross-talk caused by the degraded point spread function, and analyze the resultant error in the calculated magnetic fields. We gratefully acknowledge the National Science Foundation and the National Solar Observatory for their support of this work.

  1. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer

    OpenAIRE

    Qiangzhou Rong; Yongxin Hao; Ruixiang Zhou; Xunli Yin; Zhihua Shao; Lei Liang; Xueguang Qiao

    2017-01-01

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presen...

  2. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  3. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  4. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.

    Science.gov (United States)

    Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang

    2017-02-17

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.

  5. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Qiangzhou Rong

    2017-02-01

    Full Text Available A fiber-optic Fabry-Perot interferometer (FPI has been proposed and demonstrated for the ultrasound wave (UW imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D images of four physical models are reconstructed.

  6. Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar.

    Science.gov (United States)

    Cézard, Nicolas; Dolfi-Bouteyre, Agnès; Huignard, Jean-Pierre; Flamant, Pierre H

    2009-04-20

    A new concept of spectrum analyzer is proposed for short-range lidar measurements in airborne applications. It implements a combination of two fringe-imaging Michelson interferometers to analyze the Rayleigh-Mie spectrum backscattered by molecules and particles at 355 nm. The objective is to perform simultaneous measurements of four variables: the air speed, the air temperature and density, and the particle scattering ratio. The Cramer-Rao bounds are calculated to evaluate the best expectable measurement accuracies. The performance optimization shows that a Michelson interferometer with a path difference of 3 cm is optimal for air speed measurements in clear air. To optimize density, temperature, and scattering ratio measurements, the second interferometer should be set to a path difference of 10 cm at least; 20 cm would be better to be less sensitive to the actual Rayleigh-Brillouin line shape.

  7. Super-resolution x-ray imaging using interaction between periodic structure of object and standing wave generated with total-reflection-mirror interferometer

    Science.gov (United States)

    Suzuki, Yoshio

    2017-06-01

    A super-resolution method in projection-type x-ray imaging is proposed. In this method, interference fringes generated with a two-beam interferometer are used for detecting the fine periodic structure of the object. When the sample has a fine periodic structure, the structure can be detected as interaction between the periodic structure of object and the standing wave formed by the two-beam interferometer. Feasibility studies have been carried out using wavefront-division interferometer with total-reflection-mirror optics and a resolution test chart as a model sample. The fine structures with a period up to 100 nm were detected as modulation of transmitting x-ray intensity at 11.5 keV.

  8. Imaging doppler lidar for wind turbine wake profiling

    Science.gov (United States)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  9. Michelson Interferometer

    Science.gov (United States)

    Rogers, Ryan

    2007-01-01

    The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.

  10. Submillimeter spectroscopy of the Carina Nebula: Observations, operations and upgrades of the South Pole Imaging Fabry-Perot Interferometer

    Science.gov (United States)

    Oberst, Thomas Edward

    2009-06-01

    We present the results of a ~ 250 arcmin 2 mapping of the 205 μm [NII] fine- structure line emission over the northern Carina Nebula, including the Car I and Car II HII regions. Spectra were obtained using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) at the Antarctic Telescope and Remote Observatory (AST/RO) at South Pole. New upgrades and modifications to the SPIFI instrument are discussed, and full details of SPIFI-AST/RO integration and calibration are provided. At the time of these observations, SPIFI had a spectral resolving power of ~ 4250, a FWHM beam size of ~ 54'', and a noise equivalent power (NEP) referred to the front end of the receiver of ~ 2.5 × 10 -15 W Hz -1/2 (~ 1.4 times the background limit). These data constitute the first ground-based detection of the 205 μm [NII] line, and only the third detection overall since those of the Cosmic Background Explorer (COBE) Far Infrared Absolute Spectrophotometer (FIRAS) and the Kuiper Airborne Observatory (KAO) in the early 1990s. We supplement the 205 μm data with new reductions of far-infrared fine- structure spectra from the Infrared Space Observatory (ISO) in 63 μm [OI], 122 m [NII], 146 μm [OI], and 158 μm [CII]; the 146 μm [OI] data include 90 raster positions which have not been previously published. Morphological comparisons are made with optical, radio continuum and CO maps. The 122/205 [NII] line ratio is used to probe the density of the low-ionization gas, and the 158/205 [CII]/[NII] line ratio is used to probe the fraction of C + arising from photodissociation regions (PDRs). The [OI] and [CII] lines are used to construct a PDR model of Carina following Kaufman et al. (1999). When the PDR properties are compared with other sources, Carina is found to be more akin to 30 Doradus than galactic star-forming regions such as Orion, M17, or W49. This is consistent with the view of Carina as a more evolved region, where much of the parent molecular cloud has been ionized or swept

  11. Double-grating interferometer with a one-to-one correspondence with a Michelson interferometer.

    Science.gov (United States)

    Xu, Yande; Sasaki, Osami; Suzuki, Takamasa

    2003-10-01

    We describe a double-grating interferometer that has a one-to-one correspondence with a Michelson interferometer. The half spatial periods of the gratings are equivalent to the wavelengths of the interferometer. The widths of the interference fringes can be changed easily. The intensity distribution of the interference pattern is independent of the wavelength of the light source used. The surface profile of an object can be measured because two interference beams can coincide precisely on the image plane of the object. The measuring range is much larger than that of a Michelson interferometer.

  12. Special relativity and interferometers

    Science.gov (United States)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  13. The Fizeau Interferometer Testbed

    Science.gov (United States)

    Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2003-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  14. Lukewarm lithium recoil interferometer

    Science.gov (United States)

    Copenhaver, Eric; Cassella, Kayleigh; Estey, Brian; Feng, Yanying; Lai, Chen; Holger, Müller

    2017-04-01

    We demonstrate recoil-sensitive atom interferometry with laser-cooled lithium-7 at 50 times the recoil temperature. The large bandwidth of 160-ns beam-splitter pulses drives conjugate interferometers simultaneously with nearly equal contrast. Two-photon Raman transitions spectrally resolve the outputs, which thermally expand too quickly to be spatially resolved. Two images captured during a single exposure of a camera with slow readout detects both output ports. Optical pumping to a magnetically insensitive state using the well-resolved D1 line suppresses magnetic dephasing and extends coherence time. Sensitivity comparable to interferometers utilizing large momentum transfer pulses is attainable at interrogation times on the order of 10 ms due to lithium's high recoil frequency and the increased available atom number. Vibration noise is mitigated at this time scale and is converted to amplitude noise in our detection scheme, isolating the recoil frequency from what is conventionally phase noise. These techniques relax requirements for cooling in recoil-sensitive interferometry, broadening the choice of species to particles that remain difficult to trap and cool, like electrons.

  15. HURRICANE AND SEVERE STORM SENTINEL (HS3) HIGH-ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) High-Altitude Imaging Wind and Rain dataset was collected from the High-altitude Imaging Wind and Rain Airborne...

  16. GPM GROUND VALIDATION HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) MC3E dataset was collected by the High-Altitude Imaging Wind and Rain...

  17. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    Science.gov (United States)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  18. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  19. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    Navigation with Atom Interferometers Mary F. Locke and Frank A. Narducci Avionics Department Naval Air Systems Command Patuxent River, Md...20670 Abstract: In this article, we review the basic physics of an atom interferometer. We highlight the usefulness of atom interferometers for...inertial navigation due to their high phase sensitivity to both linear acceleration and angular rotation, but also the drawback that a single atom

  20. Variations of interferometer types

    International Nuclear Information System (INIS)

    Graeff, W.

    1978-01-01

    The search for other interferometer configurations than the LLL interferometer that has been proved to work satisfactorily, has two reasons: first some disadvantages of the LLL interferometer like the smearins of the beams over the Borrmann fan or the loss of half of the intensity in the Laue case mirror may be overcome by changing the geometry. Secondly, problems of neutron optics like details of wave propagation in perfect and nearly perfect crystals coherence etc. can be investigated by varying the properties of the interferometer components. The discussion is restricted to those inteferometer types where Bragg diffracting single crystals are used for beam handling

  1. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    1999-01-01

    Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  2. Passive A-band Wind Sounder (PAWS) for measuring tropospheric wind velocity profile

    Science.gov (United States)

    Miecznik, Grzegorz; Pierce, Robert; Huang, Pei; Slaymaker, Philip A.; Kaptchen, Paul; Roark, Shane; Johnson, Brian R.; Heath, Donald F.

    2007-09-01

    The Passive A-Band Wind Sounder (PAWS) was funded through NASA's Instrument Incubator Program (IIP) to determine the feasibility of measuring tropospheric wind speed profiles from Doppler shifts in absorption O II A-band. It is being pursued as a low-cost and low-risk alternative capable of providing better wind data than is currently available. The instrument concept is adapted from the Wind Imaging Interferometer (WINDII) sensor on the Upper Atmosphere Research Satellite. The operational concept for PAWS is to view an atmospheric limb over an altitude range from the surface to 20 km with a Doppler interferometer in a sun-synchronous low-earth orbit. Two orthogonal views of the same sampling volume will be used to resolve horizontal winds from measured line-of-sight winds. A breadboard instrument was developed to demonstrate the measurement approach and to optimize the design parameters for the subsequent engineering unit and future flight sensor. The breadboard instrument consists of a telescope, collimator, filter assembly, and Michelson interferometer. The instrument design is guided by a retrieval model, which helps to optimize key parameters, spectral filter and optical path difference in particular.

  3. Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...

  4. GRIP HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-frequency (Ka- and Ku-band) conical scan system, configured with a nadir viewing antenna...

  5. Warm Vapor Atom Interferometer

    Science.gov (United States)

    Biedermann, Grant; Wheeler, David; Jau, Yuan-Yu; McGuinness, Hayden

    2014-05-01

    We present a light pulse atom interferometer using room temperature rubidium vapor. Doppler sensitive stimulated Raman transitions forming the atom optical elements inherently select a cold velocity group for the interferometer. The interferometer is configured to be sensitive to accelerations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Self-calibrating interferometer

    International Nuclear Information System (INIS)

    Nussmeier, T.A.

    1982-01-01

    A self-calibrating interferometer is disclosed which forms therein a pair of Michelson interferometers with one beam length of each Michelson interferometer being controlled by a common phase shifter. The transfer function measured from the phase shifter to either of a pair of detectors is sinusoidal with a full cycle for each half wavelength of phase shifter travel. The phase difference between these two sinusoidal detector outputs represents the optical phase difference between a path of known distance and a path of unknown distance

  7. Simulation tools for future interferometers

    OpenAIRE

    Yamamoto, H.; Barton, M.; Bhawal, B.; Evans, M.; Yoshida, S.

    2006-01-01

    For the design and commissioning of the LIGO interferometer, simulation tools have been used explicitly and implicitly. The requirement of the advanced LIGO interferometer is much more demanding than the first generation interferometer. Development of revised simulation tools for future interferometers are underway in the LIGO Laboratory. The outline of those simulation tools and applications are discussed.

  8. Surface profiling interferometer

    Science.gov (United States)

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  9. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multi-Frequency Phase-Tracking Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR, we propose a new type of laser interferometer engine for in-situ large optics inspection and metrology and supporting system platform. The proposed...

  10. Fizeau plasma interferometer

    International Nuclear Information System (INIS)

    Frank, A.M.

    1980-01-01

    This paper describes a technique by which the sensitivity of plasma interferometers can be increased. Stabilization and fractional fringe measurement techniques have improved to the point where additional optical sensitivity could be useful

  11. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    2000-01-01

    Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  12. Michelson and His Interferometer

    Science.gov (United States)

    Shankland, Robert S.

    1974-01-01

    Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)

  13. Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions

    Science.gov (United States)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; hide

    2016-01-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  14. Enabling High Spectral Resolution Thermal Imaging from CubeSat and MicroSatellite Platforms Using Uncooled Microbolometers and a Fabry-Perot interferometer

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.; Pilger, E. J.; Honniball, C.; Gabrieli, A.

    2016-12-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. This is attributable to two factors. Firstly, earth emits less light than it reflects, reducing the signal available to measure in the TIR, and secondly, instruments designed to measure (and spectrally decompose) this signal are more complex, massive, and expensive than their VSWIR counterparts, largely due to the need to cryogenically cool the detector and optics. However, this measurement gap needs to be filled, as LWIR data provide fundamentally different information than VSWIR measurements. The TIRCIS instrument (Thermal Infra-Red Compact Imaging Spectrometer), developed at the Hawaii Institute of Geophysics and Planetology, uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data in the 8-14 micron spectral range. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm × 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite as part of the ORS-4 mission in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible (the accompanying image shows a quartz spectrum composed of 17 spectral samples). Our

  15. Michelson interferometer based spatial phase shift shearography.

    Science.gov (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  16. Mariner 9 Michelson interferometer.

    Science.gov (United States)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.

    1972-01-01

    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  17. Winds in the high-latitude lower thermosphere: Dependence on the interplanetary magnetic field

    DEFF Research Database (Denmark)

    Richmond, A.D.; Lathuillere, C.; Vennerstrøm, Susanne

    2003-01-01

    of similar to20 hours, a B-y-dependent magnetic-zonal-mean zonal wind generally exists, with maximum wind speeds at 80 magnetic latitude, typically 10 m/s at 105 km, increasing to about 60 m/s at 123 km and 80 m/s at 200 km. In the southern hemisphere the wind is cyclonic when the time-averaged B-y......[1] Wind observations in the summertime lower thermosphere at high southern latitudes, measured by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite, are statistically analyzed in magnetic coordinates and correlated with the interplanetary magnetic field (IMF......) to determine influences of IMF-dependent ionospheric convection on the winds. Effects are clearly detectable down to 105 km altitude. Above 125 km the wind patterns show considerable similarity with ionospheric convection patterns, and the speed of the averaged neutral wind in the polar cap often exceeds 300 m...

  18. Study on the wide-angle Michelson interferometer with large air gap.

    Science.gov (United States)

    Gao, Haiyang; Tang, Yuanhe; Hua, Dengxin; Liu, Hanchen

    2011-10-10

    A wide-angle Michelson interferometer with large air gap is proposed to effectively reduce the size of the glass arms and constraint on material. It provides a novel and practical instrument for ground based wind measurement of the upper atmosphere. The field widening conditions for the large air gap are calculated in theory. For the five spectral lines of 557.7 nm, 630.0 nm, 732.0 nm, 834.6 nm, and 865.7 nm, the optimal results under ideal condition are obtained with air gaps of 1.0 cm, 1.5 cm, and 2.0 cm, respectively. With the fixed optical path difference (OPD) of 7.495 cm, three pairs of glass arms are optimized. The pair with length of 1.5 cm for air gap, 5.765 cm for H-ZF12, and 2.956 cm for H-ZLaF54, has better effect of field widening than the other two pairs and its OPD variation is only within 0.30 wavelengths at incident angle of 3°. For developing a more practical wide-angle Michelson interferometer, the H-K9L glass with size of 4.445 cm is employed as the arm material of solid interferometer. The experiment for field of view of 3° is designed and the data processing and analysis for 60 images show the agreement between experimental results and theoretical simulation. The OPD variations are only within 0.27 wavelengths for image edge. The feasibility and practicality of the wide-angle Michelson interferometer with large air gap is proved by means of theory and experiment. © 2011 Optical Society of America

  19. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  20. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  1. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    Science.gov (United States)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  2. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  3. Using the Talbot_Lau_interferometer_parameters Spreadsheet

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-04

    Talbot-Lau interferometers allow incoherent X-ray sources to be used for phase contrast imaging. A spreadsheet for exploring the parameter space of Talbot and Talbot-Lau interferometers has been assembled. This spreadsheet allows the user to examine the consequences of choosing phase grating pitch, source energy, and source location on the overall geometry of a Talbot or Talbot-Lau X-ray interferometer. For the X-ray energies required to penetrate scanned luggage the spacing between gratings is large enough that the mechanical tolerances for amplitude grating positioning are unlikely to be met.

  4. Development of holographic interferometer for non-destructive testing

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Sung Hoon; Shin, Jang Soo; Cho, Jai Wan; Kim, Duk Hyeon; Hong, Suck Kyoung; Lee, Sang Kil; Kim, Heon Jun; Park, Chang Jin

    1993-02-01

    This project sets the goal at development of holographic interferometer. In this interferometer, fringe localization and imaging of object are considered. And collimated beam and wedge are used for the high-speed recording and formation of carrier fringes, respectively. With this real-time holographic interferometer, not only experiments were conducted on natural convection and flame jet, but also on high speed flow phenomena such as shock wave propagation. Visualization of high-speed flow is recorded in high-speed camera with framing rate ∼ 35000f/s. And to analyze axis symmetric phase object, analysis program was developed. (Author)

  5. Multiple Josephson contact interferometer

    International Nuclear Information System (INIS)

    Zappe, H.H.

    1978-01-01

    The interferometer (quantum interference between two parallel contacts) displays a mid connector and contacts of the same size, or contacts at which the middle one is twice the size as the other two, or a double connector and three contacts by which the middle contact carries twice the current as the other two. Also there can be provided interferometers with three and four contacts as well as with symmetrical double current connectors and the same largest Josephson current through all contacts. Because all contacts display the same phase state in the voltage free switching state, the amplification property can be increased and current dissipation can be decreased in a way that logic circuits with high integration degree and high switching velocities can be designed. (DG) [de

  6. Development of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

    Science.gov (United States)

    Heymsfield, G. M.; Carswell, J. R.; Li, L.; Schaubert, D.; Heymsfield, J. C.

    2006-12-01

    A dual-wavelength (Ku and Ka band) High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is under development for measuring tropospheric winds within precipitation regions and ocean surface winds in rain-free to light rain regions. This instrument is being designed for operation on high-altitude manned aircraft and the Global Hawk UAV. Proposed lidar-based systems provide measurements in cloud-free regions globally. Since many of the weather systems are in disturbed regions that contain precipitation and clouds, microwave based techniques are more suitable in these regions. Airborne radars at NASA and elsewhere have shown the ability to measure winds in precipitation and clouds. These radars have not generally been suitable for deriving the full horizontal wind from above cloud systems (high-altitude or space) that would require conical scan. HIWRAP is conical scan radar that uses new technologies that utilize solid state rather than tube based transmitters. The presentation will discuss the motivation for the instrument, key system level technologies, status, and planned flight testing of the prototype sensor on the high-altitude WB-57 aircraft to demonstrate the system level performance of the instrument.

  7. Neutrons and music: Imaging investigation of ancient wind musical instruments

    International Nuclear Information System (INIS)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D.C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-01-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process

  8. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Festa, G., E-mail: giulia.festa@roma2.infn.it [Università degli Studi di Roma Tor Vergata (Italy); Università degli Studi di Milano-Bicocca (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Tardino, G. [BauArt Basel, Basel (Switzerland); Pontecorvo, L. [Conservatorio di Cosenza – Cosenza Conservatory (Italy); Mannes, D.C. [Paul Scherrer Institut, Villigen (Switzerland); Senesi, R. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Gorini, G. [Università degli Studi di Milano-Bicocca (Italy); Andreani, C. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy)

    2014-10-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process.

  9. Imaging the Breakup of Coronal Structure and the Onset of Turbulence in the Solar Wind

    Science.gov (United States)

    DeForest, C. E.

    2016-12-01

    The slow solar wind is dominated by gusty, variable structure that has been associated by many authors with turbulence. The slow wind is thought to arise from the vicinity of the coronal streamer belt, which is dominated by quasi-stationary, highly anisotropic, radially aligned density structure shaped by the solar magnetic field. Photometric analysis of the top of the streamers, in the range of apparent distances between roughly 4° and 24° from the Sun, reveals the ultimate fate of the streamers. In the range above 10° from the Sun, where the transition from low-plasma-beta to high-plasma-beta is thought to occur, we have imaged the fading and breakup of quiescent coronal streamers, pseudostreamers, and/or rays (together, "Striae"), and the textural transition at large scales from smooth background flow with sporadic ejecta, to turbulent and variable flow. The result constrains and illuminates turbulent theories of solar wind evolution, and highlights the need for better imaging measurements in this critical transition zone between corona and solar wind - the final unexplored frontier of the heliosphere.

  10. Absolute metrology for space interferometers

    Science.gov (United States)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  11. The millimeter-wave bolometric interferometer

    Science.gov (United States)

    Gault, Amanda Charlotte

    The Millimeter-wave Bolometric Interferometer (MBI) is a technology demonstrator for future searches for the B-mode polarization of the Cosmic Microwave Background (CMB). If observed, B-modes would be a direct probe of the energy scale of inflation, an energy scale that is impossible to reach with even the most sophisticated particle accelerators. In this thesis, I outline the technology differences between MBI and conventional interferometers, including the Faraday effect phase modulators (FPM) used both to control systematic effects and to allow for phase sensitive detection of signals. MBI is a four element adding interferometer with a Fizeau optical beam combiner. This allows simple scaling of the instrument to a large numbers of baselines without requiring complicated pair-wise correlations of signals. Interferometers have an advantage over imaging telescopes when measuring the CMB power spectrum as each baseline is sensitive to a single Fourier mode (angular scale) on the sky. Recovering individual baseline information with this combination scheme requires phase modulating the signal from each antenna. MBI performs this modulation with Faraday effect phase modulators. In these novel cryogenic devices a modulated magnetic field switches the phase of a millimeter-wave RF signal by +/- 90 degrees at frequencies up to a few Hertz. MBI's second season of observations occurred in the winter of 2009 at Pine Bluff Observatory a few miles west of Madsion, WI. We successfully observed interference fringes of a microwave test source located in the far field of the instrument that agree well with those expected from simulations. MBI has inspired a second generation bolometric interferometer, QUBIC, which will have hundreds of antennas and thousands of detectors. When it deploys in 2015, it will be sensitive enough to search for B-mode signals from the CMB.

  12. GPM GROUND VALIDATION HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-frequency (Ka- and Ku-band) conical scan system, configured with a nadir viewing antenna...

  13. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki

    Science.gov (United States)

    Horinouchi, Takeshi; Kouyama, Toru; Lee, Yeon Joo; Murakami, Shin-ya; Ogohara, Kazunori; Takagi, Masahiro; Imamura, Takeshi; Nakajima, Kensuke; Peralta, Javier; Yamazaki, Atsushi; Yamada, Manabu; Watanabe, Shigeto

    2018-01-01

    Venus is covered with thick clouds. Ultraviolet (UV) images at 0.3-0.4 microns show detailed cloud features at the cloud-top level at about 70 km, which are created by an unknown UV-absorbing substance. Images acquired in this wavelength range have traditionally been used to measure winds at the cloud top. In this study, we report low-latitude winds obtained from the images taken by the UV imager, UVI, onboard the Akatsuki orbiter from December 2015 to March 2017. UVI provides images with two filters centered at 365 and 283 nm. While the 365-nm images enable continuation of traditional Venus observations, the 283-nm images visualize cloud features at an SO2 absorption band, which is novel. We used a sophisticated automated cloud-tracking method and thorough quality control to estimate winds with high precision. Horizontal winds obtained from the 283-nm images are generally similar to those from the 365-nm images, but in many cases, westward winds from the former are faster than the latter by a few m/s. From previous studies, one can argue that the 283-nm images likely reflect cloud features at higher altitude than the 365-nm images. If this is the case, the superrotation of the Venusian atmosphere generally increases with height at the cloud-top level, where it has been thought to roughly peak. The mean winds obtained from the 365-nm images exhibit local time dependence consistent with known tidal features. Mean zonal winds exhibit asymmetry with respect to the equator in the latter half of the analysis period, significantly at 365 nm and weakly at 283 nm. This contrast indicates that the relative altitude may vary with time and latitude, and so are the observed altitudes. In contrast, mean meridional winds do not exhibit much long-term variability. A previous study suggested that the geographic distribution of temporal mean zonal winds obtained from UV images from the Venus Express orbiter during 2006-2012 can be interpreted as forced by topographically induced

  14. AMI: Augmented Michelson Interferometer

    Science.gov (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel

    2015-10-01

    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  15. Intercalibration of HRDI and WINDII wind measurements

    Directory of Open Access Journals (Sweden)

    M. D. Burrage

    Full Text Available The High Resolution Doppler Imager (HRDI and the Wind Imaging Interferometer (WINDII in- struments, which are both on the Upper Atmosphere Research Satellite, measure winds by sensing the Doppler shift in atmospheric emission features. Because the two observation sets are frequently nearly coincident in space and time, each provides a very e.ective validation test of the other. Discrepancies due to geophysical di.erences should be much smaller than for comparisons with other techniques (radars, rockets, etc., and the very large sizes of the coincident data sets provide excellent statistics for the study. Issues that have been examined include relative systematic o.sets and the wind magnitudes obtained with the two systems. A significant zero wind position di.erence of ~6 m s–1 is identified for the zonal component, and it appears that this arises from an absolute perturbation in WINDII winds of –4 m s–1 and in HRDI of +2 m s–1. Altitude o.sets appear to be relatively small, and do not exceed 1 km. In addition, no evidence is found for the existence of a systematic wind speed bias between HRDI and WINDII. However, considerable day-to-day variability is found in the quality of the agreement, and RMS di.erences are surprisingly large, typically in the range of 20±30 m s–1.

  16. Intercalibration of HRDI and WINDII wind measurements

    Directory of Open Access Journals (Sweden)

    M. D. Burrage

    1997-09-01

    Full Text Available The High Resolution Doppler Imager (HRDI and the Wind Imaging Interferometer (WINDII in- struments, which are both on the Upper Atmosphere Research Satellite, measure winds by sensing the Doppler shift in atmospheric emission features. Because the two observation sets are frequently nearly coincident in space and time, each provides a very e.ective validation test of the other. Discrepancies due to geophysical di.erences should be much smaller than for comparisons with other techniques (radars, rockets, etc., and the very large sizes of the coincident data sets provide excellent statistics for the study. Issues that have been examined include relative systematic o.sets and the wind magnitudes obtained with the two systems. A significant zero wind position di.erence of ~6 m s–1 is identified for the zonal component, and it appears that this arises from an absolute perturbation in WINDII winds of –4 m s–1 and in HRDI of +2 m s–1. Altitude o.sets appear to be relatively small, and do not exceed 1 km. In addition, no evidence is found for the existence of a systematic wind speed bias between HRDI and WINDII. However, considerable day-to-day variability is found in the quality of the agreement, and RMS di.erences are surprisingly large, typically in the range of 20±30 m s–1.

  17. Diffraction-grating neutron interferometers

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1988-01-01

    Aberration distortions of wavefronts in a very cold neutron interferometer using diffraction gratings are analyzed. Aberrations that considerably reduce the efficiency of a two-grating interferometer are shown to be fully compensable by adding a third diffraction grating, which also permits the interferometer to operate with a non-collimated and non-monochromatized illuminating beam thereby raising its efficiency. A fourth diffraction grating additionally permits compensation of effects of the terrestrial rotation that affect performance of a large interferometer in which the spatial separation of beams can be of the order of a few meters. It is demonstrated to be practically possible to implement an interferometer for neutrons having a wavelength λ = 20 A and to use it in experiments aimed at finding the electric charge of the neutron at the level of 10 -23 to 10 -22 of the electronic charge. (orig.)

  18. Neutron interferometers with diffraction gratings

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1983-01-01

    A neutron interferometer is described in which the amplitude coherent division of the wave fronts is realized by means of neutron diffraction gratings. Photolithographic gratings on glass with a rectangular surface relief profile with a 58 Ni sprayed layer 2000 A thick are used as gratings. In contrast to perfect-crystal neutron interferometers the designed interferometer is capable of operating in the longwave neutron spectrum region. Variation of the value of spatial division of the interfering beams (up to 50 cm) and rather a high efficiency of the amergent beam together with the elemination of neutron beam passage through the interferometer coherent divosor material in such an interferometer permit to use it for solving problems of the solid-state physics and nuclear physics, for example, foA searching for the Yang Mills long-range field

  19. Estimation of the porosity of wind breaks by using GIS-based ortho-image analysis

    Science.gov (United States)

    Mohammadian Behbahani, Ali; Hikel, Harald; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2013-04-01

    The optimal design of windbreaks is very important to reduce wind erosion on farmlands and to combat soil degradation. Main parameters that must be considered when designing windbreaks are: height, width, orientation, porosity (density), distance between barrier rows, and length. There are two types of windbreaks, living (natural) and non-living (artificial). For tree shelterbelts (living windbreak) some of these parameters are related to inherent characteristics of the plants. For example, the height of a windbreak depends on the type of the plant, its growing conditions and the age of the plant. Porosity of windbreaks is considered to be one of the most important factors that controls wind erosion. It is expressed as the ratio between pore space and the space occupied by tree stems, branches, twigs and leaves. For the assessment of porosity it is necessary to convert the three-dimensional plant structure to a two-dimensional model of its shape or plant silhouette, because a direct measurement in the field is very inefficient, time consuming, and therefore impractical. To solve this issue, different approaches have been introduced to estimate the porosity of wind breaks, e.g. optical or aerodynamic porosity. In this study, the porosity of wind break networks was assessed for agricultural land in north Jutland, Denmark. The objective of this study was to develop a GIS-based Ortho-Image Analysis (OIA) method to estimate the porosity of windbreaks. The images of the windbreaks have three visible (RGB) bands and were taken in autumn 2012. The pixel size of 0.5 m is sufficient to visually distinguish the tree rows from their surrounding background. The identification of trees was done using grayscale images, where the dark trees strongly contrast to the bright sky in the background. The preliminary results indicate that the GIS based Ortho-Image analysis can be used as a quick, accurate, and reliable method to estimate the porosity of wind break networks. It can

  20. Investigating fundamental properties of wind turbine wake structure using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Whale, J. [Univ. of Edinburgh, Dept. of Mechanical Engineering, Edinburgh (United Kingdom)

    1997-08-01

    Low Reynolds number flow visualization tests are often used for showing the flow pattern changes associated with changes in lift-coefficients at a higher Reynolds number. In wind turbine studies, analysis of measured wake structures at small scale may reveal fundamental properties of the wake which will offer wake modellers a more complete understanding of rotor flows. Measurements are presented from experiments on a model wind turbine rig conducted in a water channel. The laser-optics technique of Particle Image Velocimetry (PIV) is used to make simultaneous multi-point measurements of the wake flow behind small-scale rotors. Analysis of the PIV data shows trends in velocity and vorticity structure in the wake. Study of the flow close to the rotor plane reveals information on stalled flow and blade performance. (au)

  1. Analysis by X-Ray images of wind blandes waste incorporated in Portland cement

    International Nuclear Information System (INIS)

    Marques, M.A.

    2011-01-01

    The wind blandes wastes can be reused in the incorporation in Portland cement, to be used in non-structural constructions. This work shows X-rays images to assessment the space distribution of the wastes in the cement and to evaluate the use of this methodology. Cylindrical specimens were produced according to ABNT NBR 5738 standards. The mass relation of sand, pebbles and cement was 3:2:1 and 10%, 20% and 50% of waste was incorporated in cement specimens. Frontal and upper projections were obtained in X-Rays images. The images showed that the distribution of the waste is homogeneous, consistent with what was intended in this type of incorporation, which can provide uniformity in test results of compressive strength. (author)

  2. 30-lens interferometer for high energy x-rays

    International Nuclear Information System (INIS)

    Lyubomirskiy, M.; Snigireva, I.; Vaughan, G.; Kohn, V.; Kuznetsov, S.; Yunkin, V.; Snigirev, A.

    2016-01-01

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined from the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.

  3. Guided magnonic Michelson interferometer.

    Science.gov (United States)

    Ahmed, Muhammad H; Jeske, Jan; Greentree, Andrew D

    2017-01-30

    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks.

  4. Parallel Wavefront Analysis for a 4D Interferometer

    Science.gov (United States)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  5. Simulation and analysis of natural rain in a wind tunnel via digital image processing techniques

    Science.gov (United States)

    Aaron, K. M.; Hernan, M.; Parikh, P.; Sarohia, V.; Gharib, M.

    1986-01-01

    It is desired to simulate natural rain in a wind tunnel in order to investigate its influence on the aerodynamic characteristics of aircraft. Rain simulation nozzles have been developed and tested at JPL. Pulsed laser sheet illumination is used to photograph the droplets in the moving airstream. Digital image processing techniques are applied to these photographs for calculation of rain statistics to evaluate the performance of the nozzles. It is found that fixed hypodermic type nozzles inject too much water to simulate natural rain conditions. A modification uses two aerodynamic spinners to flex a tube in a pseudo-random fashion to distribute the water over a larger area.

  6. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar

    DEFF Research Database (Denmark)

    Abari, Cyrus F.; Pedersen, Anders Tegtmeier; Dellwik, Ebba

    2015-01-01

    The main purpose of this study is to evaluate the near-zero wind velocity measurement performance of two separate 1.5 µm all-fiber coherent Doppler lidars (CDLs). The performance characterization is carried out through the presentation of the results from two separate atmospheric field campaigns....... In one campaign, a recently developed continuous wave (CW) CDL benefiting from an image-reject front-end was deployed. The other campaign utilized a different CW CDL, benefiting from a heterodyne receiver with intermediate-frequency (IF) sampling. In both field campaigns the results are compared against...

  7. Assessment of Off-shore Wind Energy Resource in China using QuikSCAT Satellite data and SAR Satellite Images

    DEFF Research Database (Denmark)

    Xiuzhi, Zhang; Yanbo, Shen; Jingwei, Xu

    2010-01-01

    From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one ...... part of the project, off-shore wind energy resource in China was assessed with QuikSCAT Satellite data and SAR Satellite Images. In this paper, the results from these two ways were introduced.......From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one...

  8. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  9. Particle Image Velocimetery (PIV) Diagnostics for Wind Energy and Energy Security Research

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Suhas Uddhav [Los Alamos National Laboratory

    2012-06-04

    Particle Image Velocimetery (PIV) is a laser based technique that involves correlation analysis of tracer particle images to estimate the velocity field in a fluid. High resolution velocity measurement capability and non-intrusive nature of PIV make it desirable for understanding complex fluid flow phenomena occurring in various scenarios. This presentation briefly describes the development of novel PIV diagnostics that forward Wind Energy research and advance scaling models to solve expensive maintenance issues of the Strategic Petroleum Reserves (SPR). Two new diagnostic implementations of Particle Image Velocimetry (PIV) are being developed at Los Alamos National Laboratory (LANL) to facilitate understanding of wind turbine aerodynamics in unprecedented detail. It has been demonstrated that a Large-Field PIV (LF-PIV) diagnostic capable of measuring large scale flow fields of up to 4.3m x 2.8m per camera has been developed. This diagnostic, which represents a significant leap in the field of view of existing centimeter scale PIV systems, allows the measurement of velocity fields at multiple points with high accuracy for large scale flows, such as, flows around wind turbines. Further, to characterize the near blade boundary layer of wind turbines a rotating PIV system (R-PIV) is also under development at LANL (patent application in progress). Design considerations and results of bench top tests that confirm the reliability of PIV measurements obtained using the above diagnostics will be presented in this talk. PIV along with conductivity and temperature probe data has been useful to develop models that simulate the evolution of the layered structure of crude oil stored in the subterranean caverns of the Strategic Petroleum Reserves (SPR). Understanding the evolution of stratified layers of crude oil that are subjected to geothermal forcing is crucial in improving the efficiency of maintenance procedures carried out for the SPR and hence ensure Energy Security of

  10. Operational Experience with the Navy Prototype Optical Interferometer

    Science.gov (United States)

    White, Nathaniel M.; Mozurkewich, David; Hutter, Donald J.; Benson, James A.; Hummel, Christian A.; Clark, James H., III

    2002-12-01

    A review of operational procedures and requirements evolving at the Navy Prototype Optical Interferometer (NPOI) provides some useful insights for the automation, maintenance and operation of large optical interferometers even as construction and instrument development continues. Automation is essential for efficient, single operator observing. It is important to integrate ease of operation and maintenance into the instrument design from the start. In final form, the Navy Prototype Optical Interferometer, NPOI, will use six portable siderostats for imaging stars and narrow angle astrometry of multiple stars as well as four fixed siderostats designed for all sky astrometry. Currently all four astrometric siderostats and two transportable siderostats are operational. All six beams from the siderostats now in use have been combined coherently to form images of multiple stars at milliseconds of arc resolution.

  11. Empirical model for matching spectrophotometric reflectance of yarn windings and multispectral imaging reflectance of single strands of yarns.

    Science.gov (United States)

    Luo, Lin; Shen, Hui-Liang; Shao, Si-Jie; Xin, John

    2015-08-01

    The state-of-the-art multispectral imaging system can directly acquire the reflectance of a single strand of yarn that is impossible for traditional spectrophotometers. Instead, the spectrophotometric reflectance of a yarn winding, which is constituted by yarns wound on a background card, is regarded as the yarn reflectance in textile. While multispectral imaging systems and spectrophotometers can be separately used to acquire the reflectance of a single strand of yarn and corresponding yarn winding, the quantitative relationship between them is not yet known. In this paper, the relationship is established based on models that describe the spectral response of a spectrophotometer to a yarn winding and that of a multispectral imaging system to a single strand of yarn. The reflectance matching function from a single strand of yarn to corresponding yarn winding is derived to be a second degree polynomial function, which coefficients are the solutions of a constrained nonlinear optimization problem. Experiments on 100 pairs of samples show that the proposed approach can reduce the color difference between yarn windings and single strands of yarns from 2.449 to 1.082 CIEDE2000 units. The coefficients of the optimal reflection matching function imply that the reflectance of a yarn winding measured by a spectrophotometer consists of not only the intrinsic reflectance of yarn but also the nonignorable interreflection component between yarns.

  12. Michelson Interferometer (MINT)

    Science.gov (United States)

    Lacis, Andrew; Carlson, Barbara

    1993-01-01

    MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.

  13. X-ray speckle correlation interferometer

    International Nuclear Information System (INIS)

    Eisenhower, Rachel; Materlik, Gerhard

    2000-01-01

    Speckle Pattern Correlation Interferometry (SPCI) is a well-established technique in the visible-light regime for observing surface disturbances. Although not a direct imaging technique, SPCI gives full-field, high-resolution information about an object's motion. Since x-ray synchrotron radiation beamlines with high coherent flux have allowed the observation of x-ray speckle, x-ray SPCI could provide a means to measure strains and other quasi-static motions in disordered systems. This paper therefore examines the feasibility of an x-ray speckle correlation interferometer

  14. Sand Dune Dynamics on Mars: Integration of Surface Imaging, Wind Measurements, and Orbital Remote Sensing

    Science.gov (United States)

    Bridges, N.; Sullivan, R. J., Jr.; Ewing, R. C.; Newman, C. E.; Ayoub, F.; Lapotre, M. G. A.; van Beek, J.

    2016-12-01

    In early 2016, the Mars Science Laboratory rover completed the first in situ investigation of an active dune field on another planetary body, the "Bagnold Dunes" in Gale Crater. During the campaign, a series of Mastcam and RMI time-series images of local sand patches, dump piles, ripples, and the lee face and margin of Namib Dune (a barchan in the Bagnold field) were acquired. These were at cadences of a sol or more that were generally at nearly the same local time, and intra-sol imaging bridged by continuous wind measurements from REMS. The dune field has also been imaged 16 times by HiRISE since 2008. By combining the two datasets, long term dune dynamics over the whole field can be compared to small-scale and short-term observations on the surface. From HiRISE, Namib Dune and other barchans and longitudinal dunes to the south and west migrate generally toward the south to southeast. The most active sand deposits are the longitudinal and barchans dunes, with the highest ripple migration rates found on the highest elevations. Rippled sand patches exhibit little of no motion. From MSL, the scrambling of grains on the surfaces of local rippled sand patches and Namib Dune is obvious over periods as short as a single sol, with light-toned grains showing the greatest tendency. On the lee face of Namib, images show grain scrambling, one case of modification to a secondary grainflow, and possibly ripple motion over 3-16 sols. At the dune margin, grain scrambling and one major slump on the lee face of a dune ripple are seen. The daytime REMS record shows wind speeds up to 20 m/s with confidence. As yet, we do not have a demonstrable correlation between measured wind speeds and changes, suggesting that short term gusts or non-aeolian processes acting as triggers may precede significant activity. The changes, occurring in a low flux season based on HiRISE analysis and global circulation models, indicate an active surface at all times of the year to some degree.

  15. Analysis of wind and wave events at the MIZ based on TerraSAR-X satellite images

    Science.gov (United States)

    Gebhardt, Claus; Bidlot, Jean-Raymond; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey; Singha, Suman

    2017-04-01

    The seasonal opening-up of large expanses of open water in the Beaufort/Chukchi Sea is a phenomenon observed in recent years. The diameter of the open-water area is on the order of 1000 km around the sea ice minimum in summer. Thus, wind events in the area are accompanied by the build-up of sea waves. Significant wave heights of few to several meters may be reached. Under low to moderate winds, the morphology of the MIZ is governed by oceanic forcing. As a result, the MIZ resembles ocean circulation features such as eddies, meanders, etc.. In the case of strong wind events, however, the wind forcing may gain control. We analyse effects related to wind and wave events at the MIZ using TerraSAR-X satellite imagery. Methods such as the retrieval of sea state and wind data by empirical algorithms and automatic sea ice classification are applied. This is facilitated by a series of TerraSAR-X images acquired in support of a cruise of the research vessel R/V Sikuliaq in the Beaufort/Chukchi Sea in autumn 2015. For selected images, the results are presented and compared to numerical model forecasts which were as well part of the cruise support.

  16. Development of measurement system for gauge block interferometer

    Science.gov (United States)

    Chomkokard, S.; Jinuntuya, N.; Wongkokua, W.

    2017-09-01

    We developed a measurement system for collecting and analyzing the fringe pattern images from a gauge block interferometer. The system was based on Raspberry Pi which is an open source system with python programming and opencv image manipulation library. The images were recorded by the Raspberry Pi camera with five-megapixel capacity. The noise of images was suppressed for the best result in analyses. The low noise images were processed to find the edge of fringe patterns using the contour technique for the phase shift analyses. We tested our system with the phase shift patterns between a gauge block and a reference plate. The phase shift patterns were measured by a Twyman-Green type of interferometer using the He-Ne laser with the temperature controlled at 20.0 °C. The results of the measurement will be presented and discussed.

  17. High resolution radio imaging study of the Pulsar Wind Nebula MSH 15-52

    Science.gov (United States)

    Leung, W.-Y.; Ng, C.-Y.

    2016-06-01

    We present a new high-resolution radio imaging study of the pulsar wind nebula (PWN) MSH 15-52, also dubbed as "the hand of God", with the Australia Telescope Compact Array observations. The system is powered by a young and energetic radio pulsar B1509-58 with high spin down luminosity of E(dot) = 2 x 10^37 erg/s. Previous X-ray images have shown that the PWN has a complex hand-shape morphology extending over 10 pc with features like jets, arc, filaments and enhanced emission knots in the HII region RCW 89. The new 6cm and 3cm radio images show different morphology than the X-ray counterpart. No radio counterpart of the X-ray jet is detected, instead we found enhanced emission in a sheath surrounding the jet. Additional small-scale features including a polarized linear filament next to the pulsar have also been discovered. Our polarisation measurements show that the intrinsic orientation of magnetic field aligns with the sheath. Finally, spectral analysis results indicate a steep spectrum for the system, which is rather unusual among PWNe. Implications of these findings will be discussed. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work is supported by an ECS grant under HKU 709713P.

  18. Michelson interferometer for measuring temperature

    Science.gov (United States)

    Xie, Dong; Xu, Chunling; Wang, An Min

    2017-09-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displaying Kerr nonlinearity. We obtain the analytical equations and numerically calculate the precision with parameters within the reach of current technology, proving that the precision of temperature can be greatly enhanced by using a nonlinear medium. Our results show that one can create an accurate thermometer by measuring the photons in the Michelson interferometer, with no need to directly measure the population of thermalized sample.

  19. Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry

    Science.gov (United States)

    Rolin, V.; Porté-Agel, F.

    2015-06-01

    Stereo particle image velocimetry is used in a wind-tunnel to study boundary layer effects in the wake behind a vertical axis wind turbine. The turbine is a three-bladed giromill with a solidity of 1.18. The wake is studied for a tip speed ratio of 2 and an average chord Reynolds number of 1.6 × 104. The velocity deficit and turbulence levels in the horizontal plane are observed to be strongly asymmetrical with two strong peaks corresponding to the two halves of the rotor where blades move either towards the oncoming flow or away from it. The stronger peak is measured behind the blades moving upstream, however this region also benefits from a greater rate of re-energization. Due to the incoming boundary layer profile, momentum is also entrained downwards into the wake from above and aids with the recovery of the core of the wake.

  20. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    Science.gov (United States)

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  1. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. High-latitude circulation and interplanetary magnetic field dependence

    DEFF Research Database (Denmark)

    Emmert, J.T.; Hernandez, G.; Jarvis, M.J.

    2006-01-01

    We analyze upper thermospheric (similar to 250 km) nighttime horizontal neutral wind patterns, during geomagnetically quiet (Kp <3) conditions, over the following locations: South Pole (90 degrees S), Halley (76 degrees S, 27 degrees W), Millstone Hill (43 degrees N, 72 degrees W), Sondre Stromfj...

  2. Liquid-helium-cooled Michelson interferometer

    Science.gov (United States)

    Augason, G. C.; Young, N.

    1972-01-01

    Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.

  3. Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device.

    Science.gov (United States)

    Shirai, Tomohiro; Barnes, Thomas H

    2002-02-01

    A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.

  4. Improving the performances of current optical interferometers & future designs

    Science.gov (United States)

    Arnold, L.; Le Coroller, H.; Surdej, J.

    2014-04-01

    The number of astrophysical studies making use of interferometers has steadily increased during the past 15 years. Nevertheless, the performances of interferometers are still limited: their sensitivity does not exceed magnitude V=12, and their imaging capability could yet be improved by increasing the number of telescopes/sub-apertures. In the context of the ELTs, it is not certain how future interferometry projects will be financed. However, interferometry remains the only way to observe compact astrophysical objects at very high angular resolution (integrated optic, pupil densifier, etc.); fringe tracking systems; laser telemetry applied to interferometry; heterodyne interferometry; progress in heterodyne detection using new technologies (laser comb, time propagation technologies, etc.); progress in image reconstruction techniques; progress in nulling interferometry; and important science cases that could benefit from progress in interferometry (report of observations at the limit of current interferometers). Nearly 50 oral presentations have been delivered, followed by very lively discussions which eventually emerged with the proposition to organize the "Planet Formation Interferometer/Imager" (PFI) project. The present proceedings reflect most of the highlights of this international colloquium.

  5. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  6. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herges, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  7. Texture-Analysis-Incorporated Wind Parameters Extraction from Rain-Contaminated X-Band Nautical Radar Images

    Directory of Open Access Journals (Sweden)

    Weimin Huang

    2017-02-01

    Full Text Available In this paper, a method for extracting wind parameters from rain-contaminated X-band nautical radar images is presented. The texture of the radar image is first generated based on spatial variability analysis. Through this process, the rain clutter in an image can be removed while the wave echoes are retained. The number of rain-contaminated pixels in each azimuthal direction of the texture is estimated, and this is used to determine the azimuthal directions in which the rain-contamination is negligible. Then, the original image data in these directions are selected for wind direction and speed retrieval using the modified intensity-level-selection-based wind algorithm. The proposed method is applied to shipborne radar data collected from the east Coast of Canada. The comparison of the radar results with anemometer data shows that the standard deviations of wind direction and speed using the rain mitigation technique can be reduced by about 14.5° and 1.3 m/s, respectively.

  8. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  9. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Polar Winds from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from 65...

  10. GPM Ground Validation High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) OLYMPEX V1a

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Altitude Wind and Rain Airborne Profiler (HIWRAP) instrument is a Doppler radar designed to measure tropospheric winds through deriving Doppler profiles...

  11. Investigation of winds in Venus mesosphere by digital method using UV images from VMC aboard Venus Express.

    Science.gov (United States)

    Patsaeva, Marina; Khatuntsev, Igor; Ignatiev, Nikolai

    2013-04-01

    Investigation of winds at the top cloud layer is important for understanding the global circulation of the Venus atmosphere. The Venus Monitoring Camera (VMC) aboard Venus Express has acquired a huge number of UV (365 nm) images. UV images of top cloud layer are customary to obtain the wind velocity due to their high contrast. Visual estimation of wind velocities is a labor intensive procedure. Authors have developed a digital method to estimate velocities of shifts of cloud details. The method is based on analysis of correlations between two UV images acquired at different moments. The method takes into account the change of a correlation function due to latitudinal peculiarities of cloud morphology and eliminates image regions which are far from the sub-spacecraft point. The digital method provides with good vector coverage of the Venus day side (9-16 local time) from the equator to high latitudes. The best agreement between the digital and visual methods is observed at low latitudes (below 35S). The discrepancy at higher latitudes is related to complicated cloud morphology, namely domination of streaks, which increases errors in the zonal wind speed. The method is productive for long-scale circulation at the top cloud layer. Sizes of regions for correlation were chosen empirically as a trade-off of sensitivity against noise immunity and varies from 10x7.5 ° to 20x10 ° depending on grid step. 580 orbits covering ten Venus years have been processed by using the digital method. The database of shift vectors counts about 400000 records. The mean wind speed at low latitudes is about 100 m/s. Wind vector fields were obtained for every orbit. The zonal wind speed in the equatorial region exhibits short-period (about 4.8 days) and long-period variations (long-term trend). Vector field averaged by all orbits show deviations of the main stream up to 5 degrees poleward in the early afternoon (12.5-14.5h) at 45-55S. The mean absolute value of the wind speed increases from

  12. The Narrabri Stellar Intensity Interferometer: a 50th birthday tribute

    Science.gov (United States)

    Tuthill, Peter G.

    2014-07-01

    This year marks the 50th anniversary since the first scientific measurements were produced with the Narrabri Stellar Intensity Interferometer, which was constructed in the early 1960's by Robert Hanbury Brown and Richard Twiss. A collaboration between the Universities of Sydney and Manchester, the interferometer was the culmination of a series of experiments which pioneered the technique of intensity interferometry. The immediate controversy surrounding the quantum implications of the technique enveloped some of the most eminent physicists of the day, sparking a debate about nonlocal effects and optical coherence. A full explanation of the workings of the intensity interferometer in a quantum context was finally put forward by Roy Glauber, ultimately earning him the 2005 Nobel Prize in Physics. The intensity interferometer rekindled the field of high resolution stellar imaging, which had been extinguished for a half century (following the failure of Pease's 50-foot beam on Mt Wilson), while delivering the first ever measurements of the sizes of normal stars - establishing an effective temperature scaling relationship which has underpinned stellar astronomy for 50 years. This directly paved the way for the next generation of Michelson Stellar Interferometers. Intensity interferometry itself has found application in several fields (notably particle physics), and plans are in active development for modern reprises within stellar interferometry. However undoubtedly the greatest legacy lies in the Hanbury Brown Twiss (HBT) effect being the foundational experiment for what is now known as Quantum Optics - a field which underpins a huge sector of the technology which enables our modern world. This invited review discuses the development of the interferometer, including the controversy that its underlying principles generated within the contemporary physics community. The core scientific output generated by the instrument is presented, together with the impact of the

  13. Operational performance of the TIMED Doppler Interferometer (TIDI)

    Science.gov (United States)

    Skinner, Wilbert R.; Niciejewski, Rick J.; Killeen, Timothy L.; Solomon, Stanley C.; Gablehouse, Daniel; Wu, Qian; Ortland, David; Gell, David A.; Marshall, Alan R.; Wolfe, Edwin, Jr.; Cooper, Marie; Kafkalidis, Julie F.

    2003-11-01

    The TIMED Doppler Interferometer (TIDI) is a Fabry-Perot interferometer designed to measure winds in the mesosphere and thermosphere (60-180 km) as part of the TIMED mission. TIDI is a limb viewer and observes emissions from OI 557.7 nm and rotational lines in the O2(0-0) Atmospheric band. Wind measurement accuracies approach 3 ms-1 in the mesosphere and 15 ms-1 in the thermosphere. The TIDI instrument"s performance during the first year and a half of operation is discussed in this paper. Many subsystems are working as designed. The thermal control system is holding the instrument temperatures at their desired set-points. The CCD detector is working as expected with no changes observed in the gain, bias or read noise. The instrument suffers from a light leak that causes the background to be elevated and increases the uncertainty in the wind measurement. Nothing can be done to eliminate this problem but modeling of the background has eliminated any systematic effect. Water outgassing from the spacecraft or instrument has deposited as ice on some part of the optics and reduced the instrument"s sensitivity. This problem has been reduced by two spacecraft rolls which pointed the TIDI radiator to view more of the earth causing the optics to warm up and sublimate much of the ice.

  14. The MIGHTI Wind Retrieval Algorithm: Description and Verification

    Science.gov (United States)

    Harding, Brian J.; Makela, Jonathan J.; Englert, Christoph R.; Marr, Kenneth D.; Harlander, John M.; England, Scott L.; Immel, Thomas J.

    2017-10-01

    We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.

  15. The TEXT upgrade vertical interferometer

    International Nuclear Information System (INIS)

    Hallock, G.A.; Gartman, M.L.; Li, W.; Chiang, K.; Shin, S.; Castles, R.L.; Chatterjee, R.; Rahman, A.S.

    1992-01-01

    A far-infrared interferometer has been installed on TEXT upgrade to obtain electron density profiles. The primary system views the plasma vertically through a set of large (60-cm radialx7.62-cm toroidal) diagnostic ports. A 1-cm channel spacing (59 channels total) and fast electronic time response is used, to provide high resolution for radial profiles and perturbation experiments. Initial operation of the vertical system was obtained late in 1991, with six operating channels

  16. Stellar Interferometer Technology Experiment (SITE)

    Science.gov (United States)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  17. A stellar interferometer on the Moon

    Science.gov (United States)

    Porro, Irene

    The work I present in this document has been divided into two main parts, the first one related to the IOTA project and the second one related to the study on the lunar interferometer, and an introduction section. Each section can be read independently from the other, however they are presented following the logical order in which the research work has been developed. As a guide for the reader here I describe the content of each chapter, which represents the original contribution (except when it is specifically declared) to the research accomplished. This section consists in the Introduction itself, with a presentation of the motivations for this research work, and in the chapter Interferometry from the Earth and from the Moon. The first part of this chapter shows the performances which are expected to be reached by ground-based interferometers (Colavita, 1992) by using adaptive optics systems (Beckers, 1993). The evaluation is made separately for the case of high resolution imaging and for high accuracy astrometric measurements. The most optimistic results expected for ground-based instruments determine the level of the performance that has to be required from a space interferometer (both an orbiting and a lunar instrument). In the second part of the chapter I specifically deal with the case of a lunar interferometer, which allows to put together the advantages o ered by a ground-based instrument (very long baseline, a stable platform) and those offered by the space environment (absence of atmospheric turbulence, long integration times, and wavelength range of observation from the ultraviolet to the far infrared). In order to evaluate the limits of the lunar interferometer, I need to consider three subjects with which I did not explicitly dealt for the study on IOTA: the maximum length of the baseline (Tango and Twiss, 1974), the maximum integration time, and the performances obtainable at the minimum temperature of operation (Ridgway, 1990). The chapter ends with

  18. Unequal-Arms Michelson Interferometers

    Science.gov (United States)

    Tinto, Massimo; Armstrong, J. W.

    2000-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  19. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    Science.gov (United States)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  20. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    Science.gov (United States)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  1. Investigation of the partially coherent effects in a 2D Talbot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Gao, Kun; Wang, Dajiang [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei (China); Wang, Zhili; Wu, Ziyu [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei (China); Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China); Zhang, Kai; Hong, Youli; Zhu, Zhongzhu; Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    The recent use of a one-dimensional (1D) X-ray Talbot interferometer has triggered great interest in X-ray differential phase contrast imaging. As an improved version of a 1D interferometer, the development of two-dimensional (2D) grating interferometry strongly stimulated applications of grating-based imaging. In the framework of Fresnel diffraction theory, we investigated the self-image of 2D-phase gratings under partially coherent illumination. The fringe visibility of the self-image has been analyzed as a function of the spatial coherence length. From the viewpoint of self-image visibility, it is possible to find the optimal 2D grid for 2D X-ray grating interferometer imaging. Numerical simulations have been also carried out for quantitative evaluation. Results, in good agreement with theoretical analysis, indicate the spatial coherence requirements of the radiation illuminating a 2D grating interferometer. Moreover, our results can be used to optimize performances of a 2D grating interferometer and for further theoretical and experimental research on grating-based imaging systems. (orig.)

  2. Phase conjugate Michelson interferometer for optical logic

    Science.gov (United States)

    Khoury, Jed

    2017-05-01

    The interference theory is developed for of the phase conjugate Michelson interferometer in which its ordinary mirrors are replaced by a single externally pumped phase conjugate mirror. According to the theory, it was found that for an interferometer with two equal arms, the path length difference depends solely on the initial alignment of the two input beams, and the vertical alignment readout. Small vertical misalignments in the readout beam by mrad causes a huge change in the phase difference in the phase between the two interferometer arms beam. The phase difference is proportional to the interferometer arm lengths. The overlap between the phase conjugate beams is not affected by the interferometer beam alignment. The interferometer is proposed for nondestructive testing and the design all optical logic and associated fuzzy logic for ultrafast optical pattern recognition.

  3. Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express

    Science.gov (United States)

    Khatuntsev, I. V.; Patsaeva, M. V.; Titov, D. V.; Ignatiev, N. I.; Turin, A. V.; Fedorova, A. A.; Markiewicz, W. J.

    2017-11-01

    For more than 8 years the Venus Monitoring Camera (VMC) onboard the Venus Express orbiter performed continuous imaging of the Venus cloud layer in UV, visible and near-IR filters. We applied the correlation approach to sequences of the near-IR images at 965 nm to track cloud features and determine the wind field in the middle and lower cloud (49-57 km). From the VMC images that spanned from December of 2006 through August of 2013 we derived zonal and meridional components of the wind field. In low-to-middle latitudes (5-65°S) the velocity of the retrograde zonal wind was found to be 68-70 m/s. The meridional wind velocity slowly decreases from peak value of +5.8 ± 1.2 m/s at 15°S to 0 at 65-70°S. The mean meridional speed has a positive sign at 5-65°S suggesting equatorward flow. This result, together with the earlier measurements of the poleward flow at the cloud tops, indicates the presence of a closed Hadley cell in the altitude range 55-65 km. Long-term variations of zonal and meridional velocity components were found during 1,200 Earth days of observation. At 20° ± 5°S the zonal wind speed increases from -67.18 ± 1.81 m/s to -77.30 ± 2.49 m/s. The meridional wind gradually increases from +1.30 ± 1.82 m/s to +8.53 ± 2.14 m/s. Following Bertaux et al. (2016) we attribute this long-term trend to the influence from the surface topography on the dynamical process in the atmosphere via the upward propagation of gravity waves that became apparent in the VMC observations due to slow drift of the Venus Express orbit over Aphrodite Terra.

  4. The tempo-spatially modulated polarization atmosphere Michelson interferometer.

    Science.gov (United States)

    Zhang, ChunMin; Zhu, HuaChun; Zhao, Baochang

    2011-05-09

    A space-based tempo-spatially modulated polarization atmosphere Michelson interferometer (TSMPAMI) is described. It uses the relative movement between the TSMPAMI and the measured target to change optical path difference. The acquisition method of interferogram is presented. The atmospheric temperatures and horizontal winds can be derived from the optical observations. The measurement errors of the winds and temperatures are discussed through simulations. In the presence of small-scale structures of the atmospheric fields, the errors are found to be significantly influenced by the mismatch of the scenes observed by the adjacent CCD sub-areas aligned along the orbiter's track during successive measurements due to the orbital velocity and the exposure time. For most realistic conditions of the orbit and atmosphere, however, the instrument is proven suitable for measuring the atmospheric parameters. © 2011 Optical Society of America

  5. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  6. Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer

    International Nuclear Information System (INIS)

    Aso, Y.; Ando, M.; Kawabe, K.; Otsuka, S.; Tsubono, K.

    2004-01-01

    A suspension-point interferometer (SPI) is an auxiliary interferometer for active vibration isolation, implemented at the suspension points of the mirrors of an interferometric gravitational wave detector. We constructed a prototype Fabry-Perot interferometer equipped with an SPI and observed vibration isolation in both the spectrum and transfer function. The noise spectrum of the main interferometer was reduced by 40 dB below 1 Hz. Transfer function measurements showed that the SPI also produced good vibration suppression above 1 Hz. These results indicate that SPI can improve both the sensitivity and the stability of the interferometer

  7. Microscopy of non-birefringent transmissive phase samples using Sagnac laser interferometer.

    Science.gov (United States)

    Sarkar, Sanjukta; Bhattacharya, K

    2014-11-01

    A cyclic interferometer, appropriately combined with a long working distance microscope objective, is adapted for quantitative phase microscopy. In such an arrangement, the sample information, in terms of the diffracted orders emerging from the sample, is carried by both the counter propagating beams within the cyclic interferometer. However, positioning the sample close to the input/output cube beam splitter and use of a suitably converging laser beam of light as the input to the interferometer ensure that only one of the counter propagating beams carries the object information to the objective while the other beam, which serves as the reference, allows only the undiffracted component to contribute to the process of image formation. Use of suitable polarization optics renders the interferometer its polarization phase shifting property. Using the proposed arrangement, the experimental results showing the quantitative 3D phase rendering of polystyrene microspheres and micro-wells etched in glass are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Heterodyne displacement interferometer, insensitive for input polarization

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error

  9. A Michelson interferometer for ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.; Malik, S.S.; Steinhauser, K.A.; Berger, L.

    1979-01-01

    We propose a neutron Michelson Interferometer installed within a focussing 'gravity diffractometer' for ultracold neutrons. In this arrangement the expected interference pattern depends only on the well-defined vertical component of neutron wavevector. Possible applications of such an interferometer are discussed. (orig.)

  10. Algorithms for Unequal-Arm Michelson Interferometers

    Science.gov (United States)

    Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.

    1994-01-01

    A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.

  11. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  12. Enlarging the angle of view in Michelson-interferometer-based shearography by embedding a 4f system.

    Science.gov (United States)

    Wu, Sijin; He, Xiaoyuan; Yang, Lianxiang

    2011-07-20

    Digital shearography based on Michelson interferometers suffers from the disadvantage of a small angle of view due to the structure. We demonstrate a novel digital shearography system with a large angle of view. In the optical arrangement, the imaging lens is in front of the Michelson interferometer rather than behind it as in traditional digital shearography. Thus, the angle of view is no longer limited by the Michelson interferometer. The images transmitting between the separate lens and camera are accomplished by a 4f system in the new style of shearography. The influences of the 4f system on shearography are also discussed. © 2011 Optical Society of America

  13. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer

    Science.gov (United States)

    Zhang, Bochen; Ding, Xiaoli; Werner, Charles; Tan, Kai; Zhang, Bin; Jiang, Mi; Zhao, Jingwen; Xu, Youlin

    2018-04-01

    Structural health monitoring of long-span bridges is a critical process in ensuring the operational safety of the structures. In this paper, we present experimental results of monitoring the displacements of two long-span bridges in Hong Kong Ting Kau Bridge (TKB) and Tsing Ma Bridge (TMB) with a terrestrial microwave radar interferometer named the GAMMA Portable Radar Interferometer (GPRI). A technique for fusing the measurements from two receiving antennas of the radar instrument is proposed. In addition, a two-step phase unwrapping approach is also tested. The results reveal the bridge dynamic responses under different loading conditions, including winds, vehicle traffic, and passing trains. The results also show that the terrestrial microwave radar interferometer can be used to monitor the dynamics of long-span bridges with unprecedented spatial and temporal resolutions.

  14. Airborne Doppler lidar at 532nm based on a tunable dual-channel Fabry-Perot interferometer

    Science.gov (United States)

    Feng, Jian-mei; Xing, Ting-wen; Lin, Wi-mei

    2009-07-01

    The aim of this paper is to explore a high-precision, a wide range of a frequency discrimination technique, and to study the application of this technique in the optical air data system (MOADS). To overcome the traditional equipment's shortcomings of short velocity detecting range such as pilot static tubes and wind wane, this technique can provide precision aviation data for various aerocrafts , without influencing pneumatic shape and performance of aerocraft. A tunable dual channel Fabry-Perot interferometer is used as a frequency discriminator in an airborne wind lidar system. This new frequency discriminator has been proposed to overcome the exiting frequency discriminator shortcoming. By adjusting the cavity length of interferometer, the speed of aerocraft can be detected and cut into several dynamic range. By this way, the Doppler wind lidar system can detect atmospheric parameters at the meantime, such as speed of aerocraft and temperature of atmosphere around the aerocraft, by analyzing the information of Rayleigh backscattering light. There are three main contribution in this paper: the first is discussing the basic theory of MOADS, calculational method and mathematic model of relative wind velocity between aircraft and wind are put forward.; the second is the parameter optimization of the dual-channel Fabry-Perot interferometer and the structure design of the interferometer; the third is the simulation of the performance and the accuracy of this system. Theory analysis and simulation results show this method is reasonable and practical.

  15. QUBIC: A Fizeau Interferometer Targeting Primordial B-Modes

    Science.gov (United States)

    Tartari, A.; Aumont, J.; Banfi, S.; Battaglia, P.; Battistelli, E. S.; Baù, A.; Bélier, B.; Bennett, D.; Bergé, L.; Bernard, J. Ph.; Bersanelli, M.; Bigot-Sazy, M. A.; Bleurvacq, N.; Bordier, G.; Brossard, J.; Bunn, E. F.; Buzi, D.; Cammilleri, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Coppolecchia, A.; D'Alessandro, G.; De Bernardis, P.; Decourcelle, T.; Del Torto, F.; De Petris, M.; Dumoulin, L.; Franceschet, C.; Gault, A.; Gayer, D.; Gervasi, M.; Ghribi, A.; Giard, M.; Giraud-Héraud, Y.; Gradziel, M.; Grandsire, L.; Hamilton, J. Ch.; Haynes, V.; Holtzer, N.; Kaplan, J.; Korotkov, A.; Lande, J.; Lowitz, A.; Maffei, B.; Marnieros, S.; Martino, J.; Masi, S.; McCulloch, M.; Melhuish, S.; Mennella, A.; Montier, L.; Murphy, A.; Néel, D.; Ng, M. W.; O'Sullivan, C.; Pajot, F.; Passerini, A.; Perbost, C.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Prêle, D.; Rambaud, D.; Rigaut, O.; Salatino, M.; Schillaci, A.; Scully, S.; Stolpovskiy, M. M.; Timbie, P.; Tucker, G.; Viganò, D.; Voisin, F.; Watson, B.; Zannoni, M.

    2016-08-01

    Q and U Bolometric Interferometer for Cosmology (QUBIC) is a Fizeau interferometer sensitive to linear polarisation, to be deployed at the Antarctic station of Dome C. This experiment in its final configuration will be operated at 97, 150 and 220 GHz and is intended to target CMB primordial B-modes in a multipole window 20QUBIC interferometric configuration can be considered equivalent to a pupil-plane filtered imaging system. In this context, we show how our instrument can be self-calibrated. Finally, we conclude by showing an overview of the first dual-band module (150/220 GHz), which will serve also as a demonstrator for the subsequent units, and review the technological choices we made for each subsystem, with particular emphasis on the detection system.

  16. Interferometer techniques for gravitational-wave detection.

    Science.gov (United States)

    Bond, Charlotte; Brown, Daniel; Freise, Andreas; Strain, Kenneth A

    2016-01-01

    Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  17. New results on equatorial thermospheric winds and temperatures from Ethiopia, Africa

    OpenAIRE

    F. Tesema; F. Tesema; F. Tesema; R. Mesquita; J. Meriwether; B. Damtie; M. Nigussie; J. Makela; D. Fisher; B. Harding; E. Yizengaw; S. Sanders

    2017-01-01

    Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry–Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the ...

  18. Climatology of Neutral vertical winds in the midlatitude thermosphere

    Science.gov (United States)

    Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.

    2017-12-01

    More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.

  19. Wind direction over the ocean determined by an airborne, imaging, polarimetric radiometer system

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    2001-01-01

    The speed and direction of winds over the ocean can be determined by polarimetric radiometers. This has been established by theoretical work and demonstrated experimentally using airborne radiometers carrying out circle flights and thus measuring the full 360° azimuthal response from the sea surf...

  20. The use of mirror image symmetry in coil winding, applications and advantages in magnetic field generation

    International Nuclear Information System (INIS)

    Grotz, T.

    1992-01-01

    In this paper, an improved method of winding inductors, transformers and motors is discovered. This invention greatly enhances the ability to generate magnetic fields with a given amount of wire. This invention may be as fundamental to the use of magnetic fields as was Nikola Tesla's use of rotating magnetic fields for the generation of alternating current

  1. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar

    DEFF Research Database (Denmark)

    Foroughi Abari, Farzad; Pedersen, A. T.; Dellwik, Ebba

    2015-01-01

    The main purpose of this study is to evaluate the near-zero wind velocity measurement performance of two separate 1.5 μm all-fiber coherent Doppler lidars (CDL). The performance characterization is performed through the presentation of the results from two separate atmospheric field campaigns...

  2. The LTP interferometer and phasemeter

    International Nuclear Information System (INIS)

    Heinzel, G; Wand, V; GarcIa, A; Jennrich, O; Braxmaier, C; Robertson, D; Middleton, K; Hoyland, D; Ruediger, A; Schilling, R; Johann, U; Danzmann, K

    2004-01-01

    The LISA Technology Package (LTP), to be launched by ESA in 2006/2007, is a technology demonstration mission in preparation for the LISA space-borne gravitational wave detector. A central part of the LTP is the optical metrology package (heterodyne interferometer with phasemeter) which monitors the distance between two test masses with a noise level of 10 pm Hz -1/2 between 3 mHz and 30 mHz. It has a dynamic range of >100 μm without any actuators for the pathlength. In addition to the longitudinal measurements, it provides alignment measurements with an expected noise level of -1/2 . While the basic design has been described previously by Heinzel et al (2003 Class. Quantum Grav. 20 S153-61), this paper gives new details on the laser stabilization, the phasemeter and recent prototype results

  3. Pneumatic probe with laser interferometer

    International Nuclear Information System (INIS)

    Wilkens, P.H.

    1978-01-01

    Improvements to upgrade the accuracy of Rotacon probes by a complete redesign of probe to include a Michelson interferometer to replace the existing long-range capacity transducer are described. This has resulted in a compact and interchangeable probe cartridge with a 3 μin. resolution and accuracy; the cartridge can be installed and replaced in the Rotacon gauge with the minimum of realignment, which should reduce our dependence on operator skill. In addition, the stylus contact force can be reduced to 750 mg for the contacting types, but an alternative feature, which we are still developing, will use a gas jet cushion in place of the stylus to provide a noncontacting version of the same basic probe cartridge. This device is very sensitive to external vibration effects because it is virtually frictionless

  4. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  5. Dispersion cancellation in a triple Laue interferometer

    International Nuclear Information System (INIS)

    Lemmel, Hartmut

    2014-01-01

    The concept of dispersion cancellation has been established in light optics to improve the resolution of interferometric measurements on dispersive media. Odd order dispersion cancellation allows to measure phase shifts without defocusing the interferometer due to wave packet displacements, while even order dispersion cancellation allows to measure time lags without losing resolution due to wave packet spreading. We report that either type of dispersion cancellation can be realized very easily in a triple Laue interferometer. Such interferometers are Mach–Zehnder interferometers based on Bragg diffraction, and are commonly used for neutrons and x-rays. Although the first x-ray interferometer was built nearly five decades ago, the feature of dispersion cancellation hasn't been recognized so far because the concept was hardly known in the neutron and x-ray community. However, it explains right away the surprising decoupling of phase shift and spatial displacement that we have discovered recently in neutron interferometry (Lemmel and Wagh 2010 Phys. Rev. A 82 033626). Furthermore, this article might inspire the light optics community to consider whether a triple Laue interferometer for laser light would be useful and feasible. We explain how dispersion cancellation works in neutron interferometry, and we describe the setup rigorously by solving the Schrödinger equation and by calculating the path integral. We point out, that the latter has to be evaluated with special care since in our setup the beam trajectory moves with respect to the crystal lattice of the interferometer. (paper)

  6. Analysis of Venusian Atmospheric Two-Dimensional Winds and Features Using Venus Express, Akatsuki, and Ground-Based Images

    Science.gov (United States)

    McCabe, Ryan M.; Gunnarson, Jacob; Sayanagi, Kunio M.; Blalock, John J.; Peralta, Javier; Gray, Candace L.; McGouldrick, Kevin; Imamura, Takeshi; Watanabe, Shigeto

    2017-10-01

    We investigate the horizontal dynamics of Venus’s atmosphere at cloud-top level. In particular, we focus on the atmospheric superrotation, in which the equatorial atmosphere rotates with a period of approximately 4-5 days (~60 times faster than the solid planet). The superrotation’s forcing and maintenance mechanisms remain to be explained. Temporal evolution of the zonal (latitudinal direction) wind could reveal the transport of energy and momentum in/out of the equatorial region, and eventually shed light on mechanisms that maintain the Venusian superrotation. As a first step, we characterize the zonal mean wind field of Venus between 2006 and 2013 in ultraviolet images captured by the Venus Monitoring Camera (VMC) on board the ESA Venus Express (VEX) spacecraft which observed Venus’s southern hemisphere. Our measurements show that, between 2006 and 2013, the westward wind speed at mid- to equatorial latitudes exhibit an increase of ~20 m/s; these results are consistent with previous studies by Kouyama et al. 2013 and Khatuntsev et al. 2013. The meridional component of the wind could additionally help us characterize large-scale cloud features and their evolution that may be connected to such superrotation. We also conduct ground-based observations contemporaneously with JAXA’s Akatsuki orbiter at the 3.5 m Astrophysical Research Consortium (ARC) telescope at the Apache Point Observatory (APO) in Sunspot, NM to extend our temporal coverage to present. Images we have captured at APO to date demonstrate that, even under unfavorable illumination, it is possible to see large features that could be used for large-scale feature tracking to be compared to images taken by Akatsuki. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, NSF AAG 1212216, and JAXA’s ITYF Fellowship.Kouyama, T. et al (2013), J. Geophys. Res. Planets, 118, 37-46, doi:10.1029/2011JE004013.Khatuntsev et al. (2013), Icarus, 226, 140-158, doi

  7. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    Science.gov (United States)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  8. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    Science.gov (United States)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  9. Steps Toward a Large Space-Based UV/Optical Fizeau Interferometer: The GSFC Fizeau Interferometer Testbed (FIT)

    Science.gov (United States)

    Carpenter, K. G.; Lyon, R. G.; Mazzuca, L. M.; Solyar, G.; Marzouk, J.; Mundy, L. G.; Armstrong, J. T.; Zhang, X.

    2003-01-01

    Goddard Space Flight Center is pursuing the development of space-based, long-baseline (0.5km) UV-optical Fizeau imaging interferometers to enable the next major stride toward very high angular resolution astronomical observations. This effort includes the development and operation of the Fizeau Interferometry Testbed (FIT), in collaboration with the Naval Research Lab/NPOI, Univ. of MD, and Sigma Space Corporation. The FIT will be used to explore the principles of and requirements for the Stellar Imager (SI) mission concept (http://hires.gsfc.nasa.gov/si) and other such Fizeau Interferometers/Sparse Aperture Telescope missions, leading in the end to the Planet Imager (PI), which is the ultimate goal of the current Origins Program. The primary goal of the FIT program is to demonstrate closed-loop control of mirrors (tip, tilt, piston, translation of array elements) and the overall system to keep the optical beams in phase and enable high quality imaging by a many-element (7-30) Fizeau Interferometric System. The FIT will also be used to assess various wave-front reconstruction and sensing and image reconstruction algorithms for utility and accuracy by application to real data generated by the Testbed. In this paper, we describe the design and goals of the system, provide a status report on its construction, and note our future plans.

  10. Climatology of thermospheric neutral winds over Oukaïmeden Observatory in Morocco

    Science.gov (United States)

    Kaab, Mohamed; Benkhaldoun, Zouhair; Fisher, Daniel J.; Harding, Brian; Bounhir, Aziza; Makela, Jonathan J.; Laghriyeb, Amine; Malki, Khalifa; Daassou, Ahmed; Lazrek, Mohamed

    2017-01-01

    In order to explore coupling between the thermosphere and ionosphere and to address the lack of data relating to thermospheric neutral winds and temperatures over the African sector, a new system of instruments was installed at the Oukaïmeden Observatory located in the high Atlas Mountains, 75 km south of Marrakesh, Morocco (31.206° N, 7.866° W, 22.84° N magnetic). In this work we present the first multi-year results of the climatology of meridional and zonal winds obtained during the period from January 2014 to February 2016, including observations from 648 nights. The measurements are obtained using an imaging Fabry-Pérot interferometer, which measures the 630.0 nm emissions caused by dissociative recombination of O2+. The basic climatology of the winds is as expected, showing zonal winds that are strongly eastward in the early evening just after sunset with a speed of 50 to 100 m s-1 decreasing in magnitude, and reversing directions in the local summer months, towards sunrise. The meridional winds are slightly poleward in the early evening during the local winter, before reversing directions around 21:00 LT. In the local summer months, the meridional winds are equatorward for the entire night, reaching a maximum equatorward speed of 75 m s-1. We compare the observed climatologies of neutral winds to that provided by the recently updated Horizontal Wind Model (HWM14) in order to validate that model's predictions of the thermospheric wind patterns over the eastern portion of Africa. The model captures much of the features in the observational climatologies. The most notable exception is for the zonal winds during local summer, when the maximum eastward wind in the observations occurs approximately 4 h later than seen in the model results.

  11. Interferometer observations of cluster formation in Serpens

    Science.gov (United States)

    Williams, Jonathan

    1999-10-01

    One of the primary science goals of the Atacama Large Millimeter Array is to image star forming regions in unprecedented detail and sensitivity. Here, we present BIMA observations of a young embedded stellar group in Serpens that demonstrate some of the issues in this field that ALMA may address in the future. The high resolution of the interferometer enables us to to follow the structure, dynamics, and chemistry of the overall cluster forming cloud down to the scale of individual star forming cores. There is an approximately equal mix of cores with and without continuum sources suggesting that new stars are continually being added to the group. There is evidence for large scale collapse onto the cluster with concentrations toward regions where the velocity dispersion is at a local minimum. There are also significant differences in relative abundances throughout the cluster indicating that molecule formation and depletion timescales are comparable to or less than dynamical timescales for core formation and that chemistry may be used as a signature of their evolution. We discuss a scenario for cluster formation through the condensation and collapse of individual cores via turbulent dissipation and point out a few ways in which ALMA may contribute to future studies.

  12. Turbulence-Free Double-slit Interferometer

    Science.gov (United States)

    Smith, Thomas A.; Shih, Yanhua

    2018-02-01

    Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

  13. Turbulence-Free Double-slit Interferometer.

    Science.gov (United States)

    Smith, Thomas A; Shih, Yanhua

    2018-02-09

    Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

  14. Improved double-pass michelson interferometer

    Science.gov (United States)

    Schindler, R. A.

    1978-01-01

    Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.

  15. Naturally stable Sagnac-Michelson nonlinear interferometer.

    Science.gov (United States)

    Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C

    2016-12-01

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  16. Stereo-Optic High Definition Imaging: A New Technology to Understand Bird and Bat Avoidance of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Evan; Goodale, Wing; Burns, Steve; Dorr, Chirs; Duron, Melissa; Gilbert, Andrew; Moratz, Reinhard; Robinson, Mark

    2017-07-21

    There is a critical need to develop monitoring tools to track aerofauna (birds and bats) in three dimensions around wind turbines. New monitoring systems will reduce permitting uncertainty by increasing the understanding of how birds and bats are interacting with wind turbines, which will improve the accuracy of impact predictions. Biodiversity Research Institute (BRI), The University of Maine Orono School of Computing and Information Science (UMaine SCIS), HiDef Aerial Surveying Limited (HiDef), and SunEdison, Inc. (formerly First Wind) responded to this need by using stereo-optic cameras with near-infrared (nIR) technology to investigate new methods for documenting aerofauna behavior around wind turbines. The stereo-optic camera system used two synchronized high-definition video cameras with fisheye lenses and processing software that detected moving objects, which could be identified in post-processing. The stereo- optic imaging system offered the ability to extract 3-D position information from pairs of images captured from different viewpoints. Fisheye lenses allowed for a greater field of view, but required more complex image rectification to contend with fisheye distortion. The ability to obtain 3-D positions provided crucial data on the trajectory (speed and direction) of a target, which, when the technology is fully developed, will provide data on how animals are responding to and interacting with wind turbines. This project was focused on testing the performance of the camera system, improving video review processing time, advancing the 3-D tracking technology, and moving the system from Technology Readiness Level 4 to 5. To achieve these objectives, we determined the size and distance at which aerofauna (particularly eagles) could be detected and identified, created efficient data management systems, improved the video post-processing viewer, and attempted refinement of 3-D modeling with respect to fisheye lenses. The 29-megapixel camera system

  17. Optical path difference measurements with a two-step parallel phase shifting interferometer based on a modified Michelson configuration

    Science.gov (United States)

    Toto-Arellano, Noel Ivan; Serrano-Garcia, David I.; Rodriguez-Zurita, Gustavo

    2017-09-01

    We report an optical implementation of a parallel phase-shifting quasi-common path interferometer using two modified Michelson interferometers to generate two interferograms. By using a displaceable polarizer's array, placed on the image plane, we can obtain four phase-shifted interferograms in two captures. The system operates as a quasi-common path interferometer generating four beams, which are to interfere with alignment procedures on the mirrors of the Michelson configurations. The optical phase data are retrieved using the well-known four-step algorithms. To present the capabilities of the system, experimental results obtained from transparent structures are presented.

  18. Interferometer Designs for the Terrestrial Planet Finder

    Science.gov (United States)

    Lawson, P. R.; Dumont, P. J.; Colavita, M. M.

    2000-01-01

    The Terrestrial Planet Finder (TPF) is a space-based infrared interferometer that will combine high sensitivity and spatial resolution to detect and characterize planetary systems within 15 pc of our sun. TPF is a key element in NASA's Origins Program and is currently un- der study in its Pre-Project Phase. We review some of the interferometer designs that have been considered for starlight nulling, with particular attention to the architecture and subsystems of the central beam-combiner.

  19. Nonlinear Michelson interferometer for improved quantum metrology

    OpenAIRE

    Luis, Alfredo; Rivas, Ángel

    2015-01-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...

  20. Multichannel spectral mode of the ALOHA up-conversion interferometer

    Science.gov (United States)

    Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-03-01

    In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.

  1. Detection prospects for the Cosmic Neutrino Background using laser interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Domcke, Valerie [AstroParticule et Cosmologie (APC)/Paris Centre for Cosmological Physics, Université Paris Diderot, Rue Alice Domon et Leonie Duquet, Paris (France); Spinrath, Martin, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: martin.spinrath@cts.nthu.edu.tw [Physics Division, National Center for Theoretical Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan (China)

    2017-06-01

    The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.

  2. Neptune’s zonal winds from near-IR Keck adaptive optics imaging in August 2001

    NARCIS (Netherlands)

    Martin, S.C.; De Pater, I.; Marcus, P.

    2011-01-01

    We present H-band (1.4–1.8 ?m) images of Neptune with a spatial resolution of ?0.06?, taken with the W.M. Keck II telescope using the slit-viewing camera (SCAM) of the NIRSPEC instrument backed with Adaptive Optics. Images with 60-second integration times span 4 hours each on UT 20 and 21 August,

  3. Orbiter BLT Flight Experiment Wind Tunnel Simulations: Nearfield Flowfield Imaging and Surface Thermography

    Science.gov (United States)

    Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.; hide

    2010-01-01

    This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.

  4. In Situ Measurement of Wind-Induced Pulse Response of Sound Barrier Based on High-Speed Imaging Technology

    Directory of Open Access Journals (Sweden)

    Chunli Zhu

    2016-01-01

    Full Text Available The lifetime of the sound barrier is threatened by high-speed train-induced impulsive wind pressure as it passes by. The vibration response of the sound barrier during the process of train passing is difficult to be measured using conventional measurement methods because of the inconvenience of the installation of markers on the sound barrier. In this paper, the high-speed camera is used to record the whole process of the train passing by the sound barrier. Then, a displacement extraction algorithm based on the theory of Taylor expansion is proposed to obtain the vibration response curve. Compared with the result simulated by using the finite element method, the video extraction result shows the same head wave and tail wave phenomenon, demonstrating that the vibration measurement by using the high-speed imaging technology is an effective measuring way. It can achieve noncontact and remote vibration measurement and has important practical value.

  5. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    Science.gov (United States)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  6. Demonstration of Clean Particle Seeding for Particle Image Velocimetry in a Closed Circuit Supersonic Wind Tunnel

    National Research Council Canada - National Science Library

    McNiel, Charles M

    2007-01-01

    The purpose of this research was to determine whether solid carbon dioxide (CO2) particles might provide a satisfactory, and cleaner, alternative to traditional seed material for Particle Image Velocimetry (PIV...

  7. Self-noise in interferometers - radio and infrared

    International Nuclear Information System (INIS)

    Kulkarni, S.R.

    1989-01-01

    A complete theory of noise in a synthesis image is proposed for a source of arbitrary strength. In the limit of faint sources, the standard estimates of noise in a synthesis image are recovered, while in the limit of strong sources, the noise in the synthesis image is found to be dominated by either self noise or by the noise generated by the source signal itself. It is found that the best VLBI maps (with noise approaching the thermal noise) may in fact be limited by self noise, and that there is a negligible bias in the standard definitions of the bispectrum phasor and the closure phase. The results suggest that at the low signal levels which are characteristic of infrared interferometers, it is best to fit the model to all the closure phases and fringe amplitudes. 13 refs

  8. Process control system using polarizing interferometer

    Science.gov (United States)

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  9. Perfect crystal interferometer and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1996-08-01

    The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)

  10. Process control system using polarizing interferometer

    Science.gov (United States)

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  11. Decorrelation and fringe visibility: On the limiting behavior of varous electronic speckle pattern correlation interferometers

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette

    1996-01-01

    I discuss the behavior of fringe formation in image-plane electronic speckle-pattern correlation interferometers as the limit of total decorrelation is approached. The interferometers are supposed to operate in the difference mode. The effect of decorrelation will be a decrease in fringe visibility...... until the limit of total decorrelation, when no fringes will be formed, is reached. A quantitative evaluation of the partially decorrelated fringe pattern is presented for the case of decorrelation due to both tilt and in-plane translation of an object surface element. It is shown that the fringe...

  12. "First Light" for the VLT Interferometer

    Science.gov (United States)

    2001-03-01

    VLTI . It was first envisaged in the early 1980's and has been continuously updated, as new technologies and materials became available during the intervening period. The present series of functional tests will go on for some time and involve many different configurations of the small telescopes and the instrument. It is then expected that the first combination of light beams from two of the VLT 8.2-m telescopes will take place in late 2001 . According to current plans, regular science observations will start from 2002, when the European and international astronomical community will have access to the full interferometric facility and the specially developed VLTI instrumentation now under construction. A wide range of scientific investigations will then become possible, from the search for planets around nearby stars, to the study of energetic processes at the cores of distant galaxies. With its superior angular resolution (image sharpness), the VLT is now beginning to open a new era in observational optical and infrared astronomy. The ambition of ESO is to make this type of observations available to all astronomers, not just the interferometry specialists. Video Clip 03/01 : Various video scenes related to the VLTI and the "First Fringes". PR Photo 10a/01 : "First Fringes" from the VLTI on the computer screen. PR Photo 10b/01 : Celebrating the VLTI "First Fringes" . PR Photo 10c/01 : Overview of the VLT Interferometer . PR Photo 10d/01 : Interferometric observations: Fringes from two stars of different angular size . PR Photo 10e/01 : Interferometric observations: Change of fringes with increasing baseline . PR Photo 10f/01 : Aerial view of the installations for the VLTI on the Paranal platform. PR Photo 10g/01 : Stations for the VLTI Auxiliary Telescopes. PR Photo 10h/01 : A test siderostat in place for observations. PR Photo 10i/01 : A test siderostat ( close-up ). PR Photo 10j/01 : One of the Delay Line carriages in the Interferometric Tunnel. PR Photo 10k/01 : The

  13. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  14. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  15. Detection Loss Tolerant Supersensitive Phase Measurement with an SU(1,1) Interferometer.

    Science.gov (United States)

    Manceau, Mathieu; Leuchs, Gerd; Khalili, Farid; Chekhova, Maria

    2017-12-01

    In an unseeded SU(1,1) interferometer composed of two cascaded degenerate parametric amplifiers, with direct detection at the output, we demonstrate a phase sensitivity overcoming the shot noise limit by 2.3 dB. The interferometer is strongly unbalanced, with the parametric gain of the second amplifier exceeding the gain of the first one by a factor of 2, which makes the scheme extremely tolerant to detection losses. We show that by increasing the gain of the second amplifier, the phase supersensitivity of the interferometer can be preserved even with detection losses as high as 80%. This finding can considerably improve the state-of-the-art interferometry, enable sub-shot-noise phase sensitivity in spectral ranges with inefficient detection, and allow extension to quantum imaging.

  16. Vibration compensated high-resolution scanning white-light Linnik-interferometer

    Science.gov (United States)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2017-06-01

    We present a high-resolution Linnik scanning white-light interferometer (SWLI) with integrated distance measuring interferometer (DMI) for close-to-machine applications in the presence of environmental vibrations. The distance, measured by DMI during the depth-scan, is used for vibration compensation of SWLI signals. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the DMI and subsequent trigonometrical approximation. This system is the further development of our previously presented Michelson-interferometer. We are able to compensate for arbitrary vibrations with frequencies up to several kilohertz and amplitudes in the lower micrometer range. Completely distorted SWLI signals can be reconstructed and the surface topography can be obtained with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  17. High-speed Solar Wind Stream Forecast Based on Coronal Hole Index Derived from Solar EUV Images

    Science.gov (United States)

    Gong, J.; Luo, B.; Bu, X.; Liu, S.

    2017-12-01

    High-speed streams (HSS), which originate from coronal holes on the Sun, are interplanetary sources of recurrent geospace environment disturbances such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements which increase the orbit decay rate for low orbit satellites. People have been searching for good indices which can be used as proxies of coronal hole to predict HSS. Among these indices, the Pch reported by Luo et al. [2008], reflected both the area and the brightness contributions of coronal hole and showed potential in predicting HSS. In this study, we evaluate the performance of the Pch index in predict the solar wind speed at L1, using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. On verification of the predicting capability, we focus on the event-based analysis of the predicted arrival times and amplitudes of high-speed streams (considered as HSS events). It is found that the Pch index is capable of predicting the large-scale high-speed stream features about 4 days in advance, with uncertainties in the HSS arrival time of about 1 day and uncertainties in the speed of about 100 km/s.

  18. Fourier Transform Fabry-Perot Interferometer

    Science.gov (United States)

    Snell, Hilary E.; Hays, Paul B.

    1992-01-01

    We are developing a compact, rugged, high-resolution remote sensing instrument with wide spectral scanning capabilities. This relatively new type of instrument, which we have chosen to call the Fourier-Transform Fabry-Perot Interferometer (FT-FPI), is accomplished by mechanically scanning the etalon plates of a Fabry-Perot interferometer (FPI) through a large optical distance while examining the concomitant signal with a Fourier-transform analysis technique similar to that employed by the Michelson interferometer. The FT-FPI will be used initially as a ground-based instrument to study near-infrared atmospheric absorption lines of trace gases using the techniques of solar absorption spectroscopy. Future plans include modifications to allow for measurements of trace gases in the stratosphere using spectral lines at terahertz frequencies.

  19. Modeling the Laser Interferometer Space Antenna Optics

    Science.gov (United States)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul

    2005-01-01

    The Laser Interferometer Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, use Michelson interferometers with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.

  20. A heterodyne interferometer for angle metrology

    International Nuclear Information System (INIS)

    Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R.

    2010-01-01

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/√(Hz) at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately ±0.15 mrad, and 3 μrad rms, respectively.

  1. Ultimate VHF Broadband Interferometer Zen KAWASAKI and Manabu AKITA

    Science.gov (United States)

    Kawasaki, Z.; Akita, M.

    2013-12-01

    propagation, like electromagnetic wave propagation in non-dispersive medium. This procedure presented exciting results of lightning channel imaging, and the bi-directional leader propagation can be visualized in terms of azimuth and elevation as a function of time. Moreover all of the VHF radiation process for an entire lightning flash from initiation to termination can be imaged, and it is concluded that the system might be an ultimate broad band digital interferometer. The authors would like to show their appreciation to Paul Krehbiel, NMIMT, who gave a chance and suggestion of a continuous recording scheme for BDITF. M. Stock et al. : Continuous Broadband Digital Interferometry of Lightning using a Generalized Cross Correlation Algorithm M. Akita et al. : Data Processing Procedure 1 using Distribution of Slopes of Phase Differences for Broadband VHF Interferometer

  2. Performing Particle Image Velocimetry in a Supersonic Wind Tunnel Using Carbon Dioxide as the Seed Material

    Science.gov (United States)

    2007-06-01

    camera was used in conjunction with a NIKON 60mm AF Micro Nikkor manual lens and a Melles Griot , 50mm light filter to image the CO2 seed particles...delay) Camera Lens: NIKON 60mm AF Micro Nikkor, manual Camera Filter: MELLES GRIOT , 50mm, 509 nm center wavelength, 90% distribution thickness = 52 nm

  3. Derivation of the horizontal wind field in the polar mesopause region by using successive images of noctilucent clouds observed by a color digital camera in Iceland

    Science.gov (United States)

    Suzuki, H.; Yamashita, R.

    2017-12-01

    It is important to quantify amplitude of turbulent motion to understand the energy and momentum budgets and distribution of minor constituents in the upper mesosphere. In particular, to know the eddy diffusion coefficient of minor constituents which are locally and impulsively produced by energetic particle precipitations in the polar mesopause is one of the most important subjects in the upper atmospheric science. One of the straight methods to know the amplitude of the eddy motion is to measure the wind field with both spatial and temporal domain. However, observation technique satisfying such requirements is limited in this region. In this study, derivation of the horizontal wind field in the polar mesopause region by tracking the motion of noctilucent clouds (NLCs) is performed. NLC is the highest cloud in the Earth which appears in a mesopause region during summer season in both polar regions. Since the vertical structure of the NLC is sufficiently thin ( within several hundred meters in typical), the apparent horizontal motion observed from ground can be regarded as the result of transportation by the horizontal winds at a single altitude. In this presentation, initial results of wind field derivation by tracking a motion of noctilucent clouds (NLC) observed by a ground-based color digital camera in Iceland is reported. The procedure for wind field estimation consists with 3 steps; (1) projects raw images to a geographical map (2) enhances NLC structures by using FFT method (3) determines horizontal velocity vectors by applying template matching method to two sequential images. In this talk, a result of the wind derivation by using successive images of NLC with 3 minutes interval and 1.5h duration observed on the night of Aug 1st, 2013 will be reported as a case study.

  4. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  5. Digital holographic Michelson interferometer for nanometrology

    Science.gov (United States)

    Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.

    2014-11-01

    The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.

  6. Streak camera recording of interferometer fringes

    International Nuclear Information System (INIS)

    Parker, N.L.; Chau, H.H.

    1977-01-01

    The use of an electronic high-speed camera in the streaking mode to record interference fringe motion from a velocity interferometer is discussed. Advantages of this method over the photomultiplier tube-oscilloscope approach are delineated. Performance testing and data for the electronic streak camera are discussed. The velocity profile of a mylar flyer accelerated by an electrically exploded bridge, and the jump-off velocity of metal targets struck by these mylar flyers are measured in the camera tests. Advantages of the streak camera include portability, low cost, ease of operation and maintenance, simplified interferometer optics, and rapid data analysis

  7. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  8. Quantum Spin Transport in Mesoscopic Interferometer

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2007-10-01

    Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.

  9. Multiple reflection Michelson interferometer with picometer resolution.

    Science.gov (United States)

    Pisani, Marco

    2008-12-22

    A Michelson interferometer based on an optical set-up allowing multiple reflection between two plane mirrors performs the multiplication of the optical path by a factor N, proportionally increasing the resolution of the measurement. A multiplication factor of almost two orders of magnitude has been demonstrated with a simple set-up. The technique can be applied to any interferometric measurement where the classical interferometer limits due to fringe nonlinearities and quantum noise are an issue. Applications in precision engineering, vibration analysis, nanometrology, and spectroscopy are foreseen.

  10. Geometric phases in singlemode fiber lightguides and fiber ring interferometers

    International Nuclear Information System (INIS)

    Malykin, Grigorii B; Pozdnyakova, Vera I

    2004-01-01

    We consider various geometric phases (GPs) in singlemode fiber lightguides (SMFs) and in fiber ring interferometers (FRIs): the Pancharatnam phase stemming from the cyclic evolution of the polarization state of radiation (RP state) in SMF, the Rytov-Vladimirskii phase (RV phase) stemming from the Rytov effect (specifically, rotation of the polarization plane due to noncoplanar winding of SMFs), as well as the nonreciprocal phase difference of counterpropagating waves (NPDCW) and nonreciprocal geometric phase of counterpropagating waves (NGPCW), which are caused by polarization nonreciprocity (PN) in FRIs. We show that in the general case, the Pancharatnam phase for an arbitrary RP state is inconsistent with the real phase change of light fluctuations in media that possess not only circular but also linear birefringence. We show that the RV phase, having a geometric origin, can in principle be considered as a dynamic phase (DP). We also show that the NGPCW can be considered as an effect of the evolution of the RP state mapped on the Poincare sphere in Ginzburg's orthogonal screw polarization modes (GSPMs) of SMFs in the FRI contour. We analyze a number of experiments in which geometric phases were detected in FRIs: changing the RV phase and Rytov's angle (RA) in response to change of the pitch of helicoidal winding of SMFs. (methodological notes)

  11. Transverse coherence measurement using a folded Michelson interferometer.

    Science.gov (United States)

    Dean, Jesse; Bercx, Martin; Nantel, Marc; Marjoribanks, Robin

    2007-06-01

    The transverse coherence of a 1 ps pulsed laser beam was measured using a technique involving a modified Michelson interferometer and separate reference images. Using this technique, the transverse coherence of a selected plane in the laser beam was determined, in this case at the exit of a channel in a metal foil self-drilled by the laser. Images of each arm were used as references. Through this technique, it is possible to use the interference patterns produced with uneven intensity distributions and for pulsed lasers on a single-shot basis. The results of these measurements were then shown to be in agreement with those obtained using a Young's double-slit setup.

  12. Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis

    Science.gov (United States)

    Ciccone, A. D.; Kawall, J. G.; Keffer, J. F.

    A novel technique utilizing the basic principles of two-dimensional signal analysis and artificial intelligence/computer vision to reconstruct the Lagrangian particle trajectories from flow visualization images of macroparticle motions in a turbulent boundary layer is presented. Since, in most cases, the entire trajectory of a particle could not be viewed in one photographic frame (the particles were moving at a high velocity over a small field of view), a stochastic model was developed to complete the trajectories and obtain statistical data on particle velocities. The associated programs were implemented on a Cray supercomputer to optimize computational costs and time.

  13. An all-fiber image-reject homodyne coherent Doppler wind lidar

    DEFF Research Database (Denmark)

    Foroughi Abari, Farzad; Pedersen, Anders Tegtmeier; Mann, Jakob

    2014-01-01

    In this paper, we present an alternative approach to the down-conversion (translation) of the received optical signals collected by the antenna of an all-fiber coherent Doppler lidar (CDL). The proposed method, widely known as image-reject, quadrature detection, or in-phase/quadrature-phase detec......In this paper, we present an alternative approach to the down-conversion (translation) of the received optical signals collected by the antenna of an all-fiber coherent Doppler lidar (CDL). The proposed method, widely known as image-reject, quadrature detection, or in......-phase/quadrature-phase detection, utilizes the advances in fiber optic communications such that the received signal can be optically down-converted into baseband where not only the radial velocity but also the direction of the movement can be inferred. In addition, we show that by performing a cross-spectral analysis, enabled...... of radial velocities close to zero and an improved bandwidth. The claims are verified through laboratory implementation of a continuous wave CDL, where measurements both on a hard and diffuse target have been performed and analyzed. © 2014 Optical Society of America...

  14. Method and device for aligning and interferometer

    NARCIS (Netherlands)

    Somers, P.A.A.

    2005-01-01

    Method and device for the alignment of an interferometer arrangement, which comprises an object beam part (4), a beam splitting part (5) and a beam combination part (6). A detector unit (2) is arranged to detect an interference pattern for two beams that can be differentiated, via each of n optical

  15. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  16. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.

    2005-01-01

    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration...

  17. Plasmonic interferometers: From physics to biosensing applications

    Science.gov (United States)

    Zeng, Xie

    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.

  18. Absolute distance metrology for space interferometers

    NARCIS (Netherlands)

    Swinkels, B.L.; Latoui, A.; Bhattacharya, N.; Wielders, A.A.; Braat, J.J.M.

    2005-01-01

    Future space missions, among which the Darwin Space Interferometer, will consist of several free flying satellites. A complex metrology system is required to have all the components fly accurately in formation and have it operate as a single instrument. Our work focuses on a possible implementation

  19. Thermoluminescence spectra measured with a Michelson interferometer

    International Nuclear Information System (INIS)

    Haschberger, P.

    1991-01-01

    A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author)

  20. The effect of rotations on Michelson interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Maraner, Paolo, E-mail: pmaraner@unibz.it

    2014-11-15

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.

  1. The effect of rotations on Michelson interferometers

    International Nuclear Information System (INIS)

    Maraner, Paolo

    2014-01-01

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations

  2. Thermal Noise in the Initial LIGO Interferometers

    Science.gov (United States)

    Gillespie, Aaron D.

    1995-01-01

    Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational

  3. New Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate From the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Buckley, C. D.; Biswas, S.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; hide

    2012-01-01

    HIRAD flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  4. GALARIO: a GPU Accelerated Library for Analysing Radio Interferometer Observations

    Science.gov (United States)

    Tazzari, Marco; Beaujean, Frederik; Testi, Leonardo

    2018-02-01

    We present GALARIO, a computational library that exploits the power of modern graphical processing units (GPUs) to accelerate the analysis of observations from radio interferometers like ALMA or the VLA. GALARIO speeds up the computation of synthetic visibilities from a generic 2D model image or a radial brightness profile (for axisymmetric sources). On a GPU, GALARIO is 150 faster than standard Python and 10 times faster than serial C++ code on a CPU. Highly modular, easy to use and to adopt in existing code, GALARIO comes as two compiled libraries, one for Nvidia GPUs and one for multicore CPUs, where both have the same functions with identical interfaces. GALARIO comes with Python bindings but can also be directly used in C or C++. The versatility and the speed of GALARIO open new analysis pathways that otherwise would be prohibitively time consuming, e.g. fitting high resolution observations of large number of objects, or entire spectral cubes of molecular gas emission. It is a general tool that can be applied to any field that uses radio interferometer observations. The source code is available online at http://github.com/mtazzari/galario under the open source GNU Lesser General Public License v3.

  5. A generalized, periodic nonlinearity-reduced interferometer for straightness measurements

    International Nuclear Information System (INIS)

    Wu Chienming

    2008-01-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. However, an interferometer with a displacement measurement accuracy of less than 1 nm is required in nanometrology and in fundamental scientific research. To meet this requirement, a generalized, periodic nonlinearity-reduced interferometer, based on three construction principles has been developed for straightness measurements. These three construction principles have resulted in an interferometer with a highly stable design with reduced periodic nonlinearity. Verifications by a straightness interferometer have demonstrated that the periodic nonlinearity was less than 40 pm. The results also demonstrate that the interferometer design is capable of subnanometer accuracy and is useful in nanometrology

  6. State-labeling Wannier-Stark atomic interferometers

    Science.gov (United States)

    Pelle, B.; Hilico, A.; Tackmann, G.; Beaufils, Q.; Pereira dos Santos, F.

    2013-02-01

    Using cold 87Rb atoms trapped in a one-dimensional (1D)-optical lattice, atomic interferometers involving coherent superpositions between different Wannier-Stark atomic states are realized. Two different kinds of trapped interferometer schemes are presented: a Ramsey-type interferometer sensitive both to clock frequency and external forces, and a symmetric accordion-type interferometer, sensitive to external forces only. We evaluate the limits in terms of sensitivity and accuracy of those schemes and discuss their application as force sensors. As a first step, we apply these interferometers to the measurement of the Bloch frequency and the demonstration of a compact gravimeter.

  7. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high...

  8. White light differential interference contrast microscope with a Sagnac interferometer.

    Science.gov (United States)

    Chatterjee, Sanjib; Pavan Kumar, Y

    2014-01-10

    A new technique for producing a white light differential interference contrast (DIC) image using a lateral shearing, rotation phase shifting Sagnac interferometer (SI) is proposed. The SI, placed in the image space after the tube lens of a microscope system with spatially coherent white light Kohler illumination, splits the image forming beam into coherent components with small lateral shear. Phase shifts, between the interfering components, which can be considered as biased phase difference (BPD), are introduced by applying small angular rotation of the SI in its own plane. This variable BPD between the interfering white light components produces a uniform intensity colored background. The object related phase shift, due to the height difference between two close points on the object surface with separation on the order of least resolvable separation of the microscope objective, in addition to the BPD would produce a change in intensity/hue/color against a uniform background due to the BPD. Thus a DIC image is formed and the variable BPD provides an excellent means of improving the contrast of the image.

  9. Direct-reading type microwave interferometer

    International Nuclear Information System (INIS)

    Matsuura, Kiyokata; Fujita, Junji; Ogata, Atsushi; Haba, Kiichiro.

    1977-10-01

    A new microwave interferometer has been developed and applied to the electron density measurement on JIPP T-II plasma device. The interferometer generates an output voltage proportional to the number of fringe shifts and also output pulses which indicate the change of electron density for the convenience of data processing, where the resolution is a quarter of fringe shift. The principle is based on the digitization of fringe shifts utilizing the phase detection of microwave signals with two-level modulation of source frequency. With this system and 70 GHz microwave source, a change of electron density as rapid as about 2 x 10 13 cm -3 in 1 ms has been measured at the tokamak operation of JIPP T-II. (auth.)

  10. Adaptive DFT-based Interferometer Fringe Tracking

    Science.gov (United States)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2004-01-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.

  11. The Fourier-Kelvin Stellar Interferometer Mission Concept

    Science.gov (United States)

    Danchi, W. C.; Allen, R.; Benford, D.; Gezari, D.; Leisawitz, D.; Mundy, L.; Oegerle, William (Technical Monitor)

    2002-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological precursor to TPF as well as Space Infrared Interferometric Telescope (SPIRIT), Submillimeter Probe Evolution of Cosmic Structure (SPECS), and Single Aperture for Infrared Observatory (SAFIR). It will also be a high angular resolution system complementary to Next Generation Space Telescope (NGST). The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We are in the process of studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. The goal of the design study is to determine if a mid-infrared interferometry mission can be performed within the cost and schedule requirements of a Discovery class mission. At the present time we envision the FKSI as comprised of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral

  12. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...... dependence on magnetic field are discussed. Experimental results for dc interferometers with 0 and pi high-T-c bi-crystal Josephson junctions are reported and discussed in comparison with numerical simulation....

  13. Model-based phase-shifting interferometer

    Science.gov (United States)

    Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.

  14. Fine art of computing nulling interferometer maps

    Science.gov (United States)

    Hénault, F.

    2008-07-01

    Spaceborne nulling interferometers are often characterized by means of their nulling ratio, which is defined as the deepest possible extinction of one target star supposed to harbor an extra-solar system. Herein is shown that another parameter, which is the transmitting efficiency of nearby bright fringes, is also of prime importance. More generally, "nulling maps" formed by the whole destructive and constructive fringe pattern projected on-sky, are found to be very sensitive on the design of some subsystems constituting the interferometer. In particular, we consider Spatial Filtering (SF) and Achromatic Phase Shifter (APS) devices, both required achieving planet detection and characterization. Consequences of the SF choice (pinhole or single-mode optical fiber) and APS properties (with or without induced pupil-flip) are discussed, for both monochromatic and polychromatic cases. Examples of numerical simulations are provided for single Bracewell interferometer, Angel cross and X-array configurations, demonstrating noticeable differences in the aspect of resulting nulling maps. It is concluded that both FS and APS designs exhibit variable capacities for serendipitous planet discovery.

  15. Wind Streak and Crater

    Science.gov (United States)

    2004-01-01

    23 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a wind streak developed in the lee of a meteor impact crater in western Daedalia Planum. The dominant winds responsible for the streak blew from the bottom/lower right (southeast). The image is located near 9.9oS, 144.9oW. Sunlight illuminates the scene from the lower left; the picture covers an area 3 km (1.9 mi) wide.

  16. Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO2 Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chen

    2014-01-01

    Full Text Available The Mach-Zehnder interferometer (MZI can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI. Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/RIU.

  17. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian

    2015-05-04

    A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

  18. Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources.

    Science.gov (United States)

    Hipp, A; Willner, M; Herzen, J; Auweter, S; Chabior, M; Meiser, J; Achterhold, K; Mohr, J; Pfeiffer, F

    2014-12-15

    Grating interferometry has been successfully adapted at standard X-ray tubes and is a promising candidate for a broad use of phase-contrast imaging in medical diagnostics or industrial testing. The achievable image quality using this technique is mainly dependent on the interferometer performance with the interferometric visibility as crucial parameter. The presented study deals with experimental investigations of the spectral dependence of the visibility in order to understand the interaction between the single contributing energies. Especially for the choice which type of setup has to be preferred using a polychromatic source, this knowledge is highly relevant. Our results affirm previous findings from theoretical investigations but also show that measurements of the spectral contributions to the visibility are necessary to fully characterize and optimize a grating interferometer and cannot be replaced by only relying on simulated data up to now.

  19. Three Phase-Grating Moiré Neutron Interferometer for Large Interferometer Area Applications

    Science.gov (United States)

    Sarenac, D.; Pushin, D. A.; Huber, M. G.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Cronin, A. D.; Heacock, B.; Jacobson, D. L.; LaManna, J. M.; Wen, H.

    2018-03-01

    We demonstrate a three phase-grating moiré neutron interferometer in a highly intense neutron beam as a robust candidate for large area interferometry applications and for the characterization of materials. This novel far-field moiré technique allows for broad wavelength acceptance and relaxed requirements related to fabrication and alignment, thus circumventing the main obstacles associated with perfect crystal neutron interferometry. We observed interference fringes with an interferometer length of 4 m and examined the effects of an aluminum 6061 alloy sample on the coherence of the system. Experiments to measure the autocorrelation length of samples and the universal gravitational constant are proposed and discussed.

  20. Hazard Detection Analysis for a Forward-Looking Interferometer

    Science.gov (United States)

    West, Leanne; Gimmestad, Gary; Herkert, Ralph; Smith, William L.; Kireev, Stanislav; Schaffner, Philip R.; Daniels, Taumi S.; Cornman, Larry B.; Sharman, Robert; Weekley, Andrew; hide

    2010-01-01

    The Forward-Looking Interferometer (FLI) is a new instrument concept for obtaining the measurements required to alert flight crews to potential weather hazards to safe flight. To meet the needs of the commercial fleet, such a sensor should address multiple hazards to warrant the costs of development, certification, installation, training, and maintenance. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry (FTS) technologies that have been developed for satellite remote sensing. These technologies have also been applied to the detection of aerosols and gases for other purposes. The FLI concept is being evaluated for its potential to address multiple hazards including clear air turbulence (CAT), volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing during all phases of flight (takeoff, cruise, and landing). The research accomplished in this second phase of the FLI project was in three major areas: further sensitivity studies to better understand the potential capabilities and requirements for an airborne FLI instrument, field measurements that were conducted in an effort to provide empirical demonstrations of radiometric hazard detection, and theoretical work to support the development of algorithms to determine the severity of detected hazards

  1. QUBIC, a bolometric interferometer to measure the B modes of the CMB

    OpenAIRE

    Kaplan, Jean; collaboration, for the QUBIC

    2009-01-01

    Measuring the B modes of the CMB polarization fluctuations would provide very strong constraints on inflation. The main challenge in this measurement is the treatment of systematic effects. CMB observations with imagers and interferometers, subject to very different systematics, are complementary in this respect. Interferometry provides direct access to the Fourier transform of the sky signal. In bolometric interferometry, the interference pattern produced by the sky through a few hundred hor...

  2. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weili [The University of North Carolina at Chapel Hill; Fiddy, Michael A. [The University of North Carolina at Charlotte

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  3. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  4. Analysis of a four-mirror-cavity enhanced Michelson interferometer.

    Science.gov (United States)

    Thüring, André; Lück, Harald; Danzmann, Karsten

    2005-12-01

    We investigate the shot-noise-limited sensitivity of a four-mirror-cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies.

  5. Special topics in infrared interferometry. [Michelson interferometer development

    Science.gov (United States)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  6. Observations of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD) during GRIP and HS3

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2013-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and at the time of this writing plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  7. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  8. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  9. SHIMS -- A Spatial Heterodyne Interferometer for Methane Sounding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops the Spatial Heterodyne Interferometer for Methane Sounding (SHIMS), a lightweight, compact, robust spectrometer system for remote sensing of...

  10. CAMEX-3 ATMOSPHERIC EMITTED RADIANCE INTERFEROMETER (AERI) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Emitted Radiance Interferometer (AERI) was used to make atmospheric temperature and moisture retrievals. AERI provides absolutely calibrated...

  11. Design of a far infrared interferometer diagnostic support structure

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Rice, B.W.; Peebles, W.A.

    1987-10-01

    The Far Infrared Interferometer (FIR) diagnostic will operate in the 119 to 400 micron range to measure the plasma electron density on the Microwave Tokamak Experiment (MTX) being set up at LLNL. This diagnostic is a multi-channel system which incorporates a long elliptically shaped beam that passes through the plasma and is imaged onto an array of 14 detectors that are located on a table above the machine. The reference beam is brought around the machine and mixed with the plasma beam onto the detectors. The density is measured by a phase shift between these beams and is, therefore, very sensitive to path length changes between the two beam paths due to motion of the support structure. The design goal for allowable phase shifts caused by changes in the path length due to structure movement is 1/50th of a wavelength (2.4 to 8 microns). The structure needs to maintain this stability during the 0.5 second plasma shot. The structure is approximately 5 meters tall to support the optics table above the machine. In order to reduce the structure motion to the required level the forces acting on it were evaluated. The forces evaluated were eddy currents from the pulsed electromagnetic fields, the ambient ground motion, and the floor movement as the magnets are pulsed. The designs for similar diagnostic interferometers on other tokamaks were also reviewed to evaluate the forces and motions that might cause such small deflections in the support structure. Our structure is somewhat unique in that it is designed for operation in relatively large pulsed magnetic fields (100 to 7000 gauss) arising from the air core transformer of MTX. The design chosen incorporates a very rigid structure with high resistive and non-conductive materials. The choice of materials selected is discussed with reference to their response to expected forces. 14 refs., 10 figs

  12. Phase-shifting interferometer for surface inspection

    Science.gov (United States)

    Tam, Siu Chung; Low, Beng-Yew; Chua, Hock-Chuan; Ho, Anthony T. S.; Neo, Wah-Peng

    1997-08-01

    A phase-shifting Twyman-Green interferometer has been constructed. Using three consecutively captured interferograms, the phase profile of a reflective surface can be determined. Results using various fringe processing techniques are compared. These methods include uniform averaging, Gaussian mask and spin filtering. For simulated fringes superimposed with random noise and fixed-pattern noise, it has been observed that a combination of weighted averaging and spin filtering could generate the best results. The computerized system has been applied to the measurement of the form errors of a silicon wafer and a cosmetic mirror, respectively. The root-mean-square error of the wafer is determined to be 11.13 nm.

  13. Multichannel far-infrared interferometer/polarimeter

    International Nuclear Information System (INIS)

    Young, P.E.

    1984-01-01

    Studies of the time development of the current density profile in a tokamak plasma have been incomplete due to the lack of adequate, direct measurements of the internal magnetic field. Experimental confirmation of anomalous current penetration during the startup phase of a tokamak discharge and the detailed study of major disruptions and their relation to the presence of tearing modes are needed to complete the understanding of tokamak confinement properties. The major obstacle to studies of the tokamak current density profile has been the lack of a reliable, nonperturbing diagnostic. This dissertation describes a multichannel interferometer/polarimeter that was developed for this purpose

  14. Virgo an interferometer for gravitational wave detection

    International Nuclear Information System (INIS)

    Passaquieti, R.

    2000-01-01

    Gravitational waves propagating from rapidly accelerating star masses can be detected by means of interfer- ometric techniques. The Virgo detector is a Michelson interferometer, with two 3 km long Fabry-Perot cavities, that is going to be built in the countryside of Pisa (Italy). Principles of interferometric gravitational wave detection, and the main noise sources in the Virgo apparatus are treated. The Virgo optical scheme and its main components are also described. Finally, an overview on the status of works at the Virgo site is presented

  15. Asymmetrical transverse structures in nonlinear interferometers

    CERN Document Server

    Romanov, O G

    2003-01-01

    The work presents a novel type of optical instability, which leads to the spontaneous formation of a stationary or pulsating asymmetrical structure in the problem of interaction between two counterpropagating waves in a ring cavity with Kerr-like nonlinearity. Linear stability analysis of interferometer transmission stationary states enabled: (1) to mark out typical bifurcations for this system: self- and cross-modulational instabilities, (2) to determine the range of parameters for which the symmetry breaking of transverse structures and complex temporal behaviour of the light field could be observed. The predictions of linear stability analysis have been verified with numerical modelling of coupled-modes equations.

  16. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    The proposed interferometer set-up is quite suitable for performing optical test studies on phase (transparent) objects in real-time. Recording schemes for the formation of holographic optical elements and the related technique for the realization of the interferometer set-up along with the experimental results have been ...

  17. Silicon Carbide Mounts for Fabry-Perot Interferometers

    Science.gov (United States)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  18. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    Science.gov (United States)

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  19. Discrete interferometer with individual trapped atoms

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michal; Widera, Artur; Meschede, Dieter; Quantum Technology Team

    2011-05-01

    Coherent control and delocalization of individual atoms is a pivotal challenge in quantum technologies. As a new step on this road, we present an individual atom interferometer that is capable of splitting a trapped Cs atom by up to 10 μm , allowing us to measure potential gradients on the microscale. The atom is confined in a 1D optical lattice, which is capable of performing discrete state-dependent shifts to split the atom by the desired number of sites. We establish a high degree of control, as the initial atom position, vibrational state and spin state can all be prepared with above 95% fidelity. To unravel decoherence effects and phase influences, we have explored several basic interferometer geometries, among other things demonstrating a positional spin echo to cancel background effects. As a test case, an inertial force has been applied and successfully measured using the atomic phase. This will offer us a new tool to investigate the interaction between two atoms in a controlled model system.

  20. Adaptive DFT-Based Interferometer Fringe Tracking

    Directory of Open Access Journals (Sweden)

    Pedretti Ettore

    2005-01-01

    Full Text Available An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately milliseconds per scan (including all three interferograms, using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  1. An X-ray BBB Michelson interferometer.

    Science.gov (United States)

    Sutter, John P; Ishikawa, Tetsuya; Kuetgens, Ulrich; Materlik, Gerhard; Nishino, Yoshinori; Rostomyan, Armen; Tamasaku, Kenji; Yabashi, Makina

    2004-09-01

    A new X-ray Michelson interferometer based on the BBB interferometer of Bonse and Hart and designed for X-rays of wavelength approximately 1 A was described in a previous paper. Here, a further test carried out at the SPring-8 1 km beamline BL29XUL is reported. One of the BBB's mirrors was displaced by a piezo to introduce the required path-length difference. The resulting variation of intensity with piezo voltage as measured by an avalanche photodiode could be ascribed to the phase variation resulting from the path-length change, with a small additional contribution from the change of the position of the lattice planes of the front mirror relative to the rest of the crystal. This 'Michelson fringe' interpretation is supported by the observed steady movement across the output beam of the interference fringes produced by a refractive wedge when the piezo voltage was ramped. The front-mirror displacement required for one complete fringe at the given wavelength is only 0.675 A; therefore, a quiet environment is vital for operating this device, as previous experiments have shown.

  2. Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer

    Science.gov (United States)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2010-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.

  3. Understanding the concept of resolving power in the Fabry-Perot interferometer using a digital simulation

    International Nuclear Information System (INIS)

    Juvells, I; Carnicer, A; Ferre-Borrull, J; MartIn-Badosa, E; Montes-Usategui, M

    2006-01-01

    The resolution concept in connection with the Fabry-Perot interferometer is difficult to understand for undergraduate students enrolled in physical optics courses. The resolution criterion proposed in textbooks for distinguishing equal intensity maxima and the deduction of the resolving power equation is formal and non-intuitive. In this paper, we study the practical meaning of the resolution criterion and resolution power using a computer simulation of a Fabry-Perot interferometer. The light source in the program has two monochromatic components, the wavelength difference being tunable by the user. The student can also adjust other physical parameters so as to obtain different simulation results. By analysing the images and graphics of the simulation, the resolving power concept becomes intuitive and understandable

  4. Atomic-resolution measurements with a new tunable diode laser-based interferometer

    DEFF Research Database (Denmark)

    Silver, R.M.; Zou, H.; Gonda, S.

    2004-01-01

    We develop a new implementation of a Michelson interferometer designed to make measurements with an uncertainty of less than 20 pm. This new method uses a tunable diode laser as the light source, with the diode laser wavelength continuously tuned to fix the number of fringes in the measured optical...... path. The diode laser frequency is measured by beating against a reference laser. High-speed, accurate frequency measurements of the beat frequency signal enables the diode laser wavelength to be measured with nominally 20-pm accuracy for the measurements described. The new interferometer design...... is lightweight and is mounted directly on an ultra-high vacuum scanning tunneling microscope capable of atomic resolution. We report the simultaneous acquisition of an atomic resolution image, while the relative lateral displacement of the tip along the sample distance is measured with the new tunable diode...

  5. Optics Alignment of a Balloon-Borne Far-Infrared Interferometer BETTII

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Sampler, Henry; Juanola Parramon, Roser; Veach, Todd; Fixsen, Dale; Vila Hernandez De Lorenzo, Jor; Silverberg, Robert F.

    2017-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-m baseline far-infrared (FIR: 30 90 micrometer) interferometer providing spatially resolved spectroscopy. The initial scientific focus of BETTII is on clustered star formation, but this capability likely has a much broader scientific application.One critical step in developing an interferometer, such as BETTII, is the optical alignment of the system. We discuss how we determine alignment sensitivities of different optical elements on the interferogram outputs. Accordingly, an alignment plan is executed that makes use of a laser tracker and theodolites for precise optical metrology of both the large external optics and the small optics inside the cryostat. We test our alignment on the ground by pointing BETTII to bright near-infrared sources and obtaining their images in the tracking detectors.

  6. Multichannel microwave interferometer for the levitated dipole experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boxer, Alexander C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Garnier, Darren T.; Mauel, Michael E. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2009-04-15

    A four-channel microwave interferometer (center frequency: 60 GHz) has been constructed to measure plasma density profiles in the levitated dipole experiment (LDX). The LDX interferometer has a unique design owing to the unique geometry of LDX. The main design features of the interferometer are: (1) the transmitted beam traverses the plasma entirely in O-mode; (2) the interferometer is a heterodyne system employing two free-running oscillators; (3) four signals of data are received from just on transmitted beam; (4) phase shifts are detected in quadrature. Calibration tests demonstrate that the interferometer measures phase shifts with an uncertainty of approximately 5 deg. Plasma densities in LDX corresponding to phase shifts of up to 5{pi} are routinely and successfully measured.

  7. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  8. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

    Science.gov (United States)

    Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan

    2012-03-01

    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.

  9. Gravitational waves interferometer and the VIRGO project

    CERN Document Server

    Gaddi, A

    2002-01-01

    Radio, optical and X-rays telescopes are improving our knowledge of deep space. All these telescopes detect electromagnetic radiation at various frequencies. But a different kind of radiation is generated in the deeper space; it is the gravitational one. Gravitational waves change the space-time metric. As a consequence, GW telescopes should detect an extremely small strain (h < 10/sup -21/) of the geometry of a reference frame; if the frame has a reference dimension (L) of some kilometers, the deformation amplitude ( Delta L = h * L) is limited to 10/sup -16/ meters. Laser interferometers are the most suitable devices to make precise measurements of distances. Their resolution is limited by the laser wavelength ( lambda = 10/sup -6/ meters) and by the light wave-shift detection capability ( Delta Phi = 1 ppb). These theoretical limits are strongly degraded by different noise sources, which reduce the actual resolution by several orders of magnitude. Applied physicists and engineers are working together to...

  10. Projection moire interferometer for research in otology

    Science.gov (United States)

    Dirckx, Joris J.; Decraemer, Willem F.

    1999-02-01

    A moire interferometer is presented which was specially designed for the study of middle ear mechanics. The apparatus is based on phase shift projection moire interferometry, and allows full field quantitative measurement of the shape and deformation of three-dimensional surfaces. Phase shifting and grating noise removal is obtained by piezo-actuated movements of the gratings in the projection and the viewing optical path, respectively. Object shape is then calculated from the recordings of four phase shift moire topograms. The angle between projection and viewing direction is very small, so that observation of the eardrum is possible with minimal shadow problems caused by the bony structures in the vicinity of the eardrum. Measurements obtained on a calibration object and on in-vitro middle ear preparations are presented.

  11. Distributed acoustic sensing with Michelson interferometer demodulation

    Science.gov (United States)

    Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong

    2017-09-01

    The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.

  12. FIR interferometer and scattering measurements of ATF

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Fockedey, Y.; Vander Sluis, K.L.; Bennett, C.A.

    1989-01-01

    A 15-channel far-infrared (FIR) interferometer system has been constructed to measure the electron densities on the ATF plasmas. The system consists of a pair of cw 214-μm difluoromethane (CH 2 F 2 ) lasers, optically pumped by separate CO 2 lasers. The large number of channels is achieved by the use of reflective beam expansion optics to create a beam of 2 cm /times/ 45 cm. After passing through the plasma discharge, the elongated beam produced by the cylindrical mirrors is dissected by an array of 15 off-axis paraboloid reflectors, each of which illuminates a single Schottky-diode detector. The use of the beam expanding optics system reduces the number of optical elements required for the interferometer to approximately 2-3 per channel. The FIR laser beams are transported from the laser room to the experimental area by 25 mm i.d. dielectric waveguides purged with dry nitrogen. The system can also be operated at a wavelength of 119-μm by changing the gas in FIR laser cavities to methanol for high density experiments. Details of the system are described. A study is underway to determine the optimum design of a FIR scattering system for the ATF. This scattering system will be used to investigate density fluctuations with scale lengths from 0.1 cm to the plasma radius. The laser for this scattering system may be operated at wavelengths of 447, 307, 214, 184, and 119 μm with power levels of 100 to 500 mW. A summary of the study is presented. 6 refs., 1 fig

  13. Michelson-type Radio Interferometer for University Education

    Science.gov (United States)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.

    2013-01-01

    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  14. Test of an intensity-compensated Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Kamiyama, Hiroshi; Okano, Shoichi

    1977-01-01

    In measurement of the heating effect when high-energy charged particles fall into the ultra-high atmosphere, the Doppler width of auroral bright lines was measured with a Fabry-Perot interferometer. To overcome the difficulty in directly measuring auroral temperature with a Fabry-Perot interferometer, in the intensity-compensated type, the quantity aF/I is recorded: I the intensity of small part of the light entering the interferometer, F the detected output, and a constant. The width of the bright lines can be obtained with high accuracy. (Mori, K.)

  15. Lock acquisition of a gravitational-wave interferometer.

    Science.gov (United States)

    Evans, M; Mavalvala, N; Fritschel, P; Bork, R; Bhawal, B; Gustafson, R; Kells, W; Landry, M; Sigg, D; Weiss, R; Whitcomb, S; Yamamoto, H

    2002-04-15

    Interferometric gravitational-wave detectors, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) detectors currently under construction, are based on kilometer-scale Michelson interferometers, with sensitivity that is enhanced by addition of multiple coupled optical resonators. Reducing the relative optic motions to bring the system to the resonant operating point is a significant challenge. We present a new approach to lock acquisition, used to lock a LIGO interferometer, whereby the sensor transformation matrix is dynamically calculated to sequentially bring the cavities into resonance.

  16. EIT Based Gas Detector Design by Using Michelson Interferometer

    International Nuclear Information System (INIS)

    Abbasian, K.; Rostami, A.; Abdollahi, M. H.

    2011-01-01

    Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson Interferometer's mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of interferometer is created. Long response time is the main drawback of Michelson interferometer based sensor, which is resolved by this technique.

  17. Evaluation of an Experimental Model for Flat-Fan Nozzles Drift in Wind Tunnel by Image Processing

    Directory of Open Access Journals (Sweden)

    S.H Fattahi

    2014-09-01

    Full Text Available Each year, millions of liters of toxic liquid, are used to combat with pests and plant diseases in farms. The wide spread use of chemical pesticides causes great environmental hazards. Particles drift is one of the main problems in spraying which results in the contamination of farm lands, humans and animals. Management of particle size is regarded as the main factor in drift control. In this study, the effect of some parameters on the size of deposited particles on non-target areas was studied using statistical method. The effects of nozzle type (orifice size, spraying pressure, spraying boom height and wind speed as effective factors on drift were examined. A horizontal wind tunnel with working section of 0.47 m wide, 0.75 m height and 5.5 m long was used for testing. Experiment was performed in the form of factorial split-plot based on randomized complete block design with two replications. Droplets were measured in the treatment combinations of the type of flat-fan nozzle with three orifice area (11003- 0.87 mm2, 11004-1.18 mm2 and 11006- 1.8 mm2, spraying pressure (150, 275 and 400 kpa, wind speed (1, 2 and 3 m s-1 and the boom height of (0.35, 0.55 and 0.75 m. Water-sensitive papers were used at intervals of 0.8, 1.6 and 2.4 m from the tip of nozzles for detecting droplets size. The factors of pressure, speed and height had positive effects on the droplet size at the desired distance, but the effect of nozzle size on droplet size was negative. In the regression model the coefficients of speed was higher than the others.

  18. Effect of Wind Direction on ENVISAT ASAR Wind Speed Retrieval

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2010-01-01

    This paper presents an evaluation of effects of wind directions (NCEP, MANAL, QuickSCAT and WRF) on the sea surface wind speed retrieval from 75 ENVISAT ASAR images with four C-band Geophysical model functions, CMOD4, CMOD_IFR2, CMOD5 and CMOD5N at two target areas, Hiratsuka and Shirahama...

  19. Micromachined Fabry-Perot Interferometer for Motion Detection

    National Research Council Canada - National Science Library

    Waters, Richard L; Aklufi, Monti E

    2002-01-01

    The monolithic integration of a Fabry-Perot interferometer and a (100) silicon photodiode is reported for use as a highly sensitive transduction method in the detection of minute displacements of a proof mass attached to a spring...

  20. Herriott Cell Augmentation of a Quadrature Heterodyne Interferometer

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2002-01-01

    A quadrature heterodyne interferometer is augmented with a Herriott Cell multi-pass reflector to increase instrument resolution and enable a separation of the phase shift due to neutral density from room vibrations...

  1. Slow-Light-Enhanced Spectral Interferometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We proposoe a research program aimed at developing spectral interferometers with dramatically enhanced performance. A key aspect of our approach is to place a highly...

  2. Spatially translatable optical fiber-coupled heterodyne interferometer

    Science.gov (United States)

    Seo, Byonghoon; Bellan, Paul M.

    2017-12-01

    An interferometer is a useful diagnostic tool for measuring line-averaged electron density but is limited in its use because it generally measures at a fixed location. We report here a spatially translatable fiber-coupled interferometer that measures the density of a high-speed MHD-driven plasma jet colliding with a target cloud. The interferometer uses a He-Ne laser coupled to a polarization-maintaining single mode optical fiber having a vacuum feedthrough. The interferometer provides a measure of the spatial-temporal profile of the line-averaged electron density from which the change in jet velocity as a result of its collision with the target cloud can be deduced.

  3. A Michelson interferometer for X-rays and thermal neutrons

    International Nuclear Information System (INIS)

    Appel, A.

    1992-01-01

    The introduced interferometer consists of an LLL interferometer and a phase-displacing Bragg groove component. A part of the radiation path between the Lane mirrors in the Bragg grooves is replaced by a radiation path, whose wave number vector has a slightly different direction compared to the Lane case by the refraction correction. If the angles of incidence in the two grooves are different, then a difference in path is produced between the beams producing interference. This is the first X-ray interferometer which works like an optical Michelson interferometer. As there are no basic limits to resolution by absorption or dispersion, for example, it opens up the possibility of carrying out Fourier spectroscopy in the A wavelength range. (orig.) [de

  4. Plasma flow velocity measurements using a modulated Michelson interferometer

    International Nuclear Information System (INIS)

    Howard, J.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.)

  5. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  6. Fast-scanning far-infrared Fabry--Perot interferometer

    International Nuclear Information System (INIS)

    Komm, D.S.; Blanken, R.A.; Brossier, P.

    1975-01-01

    A scanning Fabry--Perot interferometer for use in the far ir (100 μ m less than lambda less than 2 mm) has been developed capable of scanning a free spectral range in a few milliseconds. A commercial loudspeaker was used as a drive, and mirrors were fabricated from electroformed copper mesh. Primary limitations of the instrument were due to vibrations of the interferometer frame. (U.S.)

  7. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  8. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi

    2005-01-01

    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  9. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  10. Automatic Alignment of Displacement-Measuring Interferometer

    Science.gov (United States)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog

  11. Experimental implementation of phase locking in a nonlinear interferometer

    Science.gov (United States)

    Wang, Hailong; Marino, A. M.; Jing, Jietai

    2015-09-01

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in such a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.

  12. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  13. A radio frequency interferometer (RIF) system

    International Nuclear Information System (INIS)

    Goldwire, H.C. Jr.

    1993-01-01

    The authors describe a radio frequency interferometer (RFI) system developed and tested by Lawrence Livermore National Laboratory over the last several years. The basic theory of operation, sample data, and analyzed results are presented and compared to results obtained by conventional TDR means (CORRTEX). A typical shock location measurement used for hydro-yield determination or for energy flow diagnostics comprises a coaxial sensing cable extending from the detonation region to a CORRTEX recording instrument. The single digitizer-based RFI system uses an identical sensing cable installation technique. Recording equipment consists of a CAMAC digitizer module, which produces a sinusoidal probing signal (the signal sent downhole) for each sensing channel (cable), while also coherently sampling the phase of the reflected signal. Each channel is recorded using a single digitizer, providing maximal temporal and spatial resolution, but independent of channel gain or quadruture errors inherent to dual digitizer systems. Interpolation software with suitable look-ahead logic permits determination of complete quadruture information using a single digitizer. This RFI system provides several times better spatial resolution and two orders of magnitude better temporal sampling density than does CORRTEX. It also is less susceptible to electromagnetic pulse distortion and provides a direct means for identifying (and rejecting) any data so contaminated

  14. 100 years since Michelson and Morley - the quest for the ultimate interferometer

    International Nuclear Information System (INIS)

    Bachor, H.A.; McClelland, D.E.

    1989-01-01

    This paper summarise some of the achievements of optical interferometry in its 100 years of existence. It is shown how over the decades, developments in optics, lasers, electronics and quantum mechanics have led to dramatic improvements in sensitivity, with the most recent developments aiming at a δL/L of 10 -12 . In addition, digital image processing and laser stabilisation techniques were combined to analyse optical surfaces with a resolution of 1/500 of a fringe. Some of interferometer applications are discussed and these include radio astronomy, laser gyroscopes, the visualisation of flows and the diagnostic of laboratory plasmas. 18 refs., 2 figs

  15. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  16. SAT-WIND project. Final report

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Niels Morten

    microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data...

  17. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  18. The Fourier-Kelvin Stellar Interferometer (FKSI): A Discovery Class TPF/DARWIN Pathfinder Mission Concept

    Science.gov (United States)

    Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezan, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.; Millan-Gabet, R.; Monnier, J. D.

    2003-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to NGST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We have been studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. We present results of detailed design studies of the FKSI starting with a design consisting of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral data simultaneously for a given orientation of the array. The spacecraft will be rotated to give sufficient Fourier data to reconstruct complex images of a broad range of astrophysical sources. Alternative and simpler three and two telescope designs emphasizing nulling and spectroscopy also have been

  19. A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection

    Science.gov (United States)

    Yu, Xinglong; Ding, Xiang; Liu, Fangfang; Wei, Xing; Wang, Dingxin

    2008-01-01

    Thousands of kinds of proteins exist in a single cell. Proteomics research aims to characterize these proteins and simultaneously analyse modifications and interactions on a large scale. Here we present a label-free surface plasmon resonance (SPR) imaging interferometer based on spatial phase modulation, which can be useful in this field. It consists of a light source, a SPR sensing unit, a special phase modulator, a photoelectric conversion unit and a computer. Collimated light is projected into a prism and reflected at the gold-glass interface. The p- and s-polarized components of the reflected light pass through a one-dimensional beam expander and a Wollaston prism, and form an interference pattern on a CCD. Interference images are acquired and transferred to the computer for data processing. Protein interaction on the gold surface leads to a local refractive index change and results in interference fringe phase shift. By calculating the phase shift, interaction information can be obtained. It is demonstrated that this technique can detect different concentrations of NaCl solutions, and the phase change generated by a 0.9% NaCl solution is about 10°. In protein-protein interaction experiments, a model system of rabbit IgG and goat-anti-rabbit IgG is tested. The maximum phase change is up to 12°. The phase resolution of the system is 0.2°, equivalent to the refractive index resolution of 3 × 10-5 RIU, and this value can be improved to 2 × 10-6 RIU just by increasing the gold thickness of the sensing chip. It is concluded that the sensitivity of the interferometer is enough to achieve larger capacity than that detected by the present protein micro-array products. These results suggest that the SPR interferometer based on spatial phase modulation provides a potential facility to meet the requirements in proteomics research.

  20. Winds at the Phoenix landing site

    DEFF Research Database (Denmark)

    Holstein-Rathlou, C.; Gunnlaugsson, H.P.; Merrison, J.P.

    2010-01-01

    Wind speeds and directions were measured on the Phoenix Lander by a mechanical anemometer, the so-called Telltale wind indicator. Analysis of images of the instrument taken with the onboard imager allowed for evaluation of wind speeds and directions. Daily characteristics of the wind data...... and frost formation are described and discussed. Two different mechanisms of dust lifting affecting the Phoenix site are proposed based on observations made with Mars Color Imager on Mars Reconnaissance Orbiter and the Telltale. The first is related to evaporation of the seasonal CO2 ice and is observed up...

  1. X-ray interferometer with bent gratings: Towards larger fields of view

    International Nuclear Information System (INIS)

    Revol, Vincent; Kottler, Christian; Kaufmann, Rolf; Jerjen, Iwan; Luethi, Thomas; Cardot, Francis; Niedermann, Philippe; Straumann, Ulrich; Sennhauser, Urs; Urban, Claus

    2011-01-01

    Recently, a Talbot-Lau interferometer was proposed to achieve phase contrast and dark field imaging in the hard X-rays domain (10-100 keV). This technique attracts much interest since it does not impose strong requirements on the coherence of the radiation while being sensitive to small phase changes of the beam. However, the limited size of the field of view, some centimeters, prevents its use in many applications where large objects have to be investigated. In the following article, the authors investigate a solution to extend the size of the field of view. After introducing the fundamental limitation on the size of the field of view, a Talbot-Lau interferometer with gratings bent on a cylindrical form is proposed and demonstrated in a compact (60 cm-long) configuration. A significant improvement of the performance could be achieved in comparison to the standard geometry. The theoretical limit imposed by the non-perpendicular angular incidence can thus be practically overcome and large fields of view become realistic. The authors envision a significant impact for high resolution phase sensitive imaging and/or industrial systems.

  2. X-ray interferometer with bent gratings: Towards larger fields of view

    Energy Technology Data Exchange (ETDEWEB)

    Revol, Vincent, E-mail: vincent.revol@csem.ch [Photonics Division, CSEM SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland); Kottler, Christian; Kaufmann, Rolf [Photonics Division, CSEM SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Jerjen, Iwan; Luethi, Thomas [Laboratory for Electronics/Metrology/Reliability, Swiss Federal Laboratories for Materials Testing and Research, Uberlandstr. 129, 8600 Duebendorf (Switzerland); Cardot, Francis; Niedermann, Philippe [Microsystems Technology, CSEM SA, Rue Jaquet-Droz 1, 2002 Neuchatel (Switzerland); Straumann, Ulrich [Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland); Sennhauser, Urs [Laboratory for Electronics/Metrology/Reliability, Swiss Federal Laboratories for Materials Testing and Research, Uberlandstr. 129, 8600 Duebendorf (Switzerland); Urban, Claus [Photonics Division, CSEM SA, Technoparkstr. 1, 8005 Zuerich (Switzerland)

    2011-08-21

    Recently, a Talbot-Lau interferometer was proposed to achieve phase contrast and dark field imaging in the hard X-rays domain (10-100 keV). This technique attracts much interest since it does not impose strong requirements on the coherence of the radiation while being sensitive to small phase changes of the beam. However, the limited size of the field of view, some centimeters, prevents its use in many applications where large objects have to be investigated. In the following article, the authors investigate a solution to extend the size of the field of view. After introducing the fundamental limitation on the size of the field of view, a Talbot-Lau interferometer with gratings bent on a cylindrical form is proposed and demonstrated in a compact (60 cm-long) configuration. A significant improvement of the performance could be achieved in comparison to the standard geometry. The theoretical limit imposed by the non-perpendicular angular incidence can thus be practically overcome and large fields of view become realistic. The authors envision a significant impact for high resolution phase sensitive imaging and/or industrial systems.

  3. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    Science.gov (United States)

    Kimble, H. J.; Levin, Yuri; Matsko, Andrey B.; Thorne, Kip S.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Pérot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e-2R=0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ɛ*=0.01) and using an input laser power Io in units of that required to reach the SQL (the planned LIGO-II power, ISQL), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡(Sh)/(SSQLh) and with the following corresponding increase V=1/μ3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input-μ~=(e-2R)~=0.3 and V~=1/0.33~=30 using Io/ISQL=1. Variational-output-μ~=ɛ1/4*~=0.3 and V~=30 but only if the optics can handle a ten times larger power: Io/ISQL~=1/(ɛ*)=10

  4. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    International Nuclear Information System (INIS)

    Kimble, H.J.; Levin, Yuri; Thorne, Kip S.; Matsko, Andrey B.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Perot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e -2R =0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ε * =0.01) and using an input laser power I o in units of that required to reach the SQL (the planned LIGO-II power, I SQL ), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡√(S h )/√(S h SQL ) and with the following corresponding increase V=1/μ 3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input--μ≅√(e -2R )≅0.3 and V≅1/0.3 3 ≅30 using I o /I SQL =1. Variational-output--μ≅ε * 1/4 ≅0.3 and V≅30 but only if the optics can handle a ten

  5. Interference Imaging of Refractive Index Distribution in Thin Samples

    OpenAIRE

    Ivan Turek; Norbert Tarjanyi

    2004-01-01

    There are three versions of interference imaging of refractive index distribution in thin samples suggested in this contribution. These are based on imaging of interference field created by waves reflected from the front and the back sample surface or imaging of interference field of Michelson or Mach-Zehnder interferometer with the sample put in one of the interferometers arm. The work discusses the advantages and disadvantages of these techniques and presents the results of imaging of refre...

  6. Micro wishbone interferometer for Fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Lee, Young-Min; Toda, Masaya; Ono, Takahito; Esashi, Masayoshi

    2011-01-01

    A miniature wishbone-type Si interferometer with electrically actuated rotary comb drive actuators is designed and fabricated to apply a Fourier transform infrared (FTIR) spectrometer. Corner cube mirrors are mounted on the end of the Si interferometer that is formed on a glass substrate. The total size of the interferometer is approximately 8 mm × 8 mm. The corner cube mirrors with sharp edges with a size of approximately 1 × 1 × 0.5 mm 3 are fabricated using an indentation technique. The rotation angle of rotary comb drive actuators is approximately 11° with an applied voltage of 180 V. Hereby, the maximum optical path difference of approximately 2640 µm is achieved, which corresponds to the highest resolution of ∼4 cm −1 as a spectrometer

  7. Optimum design of a microwave interferometer for plasma density measurement

    International Nuclear Information System (INIS)

    Lindberg, L.; Eriksson, A.

    1980-11-01

    Theoretical and practical problems arising in the application of microwave interferometry to density measurements on transient plasmas are discussed. The conditions for unambiquous measurements in a density range as wide as possible are analyzed. It is shown that the initial zero adjustment of the interferometer bridge recommended in many text books is the worst possible choice of initial condition when the aim is high initial sensitivity at low densities. The analytic expressions needed for unambiquous evaluation of any phase shift from a few degrees to several times π (counting of fringes) are derived. The practical design of the interferometer circuit and its inherent error sources due to reflexions and non-ideal component properties are discussed. The results are applied to an interferometer operating at 80 GHz used on a pulsed plasma experiment. The minimum measurable phase shift is 2deg and the range of linear densities that have been measured is = 1 . 10 16 - 3 . 10 18 m -2

  8. The Virgo gravitational wave interferometer: status and perspectives

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The first recording of a signal from a binary neutron star system by the Advanced LIGO and Advanced Virgo interferometers, and the observation of its remnants by telescopes in all bands of the electromagnetic spectrum, marked the beginning of multimessenger astronomy with gravitational waves. This followed the detection of gravitational wave signals by the LIGO interferometers in 2015, which started the detailed study of highly curved space time. These achievements come after decades of work spent understanding how to measure the tiny space time strain (h ~ 10-21) carried by gravitational waves. In the future, detectors will able to extract much more precise information from these events, or record signals from fainter sources, providing a new view of the Universe. After a presentation of the Virgo interferometer, the main results obtained from binary black hole and neutron star detection are reviewed. The focus will then shift on the perspective offered by a further reduction of noise in ground based interf...

  9. CO laser interferometer for REB-plasma experiments

    International Nuclear Information System (INIS)

    Burmasov, V.S.; Kruglyakov, E.P.

    1996-01-01

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF 2 prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at λ 5.34 μm coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser (λ = 3.39 μm) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs

  10. The POLIS interferometer for ponderomotive squeezed light generation

    Energy Technology Data Exchange (ETDEWEB)

    Calloni, Enrico [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Conte, Andrea [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); De Laurentis, Martina, E-mail: martina.delaurentis@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Naticchioni, Luca [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); Puppo, Paola [INFN, Sezione di Roma1 (Italy); Ricci, Fulvio [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy)

    2016-07-11

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  11. Full-Sky Imaging at Low Radio Frequencies

    Science.gov (United States)

    Jones, D. L.; Marsh, K. A.; Mahoney, M. J.; Kuiper, T. B. H.; Linfield, R. P.; Preston, R. A.; Unwin, S. C.; Shepherd, M. C.; Erickson, W. C.; Weiler, K. W.

    1995-12-01

    Over the past few years several concepts have been studied for missions to explore the frequency range from a few tens of MHz (where observations from the ground become very difficult due to the Earth's ionosphere) down to a few tens of kHz (approaching the local solar wind plasma frequency). A common feature of almost all such mission concepts is the use of multiple antennas operating as an aperture synthesis interferometer to obtain angular resolution limited only by physical processes in the interplanetary and interstellar medium. Aperture synthesis imaging at very low radio frequencies must overcome several unique problems, such as the corrupting effects of interplanetary scintillation, strong interfering signals from terrestrial transmitters, and nearly isotropic antennas which ``see" strong sources such as the Sun and Jupiter at all times. This last effect requires the use of extremely wide-field imaging techniques, which are computationally expensive. The current imaging study is using realistic simulated data to determine the dynamic range which can obtained in aperture synthesis images of the entire sky. The effects of baseline phase fluctuations caused by the solar wind, bandpass filtering (to reduce delay beam sidelobes), the size and number of 3-D Fourier transforms used, the number of separate dirty beams used during deconvolution, the number of deconvolution interations, and the number of antennas in the array are being studied. Final results of the study are expected by mid-1996.

  12. Local readout enhancement for detuned signal-recycling interferometers

    International Nuclear Information System (INIS)

    Rehbein, Henning; Mueller-Ebhardt, Helge; Schnabel, Roman; Danzmann, Karsten; Somiya, Kentaro; Chen Yanbei; Li Chao

    2007-01-01

    High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector's sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease

  13. Absolute sensitivity of phase measurement in an SU(1,1) type interferometer

    Science.gov (United States)

    Du, Wei; Jia, Jun; Chen, J. F.; Ou, Z. Y.; Zhang, Weiping

    2018-03-01

    Absolute sensitivity is measured for the phase measurement in an SU(1,1) type interferometer and the results are compared to that of a Mach-Zehnder interferometer operated under the condition of the same intra-interferometer intensity. The interferometer is phase locked to a point with the largest quantum noise cancellation, and a simulated phase modulation is added in one arm of SU(1,1) interferometer. Both the signal and noise level are estimated at the same frequency range, and we obtain 3dB improvement in sensitivity for the SU(1,1) interferometer over the Mach-Zehnder interferometer. Our results demonstrate a direct phase estimation, and may pave the way for practical applications of nonlinear interferometer.

  14. Applications of the lateral shearing interferometer in measurement of synchrotron radiation optical elements

    International Nuclear Information System (INIS)

    Liu, Wu-ming; Takacs, P.Z.; Siddons, D.P.

    1987-11-01

    The use of a single plate shearing, or Murty, interferometer for measuring the surface quality of several optical elements is reviewed and several results are given. The principle of the Murty interferometer is also explained

  15. Absolute sensitivity of phase measurement in an SU(1,1) type interferometer.

    Science.gov (United States)

    Du, Wei; Jia, Jun; Chen, J F; Ou, Z Y; Zhang, Weiping

    2018-03-01

    Absolute sensitivity is measured for the phase measurement in an SU(1,1) type interferometer, and the results are compared to that of a Mach-Zehnder interferometer operated under the condition of the same intra-interferometer intensity. The interferometer is phase locked to a point with the largest quantum noise cancellation, and a simulated phase modulation is added in one arm of the SU(1,1) interferometer. Both the signal and noise level are estimated at the same frequency range, and we obtained 3 dB improvement in sensitivity for the SU(1,1) interferometer over the Mach-Zehnder interferometer. Our results demonstrate a direct phase estimation and may pave the way for practical applications of a nonlinear interferometer.

  16. Study on avalanche photodiode influence on heterodyne laser interferometer linearity

    Science.gov (United States)

    Budzyn, Grzegorz; Podzorny, Tomasz

    2016-06-01

    In the paper we analyze factors reducing the possible accuracy of the heterodyne laser interferometers. The analysis is performed for the avalanche-photodiode input stages but is in main points valid also for stages with other type of photodetectors. Instrumental error originating from optical, electronic and digital signal processing factors is taken into consideration. We stress factors which are critical and those which can be neglected at certain accuracy requirements. In the work we prove that it is possible to reduce errors of the laser instrument below 1 nm point for multiaxial APD based interferometers by precise control of incident optical power and the temperature of the photodiode.

  17. An intensity interferometer for soft x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; McNulty, I.; Gluskin, E.

    1994-07-15

    We designed and built an intensity interferometer to characterize the spatial coherence of a soft x-ray undulator beam. The beam source size and shape can be determined from the measured coherence function. The instrument is 400 mm long and is mounted on a standard 204-mm diameter flange. This compact design is readily adaptable to other beamlines with sources of sufficient spectral brightness. Details of the interferometer design and performance are presented. We anticipate that when this technique is mature, it will provide a useful diagnostic for high brightness x-ray beams.

  18. Rational choices for the wavelengths of a two color interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1995-07-01

    If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO 2 lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers

  19. Electrooptic modulation in thin film barium titanate plasmonic interferometers.

    Science.gov (United States)

    Dicken, Matthew J; Sweatlock, Luke A; Pacifici, Domenico; Lezec, Henri J; Bhattacharya, Kaushik; Atwater, Harry A

    2008-11-01

    We demonstrate control of the surface plasmon polariton wavevector in an active metal-dielectric plasmonic interferometer by utilizing electrooptic barium titanate as the dielectric layer. Arrays of subwavelength interferometers were fabricated from pairs of parallel slits milled in silver on barium titanate thin films. Plasmon-mediated transmission of incident light through the subwavelength slits is modulated by an external voltage applied across the barium titanate thin film. Transmitted light modulation is ascribed to two effects, electrically induced domain switching and electrooptic modulation of the barium titanate index.

  20. Noise-Immune Conjugate Large-Area Atom Interferometers

    Science.gov (United States)

    Chiow, Sheng-Wey; Herrmann, Sven; Chu, Steven; Müller, Holger

    2009-07-01

    We present a pair of simultaneous conjugate Ramsey-Bordé atom interferometers using large (20ℏk)-momentum transfer beam splitters, where ℏk is the photon momentum. Simultaneous operation allows for common-mode rejection of vibrational noise. This allows us to surpass the enclosed space-time area of previous interferometers with a splitting of 20ℏk by a factor of 2500. Using a splitting of 10ℏk, we demonstrate a 3.4 ppb resolution in the measurement of the fine structure constant. Examples for applications in tests of fundamental laws of physics are given.

  1. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Vardhan Krishnamachari, Vishnu; Andresen, Esben Ravn; Potma, Eric Olaf

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  2. Detectability of periodic gravitational waves by initial interferometers

    International Nuclear Information System (INIS)

    Owen, Benjamin J

    2006-01-01

    I review three recent theoretical developments in neutron star physics predicting that rotating neutron stars could be very strong emitters of periodic gravitational waves. These imply a small but nonzero chance that ground-based interferometers could detect their first periodic signal in the next few years rather than after advanced upgrades. They also imply that upper limits will become astrophysically interesting before advanced upgrades. I discuss the implications for near-future searches and for the astrophysical payoffs of proposed small upgrades to initial interferometers

  3. Measurement of quantum states in a neutron interferometer

    International Nuclear Information System (INIS)

    Baron, M.

    2005-03-01

    The characterization of quantum states of neutrons in an interferometer is the main topic of this thesis. All related experiments were performed at the instrument S18 of the Institut Laue Langevin (ILL) in Grenoble, France. This instrument is dedicated to neutron interferometry as well as Ultra Small Angle Neutron Scattering (USANS). In principle, the properties of the quantum states entering the interferometer are mainly affected by the neutron-guide (super mirror guide H25) and the perfect crystal monochromator. A coherence volume can be assigned to these states where phase relations are fixed and interference occurs. The coherence behaviour is strongly anisotropic, since only transversal momentum distribution is influenced by dynamical diffraction. The longitudinal and vertical directions remain unaffected. The neutron interferometer is a unique tool for probing the coherence properties. It allows us to split a neutron beam in two coherent paths, separated by several centimeters and to recombine them afterwards. Due to introduction of a longitudinal or a vertical phase shift, respectively, it was possible to measure the related coherence function, which is determined by the auto-correlation function of the wave-function. By inserting a phase shifter in one of the two beam paths, the initial state is converted to a new state by superposition with the phase shifted state. This causes a change in the momentum distribution, which can be measured behind the interferometer with an additional crystal. With this analyzer-crystal the smoothed out interference properties at high interference orders can be restored behind the interferometer, if proper spectral filtering is applied. To measure the spatial distribution of this newly created state, a 2-loop-interferometer is needed. This kind of interferometer permits to create any state in the first loop and analyze it in the second loop. Therefore, it is possible for the first time to measure the spatial and the momentum

  4. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  5. In-situ observation of polymer blend phase separation by x-ray Talbot-Lau interferometer

    Science.gov (United States)

    Wu, Yanlin; Takano, Hidekazu; Momose, Atsushi

    2017-10-01

    Talbot interferometer using white synchrotron radiation has been demonstrated for time-resolved X-ray phase imaging and tomography as well as four-dimensional phase tomography to observe dynamics in samples. In this study, X-ray phase tomography has been used to follow the time evolution of phase separation in polymer blend through heating treatment. For this purpose, we performed in-situ X-ray phase imaging and tomography with X-ray Talbot-Lau interferometer using white synchrotron radiation. The X-ray Talbot-Lau interferometer consisted of a source grating (30 μm in period), a π/2 phase grating (4.5 μm in period), an amplitude grating (5.3 μm in period) and a high-speed camera. A polymer blend sample of polystyrene (PS) (Mw = 76,500) and polymethyl methacrylate (PMMA) (Mw = 33,200) was used for the CT observation. A compound of the PS and PMMA was made by a twin-screw kneading extruder and put into an Al tube whose inner diameter was 6 mm. The sample temperature was maintained at desired temperature sequence by controlling a lamp for heating, and CT scans were repeated to track the changes in sample structures at a temporal resolution of 5 seconds. PS-rich phase and PMMA-rich phase changing with time evolution were revealed.

  6. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    Science.gov (United States)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  7. Internal frequency conversion extreme ultraviolet interferometer using mutual coherence properties of two high-order-harmonic sources

    International Nuclear Information System (INIS)

    Dobosz, S.; Stabile, H.; Tortora, A.; Monot, P.; Reau, F.; Bougeard, M.; Merdji, H.; Carre, B.; Martin, Ph.; Joyeux, D.; Phalippou, D.; Delmotte, F.; Gautier, J.; Mercier, R.

    2009-01-01

    We report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3x10 20 cm -3 1.1 ns after the creation of a plasma on aluminum target.

  8. Internal frequency conversion extreme ultraviolet interferometer using mutual coherence properties of two high-order-harmonic sources

    Energy Technology Data Exchange (ETDEWEB)

    Dobosz, S.; Stabile, H.; Tortora, A.; Monot, P.; Reau, F.; Bougeard, M.; Merdji, H.; Carre, B.; Martin, Ph. [CEA, IRAMIS, Service des Photons Atomes et Molecules, F-91191 Gif- sur-Yvette (France); Joyeux, D.; Phalippou, D.; Delmotte, F.; Gautier, J.; Mercier, R. [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS et Universite Paris Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau cedex (France)

    2009-11-15

    We report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3x10{sup 20} cm{sup -3} 1.1 ns after the creation of a plasma on aluminum target.

  9. Effect of particle-size selectivity on quantitative X-ray dark-field computed tomography using a grating interferometer

    Science.gov (United States)

    Bao, Yuan; Shao, Qigang; Hu, Renfang; Wang, Shengxiang; Gao, Kun; Wang, Yan; Tian, Yangchao; Zhu, Peiping

    2017-08-01

    According to the conclusion of Khelashvili et al. [Phys. Med. Biol. 51, 221 (2006)], the minus logarithm of the visibility ratio fulfills the line integral condition; consequently the scattering information can be reconstructed quantitatively by conventional computed tomography (CT) algorithms. Based on Fresnel diffraction theory, we analyzed the influence of particle-size selectivity on the performance of an X-ray grating interferometer (GI) applied for dark-field CT. The results state the signal-to-noise ratio (SNR) of dark-field imaging is sensitive to the particle size, which demonstrate that the X-ray dark-field CT using a GI can efficiently differentiate materials of identical X-ray absorption and help to choose optimal X-ray energy for known particle size, thus extending the application range of grating interferometer.

  10. Magdalena Ridge Observatory Interferometer -- First Light with Telescope 1 and Progress to Fringes

    Science.gov (United States)

    Creech-Eakman, Michelle J.; Haniff, Chris A.; Buscher, David F.; Young, John S.; Payne, Ifan; Romero, Van D.; Magdalena Ridge Observatory Interferometer Team

    2018-01-01

    The Magdalena Ridge Observatory Interferometer (MROI), a 10-telescope optical/near-IR interferometer in central NM has been conceived to be the most ambitious optical interferometric array under construction to date. With baselines ranging from 7.8 to 343 meters, and limiting magnitudes of 14 at K band, it will be able to assess many thousands of astronomical targets on spatial scales of 10's to 0.1's of milliarcseconds. After over a decade of funding from NRL and the major partner institutions (NM Tech and Cambridge University), new funding was obtained in late 2015 via a Cooperative Agreement between NM Tech and the Air Force Research Lab (AFRL) to bring the facility to a three-interferometer system capable of observing geosynchronous satellites. However, we still maintain an exciting and compelling astronomical portfolio which will produce statistical samples of: YSOs and their surrounding disks, systems dominated by mass-loss and mass-transfer, pulsational stars and binary systems, and image the environs of AGN in nearby galaxies. An update on the status and plans for MROI for the next 3 years under the current Cooperative Agreement will be presented. In addition, we will present some examples of observational applications feasible with MROI both in the near-term and as we approach the full 10-telescope facility and describe how the astronomical community can become involved in this exciting project.We wish to acknowledge our sponsors in the NM Congressional Delegation and AFRL FA #9453-15-2-0086 for our recent support.

  11. The Michelson Stellar Interferometer Error Budget for Triple Triple-Satellite Configuration

    Science.gov (United States)

    Marathay, Arvind S.; Shiefman, Joe

    1996-01-01

    This report presents the results of a study of the instrumentation tolerances for a conventional style Michelson stellar interferometer (MSI). The method used to determine the tolerances was to determine the change, due to the instrument errors, in the measured fringe visibility and phase relative to the ideal values. The ideal values are those values of fringe visibility and phase that would be measured by a perfect MSI and are attributable solely to the object being detected. Once the functional relationship for changes in visibility and phase as a function of various instrument errors is understood it is then possible to set limits on the instrument errors in order to ensure that the measured visibility and phase are different from the ideal values by no more than some specified amount. This was done as part of this study. The limits we obtained are based on a visibility error of no more than 1% and a phase error of no more than 0.063 radians (this comes from 1% of 2(pi) radians). The choice of these 1% limits is supported in the literture. The approach employed in the study involved the use of ASAP (Advanced System Analysis Program) software provided by Breault Research Organization, Inc., in conjunction with parallel analytical calculations. The interferometer accepts object radiation into two separate arms each consisting of an outer mirror, an inner mirror, a delay line (made up of two moveable mirrors and two static mirrors), and a 10:1 afocal reduction telescope. The radiation coming out of both arms is incident on a slit plane which is opaque with two openings (slits). One of the two slits is centered directly under one of the two arms of the interferometer and the other slit is centered directly under the other arm. The slit plane is followed immediately by an ideal combining lens which images the radiation in the fringe plane (also referred to subsequently as the detector plane).

  12. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  13. Optical diameters of stars measured with the Mt. Wilson Mark III interferometer

    International Nuclear Information System (INIS)

    Simon, R.S.; Mozurkewich, D.; Johnston, K.J.; Gaume, R.; Hutter, D.J.; Bowers, P.F.; Colavita, M.M.; Shao, M.

    1990-01-01

    Reliable stellar angular diameters can now be determined using the Mark III Optical Interferometer located on Mt. Wilson, California. The Mark III is a Michelson Interferometer capable of measuring the interferometric fringe visibility for stars using interferometer baselines varying from 3 to 31.5 meters in length. Angular diameters measured with the Mark III Optical Interferometer are presented for 12 stars at wavelengths of 450 and 800 nm. 10 refs

  14. Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers

    OpenAIRE

    Hofstetter, Daniel; Zappe, H. P.; Dändliker, René

    2008-01-01

    Two monolithically integrated optical displacement sensors fabricated in the GaAs/AlGaAs material system are reported. These single-chip microsystems are configured as Michelson interferometers and comprise a distributed Bragg reflector (DBR) laser, photodetectors, phase shifters, and waveguide couplers. While the use of a single Michelson interferometer allows measurement of displacement magnitude only, a double Michelson interferometer with two interferometer signals in phase quadrature als...

  15. High-Energy X-Ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport

    Science.gov (United States)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.; Kaspi, Victoria M.; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.; hide

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron emitting electron distribution at approximately 200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50 of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N(sub H) map. We discuss possible origins of the shell-like structure and their implications.

  16. Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement

    Science.gov (United States)

    Brown, Daniel D.; Miao, Haixing; Collins, Chris; Mow-Lowry, Conor; Töyrä, Daniel; Freise, Andreas

    2017-09-01

    We demonstrate the applicability of the EPR entanglement squeezing scheme for enhancing the shot-noise-limited sensitivity of detuned dual-recycled Michelson interferometers. In particular, this scheme is applied to the GEO600 interferometer. The effect of losses throughout the interferometer, arm length asymmetries, and imperfect separation of the signal and idler beams is considered.

  17. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  18. QUBIC, a bolometric interferometer to measure the B-modes of the CMB

    Science.gov (United States)

    Hamilton, J.-C.; Charlassier, R.

    The quest for the B-modes in the CMB polarization is one of the main challenges of modern cosmology as it would allow to give sharp constraints on the inflationary period. One of the main challenges of B modes detection is the treatment of systematic errors. Comparison of observations subject to different systematics is crucial. Interferometers offer such an alternative to imagers. However, to obtain the required sensitivity, a very large number of baselines is needed, which is extremely difficult to achieve with heterodyne interferometry. Bolometric interferometry copes with this problem using a new technique: the interference pattern produced by a few hundred horns is imaged on a bolometer array, and a time modulation of phase shifts insures the separation of visibilities while coherently adding redundant ones. The QUBIC collaboration proposes to build such an instrument.

  19. Wind energy in France: impossible?

    International Nuclear Information System (INIS)

    Marie-Josette, R.

    2005-01-01

    Since the end of 2004, the European Union is the first producer of wind energy in the world (34205 MW), far beyond the USA (6740 MW) and India (2110 MW). Three countries are in the pole position: Germany (16629 MW), Spain (8263 MW) and Denmark (3117 MW). On the other hand, despite a voluntarist policy, the other countries encounter administrative and local difficulties in the development of wind energy. This is the case with France which has the second biggest potential wind resource of Europe, behind the UK. The French situation is explained by its centralized energy system, by the priority given to nuclear power, by important wind variations, and by a bad image of wind turbines in general (aesthetic, environmental). This situation should change in the future with the scheduling of pluri-annual investments, with adapted tariffs and with improved administrative procedures. (J.S.)

  20. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    Science.gov (United States)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  1. On open electromagnetic resonators: relation between interferometers and resonators

    International Nuclear Information System (INIS)

    Manenkov, Aleksandr A; Bykov, Vladimir P; Kuleshov, N V

    2010-01-01

    The physical difference between the concepts 'Fabry-Perot interferometer' and 'open resonator' is discussed. It is shown that the use of the term 'Fabry-Perot resonator' for open laser resonators is incorrect both from the historical viewpoint and from the viewpoint of the physical meaning of the processes occurring in these resonators. (laser beams and resonators)

  2. Finite mass beam splitter in high power interferometers

    International Nuclear Information System (INIS)

    Harms, Jan; Schnabel, Roman; Danzmann, Karsten

    2004-01-01

    The beam splitter in high-power interferometers is subject to significant radiation-pressure fluctuations. As a consequence, the phase relations which appear in the beam splitter coupling equations oscillate and phase modulation fields are generated which add to the reflected fields. In this paper, the transfer function of the various input fields impinging on the beam splitter from all four ports onto the output field is presented including radiation-pressure effects. We apply the general solution of the coupling equations to evaluate the input-output relations of the dual-recycled laser-interferometer topology of the gravitational-wave detector GEO 600 and the power-recycling, signal-extraction topology of advanced LIGO. We show that the input-output relation exhibits a bright-port dark-port coupling. This mechanism is responsible for bright port contributions to the noise density of the output field and technical laser noise is expected to decrease the interferometer's sensitivity at low frequencies. It is shown quantitatively that the issue of technical laser noise is unimportant in this context if the interferometer contains arm cavities

  3. Drift correction in a multichannel integrated optical Young interferometer

    NARCIS (Netherlands)

    Ymeti, Aurel; Greve, Jan; Lambeck, Paul; Wijn, Robert Raimond; Heideman, Rene; Kanger, Johannes S.

    2005-01-01

    We demonstrate that in a sensor based on a multichannel Young interferometer, the phase information obtained for different pairs of channels can be used to correct the long-term instability (drift) due to temperature differences between measuring and reference channels, the drift in the alignment of

  4. Quasi-quadrature interferometer for plasma density radial profile measurements

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Hoffman, A.L.

    1979-01-01

    A cw Mach Zehnder multichannel interferometer has been developed to measure time-dependent fractional fringe shifts with an accuracy of one-fortieth fringe. The design is quasi-quadrature in that known phase shifts, introduced in the reference beam, are time multiplexed with the normal reference beam. This technique requires only one detector per interferometer channel as compared to two detectors for most quadrature designs. The quadrature information makes the sense of density changes unambiguous, it automatically calibrates the instrument during the plasma event, and it makes fringe shift measurements virtually independent of fringe contrast fluctuations caused by plasma refractive and/or absorptive effects. The interferometer optical design is novel in that the electro-optic crystal used to introduce the 90 0 phase shifts is located in the common 2-mm-diam HeNe entrance beam to the interferometer, by exploiting polarization techniques, rather than in the expanded 1--2-cm reference beam itself. This arrangement greatly reduces the size, cost, and high-voltage requirements for the phase modulating crystal

  5. Switching behaviour of nonlinear Mach–Zehnder interferometer ...

    Indian Academy of Sciences (India)

    Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry. MAN MOHAN GUPTA and S MEDHEKAR. ∗. Centre for Applied Physics, Central University of Jharkhand, Ranchi 835 205, India. ∗. Corresponding author. E-mail: smedhekarbit@gmail.com. MS received 23 April 2013; ...

  6. Measurements from a novel interferometer for EUVL mirror substrates

    NARCIS (Netherlands)

    Krieg, M.L.; Braat, J.J.M.

    2005-01-01

    A previously reported interferometer without intermediate optics is used to perform measurements on an aspherical extreme ultraviolet lithography mirror substrate. Acousto-optic modulation based phase shifting is used together with a novel phase retrieval algorithm to retrieve the phase distribution

  7. Virgo: a laser interferometer to detect gravitational waves

    NARCIS (Netherlands)

    Accadia, T.; van den Brand, J.F.J.; Bulten, H.J.; Ketel, T.J.; van der Voet, H.; Mul, F.A.; Rabeling, D.S.

    2012-01-01

    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the

  8. Quantitative Phase Determination by Using a Michelson Interferometer

    Science.gov (United States)

    Pomarico, Juan A.; Molina, Pablo F.; D'Angelo, Cristian

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as…

  9. Measurement of Refractive Index Using a Michelson Interferometer.

    Science.gov (United States)

    Fendley, J. J.

    1982-01-01

    Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

  10. Correlation functions formed by a femtosecond pulse interferometer

    NARCIS (Netherlands)

    Cui, M.; Bhattacharya, N.; Urbach, H.P.; Van den berg, S.A.

    2008-01-01

    We experimentally demonstrate that a stabilized femtosecond frequency comb can be applied as a tool for distance measurement. The scheme is based on optical interference between individual pulses in a Michelson type interferometer. The cross-correlation functions between individual pulses with a

  11. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  12. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  13. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    The paper describes a simple and cost effective method for the realization of an optical interferometer based on holographic optics, which use minimal bulk optical components. The optical arrangement in the proposed method involves a very simple alignment procedure and inexpensive holographic recording material is ...

  14. The Virgo 3 km interferometer for gravitational wave detection

    NARCIS (Netherlands)

    Acernese, F.; Amico, Paolo; Alshourbagy, Mohamed; Antonucci, Federica; Aoudia, S.; Astone, P.; Avino, Saverio; Baggio, L.; Ballardin, G.; Barone, F.; Barsotti, L.; Barsuglia, M.; Bauer, Th. S.; Bigotta, Stefano; Bizouard, M. A.; Boccara, Albert-Claude; Bondu, F.; Bosi, Leone; Bradaschia, C.; van den Brand, J. F. J.; Birindelli, Simona; Braccini, Stefano; Brillet, A.; Brisson, V.; Buskulic, D.; Cagnoli, G.; Calloni, E.; Campagna, Enrico; Carbognani, F.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cesarini, E.; Chassande-Mottin, E.; Clapson, A-C; Cleva, F.; Coccia, E.; Corda, C.; Corsi, A.; Cottone, F.; Coulon, J. -P.; Cuoco, E.; D'Antonio, S.; Dari, A.; Dattilo, V.; Davier, M.; Del Prete, M.; Rosa, R.; Di Fiore, L.; Di Lieto, A.; Di Virgilio, A.; Dujardin, B.; Evans, M.; Fafone, V.; Ferrante, I.; Fidecaro, F.; Fiori, I.; Flaminio, R.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Gammaitoni, L.; Garufi, F.; Genin, E.; Gennai, A.; Giazotto, A.; Giordano, L.; Granata, V.; Greverie, C.; Grosjean, D.; Guidi, G.; Hamdani, S.U.; Hebri, S.; Heitmann, H.; Hello, P.; Huet, D.; Kreckelbergh, S.; La Penna, P.; Laval, M.; Leroy, N.; Letendre, N.; Lopez, B.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Mackowski, J. -M.; Majorana, E.; Man, C. N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marque, J.; Martelli, F.; Masserot, A.; Menzinger, F.; Milano, L.; Minenkov, Y.; Moins, C.; Moreau, J.; Morgado, N.; Mosca, S.; Mours, B.; Neri, I.; Nocera, F.; Pagliaroli, G.; Pallottino, G. V.; Palomba, C.; Paoletti, F.; Pardi, S.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Piergiovanni, F.; Pinard, L.; Poggiani, R.; Punturo, M.; Puppo, P.; van der Putten, S.; Rapagnani, P.; Regimbau, T.; Reita, V.; Remillieux, A.; Ricci, F.; Ricciardi, I.; Rocchi, A.; Romano, R.; Ruggi, P.; Russo, G.; Solimeno, S.; Spallicci, A.; Tarallo, M.; Terenzi, R.; Tonelli, M.; Toncelli, A.; Tournefier, E.; Travasso, F.; Tremola, C.; Vajente, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinet, J. -Y.; Vocca, H.; Yvert, M.

    Virgo, designed, constructed and developed by the French-Italian VIRGO collaboration located in Cascina (Pisa, Italy) and aiming to detect gravitational waves, is a ground-based power recycled Michelson interferometer, with 3 km long suspended Fabry -Perot cavities. The first Virgo scientific

  15. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives

  16. New results on equatorial thermospheric winds and temperatures from Ethiopia, Africa

    Directory of Open Access Journals (Sweden)

    F. Tesema

    2017-03-01

    Full Text Available Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry–Perot interferometer (FPI, which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic. The results obtained in this study cover 6 months (53 nights of useable data between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms−1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms−1 poleward during the winter months and 10 to 25 ms−1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was  ∼  110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT. Climatological

  17. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng [Department of Physics, Institute of Astrophysics, and Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Liu, Guo-Chin [Department of Physics, Tamkang University, 251-37 Tamsui, New Taipei City, Taiwan (China); Molnar, Sandor M. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Yu-Yen, E-mail: ywliao@asiaa.sinica.edu.tw, E-mail: jhpw@phys.ntu.edu.tw [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  18. Non-invasive energy spread monitoring for the JLAB experimental program via synchrotron light interferometers

    International Nuclear Information System (INIS)

    The hypernuclear physics program at Jefferson Lab [JLAB] requires a tight upper limit on the RMS beam energy spread of σ E /E -5 . The energy spread is determined by measuring the beam width at a dispersive location (D∼4m) in the transport line to the experimental halls. Ignoring the intrinsic beam size, this low energy spread corresponds to an upper bound on the beam width of σ beam <120μm. Such small beam sizes cannot be measured using direct imaging of the synchrotron light due to diffraction limitations. Using interferometry of the synchrotron light the resolution of the optical system can be made very high. The non-invasive nature of this measurement is also very advantageous as it allows continuous energy spread monitoring. Two synchrotron light interferometers have been built and installed at Jefferson Lab, one each in the Hall-A and Hall-C transport lines. The two devices operate over a beam current range from 10 to 120μA and have a spatial resolution better than 10μm. The structure of the interferometer, the experience gained during its installation, beam measurements and energy spread stability are presented

  19. Single mode fiber array for planet detection using a visible nulling interferometer

    Science.gov (United States)

    Liu, Duncan; Levine, B. Martin; Shao, Michael; Aguayo, Franciso

    2005-01-01

    We report the design, fabrication, and testing of a coherent large mode field diameter fiber array to be used as a spatial filter in a planet finding visible nulling interferometer. The array is a key component of a space instrument for visible-light detection and spectroscopy of Earth like extrasolar planets. In this concept, a nulling interferometer is synthesized from a pupil image of a single aperture which is then spatially filtered by a coherent array of single mode fibers to suppress the residual scattered star light. The use of the fiber array preserves spatial information between the star and planet. The fiber array uses a custom commercial large mode field or low NA step-index single mode fiber to relax alignment tolerances. A matching custom micro lens array is used to couple light into the fibers, and to recollimate the light out of the fiber array. The use of large mode field diameter fiber makes the fabrication of a large spatial filter array with 300 to 1000 elements feasible.

  20. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    International Nuclear Information System (INIS)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng; Liu, Guo-Chin; Molnar, Sandor M.; Chang, Yu-Yen

    2013-01-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  1. Platform Deformation Phase Correction for the AMiBA-13 Coplanar Interferometer

    Science.gov (United States)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Proty Wu, Jiun-Huei; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Cheng, Tai-An; Fu, Szu-Yuan; Liu, Guo-Chin; Molnar, Sandor M.; Umetsu, Keiichi; Wang, Fu-Cheng; Chang, Yu-Yen; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter

    2013-05-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  2. Design of a line-VISAR interferometer system for the Sandia Z Machine

    Science.gov (United States)

    Galbraith, J.; Austin, K.; Baker, J.; Bettencourt, R.; Bliss, E.; Celeste, J.; Clancy, T.; Cohen, S.; Crosley, M.; Datte, P.; Fratanduono, D.; Frieders, G.; Hammer, J.; Jackson, J.; Johnson, D.; Jones, M.; Koen, D.; Lusk, J.; Martinez, A.; Massey, W.; McCarville, T.; McLean, H.; Raman, K.; Rodriguez, S.; Spencer, D.; Springer, P.; Wong, J.

    2017-08-01

    A joint team comprised of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) personnel is designing a line-VISAR (Velocity Interferometer System for Any Reflector) for the Sandia Z Machine, Z Line-VISAR. The diagnostic utilizes interferometry to assess current delivery as a function of radius during a magnetically-driven implosion. The Z Line-VISAR system is comprised of the following: a two-leg line-VISAR interferometer, an eight-channel Gated Optical Imager (GOI), and a fifty-meter transport beampath to/from the target of interest. The Z Machine presents unique optomechanical design challenges. The machine utilizes magnetically driven pulsed power to drive a target to elevated temperatures and pressures useful for high energy density science. Shock accelerations exceeding 30g and a strong electromagnetic pulse (EMP) are generated during the shot event as the machine discharges currents of over 25 million amps. Sensitive optical components must be protected from shock loading, and electrical equipment must be adequately shielded from the EMP. The optical design must accommodate temperature and humidity fluctuations in the facility as well as airborne hydrocarbons from the pulsed power components. We will describe the engineering design and concept of operations of the Z Line-VISAR system. Focus will be on optomechanical design.

  3. Ghost reflections of Gaussian beams in anamorphic optical systems with an application to Michelson interferometer.

    Science.gov (United States)

    Abd El-Maksoud, Rania H

    2016-02-20

    In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided.

  4. Step index fibre using laser interferometer

    Indian Academy of Sciences (India)

    2014-03-04

    Mar 4, 2014 ... the graded index fibres is shown referring to the corresponding tomographic image. Also, the tomographic cylinder shows a gross diameter related to the major axis of the ellipse compared to the small width at the ends of the cylinder indicating the minor axis of the cylinder. Pramana – J. Phys., Vol. 82, No.

  5. Dense plasmas interferometry using an X-UV laser. Development of an X-UV Michelson interferometer at 13.9 nm

    International Nuclear Information System (INIS)

    Hubert, S.

    2001-01-01

    After having recalled some aspects related to the physics of plasmas produced by interaction between laser and matter, and related to inertial confinement fusion or ICF (discussion of laser energy absorption, X conversion, parametric and hydrodynamic instabilities, and so on), this research thesis presents various techniques used for plasma diagnosis in order to justify the use of interferometry for the investigation of the electronic density distribution of these plasmas. The physical principle of this diagnosis technique is described and two types of X-UV interferometer are presented, one of them being chosen as more suitable for the study of ICF-type plasmas. The author then describes and reports the experimental investigation performed with a two-mirror Fresnel interferometer and a 21.2 nm zinc X-UV laser: description of the interferometer operation and characteristics, of the specifically designed image system, discussion of plasma interferogram simulations. Then, he reports the development of a Michelson-type X-UV interferometer at 13.9 nm. The operation principle is recalled, and the preliminary modelling phase is reported. The imaging system is presented and results of the interferogram modelling phase are presented [fr

  6. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  7. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  8. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  9. Fabry-Perot interferometer utilized for displacement measurement in a large measuring range

    International Nuclear Information System (INIS)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experiments is less than 0.3 μm in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.

  10. An Overview of the Mid-Infrared Spectro-Interferometer MATISSE: Science, Concept, and Current Status

    Science.gov (United States)

    Matter, A.; Lopez, B.; Antonelli, P.; Lehmitz, M.; Bettonvil, F.; Beckmann, U.; Lagarde, S.; Jaffe, W.; Petrov, R. G.; Berio, P.; hide

    2016-01-01

    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 microns, exploring angular scales as small as 3 mas (L band) 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R approx. 30 to R approx. 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.

  11. Self-referenced interferometer for cylindrical surfaces

    Czech Academy of Sciences Publication Activity Database

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-01-01

    Roč. 54, č. 33 (2015), s. 9930-9938 ISSN 1559-128X R&D Projects: GA MŠk ED0017/01/01; GA ČR GA15-18430S; GA MŠk(CZ) LO1212; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : metrological instrumentation * interferometric imaging * interferometry * surface measurements * optical inspection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.598, year: 2015

  12. QUBIC: The QU bolometric interferometer for cosmology

    Science.gov (United States)

    Qubic Collaboration; Battistelli, E.; Baú, A.; Bennett, D.; Bergé, L.; Bernard, J.-Ph.; de Bernardis, P.; Bordier, G.; Bounab, A.; Bréelle, É.; Bunn, E. F.; Calvo, M.; Charlassier, R.; Collin, S.; Coppolecchia, A.; Cruciani, A.; Curran, G.; de Petris, M.; Dumoulin, L.; Gault, A.; Gervasi, M.; Ghribi, A.; Giard, M.; Giordano, C.; Giraud-Héraud, Y.; Gradziel, M.; Guglielmi, L.; Hamilton, J.-Ch.; Haynes, V.; Kaplan, J.; Korotkov, A.; Landé, J.; Maffei, B.; Maiello, M.; Malu, S.; Marnieros, S.; Martino, J.; Masi, S.; Murphy, A.; Nati, F.; O'Sullivan, C.; Pajot, F.; Passerini, A.; Peterzen, S.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Polenta, G.; Prêle, D.; Romano, D.; Rosset, C.; Salatino, M.; Schillaci, A.; Sironi, G.; Sordini, R.; Spinelli, S.; Tartari, A.; Timbie, P.; Tucker, G.; Vibert, L.; Voisin, F.; Watson, R. A.; Zannoni, M.; QUBIC Collaboration

    2011-04-01

    One of the major challenges of modern cosmology is the detection of B-mode polarization anisotropies in the Cosmic Microwave Background. These originate from tensor fluctuations of the metric produced during the inflationary phase. Their detection would therefore constitute a major step towards understanding the primordial Universe. The expected level of these anisotropies is however so small that it requires a new generation of instruments with high sensitivity and extremely good control of systematic effects.We propose the QUBIC instrument based on the novel concept of bolometric interferometry, bringing together the sensitivity advantages of bolometric detectors with the systematics effects advantages of interferometry.The instrument will directly observe the sky through an array of entry horns whose signals will be combined together using an optical combiner. The whole set-up is located inside a cryostat. Polarization modulation will be achieved using a rotating half-wave plate and the images of the interference fringes will be formed on two focal planes (separated by a polarizing grid) tiled with bolometers.We show that QUBIC can be considered as a synthetic imager, exactly similar to a usual imager but with a synthesized beam formed by the array of entry horns. Scanning the sky provides an additional modulation of the signal and improve the sky coverage shape. The usual techniques of map-making and power spectrum estimation can then be applied. We show that the sensitivity of such an instrument is comparable with that of an imager with the same number of horns. We anticipate a low level of beam-related systematics thanks to the fact that the synthesized beam is determined by the location of the primary horns. Other systematics should be under good control thanks to an autocalibration technique, specific to our concept, that will permit the accurate determination of most of the instrumental parameters that would otherwise lead to systematics.

  13. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  14. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  15. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  16. Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram

    2005-01-01

    Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.

  17. Behavior of electronic interferometers in the nonlinear regime.

    Science.gov (United States)

    Neder, I; Ginossar, E

    2008-05-16

    We investigate theoretically the behavior of the current oscillations in an electronic Mach-Zehnder interferometer (MZI) as a function of its source bias. Recently, the MZI visibility data showed an unexplained lobe pattern with a peculiar phase rigidity. Moreover, the effect did not depend on the MZI path length difference. We argue that these effects may be a new many-body manifestation of particle-wave duality in quantum mechanics. When biasing the interferometer sources so much that multiple electrons are on each arm at any instant in time, quantum shot noise (a particle phenomena) must affect the interference pattern of the electrons that create it. A solution to the interaction Hamiltonian presented here shows that the interference visibility has a lobe pattern with applied bias that has a period proportional to the average path length and independent of the path length difference, together with a phase rigidity.

  18. Report on the set-up of a holographic interferometer

    International Nuclear Information System (INIS)

    Koster, J.N.

    1977-10-01

    Holographic interferometry is well suited for visualizing temperature, density, pressure and concentration fields in transparent fluids. The holographic real-time interferometer allows a continuous observation of stationary and instationary flow processes. After the explanation of the measuring technique, the problems arising during the interferometer set-up as well as the necessary adjusting operations are described. For heat transfer problems new possibilities for the application of holographic interferometry are revealed. Convection in boxes, temperature fields around heated or cooled bodies, concentration and diffusion processes in two phase-flows, mixtures and solutions as well as melting and freezing processes may be investigated. On the basis of particular examples some applications are presented. (orig.) [de

  19. Application principle of Sagnac interferometer in optical fiber gyroscopic system

    Directory of Open Access Journals (Sweden)

    Michal Márton

    2016-12-01

    Full Text Available Gyroscopes are widely used in various applications for decades, but the idea to construct a gyroscopic system, able to exploit the properties of the gyroscope and also monitor the status information arose later. The expansion of the optical fiber technology also touch the subject, with the development of such interferometer measuring means to explore a variety of non-optical parameters led to the idea of the application of this knowledge to the already known systems. This optical system has been constructed on a fundamental principle of the gyroscope, but we can’t talk about pure gyroscope, because there is an optical interferometer that uses its features. So it was named as fiber optic gyroscopes. In this article we describe fiber optic gyro system, design and testing experimental measurements with this gyroscope system.

  20. A microwave interferometer for small and tenuous plasma density measurements

    International Nuclear Information System (INIS)

    Tudisco, O.; Falcetta, C.; De Angelis, R.; Florean, M.; Neri, C.; Mazzotta, C.; Pollastrone, F.; Rocchi, G.; Tuccillo, A. A.; Lucca Fabris, A.; Manente, M.; Ferri, F.; Tasinato, L.; Trezzolani, F.; Accatino, L.; Pavarin, D.; Selmo, A.

    2013-01-01

    The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10 16 m −3 and 10 19 m −3 ) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ= 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10 16 m −3 .

  1. QUBIC: the Q&U Bolometric Interferometer for Cosmology

    Science.gov (United States)

    Piat, M.; Battistelli, E.; Baù, A.; Bennett, D.; Bergé, L.; Bernard, J.-P.; de Bernardis, P.; Bigot-Sazy, M.-A.; Bordier, G.; Bounab, A.; Bréelle, E.; Bunn, E. F.; Calvo, M.; Charlassier, R.; Collin, S.; Cruciani, A.; Curran, G.; Dumoulin, L.; Gault, A.; Gervasi, M.; Ghribi, A.; Giard, M.; Giordano, C.; Giraud-Héraud, Y.; Gradziel, M.; Guglielmi, L.; Hamilton, J.-C.; Haynes, V.; Kaplan, J.; Korotkov, A.; Landé, J.; Maffei, B.; Maiello, M.; Malu, S.; Marnieros, S.; Martino, J.; Masi, S.; Montier, L.; Murphy, A.; Nati, F.; O'Sullivan, C.; Pajot, F.; Parisel, C.; Passerini, A.; Peterzen, S.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Polenta, G.; Prêle, D.; Romano, D.; Rosset, C.; Salatino, M.; Schillaci, A.; Sironi, G.; Sordini, R.; Spinelli, S.; Tartari, A.; Timbie, P.; Tucker, G.; Vibert, L.; Voisin, F.; Watson, R. A.; Zannoni, M.

    2012-06-01

    The primordial B-mode polarisation of the Cosmic Microwave Background is the imprints of the gravitational wave background generated by inflation. Observing the B-mode is up to now the most direct way to constrain the physics of the primordial Universe, especially inflation. To detect these B-modes, high sensitivity is required as well as an exquisite control of systematics effects. To comply with these requirements, we propose a new instrument called QUBIC (Q and U Bolometric Interferometer for Cosmology) based on bolometric interferometry. The control of systematics is obtained with a close-packed interferometer while bolometers cooled to very low temperature allow for high sensitivity. We present the architecture of this new instrument, the status of the project and the self-calibration technique which allows accurate measurement of the instrumental systematic effects.

  2. Towards a FPGA-controlled deep phase modulation interferometer

    Science.gov (United States)

    Terán, M.; Martín, V.; Gesa, Ll; Mateos, I.; Gibert, F.; Karnesis, N.; Ramos-Castro, J.; Schwarze, T. S.; Gerberding, O.; Heinzel, G.; Guzmán, F.; Nofrarias, M.

    2015-05-01

    Deep phase modulation interferometry was proposed as a method to enhance homodyne interferometers to work over many fringes. In this scheme, a sinusoidal phase modulation is applied in one arm while the demodulation takes place as a post-processing step. In this contribution we report on the development to implement this scheme in a fiber coupled interferometer controlled by means of a FPGA, which includes a LEON3 soft-core processor. The latter acts as a CPU and executes a custom made application to communicate with a host PC. In contrast to usual FPGA-based designs, this implementation allows a real-time fine tuning of the parameters involved in the setup, from the control to the post-processing parameters.

  3. A Fiber Interferometer for the Magnetized Shock Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Christian [Los Alamos National Laboratory

    2012-08-30

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  4. Measurement of Local Gravity via a Cold Atom Interferometer

    International Nuclear Information System (INIS)

    Zhou Lin; Xiong Zong-Yuan; Yang Wei; Tang Biao; Peng Wen-Cui; Wang Yi-Bo; Xu Peng; Wang Jin; Zhan Ming-Sheng

    2011-01-01

    We demonstrate a precision measurement of local gravity acceleration g in Wuhan by a compact cold atom interferometer. The atom interferometer is in vertical Mach—Zehnder configuration realized using a π/2 - π - π/2 Raman pulse sequence. Cold atoms were prepared in a magneto-optical trap, launched upward to form an atom fountain, and then coherently manipulated to interfere by stimulated Raman transition. Population signal vs Raman laser phase was recorded as interference fringes, and the local gravity was deduced from the interference signal. We have obtained a resolution of 7 × 10 −9 g after an integration time of 236s under the best vibrational environment conditions. The absolute g value was derived from the chirp rate with a difference of 1.5 × 10 −7 g compared to the gravity reference value. The tidal phenomenon was observed by continuously monitoring the local gravity over 123 h. (atomic and molecular physics)

  5. Abstract passive interferometers with applications to conservative logic

    Science.gov (United States)

    Qian, Lei; Caulfield, H. John

    2005-08-01

    Interferometers with two complex inputs and two complex outputs can be viewed as state machines over a 4-D hyperspace, where the relationship between outputs and inputs are transition functions. In the simplest case, there is full symmetry between inputs and between outputs. The nonzero inputs, the origin and the outputs define a 2-D plane in the 4-D space. The interferometer rotates the input vectors by [pi]/4 in the hyperspace. Cascading the symmetric units defines a simple Hamiltonian path of length 8 in a 2-D subspace. Breaking symmetry by introducing a relative phase shift in the input leads to more complex Hamiltonian paths that can require all four dimensions to describe. The special symmetry breaking caused by a phase shift in one of the input arms leads to outputs which, upon detection, are recognizable as Boolean and other simple operations on properly encrypted and interpreted inputs!

  6. Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Ju, L; Grass, S; Zhao, C; Degallaix, J; Blair, D G

    2006-01-01

    High frequency parametric instabilities in optical cavities are radiation pressure induced interactions between test mass mechanical modes and cavity optical modes. The parametric gain depends on the cavity power and the quality factor of the test mass internal modes (usually in ultrasonic frequency range), as well as the overlap integral for the mechanical and optical modes. In advanced laser interferometers which require high optical power and very low acoustic loss test masses, parametric instabilities could prevent interferometer operation if not suppressed. Here we review the problem of parametric instabilities in advanced detector configurations for different combinations of sapphire and fused silica test masses, and compare three methods for control or suppression of parametric instabilities-thermal tuning, surface damping and active feedback

  7. Femto-second synchronisation with a waveguide interferometer

    Science.gov (United States)

    Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.

    2018-03-01

    CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.

  8. The Michelson interferometer-how to detect invisible interference patterns

    International Nuclear Information System (INIS)

    Verovnik, Ivo; Likar, Andrej

    2004-01-01

    In a Michelson interferometer, the contrast of the interference pattern fades away due to incoherence of light when the mirrors are not in equidistant positions. We propose an experiment where the distance between the interference fringes can be determined, even when the difference in length of the interferometer arms is far beyond the coherence length of the light, i.e. when the interference pattern disappears completely for the naked eye. We used a semiconductor laser with two photodiodes as sensors, which enabled us to follow the fluctuations of the light intensity on the screen. The distance between invisible interference fringes was determined from periodic changes of the summed fluctuating signal, obtained by changing the distance between the two sensors

  9. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Science.gov (United States)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  10. A new dispersion interferometer on HL-2A

    Science.gov (United States)

    Wang, H. X.; Zhou, Y.; Li, Y.; Li, Y. G.; Yi, J.; Deng, Z. C.; Gao, Z.; Wu, T. Y.; Yin, Z. J.; Akiyama, T.

    2017-10-01

    In order to avoid a fringe jump caused by high plasma density and pellet injection [Y. Zhou et al., Rev. Sci. Instrum. 87, 11E107 (2016)], a new CO2 dispersion interferometer is designed and commissioned on HL-2A for average line-density measurement and density feedback control. The second harmonic technology in this system eliminates the phase shift caused by mechanical vibration. Signals are processed by a digital phase comparator and can be monitored in real time. A series of experiments are conducted to study the characteristics of the system such as a second harmonic coefficient and long-term stability. The resolution of density measurement is less than 8 × 1017/m3, and the experiment result on HL-2A demonstrates the interferometer's capability to track plasma density evolution with rapid change. The system also shows good stability against mechanical vibrations.

  11. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    Science.gov (United States)

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  12. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  13. Instrumental concept and preliminary performances of SIFTI: static infrared fourier transform interferometer

    Science.gov (United States)

    Hébert, Philippe-Jean; Cansot, E.; Pierangelo, C.; Buil, C.; Bernard, F.; Loesel, J.; Trémas, T.; Perrin, L.; Courau, E.; Casteras, C.; Maussang, I.; Simeoni, D.

    2017-11-01

    The SIFTI (Static Infrared Fourier Transform Interferometer) instrument aims at supporting an important part in a mission for atmospheric pollution sounding from space, by providing high spectral resolution and high Signal to Noise Ratio spectra of the atmosphere. They will allow to resolve tropospheric profiles of ozone (03) and carbon monoxide (C0), especially down to the planetary boundary layer (PBL), an altitude region of very high interest, though poorly monitored to date, for air quality and pollution monitoring. The retrieved profile of ozone, resp. C0, will contain 5 to 7, resp. 2.5 to 4, independent pieces of information. The French space agency CNES (Centre National d'Etudes Spatiales) has proposed and is studying an instrument concept for SIFTI based on a static interferometer, where the needed optical path are generated by a pair of crossed staircase fixed mirrors (replacing the moving reflector of dynamic Fourier transform interferometers like IASI or MIPAS). With the SIFTI design, a very high spectral resolution ( 0.1 cm-1 apodised) is achieved in a very compact optical setup, allowing a large throughput, hence a high SNR. The measurements are performed in the 9.5 μm band for 03 and in the 4.6 μm band for C0. The science return of the sounder can be further increased if an "intelligent pointing" process is implemented. This consists in combining the TIR sounder with a companion TIR imager, providing information on the cloud coverage in the next observed scene. 0nboard, real-time analysis of the IR image is used to command the sounder staring mirror to cloud free areas, which will maximize the probability for probing down to the surface. After the first part of the phase A, the architecture of SIFTI was studied as a trade-off between performance and resource budget. We review the main architecture and functional choices, and their advantages. The preliminary instrument concept is then presented in its main aspects and in terms of main subsystem

  14. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  15. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    holograms on H1 and H2. It is to be noted that in order to realise the proposed interferometer set-up, the processed H2 plate is required to be repositioned at the same location at which it was formed. Normally one can accomplish it by perform- ing an in-situ processing of the exposed H2 plate or by employing a tedious and.

  16. Test of multi-object exoplanet search spectral interferometer

    Science.gov (United States)

    Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen

    2014-07-01

    Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further

  17. A Multichannel Submillimeter Wave Interferometer System On Atf

    Science.gov (United States)

    Hutchinson, D. P.; Ma, C. H.; Vander Sluis, K. L.; Bennett, C. A.; Lee, J.

    1988-11-01

    A high resolution multichannel far-infrared interferometer has been constructed for the ATF experiment at Oak Ridge. The system consists of a pair of cw 119-pm methanol lasers, optically pumped by separate CO2 lasers. An external Stark-cell modulation scheme is used to stabilize the frequencies of the CO2 lasers. The system is designed to be operated, monitored, and stabilized by a PC computer.

  18. Evolved Stars: Interferometer Baby Food or Staple Diet?

    Science.gov (United States)

    Tuthill, Peter

    With their extreme red and infrared luminosities and large apparent diameters, evolved stars have nurtured generations of interferometers (beginning with Michelson's work on Betelgeuse) with unique science programs at attainable resolutions. Furthermore, the inflated photosphere and circumstellar material associated with dying stars presents complex targets with asymmetric structure on many scales encoding a wealth of poorly-understood astrophysics. A brief review the major past milestones and future prospects for interferometry's contribution to studies of circumstellar matter in evolved stars is presented.

  19. Phase correction for a Michelson interferometer with misaligned mirrors

    Science.gov (United States)

    Goorvitch, D.

    1975-01-01

    The phase correction for a Michelson interferometer with misaligned mirrors in converging light is shown to give rise to a quadratic phase shift. In general, the calculation of a spectrum from the measured interferogram needs phase correction. Phase corrections have been well worked out for the cases of a linear phase shift and a phase that is slowly varying. The standard procedures for correcting calculated spectra need to be modified, however, to remove any phase errors resulting from misaligned mirrors.

  20. Infrared spectra of lunar soils. [using a Michelson interferometer

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1979-01-01

    Measured data obtained by Michelson interferometer spectrometer were stored in a computer file and smoothed by being passed forward and backward through a digital four-pole low pass filter. Infrared spectra of the 10 lunar samples are presented in the format of brightness temperature versus frequency. The mol % of feldspar, pyroxene, olivine, ilmenite and ferromagnetic silicate in each sample is presented in tables. The reflectance spectra of ilmenite and enstatite are shown in graphs.

  1. Fiber inline Michelson interferometer fabricated by a femtosecond laser.

    Science.gov (United States)

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai

    2012-11-01

    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  2. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  3. Progress on multi-object exoplanet search spectral interferometer

    Science.gov (United States)

    Zhang, Kai; Zhu, Yongtian; Wang, Lei; Yue, Zhongyu; Chen, Yi; Tang, Jin; Hu, Zhongwen

    2012-09-01

    It's a very important point that fully open up power of Gou Shoujing telescope (LAMOST) in exoplanet detection field by developing a multi-exoplanet survey system. But it's an indisputable truth in the present astronomy that a traditional type of multi-object high resolution spectrograph is almost impossible to be developed. External Dispersed Interferometry is an effective way to improve the radial velocity measuring accuracy of medium resolution spectrograph. With the using of this technique, Multi-object Exoplanet Search Spectral Interferometer (MESSI) is an exploratory system with medium measuring accuracy based on LAMOST low resolution spectrograph works in medium-resolution mode (R=5,000 - 10,000). And it's believed that will bring some feasible way in the future development of multi-object medium/high resolution spectrograph. After prototype experiment in 2010, a complete configuration is under the development, including a multi-object fixed-delay Michelson interferometer, an iodine cell with multi-fiber optical coupling system and a multi-terminal switching system in an efficient fiber physical coupling way. By some effective improvement, the interferometer has smaller cross section and more stable interference component. Moreover, based on physical and optical fiber coupling technique, it's possible for the iodine cell and the switching system to simultaneously and identically coupling 25 pairs of fibers. In paper, all of the progress is given in detail.

  4. Operation results of the KSTAR far infrared interferometer

    Science.gov (United States)

    Juhn, June-Woo; Lee, K. C.; Wi, H. M.; Kim, Y. S.; Nam, Y. U.

    2016-11-01

    The 2015 KSTAR experimental campaign was the first year of routine measurement with a far infrared interferometer (FIRI) utilizing 118.87 μm CH3OH lasers at maximum 200 mW CW beam power. By using rtEFIT reconstruction, the path lengths of interferometers can be calculated and so the line-averaged electron densities n ¯ e from the FIRI and a millimeter-wave interferometer were in excellent agreement. In this way, the number of successfully diagnosed discharges is counted: 1003 shots or 83.7% of sustained discharges, defined as shots of plasma current IP ≥ 0.3 MA with pulse lengths tf ≥ 2.0 s, have good-quality FIRI data within a few fringe jump errors. In addition, real-time H-mode density feedback control based on the FIRI was also successfully achieved with supersonic molecular beam injection as an actuator. Both constant density and controlled linear increment with a ramp-up rate of 1.0 × 1019 m-3 s-1 were achieved.

  5. Development of a Spatially-Resolved Microwave Interferometer

    Science.gov (United States)

    Specht, Paul; Cooper, Marcia

    2015-06-01

    The development of a spatially-resolved microwave interferometer (SRMI) for non-invasively measuring the internal transit of a shock, detonation, or reaction front in energetic media is presented. Utilizing the transparency of many energetic materials in the RF regime, current microwave interferometers provide continuum-level tracking of the dielectric discontinuity that occurs across a shock or reaction front. While this continuum-level response can provide bulk shock and detonation velocities, it is insufficient to understand the complex wave and material interactions present in heterogeneous energetic materials. Leveraging interferometry and terahertz spectroscopy techniques, a heterodyne, spatially-resolved microwave interferometer was designed. A theoretical description of its operation and potential impact to current energetic materials research is discussed. Preliminary experimental results, including electro-optic sensing of a Doppler shifted microwave beam, are presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-0308A.

  6. Explosive component acceptance tester using laser interferometer technology

    Science.gov (United States)

    Wickstrom, Richard D.; Tarbell, William W.

    1993-01-01

    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.

  7. Phase-modulation interferometer for ICF-target characterization

    International Nuclear Information System (INIS)

    Cooper, D.E.

    1981-01-01

    Characterization requirements for high gain laser fusion targets are severe. We are required to detect defects on the surfaces of opaque and transparent shells with an amplitude resolution of +- 5 nm and a spatial resolution of 1 to 10 μm. To achieve this we have developed a laser-illuminated phase-modulation interferometer. This instrument is based on a photoelastic polarization modulation technique which allows one to convert phase information into an intensity modulation which can be easily and sensitively measured using ac signal processing techniques. This interferometer has detected path length changes as small as 1 nm and the required spatial resolution is assured by using a microscope objective to focus the probe laser beam down to a small (approx. 1 μm) spot on the surface of a microballoon. The interferometer will soon be coupled to an LSI-11 controlled 4π sphere manipulator which will allow us to automatically inspect the entire surface area of a target sphere

  8. Measuring large amplitudes of mechanical vibrations with laser interferometers

    Science.gov (United States)

    Bondarenko, A. N.; Trotsenko, V. P.

    1984-09-01

    Heterodyne methods of laser interferometry are the most promising methods of measuring large mechanical vibrations, their main advantages being that they are contactless and remote operational, and their main features being high accuracy and reproducibility of readings. However, use of a square-law photodetector and a frequency detector with a laser interferometer requires conversion to single-frequency laser radiation to two-frequency one. An attendant problem is to provide a stable and efficient wideband heterodyne with wide dynamic range for a reference signal with a Doppler frequency shift sufficiently large relative to the frequency of the probing signal. One known method of such interferometry which meets these requirements involves use of an oscillograph and an electronic-counter frequency meter. The principle of this method is outlined on the example of one mirror of a two-beam interferometer, assuming that its vibrations are harmonic. The interferometer for this application consists of a light splitter, a reference mirror, and a movable mirror with a Teflon membrane controlled by a sine-wave generator. The light source is an LG-79/1 He-Ne laser. The photodetector is an FD-21 KP photodiode with a time constant of 6 ns. Vibrations are measured with a Ch3-34A frequency meter.

  9. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  10. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...... directions: the meso‐analysis of the Japan Meteorological Agency (MANAL), the SeaWinds microwave scatterometer on QuikSCAT and the National Center for Environmental Prediction final operational global analysis data (NCEP FNL). In comparison with the errors of the SAR‐retrieved wind speeds obtained using...

  11. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  12. Superconducting Quantum Interferometers for Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    M. I. Faley

    2017-12-01

    Full Text Available We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs. The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna.

  13. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    International Nuclear Information System (INIS)

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-01-01

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  14. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  15. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  16. Absolute calibration of Doppler coherence imaging velocity images

    Science.gov (United States)

    Samuell, C. M.; Allen, S. L.; Meyer, W. H.; Howard, J.

    2017-08-01

    A new technique has been developed for absolutely calibrating a Doppler Coherence Imaging Spectroscopy interferometer for measuring plasma ion and neutral velocities. An optical model of the interferometer is used to generate zero-velocity reference images for the plasma spectral line of interest from a calibration source some spectral distance away. Validation of this technique using a tunable diode laser demonstrated an accuracy better than 0.2 km/s over an extrapolation range of 3.5 nm; a two order of magnitude improvement over linear approaches. While a well-characterized and very stable interferometer is required, this technique opens up the possibility of calibrated velocity measurements in difficult viewing geometries and for complex spectral line-shapes.

  17. All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn

    2016-01-01

    A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm/°C in a wa......A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm...

  18. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    International Nuclear Information System (INIS)

    Miyakawa, Osamu; Somiya, Kentaro; Heinzel, Gerhard; Kawamura, Seiji

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect

  19. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    Science.gov (United States)

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer.

  20. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  1. SAMSI: An orbiting spatial interferometer for micro-arc second astronomical observations. [Spacecraft Array for Michelson Spatial Interferometry (SAMSI)

    Science.gov (United States)

    Stachnik, R. V.; Gezari, D. Y.

    1985-01-01

    The concept and performance of (SAMSI) Spacecraft Array for Michelson Spatial Interferometry, an orbiting spatial interferometer comprised of three free-flying spacecraft, two collector telescopes and a central mixing station are described. In the one-dimensional interferometry mode orbits exist which provide natural scanning of the baseline. These orbits place extremely small demands on thrusters and fuel consumption. Resolution of 0.00001 arcsecond and magnitude limits of mv = 15 to 20 are achievable in a single orbit. In the imaging mode, SAMSI could synthesize images equivalent to those produced by equal diameter filled apertures in space, making use of the fuel resupply capability of a space station. Simulations indicate that image reconstruction can be performed with milliarcsecond resolution to a visual magnitude 12 in 12 hr of spiral scanning integration time.

  2. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  3. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  4. Design and tolerance analysis of a transmission sphere by interferometer model

    Science.gov (United States)

    Peng, Wei-Jei; Ho, Cheng-Fong; Lin, Wen-Lung; Yu, Zong-Ru; Huang, Chien-Yao; Hsu, Wei-Yao

    2015-09-01

    The design of a 6-in, f/2.2 transmission sphere for Fizeau interferometry is presented in this paper. To predict the actual performance during design phase, we build an interferometer model combined with tolerance analysis in Zemax. Evaluating focus imaging is not enough for a double pass optical system. Thus, we study the interferometer model that includes system error, wavefronts reflected from reference surface and tested surface. Firstly, we generate a deformation map of the tested surface. Because of multiple configurations in Zemax, we can get the test wavefront and the reference wavefront reflected from the tested surface and the reference surface of transmission sphere respectively. According to the theory of interferometry, we subtract both wavefronts to acquire the phase of tested surface. Zernike polynomial is applied to transfer the map from phase to sag and to remove piston, tilt and power. The restored map is the same as original map; because of no system error exists. Secondly, perturbed tolerances including fabrication of lenses and assembly are considered. The system error occurs because the test and reference beam are no longer common path perfectly. The restored map is inaccurate while the system error is added. Although the system error can be subtracted by calibration, it should be still controlled within a small range to avoid calibration error. Generally the reference wavefront error including the system error and the irregularity of the reference surface of 6-in transmission sphere is measured within peak-to-valley (PV) 0.1 λ (λ=0.6328 um), which is not easy to approach. Consequently, it is necessary to predict the value of system error before manufacture. Finally, a prototype is developed and tested by a reference surface with PV 0.1 λ irregularity.

  5. NULLING DATA REDUCTION AND ON-SKY PERFORMANCE OF THE LARGE BINOCULAR TELESCOPE INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Defrère, D.; Hinz, P. M.; Hoffmann, W. F.; Skemer, A. J.; Bailey, V.; Downey, E. C.; Durney, O.; Grenz, P.; McMahon, T. J.; Montoya, M.; Spalding, E.; Vaz, A.; Arbo, P.; Brusa, G. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Mennesson, B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Millan-Gabet, R. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Danchi, W. C. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Hill, J. M. [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Absil, O. [Institut d’Astrophysique et de Géophysique, Université de Liège, 19c Allée du Six Août, B-4000 Sart Tilman (Belgium); Bailey, H., E-mail: ddefrere@email.arizona.edu [Lunar and Planetary Laboratory, University of Arizona, 1541 E, University Boulevard, Tucson, AZ 85721 (United States); and others

    2016-06-20

    The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5–13 μ m). In this paper, we focus on the mid-infrared (8–13 μ m) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star β Leo. This is equivalent to an exozodiacal disk density of 15–30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.

  6. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  7. O2 nightglow snapshots of the 1.27 μm emission at low latitudes on Mars with a static field-widened Michelson interferometer

    Science.gov (United States)

    Zhang, Rui; Ward, William E.; Zhang, Chunmin

    2017-12-01

    A static field-widened Michelson interferometer is designed to observe the atmospheric dynamics at low latitudes of Mars, targeting the 1.27 μm O2(a1Δg) nightglow, which has not yet been accurately detected due to its low intensity. To the best of our knowledge, this design is the first demonstration of implementing divided-mirror technique by refringent materials in a field-widened Michelson interferometer. Different optical path difference (OPD) in each quadrant is generated by four highly reflective pyramid-shaped prisms made of different refringent materials attached to each solid arm of Michelson interferometer. In this way four samples of interferogram are obtained simultaneously, from which the airglow volume emission rate, as well as the line-of-sight velocity and temperature of the air parcel where the emission forms can be derived in a single integration time. To achieve the best field-widening, compactness and thermal compensation, all possible combination of ten pieces of glasses were searched within the Sumita glass catalogue using a computer program and some interesting results are listed. The OPD used in this calculation concerns rays in the plane perpendicular to the sides of the prism only, other cases need further examination. This instrument's performance in measuring atmospheric dynamics is analysed, using the wind velocity uncertainty as primary criterion. Calculations show that it can measure the wind with an accuracy better than 2 m/s if the band volume emission rate of O2 nightglow is greater than 5 kph cm-3 s-1.

  8. Improvement of interferometric measurements on FIR polarimeter/interferometer systems

    International Nuclear Information System (INIS)

    Barry, S.; Nieswald, C.; Buehlmann, F.; Prunty, S.L.; Mansfield, H.M.

    1996-03-01

    On many tokamaks the reconstruction of the magnetic field structure in the plasma is supported by polarimetric measurements. Recent proposed and realized methods are based on a far-infrared laser beam with a rotating polarization ellipse. The same instrument usually performs as an interferometer measuring the line integrated plasma density. It has been shown that the rotating polarization ellipse disturbs the interferometric measurements. A method based on the principle of a rotating polarization in which the interferometric measurement is unaffected is proposed. Bench test results are presented which show the feasibility of this method. (author) 4 figs., 13 refs

  9. Nanometer measurement with a dual Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Chen Benyong; Li Dacheng; Guo Songling; Zhu Ruogu; Wu Zhaotong

    2001-01-01

    On the basis of analyzing sinusoidal phase-modulating Fabry-Perot interferometry, a method, believed to be novel, is proposed for achieving nanometer measurement accuracy by measuring the time interval between equal amplitudes of the two elementary frequency signals of the transmitted intensities of a dual Fabry-Perot interferometer. A nanometer measurement system based on the method was designed and tested. The experimental results show that the displacement resolution of the system is 0.32 nm at a 1-kHz modulating signal

  10. Arm Locking for the Laser Interferometer Space Antenna

    Science.gov (United States)

    Maghami, P. G.; Thorpe, J. I.; Livas, J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.

  11. Position coincidence optical identifications using Texas interferometer radio positions

    International Nuclear Information System (INIS)

    Bozyan, E.P.

    1979-01-01

    1048 radio source positions measured with the Texas Interferometer were searched for optical identifications on glass copies of the Palomar Sky Survey E and O plates, resulting in 242 identifications and 806 blank fields. Finding charts are presented for 124 of the 125 new identifications not previously reported in the literature, and for 73 blank fields containing nearby optical objects which may be real identifications. This brings the cumulative number of Texas radio positions searched to 2015, producing 864 optical identifications and 1151 blank fields

  12. Green Bank Lunar Interferometer for Neutrino Transients: GLINT

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Glen I. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States)], E-mail: glangsto@nrao.edu; Bradley, Rich [NRAO, 520 Edgemont Rd, Charlottesville, VA 22901 (United States); Hankins, Tim [New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Mutel, Bob [University of Iowa, 706 Van Allen Hall, Iowa City, IA 52242 (United States)

    2009-06-01

    The Green Bank Lunar Interferometer for Neutrino Transients (GLINT) project is a wide band (0.3-2.6 GHz) interferometric radio array dedicated to observations of transient events. The target is detection of few bright (>2000Jy) short duration (few nano-second) pulses from the lunar regolith. The GLINT project has three goals: (1) Maximize detection of statistically significant pulses originating from the lunar surface. (2) Unambiguously differentiate neutrino pulses from other sources of interference. (3) Localize the direction of the incoming radio pulse resulting from neutrino interactions.

  13. High precision neutron interferometer setup S18b

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Lemmel, H.

    2011-01-01

    The present setup at S18 is a multi purpose instrument. It is used for both interferometry and a Bonse-Hart camera for USANS (Ultra Small Angle Neutron Scattering) spectroscopy with wide range tunability of wavelength. Some recent measurements demand higher stability of the instrument, which made us to propose a new setup dedicated particularly for neutron interferometer experiments requiring high phase stability. To keep both options available, we suggest building the new setup in addition to the old one. By extending the space of the present setup by 1.5 m to the upstream, both setups can be accommodated side by side. (authors)

  14. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  15. Modulation depth of Michelson interferometer with Gaussian beam.

    Science.gov (United States)

    Välikylä, Tuomas; Kauppinen, Jyrki

    2011-12-20

    Mirror misalignment or the tilt angle of the Michelson interferometer can be estimated from the modulation depth measured with collimated monochromatic light. The intensity of the light beam is usually assumed to be uniform, but, for example, with gas lasers it generally has a Gaussian distribution, which makes the modulation depth less sensitive to the tilt angle. With this assumption, the tilt angle may be underestimated by about 50%. We have derived a mathematical model for modulation depth with a circular aperture and Gaussian beam. The model reduces the error of the tilt angle estimate to below 1%. The results of the model have been verified experimentally.

  16. First Light from Triple-Etalon Fabry-Perot Interferometer for Atmospheric OI Airglow (6300 A)

    Science.gov (United States)

    Watchorn, S.; Noto, J.; Pedersen, T.; Betremieux, Y.; Migliozzi, M.; Kerr, R. B.

    2006-05-01

    Scientific Solutions, Inc. (SSI) has developed a triple-etalon Fabry-Perot interferometer (FPI) to observe neutral winds in the ionosphere by measuring neutral oxygen (O I) emission at 630.0 nm during the day. This instrument is to be deployed in the SSI airglow building at the Cerro Tololo observatory (30.17S 70.81W) in Chile, in support of the Comm/Nav Outage Forecast System (C/NOFS) project. Post-deployment observation will be made in conjunction with two other Clemson University Fabry-Perots in Peru, creating a longitudinal chain of interferometers for thermospheric observations. These instruments will make autonomous day and night observations of thermospheric dynamics. Instruments of this type can be constructed for a global chain of autonomous airglow observatories. The FPI presented in this talk consists of three independently pressure-controlled etalons, fed collimated light by a front optical train headed by an all-sky lens with a 160-degree field of view. It can be controlled remotely via a web-based service which allows any internet-connected computer to mimic the control computer at the instrument site. In fall 2005, the SSI system was first assembled at the Millstone Hill Observatory in Westford, Massachusetts, and made day and evening observations. It was then moved to the High-frequency Active Auroral Research Project (HAARP) site in Gakona, Alaska, to participate in joint optical/ionospheric heating campaigns. Additionally, natural airglow observations were made, both locally and remotely via the internet from Massachusetts. The Millstone and HAARP observations with two etalons yielded strong 630-nm atmospheric Fraunhofer absorption lines, with some suggestion of the Ring effect. By modeling the atmospheric absorption line as the constant times the corresponding solar absorption -- itself modeled as a Gaussian plus a polynomial -- the absorption feature is subtracted, leaving only the emission feature. Software ring-summing tools developed at the

  17. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement.

    Science.gov (United States)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical structure of general commercial interferometers, e.g., the Michelson interferometers, is based on a non-common optical path. Such interferometers suffer from environmental effects because of the different phase changes induced in different optical paths and consequently the measurement precision will be significantly influenced by tiny variations of the environmental conditions. Fabry-Perot interferometers, which feature common optical paths, are insensitive to environmental disturbances. That would be advantageous for precision displacement measurements under ordinary environmental conditions. To verify and analyze this influence, displacement measurements with the two types of interferometers, i.e., a self-fabricated Fabry-Perot interferometer and a commercial Michelson interferometer, have been performed and compared under various environmental disturbance scenarios. Under several test conditions, the self-fabricated Fabry-Perot interferometer was obviously less sensitive to environmental disturbances than a commercial Michelson interferometer. Experimental results have shown that induced errors from environmental disturbances in a Fabry-Perot interferometer are one fifth of those in a Michelson interferometer. This has proved that an interferometer with the common optical path structure will be much more independent of environmental disturbances than those with a non-common optical path structure. It would be beneficial for the solution of interferometers utilized for precision displacement measurements in ordinary measurement environments.

  18. Influence of wind loading

    OpenAIRE

    MAVLONOV RAVSHANBEK ABDUJABBOROVICH; VAKKASOV KHAYRULLO SAYFULLAHANOVICH

    2015-01-01

    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  19. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  20. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  1. The Fourier-Kelvin Stellar Interferometer (FKSI): A Progress Report and Preliminary Results from Our Laboratory Testbed

    Science.gov (United States)

    Berry, Richard; Rajagopa, J.; Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.

    2005-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the near-infrared to mid-infrared spectral region (3-8 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to JWST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We report additional studies of the imaging capabilities of the FKSI with various configurations of two to five telescopes, studies of the capabilities of FKSI assuming an increase in long wavelength response to 10 or 12 microns (depending on availability of detectors), and preliminary results from our nulling testbed.

  2. VLBA Teams With Optical Interferometer to Study Star's Layers

    Science.gov (United States)

    2007-05-01

    Structure of S Ori (Artist's Impression) "Astronomers are like medical doctors, who use various instruments to examine different parts of the human body," said co-author David Boboltz. "While the mouth can be checked with a simple light, a stethoscope is required to listen to the heart beat. Similarly the heart of the star can be observed in the optical, the molecular and dust layers can be studied in the infrared and the maser emission can be probed with radio instruments. Only the combination of the three gives us a more complete picture of the star and its envelope." The maser emission comes from silicon monoxide (SiO) molecules and can be used to image and track the motion of gas clouds in the stellar envelope roughly 10 times the size of the Sun. The astronomers observed S Ori with two of the largest interferometric facilities available: the ESO Very Large Telescope Interferometer (VLTI) at Paranal, observing in the near- and mid-infrared, and the NRAO-operated Very Long Baseline Array (VLBA), that takes measurements in the radio wave domain. Because the star's luminosity changes periodically, the astronomers observed it simultaneously with both instruments, at several different epochs. The first epoch occurred close to the stellar minimum luminosity and the last just after the maximum on the next cycle. ESO PR Photo 25c/07 ESO PR Photo 25c/07 S Ori to Scale (Artist's Impression) The astronomers found the star's diameter to vary between 7.9 milliarcseconds and 9.7 milliarcseconds. At the distance of S Ori, this corresponds to a change of the radius from about 1.9 to 2.3 times the distance between the Earth and the Sun, or between 400 and 500 solar radii! As if such sizes were not enough, the inner dust shell is found to be about twice as big. The maser spots, which also form at about twice the radius of the star, show the typical structure of partial to full rings with a clumpy distribution. Their velocities indicate that the gas is expanding radially, moving away at a

  3. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  4. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  5. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  6. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  7. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  8. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  9. Refractometric sensor based on all-fiber coaxial Michelson and Mach-Zehnder interferometers for ethanol detection in fuel

    International Nuclear Information System (INIS)

    Mosquera, L; Osorio, Jonas H; Hayashi, Juliano G; Cordeiro, Cristiano M B

    2011-01-01

    A refractometric sensor based on mechanically induced interferometers formed with long period gratings is reported. It is also shown two different setups based on a Michelson and Mach-Zehnder interferometer and its application to measure ethanol concentration in gasoline.

  10. Mirrors used in the LIGO interferometers for first detection of gravitational waves.

    Science.gov (United States)

    Pinard, L; Michel, C; Sassolas, B; Balzarini, L; Degallaix, J; Dolique, V; Flaminio, R; Forest, D; Granata, M; Lagrange, B; Straniero, N; Teillon, J; Cagnoli, G

    2017-02-01

    For the first time, direct detection of gravitational waves occurred in the Laser Interferometer Gravitational-wave Observatory (LIGO) interferometers. These advanced detectors require large fused silica mirrors with optical and mechanical properties and have never been reached until now. This paper details the main achievements of these ion beam sputtering coatings.

  11. Robust interferometer for the routing of light beams carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Lavery, MPJ

    2011-09-01

    Full Text Available The authors have developed an interferometer requiring only minimal angular alignment for the routing of beams carrying orbital angular momentum. The Mach–Zehnder interferometer contains a Dove prism in each arm where each has a mirror plane around...

  12. Digital holographic amplification of interferograms in the Michelson interferometer using the phase-only LCOS modulator

    Science.gov (United States)

    Balbekin, Nikolay; Petrov, Nikolay; Pul'kin, Sergey; Shoev, Vladislav; Sevryugin, Alexander; Tursunov, Ibrohim; Venediktov, Dmitrii; Venediktov, Vladimir

    2017-10-01

    The method of amplification of hologram was applied to the so-called Rozhdestvenskiy hooks, that were obtained in the Rozhdestvenskiy interferometer (Michelson interferometer, combined with a grating spectrograph). In such a device the absorption lines reveal themselves as specific "hooks", whose curvature provides the information about the atomic oscillator force. The holographic amplification "smoothes" the hooks and thus makes their analysis much simpler.

  13. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  14. Design of a Michelson Interferometer for Quantitative Refraction Index Profile Measurements

    NARCIS (Netherlands)

    Nijholt, J.L.M.

    1998-01-01

    This book describes the theoretical design of a three camera Michelson interferometer set-up for quantitative refractive index measuerments. Although a two camera system is easier to align and less expensive, a three camera interferometer is preferred because the expected measuring accuracy is much

  15. Analysis of an astrometric Fizeau interferometer for GAIA

    Science.gov (United States)

    Loiseau, Sacha; Shaklan, Stuart

    1995-01-01

    The concepts related to the operation and design of the global astrometric interferometer for astrophysics (GAIA) bring together solutions chosen for the astrometry satellite and interferometric techniques. Like the Hipparcos satellite, GAIA is a continuously scanning instrument for which the integration time on any observed object is limited by the field of view of the detector. If a final astrometric accuracy of 10 microarcsec is aimed at, a field of 1 deg in diameter is needed. A design is presented for the proposed 2.6 m baseline Fizeau interferometer with two 40 cm apertures and overall dimensions compatible with the size of the Ariane 5 payload shroud. It has a 0.9 deg diffraction limited field of view. The response of the optical system to small perturbations on each optical element is given in terms of the fringe visibility, which is shown to be dependent on the sub-aperture spot separation. The robustness of the design to thermal, mechanical and manufacturing errors is discussed. The unavoidable distortion present in wide field optical systems is analyzed in terms of displacement of the interference fringes.

  16. Development of the First Latin-American Radio Interferometer

    Science.gov (United States)

    Cecatto, J. R.; Sawant, H. S.; Fernandes, F. C. R.; Vilas Boas, J. W. S.

    2009-05-01

    First Latin-American radio interferometer is being developed at INPE, Cachoeira Paulista, Brazil, in a collaborative program between several national and international institutions coordinated by a Brazilian team of scientists and engineers. The interferometer is designated as Brazilian Decimetric Array (BDA) and its 5 element prototype of 4 m diameter antennas (Phase-I) was put into operation by November 2004 at Cachoeira Paulista (Longitude: 45° 00' 20'' W and Latitude: 22° 41' 19'' S) for engineering and operational tests with a frequency range of 1.2-1.7 GHz, baselines up to 216 m in the E-W direction, and time resolution of 0.1 second. Observations of the Sun and strong calibration sources (Cygnus-A, Taurus-A) were carried out. Unidimensional solar map at 1.6 GHz was produced with a spatial resolution less than 3 arcminutes. Also, investigation of the solar brightness temperature (T[b]) variation was possible on a day-to-day and hour-to-hour basis. This investigation show for example a steady increase on T[b] starting from 15:00 UT on December 08, 2004. Interpretations of these results will be presented. In 2005, the first phase of development has finished. Now, Phase-II has begun during which the array will have 21 additional antennas and operate with increased frequency range as well as improved spatial resolution. It is planned to finish it by March 2009. Details of this will be presented.

  17. Real-time fringe correction algorithm for the JET interferometer

    International Nuclear Information System (INIS)

    Innocente, P.; Mazon, D.; Joffrin, E.; Riva, M.

    2003-01-01

    On the JET facility, the line-integrated electron density is measured by a multichannel far-infrared (FIR) interferometer. The basic source of radiation is a deuterium cyanide laser (λ=195 μm) measuring the density along four vertical and four nearly horizontal (lateral) channels. During high-density discharges the system suffers from fringe jumps that are manually partially corrected by an off-line program. This intermittent phenomenon prevents reliable usage of the measured line-integrated density in a real-time feedback controller. To solve this problem we have developed a method to correct the fringe jumps on the lateral channels in real time. The method uses the additional methyl alcohol laser (λ=118.8 μm) interferometer present on the lateral channels to compensate the vibrations. The method has been successfully tested with off-line test data, before implementation on a VERSA Module Eurocard system for the real-time control of the JET discharges

  18. Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences

    Science.gov (United States)

    Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.; hide

    2017-01-01

    We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.

  19. Magdalena Ridge Observatory Interferometer - New Path to First Light

    Science.gov (United States)

    Creech-Eakman, Michelle J.; Payne, Ifan; Haniff, Chris; Buscher, David; Young, John; Romero, Van; Magdalena Ridge Observatory Interferometer Team

    2016-01-01

    The Magdalena Ridge Observatory Interferometer (MROI), a 10-telescope optical/near-IR interferometer with baselines ranging from 7.8 to 343 meters, has been conceived to be the most ambitious optical/NIR interferometric array under construction to date. U.S. Congressional, N.M. State and university funding (from NM Tech and partner funding at the University of Cambridge) attained from 2000-13 provided for a nearly complete system design, installation of a large portion of the physical infrastructure at the Magdalena Ridge, the first telescope, delay line, fringe tracker and many other necessary sub-systems. New funding has recently been obtained under a cooperative agreement between NM Tech and the Air Force Research Lab (AFRL) to bring the facility to three fully operational telescopes and associated hardware such that first fringes and closure phase will be realized within 5 years. The completed facility will be able to provide support for observing geosynchronous satellites as well as many exciting observations of astronomical targets. An update on the MROI status, plans moving forward for the next 5 years, and some examples of observational applications feasible at different phases of the array's completion will be presented.

  20. Laser ranging interferometer for GRACE follow-on

    Science.gov (United States)

    Heinzel, Gerhard; Sheard, Benjmin; Brause, Nils; Danzmann, Karsten; Dehne, Marina; Gerberding, Oliver; Mahrdt, Christoph; Müller, Vitali; Schütze, Daniel; Stede, Gunnar; Klipstein, William; Folkner, William; Spero, Robert; Nicklaus, Kolja; Gath, Peter; Shaddock, Daniel

    2017-11-01

    The Gravity Recovery and Climate Experiment (GRACE) has produced a wealth of data on Earth gravity, hydrology, glaciology and climate research. To continue that data after the imminent end of the GRACE mission, a follow-on mission is planned to be launched in 2017, as a joint USGerman project with a smaller Australian contribution. The satellites will be essentially rebuilt as they were for GRACE using microwave ranging as the primary instrument for measuring changes of the intersatellite distance. In addition and in contrast to the original GRACE mission, a Laser Ranging Interferometer (LRI, previously also called `Laser Ranging Instrument') will be included as a technology demonstrator, which will operate together with the microwave ranging and supply a complimentary set of ranging data with lower noise, and new data on the relative alignment between the spacecraft. The LRI aims for a noise level of 80 nm/√Hz over a distance of up to 270km and will be the first intersatellite laser ranging interferometer. It shares many technologies with LISA-like gravitational wave observatories. This paper describes the optical architecture including the mechanisms to handle pointing jitter, the main noise sources and their mitigation, and initial laboratory breadboard experiments at AEI Hannover.

  1. Achieving resonance in the Advanced LIGO gravitational-wave interferometer

    International Nuclear Information System (INIS)

    Staley, A; Martynov, D; Abbott, R; Adhikari, R X; Arai, K; Brooks, A F; Ballmer, S; Barsotti, L; Evans, M; Fritschel, P; DeRosa, R T; Effler, A; Dwyer, S; Gray, C; Izumi, K; Frolov, V V; Guido, C J; Heintze, M; Gustafson, R; Hoak, D

    2014-01-01

    Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only ∼1 Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible. (paper)

  2. Demonstration of a robust magnonic spin wave interferometer

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  3. Quantitative phase determination by using a Michelson interferometer

    International Nuclear Information System (INIS)

    Pomarico, Juan A; Molina, Pablo F; Angelo, Cristian D'

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as refractive index, wavelength, optical thickness, etc. Generally speaking, most of the measurements are carried out by determining phase distortions through the changes in the location and/or shape of the interference fringes. However, the extreme sensitivity of this tool, for which minimum deviations of the conditions of its branches can cause very large modifications in the fringe pattern, makes phase changes difficult to follow and measure. The purpose of this communication is to show that, under certain conditions, the sensitivity of the Michelson interferometer can be 'turned down' allowing the quantitative measurement of phase changes with relative ease. As an example we present how the angle (or, optionally, the refractive index) of a transparent standard optical wedge can be determined. Experimental results are shown and compared with the data provided by the manufacturer showing very good agreement

  4. Surface measurement errors using commercial scanning white light interferometers

    International Nuclear Information System (INIS)

    Gao, F; Petzing, J; Coupland, J M; Leach, R K

    2008-01-01

    This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required

  5. Surface measurement errors using commercial scanning white light interferometers

    Science.gov (United States)

    Gao, F.; Leach, R. K.; Petzing, J.; Coupland, J. M.

    2008-01-01

    This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required.

  6. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    Energy Technology Data Exchange (ETDEWEB)

    Murcray, F.; Stephen, T.; Kosters, J. [Univ. of Denver, CO (United States)

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  7. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  8. Earth aeolian wind streaks: Comparison to wind data from model and stations

    Science.gov (United States)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  9. Multimode simulations of a wide field of view double-Fourier far-infrared spatio-spectral interferometer

    Science.gov (United States)

    Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of

    2018-01-01

    In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.

  10. Application of Young-Michelson and Brown-Twiss interferometers for determining geometric parameters of nonplanar rough objects

    International Nuclear Information System (INIS)

    Mandrosov, V I

    2008-01-01

    The possibility of using Young-Michelson and Brown-Twiss interferometers for measuring the angular dimensions and parameters of the surface shape of remote passively scattering and self-luminous nonplanar rough objects by optical radiation propagating from them is substantiated. The analysis is based on the properties of approximate transverse functions of field coherence B t and B t ' and intensity coherence B ti and B ti ' formed by the time averaging of the products of fields and intensities taken at two points of a receiving aperture (the prime denotes self-luminous objects). The averaging time is set to be much longer than the coherence time of radiation propagating from an object. It is shown that for the radiation coherence length much smaller than the depth of the visible region of the object, the functions B t and B t ' are proportional to the Fourier transform of the intensity distribution in the image of a remote object, which is the generalisation of the Van Cittert-Zernicke theorem to the case of a nonplanar object, while functions B ti and B ti ' are proportional to the squares of the modulus of the Fourier transform of this distribution. It is also shown that the recording of functions B t and B t ' with a Young-Michelson interferometer gives only the angular dimensions of the visible region of objects, whereas the recording of functions B ti and B ti ' with a Brown-Twiss interferometer allows one to find these dimensions and the radius of curvature of the object surface. (laser radiation scattering)

  11. Very small beam-size measurement by a reflective synchrotron radiation interferometer

    Directory of Open Access Journals (Sweden)

    T. Naito

    2006-12-01

    Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7   μm and the estimated vertical emittance was 0.97×10^{-11}   m.

  12. A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber

    International Nuclear Information System (INIS)

    Frazão, O; Silva, S F; Viegas, J; Baptista, J M; Santos, J L; Roy, P

    2010-01-01

    A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber is demonstrated. The hybrid interferometer presents three waves. Two parallel Fabry–Perot cavities with low finesse are formed between the splice region and the end of a dual-core microstructured fiber. A Michelson configuration is obtained by the two small cores of the microstructured fiber. The spectral response of the hybrid interferometer presents two pattern fringes with different frequencies due to the respective optical path interferometers. The hybrid interferometer was characterized in strain and temperature presenting different sensitivity coefficients for each topology. Due to these characteristics, this novel sensing head is able to measure strain and temperature, simultaneously

  13. Dual-recycled cavity-enhanced Michelson interferometer for gravitational-wave detection.

    Science.gov (United States)

    Müller, Guido; Delker, Tom; Tanner, David B; Reitze, David

    2003-03-01

    The baseline design for an Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) is a dual-recycled Michelson interferometer with cavities in each of the Michelson interferometer arms. We describe one possible length-sensing and control scheme for such a dual-recycled, cavity-enhanced Michelson interferometer. We discuss the principles of this scheme and derive the first-order sensing signals. We also present a successful experimental verification of our length-sensing system using a prototype tabletop interferometer. Our results demonstrate the robustness of the scheme against deviations from the idealized design. We also identify potential weaknesses and discuss possible improvements. These results as well as other benchtop experiments that we present form the basis for a sensing and control scheme for Advanced LIGO.

  14. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2014-05-01

    Full Text Available In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR images from ENVISAT advanced SAR (ASAR for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89 but a large standard deviation (SD = 42.3° compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.

  15. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    Science.gov (United States)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  16. Can Weather Radars Help Monitoring and Forecasting Wind Power Fluctuations at Large Offshore Wind Farms?

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2011-01-01

    The substantial impact of wind power fluctuations at large offshore wind farms calls for the development of dedicated monitoring and prediction approaches. Based on recent findings, a Local Area Weather Radar (LAWR) was installed at Horns Rev with the aim of improving predictability, controlability...... and potentially maintenance planning. Additional images are available from a Doppler radar covering the same area. The parallel analysis of rain events detection and of regime sequences in wind (and power) fluctuations demonstrates the interest of employing weather radars for a better operation and management...... of offshore wind farms....

  17. WIND PROTECTION OF LANDSCAPE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Trubitsyna Natalja Anatolevna

    2017-07-01

    Full Text Available The article discusses the interaction between the wind regime and the landscape. Examples of objects of landscape architecture in high-tech and science-intensive spheres, such as the launch pad of a spacecraft, are given. Wind protection is represented as a result of work on wind power engineering and a means of increasing bioclimatic comfort. The terms of landscape architecture are disclosed and mutual influence on the climate and impact on woody-shrub vegetation and field crops are analyzed. The phenomenon of air permeability for optimal operation of windproof structures and orientations of geoplastics and dendroplastics is described. In this paper, a classification of terrain types is described with a description of their elemental composition, as well as various categories of landscape. The proposal to consider the landscape as a territorial complex, and landscape buildings, landscape-architectural structures as objects of landscape architecture possessing properties of wind protection and air permeability was introduced. Thus, the concept of a landscape-architectural complex as a single group of landscape-architectural objects located on the territory and connected by a common system of communications, functions, technical elements and a visual image is formulated. Further research is based on the rationale for the use of the term ensemble in relation to the objects of the landscape and architectural complex and the identification of their design and planning features that can affect the parameters of wind protection and air permeability. The paper concludes that frequent coincidence of favorable for the fauna wind regime and mimicry of landscape architecture objects. The combination in the landscape of functions for wind protection and aesthetics is analyzed with analysis of such elements of landscape architecture as hedges and windproof properties of green plantations. In the work examples of wind engineering small architectural forms are

  18. Wind engineering in Africa

    NARCIS (Netherlands)

    Wisse, J.A.; Stigter, C.J.

    2007-01-01

    The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in

  19. Wind energy; Energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This public information paper presents the wind energy resource in the Languedoc Roussillon region, explains how a wind turbine works, the different types of utilization and the cost of the wind energy. The environmental impacts of the wind energy, on the noise and the landscape, are also discussed. (A.L.B.)

  20. Handheld White Light Interferometer for Measuring Defect Depth in Windows

    Science.gov (United States)

    Youngquist, Robert; Simmons, Stephen; Cox, Robert

    2010-01-01

    Accurate quantification of defects (scratches and impacts) is vital to the certification of flight hardware and other critical components. The amount of damage to a particular component contributes to the performance, reliability, and safety of a system, which ultimately affects the success or failure of a mission or test. The launch-commit criteria on a Space Shuttle Orbiter window are governed by the depth of the defects that are identified by a visual inspection. This measurement of a defect is not easy to obtain given the environment, size of the defect, and location of the window(s). The determination of depth has typically been performed by taking a mold impression and measuring the impression with an optical profiling instrument. Another method of obtaining an estimate of the depth is by using a refocus microscope. To use a refocus microscope, the surface of the glass and bottom of the defect are, in turn, brought into focus by the operator. The amount of movement between the two points corresponds to the depth of the defect. The refocus microscope requires a skilled operator and has been proven to be unreliable when used on Orbiter windows. White light interferometry was chosen as a candidate to replace the refocus microscope. The White Light Interferometer (WLI) was developed to replace the refocus microscope as the instrument used for measuring the depth of defects in Orbiter windows. The WLI consists of a broadband illumination source, interferometer, detector, motion control, displacement sensor, mechanical housing, and support electronics. The illumination source for the WLI is typically a visible light emitting diode (LED) or a near-infrared superluminescent diode (SLD) with power levels of less than a milliwatt. The interferometer is a Michelson configuration consisting of a 1-in. (2.5-cm) cube beam splitter, a 0.5-in. (1.3-cm) optical window as a movable leg (used to closely match the return intensity of the fixed leg from the window), and a