WorldWideScience

Sample records for wind fin approach

  1. Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance

    Science.gov (United States)

    Utomo, Ilham Satrio; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    The use of renewable energy in Indonesia is still low. Especially the use of wind energy. Wind turbine Savonius is one turbine that can work with low wind speed. However, Savonius wind turbines still have low efficiency. Therefore it is necessary to modify. Modifications by using the fin are expected to increase the positive drag force by creating a flow that can enter the overlap ratio of the gap. This research was conducted using experimental approach scheme. Parameters generated from the experiment include: power generator, power coefficient, torque coefficient. The experimental data will be collected by variation of fin area, horizontal finning, at wind speed 3 m/s - 4,85 m/s. Experimental results show that with the addition of fin can improve the performance of wind turbine Savonius 11%, and by using the diameter of 115 mm fin is able to provide maximum performance in wind turbine Savonius.

  2. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    Science.gov (United States)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  3. Numerical simulation of a plate-fin heat exchanger with offset fins using porous media approach

    Science.gov (United States)

    Juan, Du; Hai-Tao, Zhao

    2018-03-01

    In this paper, the study was focused on a double flow plate-fin heat exchanger (PFHE) whose heat transfer element was offset staggered fin. Numerical simulations have been carried out to investigate the thermodynamic characteristics of a full-size PFHE via the porous media approach. Based on the numerical model, the effects of the dynamic viscosity and the locations of the inlet and outlet tubes on flow distribution and pressure drop of the PFHE were studied. The results showed that flow distribution of the PFHE was improved by increasing the dynamic viscosity. Therefore, the relationship between flow distribution and pressure drop was analyzed under various inlet velocity, and a correlation among flow distribution, pressure drop, and Reynolds number was derived. Finally, the middle-based strategy was proposed and numerically verified to improve flow distribution of the PFHE.

  4. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Directory of Open Access Journals (Sweden)

    Yang Ning

    2016-02-01

    Full Text Available The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroelastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.

  5. Phase change material solidification in a finned cylindrical shell thermal energy storage: An approximate analytical approach

    Directory of Open Access Journals (Sweden)

    Mosaffa Amirhossein

    2013-01-01

    Full Text Available Results are reported of an investigation of the solidification of a phase change material (PCM in a cylindrical shell thermal energy storage with radial internal fins. An approximate analytical solution is presented for two cases. In case 1, the inner wall is kept at a constant temperature and, in case 2, a constant heat flux is imposed on the inner wall. In both cases, the outer wall is insulated. The results are compared to those for a numerical approach based on an enthalpy method. The results show that the analytical model satisfactory estimates the solid-liquid interface. In addition, a comparative study is reported of the solidified fraction of encapsulated PCM for different geometric configurations of finned storage having the same volume and surface area of heat transfer.

  6. Filament Winding. A Unified Approach

    NARCIS (Netherlands)

    Koussios, S.

    2004-01-01

    In this dissertation we have presented an overview and comprehensive treatment of several facets of the filament winding process. With the concepts of differential geometry and the theory of thin anisotropic shells of revolution, a parametric shape generator has been formulated for the design

  7. Comparison of Temporal Parameters of Swimming Rescue Elements When Performed Using Dolphin and Flutter Kick with Fins - Didactical Approach

    Science.gov (United States)

    Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J. Arturo

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. Key points The source of reduction of swimming rescue time was researched. Time required to approach and to tow the victim while doing the flutter kick and the dolphin-kick with fins was analyzed. The propulsion generated by dolphin-kick did not make the approach and tow faster than the flutter kick. More difficult skill to realize of

  8. Optimal wind energy penetration in power systems: An approach based on spatial distribution of wind speed

    International Nuclear Information System (INIS)

    Zolfaghari, Saeed; Riahy, Gholam H.; Abedi, Mehrdad; Golshannavaz, Sajjad

    2016-01-01

    Highlights: • Chronological wind speeds at distinct locations of the wind farm are not the same. • Spatial distribution of wind speed affects wind farm’s output power expectation. • Neglecting wind speed’s spatial doubt leads to mistake in wind energy penetration. • Scenario-based method can be used for effective wind capacity penetration level. - Abstract: Contributing in power system expansions, the present study establishes an efficient scheme for optimal integration of wind energy resources. The proposed approach highly concerns the spatial distribution of wind speed at different points of a wind farm. In mathematical statements, a suitable probability distribution function (PDF) is well-designed for representing such uncertainties. In such conditions, it is likely to have dissimilar output powers for individual and identical wind turbines. Thus, the overall aggregated PDF of a wind farm remarkably influences the critical parameters including the expected power and energy, capacity factor, and the reliability metrics such as loss of load expectation (LOLE) and expected energy not supplied (EENS). Furthermore, the proposed approach is deployed for optimal allocation of wind energy in bulk power systems. Hence, two typical test systems are numerically analyzed to interrogate the performance of the proposed approach. The conducted survey discloses an over/underestimation of harvestable wind energy in the case of overlooking spatial distributions. Thus, inaccurate amounts of wind farm’s capacity factor, output power, energy and reliability indices might be estimated. Meanwhile, the number of wind turbines may be misjudged to be installed. However, the proposed approach yields in a fair judgment regarding the overall performance of the wind farm. Consequently, a reliable penetration level of wind energy to the power system is assured. Extra discussions are provided to deeply assess the promising merits of the founded approach.

  9. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  10. A Bayesian inference approach: estimation of heat flux from fin for ...

    Indian Academy of Sciences (India)

    Harsha Kumar

    2018-04-16

    Apr 16, 2018 ... The effect of a-priori information on the estimated parameter is also addressed. The standard deviation in the estimation process is referred to as the uncertainty associated with the estimated parameters. Keywords. Mild steel fin; heat flux; ANN; Bayesian inference; MCMC; standard deviation. 1. Introduction.

  11. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...... to the square of its rotor radius, therefore it seems reasonable to increase the size of the wind turbine in order to capture more power. However as the size increases, the mass of the blades increases by cube of the rotor size. This means in order to keep structural feasibility and mass of the whole structure...... reasonable, the ratio of mass to size should be reduced. This trend results in more flexible structures. Control of the flexible structure of a wind turbine in a wind field with stochastic nature is very challenging. In this thesis we are examining a number of robust model based methods for wind turbine...

  12. Marketing Approach of Brazilian Wind Energy Sector

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Silva de Souza

    2013-12-01

    Full Text Available Prospects for the wind energy market have proposed changes of focus to managerial issues. The objective of this article is to map the specific market factors from Brazilian wind energy industry, in order to develop reflections and considerations on the subject, towards to the managerial, strategic and commercial development of the sector. Through an exploratory methodology in empirical format, and by a SWOT analysis of Telescopic Observations Strategic Framework, were found results that show funding and grants determined by Brazilian government, as the big question of the wind energy industry marketing, allowing the economic viability of wind energy projects. Further, it appears that the wind energy industry is eager to investments and has great potential for new business, but there are problems within the producing companies which that have to be assessed, such as the competitiveness capability, the high equipment costs, the installation locations limitations and lack of specialized employees with specific skills and capacities.

  13. Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime

    Science.gov (United States)

    Wu, Ka Ling; Porté-Agel, Fernando

    2017-04-01

    Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully

  14. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  15. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii as a case study

    Directory of Open Access Journals (Sweden)

    Zhang Gong

    2007-03-01

    Full Text Available Abstract Background Molecular systematics occupies one of the central stages in biology in the genomic era, ushered in by unprecedented progress in DNA technology. The inference of organismal phylogeny is now based on many independent genetic loci, a widely accepted approach to assemble the tree of life. Surprisingly, this approach is hindered by lack of appropriate nuclear gene markers for many taxonomic groups especially at high taxonomic level, partially due to the lack of tools for efficiently developing new phylogenetic makers. We report here a genome-comparison strategy to identifying nuclear gene markers for phylogenetic inference and apply it to the ray-finned fishes – the largest vertebrate clade in need of phylogenetic resolution. Results A total of 154 candidate molecular markers – relatively well conserved, putatively single-copy gene fragments with long, uninterrupted exons – were obtained by comparing whole genome sequences of two model organisms, Danio rerio and Takifugu rubripes. Experimental tests of 15 of these (randomly picked markers on 36 taxa (representing two-thirds of the ray-finned fish orders demonstrate the feasibility of amplifying by PCR and directly sequencing most of these candidates from whole genomic DNA in a vast diversity of fish species. Preliminary phylogenetic analyses of sequence data obtained for 14 taxa and 10 markers (total of 7,872 bp for each species are encouraging, suggesting that the markers obtained will make significant contributions to future fish phylogenetic studies. Conclusion We present a practical approach that systematically compares whole genome sequences to identify single-copy nuclear gene markers for inferring phylogeny. Our method is an improvement over traditional approaches (e.g., manually picking genes for testing because it uses genomic information and automates the process to identify large numbers of candidate makers. This approach is shown here to be successful for fishes

  16. An approach to evaluating alternatives for wind power plant locations

    Directory of Open Access Journals (Sweden)

    Rehman, Ateekh Ur

    2016-12-01

    Full Text Available Multi-criteria decision approaches are preferred for achieving multi-dimensional sustainable renewable energy goals. A more critical issue faced by the wind power industry is the selection of a location to tap prospective energy, which needs to be evaluated on multiple measures. In this paper, the aim is to assess and rank alternative wind power plant locations in Saudi Arabia. The approach presented here takes multiple criteria into consideration, such as wind speed, wind availability, site advantages, terrain details, risk and uncertainty, technology used, third party support, projected demand, types of customers, and government policies. A comparative analysis of feasible alternatives that satisfy all multi- criteria objectives is carried out. The results obtained are subjected to sensitivity analysis. Concepts such as ‘threshold values’ and ‘attribute weights’ make the approach more sensitive.

  17. Wind energy aggregation: A coalitional game approach

    KAUST Repository

    Baeyens, E.

    2011-12-01

    In this paper we explore the extent to which a group of N wind power producers can exploit the statistical benefits of aggregation and quantity risk sharing by forming a willing coalition to pool their variable power to jointly offer their aggregate power output as single entity into a forward energy market. We prove that wind power generators will always improve their expected profit when they aggregate their generated power and use tools from coalitional game theory to design fair sharing mechanisms to allocate the payoff among the coalition participants. We show that the corresponding coalitional game is super-additive and has a nonempty core. Hence, there always exists a mechanism for profit-sharing that makes the coalition stable. However, the game is not convex and the celebrated Shapley value may not belong to the core of the game. An allocation mechanism that minimizes the worst-case dissatisfaction is proposed. © 2011 IEEE.

  18. Intermittent Smoothing Approaches for Wind Power Output: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Jabir

    2017-10-01

    Full Text Available Wind energy is one of the most common types of renewable energy resource. Due to its sustainability and environmental benefits, it is an emerging source for electric power generation. Rapid and random changes of wind speed makes it an irregular and inconsistent power source when connected to the grid, causing different technical problems in protection, power quality and generation dispatch control. Due to these problems, effective intermittent smoothing approaches for wind power output are crucially needed to minimize such problems. This paper reviews various intermittent smoothing approaches used in smoothing the output power fluctuations caused by wind energy. Problems associated with the inclusion of wind energy resources to grid are also briefly reviewed. From this review, it has been found that battery energy storage system is the most suitable and effective smoothing approach, provided that an effective control strategy is available for optimal utilization of battery energy system. This paper further demonstrates different control strategies built for battery energy storage system to obtain the smooth output wind power.

  19. Comparison of wind mill cluster performance: A multicriteria approach

    Energy Technology Data Exchange (ETDEWEB)

    Rajakumar, D.G.; Nagesha, N. [Visvesvaraya Technological Univ., Karnataka (India)

    2012-07-01

    Energy is a crucial input for the economic and social development of any nation. Both renewable and non-renewable energy contribute in meeting the total requirement of the economy. As an affordable and clean energy source, wind energy is amongst the world's fastest growing renewable energy forms. Though there are several wind-mill clusters producing energy in different geographical locations, evaluating their performance is a complex task and not much of literature is available in this area. In this backdrop, an attempt is made in the current paper to estimate the performance of a wind-mill cluster through an index called Cluster Performance Index (CPI) adopting a multi-criteria approach. The proposed CPI comprises four criteria viz., Technical Performance Indicators (TePI), Economic Performance Indicators (EcPI), Environmental Performance Indicators (EnPI), and Sociological Performance Indicators (SoPI). Under each performance criterion a total of ten parameters are considered with five subjective and five objective oriented responses. The methodology is implemented by collecting empirical data from three wind-mill clusters located at Chitradurga, Davangere, and Gadag in the southern Indian State of Karnataka. Totally fifteen different stake holders are consulted through a set of structured researcher administered questionnaire to collect the relevant data in each wind farm. Stake holders involved engineers working in wind farms, wind farm developers, Government officials from energy department and a few selected residential people near the wind farms. The results of the study revealed that Chitradurga wind farm performed much better with a CPI of 45.267 as compared to Gadag (CPI of 28.362) and Davangere (CPI of 19.040) wind farms. (Author)

  20. PHASE CHANGE AROUND A FINNED TUBE

    Directory of Open Access Journals (Sweden)

    Aytunç EREK

    2003-01-01

    Full Text Available This study presents the heat transfer enhancement in the thermal energy storage system by using radially finned tube. The solution of the system consists of the solving the equations of the heat transfer fluid (HTF, the pipe wall and fin, and the phase change material (PCM as one domain. The control volume finite difference approach and the semi implicit solver (SIS are used to solve the equations. Fully developed velocity distribution is taken in the HTF. Flow parameters (Re number and inlet temperature of coolant and fin parameters (the number of fins, fin length, fin thickness are found to influence solidification fronts and the total stored energy.

  1. Calculation of wind turbine aeroelastic behaviour. The Garrad Hassan approach

    Energy Technology Data Exchange (ETDEWEB)

    Quarton, D.C. [Garrad Hassan and Partners Ltd., Bristol (United Kingdom)

    1996-09-01

    The Garrad Hassan approach to the prediction of wind turbine loading and response has been developed over the last decade. The goal of this development has been to produce calculation methods that contain realistic representation of the wind, include sensible aerodynamic and dynamic models of the turbine and can be used to predict fatigue and extreme loads for design purposes. The Garrad Hassan calculation method is based on a suite of four key computer programs: WIND3D for generation of the turbulent wind field; EIGEN for modal analysis of the rotor and support structure; BLADED for time domain calculation of the structural loads; and SIGNAL for post-processing of the BLADED predictions. The interaction of these computer programs is illustrated. A description of the main elements of the calculation method will be presented. (au)

  2. Wind prediction in Malaysia using Mycielski-1 approach

    Science.gov (United States)

    Lee, S. W.; Kok, B. C.; Goh, K. C.; Goh, H. H.

    2012-11-01

    In this paper, the wind speed prediction in Kudat, Malaysia had been done by using Mycielski-1 approach. There is some improvement in obtaining the random number of Mycielski-1. The wind prediction is important to study a favorable site's wind potential. The prediction is based on 3 years history data provided by Meteorology Department of Malaysia and 1 year data as the reference to check the accuracy of this algorithm. The basic concept of this algorithm is to predict the next value by looking to history data. The result shows the prediction of Mycielski-1 algorithm is promising. The wind speed is predicted in order to obtain the mean power for energy planning.

  3. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    Science.gov (United States)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  4. Site specific optimization of wind turbines energy cost: Iterative approach

    International Nuclear Information System (INIS)

    Rezaei Mirghaed, Mohammad; Roshandel, Ramin

    2013-01-01

    Highlights: • Optimization model of wind turbine parameters plus rectangular farm layout is developed. • Results show that levelized cost for single turbine fluctuates between 46.6 and 54.5 $/MW h. • Modeling results for two specific farms reported optimal sizing and farm layout. • Results show that levelized cost of the wind farms fluctuates between 45.8 and 67.2 $/MW h. - Abstract: The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum configurations and sizing for a single turbine with minimum levelized cost of electricity are presented. The optimal cost of energy for one turbine is calculated about 46.7, 54.5 and 46.6 dollars per MW h in the studied sites, respectively. In addition, optimal size of turbines, annual electricity production, capital cost, and wind farm layout for two different rectangular and square shaped farms in the proposed areas have been recognized. According to the results, optimal system configuration corresponds to minimum levelized cost of electricity about 45.8 to 67.2 dollars per MW h in the studied wind farms

  5. Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Konrad Zolna

    2015-01-01

    Full Text Available Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis. Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a nonlinear exponential deterministic trend, and experimental data from a wind turbine drivetrain—are used to illustrate the method and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of nonlinear trends form various types of data, allowing for possible condition monitoring applications.

  6. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    Science.gov (United States)

    Kalvig, Siri; Manger, Eirik; Hjertager, Bjørn

    2014-12-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach.

  7. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Chao Peng

    2015-01-01

    Full Text Available A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS. To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy storage system real-time control module is designed based on ADRC (active disturbance rejection control. The simulation experiment results demonstrate that the proposed approach has a better disturbance rejection ability and frequency control performance compared with the traditional droop control approach.

  8. Passively cooled direct drive wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  9. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use this....... A simulation comparison betweeen the proposed controller and an industry-standard PID controller shows better mitigation of drive-train, blade and tower loads.......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  10. Spiral finned crucible pot

    Science.gov (United States)

    Soemowidagdo, Arianto Leman; Tiwan, Widarto, Ardian, Aan

    2018-02-01

    Innovation on a crucible furnace to increase its efficiency in aluminum melting has been done. The innovation was a spiral finned crucible pot. The inclination of the spiral finned was vary of 5, 10, 15, and 20 degrees. The spiral finned effects was determined from the performance test result. A crucible pot without fin was also tested as a control. The crucible pot was examined at the same process condition. The crucible pot with the inclined fin of 10 degrees gives an optimum performance. It gives effective heating rate so that more efficient in LPG consumption. Therefore it saves energy in the aluminum melting process.

  11. A New Approach for Offshore Wind Farm Energy Yields Calculation with Mixed Hub Height Wind Turbines

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen

    2016-01-01

    In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with differe...... hub heights, the wind shear effect is also taken into consideration. The results show that the proposed wake model is effective in calculating the wind speed deficit. The calculation framework is applicable for energy yields calculation in offshore wind farms.......In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with different...

  12. An optimization approach for wind turbine commitment and dispatch in a wind park

    Energy Technology Data Exchange (ETDEWEB)

    Moyano, Carlos F. [School of Engineering Systems, Faculty of Built Environment and Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia); Pecas Lopes, Joao A. [Instituto de Engenharia de Sistemas e Computadores do Porto (Portugal); Faculdade de Engenharia da Universidade do Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378 4200-465 Porto (Portugal)

    2009-01-15

    This paper describes an operational optimization strategy to be adopted at the wind park control level, that enables defining the commitment of wind turbines and their active and reactive power outputs following requests from Wind Park Dispatch Centers, assuming that individual wind turbines short-term wind speed forecasts are known and are expressed as power availability. This operational strategy was also developed with a concern on the minimization of the connection/disconnection changes of the individual wind generators, for a given time horizon. When identifying the active/reactive dispatching policies, wind generators loading capabilities are also taken in account. This optimization tool is especially suited to manage large wind parks. (author)

  13. A computational fluid dynamics approach to wind prospecting: Lessons from the U.S. Appalachian region

    International Nuclear Information System (INIS)

    Womeldorf, Carole A.; Chimeli, Ariaster B.

    2014-01-01

    A number of technological, institutional and market developments have lowered the minimally economic viable wind speeds for wind power generation while contributing to increasing profitability of the wind power industry in recent decades. Yet, information on the potential for wind power generation is still highly uncertain in many regions of the globe, particularly those with complex terrain features. We focus on an area by the foothills of the Appalachian region. Because we do not have precise wind measurements for this area, we do not attempt to produce an actual wind map, but instead use a three-dimensional computational fluid dynamics model to demonstrate the calculation of high resolution wind speeds with complex terrain information. Using this approach, we show how finer wind speed information can impact the status of an overlooked region in terms of its wind potential and improve wind prospecting by enabling investors to focus on the most promising sub-regions of a study area. Since private sector investors might not have the incentive to invest in finer-scale wind resource assessment that can be easily observed by competitors, public sector incentives or direct investments can help to promote wind power generation in overlooked but viable regions. - Highlights: • Costly expansion of transmission stimulates wind prospecting in accessible regions. • A search model motivates the rationale for wind prospecting in a given region. • A computational fluid dynamics model simulates finer wind information. • The distribution of wind speeds is estimated using finer wind information. • An initially overlooked region might become attractive for wind prospecting

  14. Wind turbine power tracking using an improved multimodel quadratic approach.

    Science.gov (United States)

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Wind turbine reliability : a database and analysis approach.

    Energy Technology Data Exchange (ETDEWEB)

    Linsday, James (ARES Corporation); Briand, Daniel; Hill, Roger Ray; Stinebaugh, Jennifer A.; Benjamin, Allan S. (ARES Corporation)

    2008-02-01

    The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.

  16. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...

  17. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    Science.gov (United States)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  18. A quantitative approach to wind farm diversification and reliability

    International Nuclear Information System (INIS)

    Degeilh, Yannick; Singh, Chanan

    2011-01-01

    This paper proposes a general planning method to minimize the variance of aggregated wind farm power output by optimally distributing a predetermined number of wind turbines over a preselected number of potential wind farming sites. The objective is to facilitate high wind power penetration through the search for steadier overall power output. Another optimization formulation that takes into account the correlations between wind power outputs and load is also presented. Three years of wind data from the recent NREL/3TIER study in the western US provides the statistics for evaluating each site upon their mean power output, variance and correlation with each other so that the best allocations can be determined. The reliability study reported in this paper investigates the impact of wind power output variance reduction on a power system composed of a virtual wind power plant and a load modeled from the 1996 IEEE RTS. Some traditional reliability indices such as the LOLP are calculated and it is eventually shown that configurations featuring minimal global power output variances generally prove the most reliable provided the sites are not significantly correlated with the modeled load. Consequently, the choice of uncorrelated/negatively correlated sites is favored. (author)

  19. Forecasting wind-driven wildfires using an inverse modelling approach

    Directory of Open Access Journals (Sweden)

    O. Rios

    2014-06-01

    Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.

  20. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R. J. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical & Aerospace Engineering; Pryor, S. C. [Cornell Univ., Ithaca, NY (United States). Dept. of Earth and Atmospheric Sciences

    2017-09-18

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At the National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to

  1. Optimal wind power deployment in Europe-A portfolio approach

    International Nuclear Information System (INIS)

    Roques, Fabien; Hiroux, Celine; Saguan, Marcelo

    2010-01-01

    Geographic diversification of wind farms can smooth out the fluctuations in wind power generation and reduce the associated system balancing and reliability costs. The paper uses historical wind production data from five European countries (Austria, Denmark, France, Germany, and Spain) and applies the Mean-Variance Portfolio theory to identify cross-country portfolios that minimise the total variance of wind production for a given level of production. Theoretical unconstrained portfolios show that countries (Spain and Denmark) with the best wind resource or whose size contributes to smoothing out the country output variability dominate optimal portfolios. The methodology is then elaborated to derive optimal constrained portfolios taking into account national wind resource potential and transmission constraints and compare them with the projected portfolios for 2020. Such constraints limit the theoretical potential efficiency gains from geographical diversification, but there is still considerable room to improve performance from actual or projected portfolios. These results highlight the need for more cross-border interconnection capacity, for greater coordination of European renewable support policies, and for renewable support mechanisms and electricity market designs providing locational incentives. Under these conditions, a mechanism for renewables credits trading could help aligning wind power portfolios with the theoretically efficient geographic dispersion.

  2. Modular Approach of Dynamic Modeling of Type - 3 Wind Energy Conversion Systems

    OpenAIRE

    Rani M, Deepthi; Kumar M, Satyendra

    2017-01-01

    Modular approach towards type 3 Wind Energy Conversion System (WECS) is presented in this paper. This consists of design, dynamic modeling, simulation and stability analysis of wind power system which includes Wind Turbine (WT), Doubly Fed Induction Generator (DFIG) and advanced AC/DC/AC power converters. The dq reference frame is used to obtain the equivalent circuit of the DFIG. MATLAB Simulink has been used as the tool to evaluate the stability analysis of the WECS. It is proved that the...

  3. Fast simulation approaches for power fluctuation model of wind farm based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Gao, Wen-zhong; Sun, Yuan-zhang

    2012-01-01

    This paper discusses one model developed by Riso, DTU, which is capable of simulating the power fluctuation of large wind farms in frequency domain. In the original design, the “frequency-time” transformations are time-consuming and might limit the computation speed for a wind farm of large size....... is more than 300 times if all these approaches are adopted, in any low, medium and high wind speed test scenarios....

  4. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  5. What to expect from a greater geographic dispersion of wind farms?-A risk portfolio approach

    International Nuclear Information System (INIS)

    Drake, Ben; Hubacek, Klaus

    2007-01-01

    The UK, like many other industrialised countries, is committed to reducing greenhouse gas emissions under the Kyoto Protocol. To achieve this goal the UK is increasingly turning towards wind power as a source of emissions free energy. However, the variable nature of wind power generation makes it an unreliable energy source, especially at higher rates of penetration. Likewise the aim of this paper is to measure the potential reduction in wind power variability that could be realised as a result of geographically dispersing the location of wind farm sites. To achieve this aim wind speed data will be used to simulate two scenarios. The first scenario involves locating a total of 2.7 gigawatts (GW) of wind power capacity in a single location within the UK while the second scenario consists of sharing the same amount of capacity amongst four different locations. A risk portfolio approach as used in financial appraisals is then applied in the second scenario to decide upon the allocation of wind power capacity, amongst the four wind farm sites, that succeeds in minimising overall variability for a given level of wind power generation. The findings of this paper indicate that reductions in the order of 36% in wind power variability are possible as a result of distributing wind power capacity

  6. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  7. Optimization of Electrical System for Offshore Wind Farms via a Genetic Algorithm Approach

    DEFF Research Database (Denmark)

    Zhao, Menghua

    Offshore wind farms seem to be more attractive than onshore farms. However, offshore wind farms cost more money than onshore wind farms in both installation and maintenance. Due to the fast development of power electronics, more kinds of configurations of offshore wind farm are possible, which lead...... to very different costs, system reliability, power quality, and power losses etc. Therefore, the optimization of electrical system design for offshore wind farms becomes more and more necessary. There are two tasks in this project: 1) the first one is to construct an algorithm for finding the capacity......, and the LTC limitation of transformers, the power generation limits and the voltage operation range are considered as the constraints. The optimization method combined with probabilistic analysis is used to obtain the capacity of a given wind farm site. The OES-OWF is approached by Genetic Algorithm (GA...

  8. A hybrid wavelet transform based short-term wind speed forecasting approach.

    Science.gov (United States)

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

  9. A Statistical Approach to WindSat Ocean Surface Wind Vector Retrieval

    Science.gov (United States)

    2006-01-01

    Crane for assisting in initial development of the regression software. REFERENCES [1] P. W. Gaiser, K. St. Germain, E. M. Twarog , G. A. Poe, W. Purdy...Remote Sens., vol. 40, no. 1, pp. 79–89, Jan. 2002. [12] E. Twarog , P. W. Gaiser, B. Purdy, L. Jones, K. St. Germain, and G. Poe, “WindSat post-launch

  10. On the impact of non-Gaussian wind statistics on wind turbines – an experimental approach

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-01-01

    Full Text Available The effect of intermittent and Gaussian inflow conditions on wind energy converters is studied experimentally. Two different flow situations were created in a wind tunnel using an active grid. Both flows exhibit nearly equal mean velocity values and turbulence intensities but strongly differ in their two point statistics, namely their distribution of velocity increments on a variety of timescales, one being Gaussian distributed, and the other one being strongly intermittent. A horizontal axis model wind turbine is exposed to both flows, isolating the effect on the turbine of the differences not captured by mean values and turbulence intensities. Thrust, torque and power data were recorded and analyzed, showing that the model turbine does not smooth out intermittency. Intermittent inflow is converted to similarly intermittent turbine data on all scales considered, reaching down to sub-rotor scales in space. This indicates that it is not correct to assume a smoothing of intermittent wind speed increments below the size of the rotor.

  11. Solar wind reconstruction from magnetosheath data using an adjoint approach

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2015-12-01

    Full Text Available We present a new method to reconstruct solar wind conditions from spacecraft data taken during magnetosheath passages, which can be used to support, e.g., magnetospheric models. The unknown parameters of the solar wind are used as boundary conditions of an MHD (magnetohydrodynamics magnetosheath model. The boundary conditions are varied until the spacecraft data matches the model predictions. The matching process is performed using a gradient-based minimization of the misfit between data and model. To achieve this time-consuming procedure, we introduce the adjoint of the magnetosheath model, which allows efficient calculation of the gradients. An automatic differentiation tool is used to generate the adjoint source code of the model. The reconstruction method is applied to THEMIS (Time History of Events and Macroscale Interactions during Substorms data to calculate the solar wind conditions during spacecraft magnetosheath transitions. The results are compared to actual solar wind data. This allows validation of our reconstruction method and indicates the limitations of the MHD magnetosheath model used.

  12. Assessment approaches to logistics for offshore wind energy installation

    NARCIS (Netherlands)

    Vis, Iris F.A.; Ursavas, Evrim

    2016-01-01

    Offshore wind farm installation planning is highly complex, due to the high dependency on weather and the oversized components that impose specific constraints in areas such as transportation and lifting. Currently, there is very little transparency vis-à-vis the logistics challenges in the

  13. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  14. Wind-farm layout optimisation using a hybrid Jensen–LES approach

    Directory of Open Access Journals (Sweden)

    V. S. Bokharaie

    2016-12-01

    Full Text Available Given a wind farm with known dimensions and number of wind turbines, we try to find the optimum positioning of wind turbines that maximises wind-farm energy production. In practice, given that optimisation has to be performed for many wind directions, and taking into account the yearly wind distribution, such an optimisation is computationally only feasible using fast engineering wake models such as the Jensen model. These models are known to have accuracy issues, in particular since their representation of wake interaction is very simple. In the present work, we propose an optimisation approach that is based on a hybrid combination of large-eddy simulation (LES and the Jensen model; in this approach, optimisation is mainly performed using the Jensen model, and LES is used at a few points only during optimisation for online tuning of the wake-expansion coefficient in the Jensen model, as well as for validation of the results. An optimisation case study is considered, in which the placement of 30 turbines in a 4 km by 3 km rectangular domain is optimised in a neutral atmospheric boundary layer. Optimisation for both a single wind direction and multiple wind directions is discussed.

  15. Final Report for Harvesting a New Wind Crop: Innovative Economic Approaches for Rural America

    Energy Technology Data Exchange (ETDEWEB)

    Susan Innis; Randy Udall; Project Officer - Keith Bennett

    2005-09-30

    Final Report for ''Harvesting a New Wind Crop: Innovative Economic Approaches for Rural America'': This project, ''Harvesting a New Wind Crop'', helped stimulate wind development by rural electric cooperatives and municipal utilities in Colorado. To date most of the wind power development in the United States has been driven by large investor-owned utilities serving major metropolitan areas. To meet the 5% by 2020 goal of the Wind Powering America program the 2,000 municipal and 900 rural electric cooperatives in the country must get involved in wind power development. Public power typically serves rural and suburban areas and can play a role in revitalizing communities by tapping into the economic development potential of wind power. One barrier to the involvement of public power in wind development has been the perception that wind power is more expensive than other generation sources. This project focused on two ways to reduce the costs of wind power to make it more attractive to public power entities. The first way was to develop a revenue stream from the sale of green tags. By selling green tags to entities that voluntarily support wind power, rural coops and munis can effectively reduce their cost of wind power. Western Resource Advocates (WRA) and the Community Office for Resource Efficiency (CORE) worked with Lamar Light and Power and Arkansas River Power Authority to develop a strategy to use green tags to help finance their wind project. These utilities are now selling their green tags to Community Energy, Inc., an independent for-profit marketer who in turn sells the tags to consumers around Colorado. The Lamar tags allow the University of Colorado-Boulder, the City of Boulder, NREL and other businesses to support wind power development and make the claim that they are ''wind-powered''. This urban-rural partnership is an important development for the state of Colorado's rural communities

  16. Plastic Debris Occurrence, Convergence Areas and Fin Whales Feeding Ground in the Mediterranean Marine Protected Area Pelagos Sanctuary: A Modeling Approach

    Directory of Open Access Journals (Sweden)

    Maria Cristina Fossi

    2017-05-01

    Full Text Available The Mediterranean Sea is greatly affected by marine litter. In this area, research on the impact of plastic debris (including microplastics on biota, particularly large filter-feeding species such as the fin whale (Balaenoptera physalus, is still in its infancy. We investigated the possible overlap between microplastic, mesoplastic and macrolitter accumulation areas and the fin whale feeding grounds in in a pelagic Specially Protected Area of Mediterranean Importance (SPAMI: the Pelagos Sanctuary. Models of ocean circulation and fin whale potential habitat were merged to compare marine litter accumulation with the presence of whales. Additionally, field data on microplastics, mesoplastics, and macrolitter abundance and cetacean presence were simultaneously collected. The resulting data were compared, as a multi-layer, with the simulated distribution of plastic concentration and the whale habitat model. These data showed a high occurrence of microplastics (mean: 0.082 items/m2, STD ± 0.079 items/m2 spatial distribution agreed with our modeling results. Areas with high microplastic density significantly overlapped with areas of high macroplastic density. The most abundant polymer detected in all the sampling sites was polyethylene (PE, suggesting fragmentation of larger packaging items as the primary source. To our knowledge, this is the first study in the Pelagos Sanctuary in which the simulated microplastic distribution has been confirmed by field observations. The overlap between the fin whale feeding habitat and the microplastic hot spots is an important contribution for risk assessment of fin whale exposure to microplastics.

  17. The shark's fin

    International Nuclear Information System (INIS)

    Listinsky, J.L.; Griffiths, H.J.

    1989-01-01

    Initial plain film studies of seven patients with facet fracture-dislocations of the cervical spine were examined retrospectively. Rotation of the cross-table lateral film from a standard vetical viewing orientation to a simulated brow-down position allowed easier appreciation of the dislocated pillar in six of the seven patients. The displaced pillar had an appearance similar to that of the dorsal fin of a shark. We conclude that the finding of a shark's fin appearance of an articular pillar in a traumatized patient warrants further radiographic studies. (author). 8 refs.; 3 figs

  18. Introducing distributed learning approaches in wind power forecasting

    DEFF Research Database (Denmark)

    Pinson, Pierre

    2016-01-01

    Renewable energy forecasting is now of core interest to both academics, who continuously propose new forecast methodologies, and forecast users for optimal operations and participation in electricity markets. In view of the increasing amount of data being collected at power generation sites, thanks...... to substantial deployment of generating capacities and increased temporal resolution, it may now be possible to build large models accounting for all space-time dependencies. This will eventually allow to significantly improve the quality of short-term renewable power forecasts. However, in practice, it is often...... to large datasets in Australia (22 wind farms) and France (85 wind farms) are used to illustrate the interest and performance of our proposal....

  19. Community Based Approach to Wind Energy Information Dissemination

    Energy Technology Data Exchange (ETDEWEB)

    Innis, S.

    2003-09-26

    The purpose of the Department of Energy's grant was to transfer to New Mexico and Utah a national award-winning market-based strategy to aggregate demand for wind energy. Their experiences over the past few years in New Mexico and utah have been quite different. In both states they have developed stronger relationships with utilities and policymakers which will increase the effectiveness of the future advocacy efforts.

  20. An Approach to Comprehensive and Sustainable Solar Wind Model Validation

    Science.gov (United States)

    Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.

    2017-12-01

    The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.

  1. Valuation of Wind Energy Projects: A Real Options Approach

    Directory of Open Access Journals (Sweden)

    Luis M. Abadie

    2014-05-01

    Full Text Available We address the valuation of an operating wind farm and the finite-lived option to invest in it under different reward/support schemes: a constant feed-in tariff, a premium on top of the electricity market price (either a fixed premium or a variable subsidy such as a renewable obligation certificate or ROC, and a transitory subsidy, among others. Futures contracts on electricity with ever longer maturities enable market-based valuations to be undertaken. The model considers up to three sources of uncertainty: the electricity price, the level of wind generation, and the certificate (ROC price where appropriate. When analytical solutions are lacking, we resort to a trinomial lattice combined with Monte Carlo simulation; we also use a two-dimensional binomial lattice when uncertainty in the ROC price is considered. Our data set refers to the UK. The numerical results show the impact of several factors involved in the decision to invest: the subsidy per MWh generated, the initial lump-sum subsidy, the maturity of the investment option, and electricity price volatility. Different combinations of variables can help bring forward investments in wind generation. One-off policies, e.g., a transitory initial subsidy, seem to have a stronger effect than a fixed premium per MWh produced.

  2. Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-11-01

    Full Text Available The transportation sector is severely correlated with major problems in environment, citizens’ health, climate and economy. Issues such as traffic, fuel cost and parking space have make life more difficult, especially in the dense urban environment. Thus, there is a great need for the development of the electric vehicle (EV sector. The number of cars in cities has increased so much that the current transportation system (roads, parking places, traffic lights, etc. cannot accommodate them properly. The increasing number of vehicles does not affect only humans but also the environment, through air and noise pollution. According to EPA, the 39.2% of total gas emissions in 2007 was caused by transportation activities. Studies have shown that the pollutants are not only gathered in the major roads and/or highways but can travel depending on the meteorological conditions leading to generic pollution. The promotion of EVs and the charging stations are both equally required to be further developed in order EVs to move out of the cities and finally confront the range problem. In this work, a wind resource and a GIS analysis optimizes in a wider area the sitting of wind based charging stations and proposes an optimizing methodology.

  3. Fin Distance Effect at Tube-Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Frana K.

    2013-04-01

    Full Text Available Article deals with numerical simulation of the Tube-Fin heat exchanger. Several distances between fins are examined with intence of increasing the cooling output of the heat exchanger. Geometrical model consists of set of 2 fins with input and output area. Calculations covers the area of the gap from 2.25 mm to 4 mm with new fin geometry. For the numerical silumation was used software Ansys Fluent.

  4. Innovative design approaches for large wind turbine blades

    Science.gov (United States)

    Jackson, K. J.; Zuteck, M. D.; van Dam, C. P.; Standish, K. J.; Berry, D.

    2005-04-01

    A preliminary design study of an advanced 50 m blade for utility wind turbines is presented and discussed. The effort was part of the Department of Energy WindPACT Blade System Design Study with the goal to investigate and evaluate design and manufacturing issues for wind turbine blades in the 1-10 MW size range. Two different blade designs are considered and compared in this article. The first is a fibreglass design, while the second design selectively incorporates carbon fibre in the main structural elements. The addition of carbon results in modest cost increases and provides significant benefits, particularly with respect to blade deflection. The structural efficiency of both designs was maximized by tailoring the thickness of the blade cross-sections to simplify the construction of the internal members. Inboard the blades incorporate thick blunt trailing edge aerofoils (flatback aerofoils), while outboard more conventional sharp trailing edge high-lift aerofoils are used. The outboard section chord lengths were adjusted to yield the least complex and costly internal blade structure. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of studs has a positive effect on total weight, because it reduces the required root laminate thickness. The aerodynamic performance of the blade aerofoils was predicted using computational techniques that properly simulate blunt trailing edge flows. The performance of the rotor was predicted assuming both clean and soiled blade surface conditions. The rotor is shown to provide excellent performance at a weight significantly lower than that of current rotors of this size. Copyright

  5. Maximum Power Tracking by VSAS approach for Wind Turbine, Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Nacer Kouider Msirdi

    2015-08-01

    Full Text Available This paper gives a review of the most efficient algorithms designed to track the maximum power point (MPP for catching the maximum wind power by a variable speed wind turbine (VSWT. We then design a new maximum power point tracking (MPPT algorithm using the Variable Structure Automatic Systems approach (VSAS. The proposed approachleads efficient algorithms as shown in this paper by the analysis and simulations.

  6. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2015-04-01

    While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.

  7. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2011-01-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal...

  8. A new Markov-chain-related statistical approach for modelling synthetic wind power time series

    International Nuclear Information System (INIS)

    Pesch, T; Hake, J F; Schröders, S; Allelein, H J

    2015-01-01

    The integration of rising shares of volatile wind power in the generation mix is a major challenge for the future energy system. To address the uncertainties involved in wind power generation, models analysing and simulating the stochastic nature of this energy source are becoming increasingly important. One statistical approach that has been frequently used in the literature is the Markov chain approach. Recently, the method was identified as being of limited use for generating wind time series with time steps shorter than 15–40 min as it is not capable of reproducing the autocorrelation characteristics accurately. This paper presents a new Markov-chain-related statistical approach that is capable of solving this problem by introducing a variable second lag. Furthermore, additional features are presented that allow for the further adjustment of the generated synthetic time series. The influences of the model parameter settings are examined by meaningful parameter variations. The suitability of the approach is demonstrated by an application analysis with the example of the wind feed-in in Germany. It shows that—in contrast to conventional Markov chain approaches—the generated synthetic time series do not systematically underestimate the required storage capacity to balance wind power fluctuation. (paper)

  9. Artificial neural network approach to spatial estimation of wind velocity data

    International Nuclear Information System (INIS)

    Oztopal, Ahmet

    2006-01-01

    In any regional wind energy assessment, equal wind velocity or energy lines provide a common basis for meaningful interpretations that furnish essential information for proper design purposes. In order to achieve regional variation descriptions, there are methods of optimum interpolation with classical weighting functions or variogram methods in Kriging methodology. Generally, the weighting functions are logically and geometrically deduced in a deterministic manner, and hence, they are imaginary first approximations for regional variability assessments, such as wind velocity. Geometrical weighting functions are necessary for regional estimation of the regional variable at a location with no measurement, which is referred to as the pivot station from the measurements of a set of surrounding stations. In this paper, weighting factors of surrounding stations necessary for the prediction of a pivot station are presented by an artificial neural network (ANN) technique. The wind speed prediction results are compared with measured values at a pivot station. Daily wind velocity measurements in the Marmara region from 1993 to 1997 are considered for application of the ANN methodology. The model is more appropriate for winter period daily wind velocities, which are significant for energy generation in the study area. Trigonometric point cumulative semivariogram (TPCSV) approach results are compared with the ANN estimations for the same set of data by considering the correlation coefficient (R). Under and over estimation problems in objective analysis can be avoided by the ANN approach

  10. An approach to the development and analysis of wind turbine control algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.C.

    1998-03-01

    The objective of this project is to develop the capability of symbolically generating an analytical model of a wind turbine for studies of control systems. This report focuses on a theoretical formulation of the symbolic equations of motion (EOMs) modeler for horizontal axis wind turbines. In addition to the power train dynamics, a generic 7-axis rotor assembly is used as the base model from which the EOMs of various turbine configurations can be derived. A systematic approach to generate the EOMs is presented using d`Alembert`s principle and Lagrangian dynamics. A Matlab M file was implemented to generate the EOMs of a two-bladed, free yaw wind turbine. The EOMs will be compared in the future to those of a similar wind turbine modeled with the YawDyn code for verification. This project was sponsored by Sandia National Laboratories as part of the Adaptive Structures and Control Task. This is the final report of Sandia Contract AS-0985.

  11. Using data-driven approach for wind power prediction: A comparative study

    International Nuclear Information System (INIS)

    Taslimi Renani, Ehsan; Elias, Mohamad Fathi Mohamad; Rahim, Nasrudin Abd.

    2016-01-01

    Highlights: • Double exponential smoothing is the most accurate model in wind speed prediction. • A two-stage feature selection method is proposed to select most important inputs. • Direct prediction illustrates better accuracy than indirect prediction. • Adaptive neuro fuzzy inference system outperforms data mining algorithms. • Random forest performs the worst compared to other data mining algorithm. - Abstract: Although wind energy is intermittent and stochastic in nature, it is increasingly important in the power generation due to its sustainability and pollution-free. Increased utilization of wind energy sources calls for more robust and efficient prediction models to mitigate uncertainties associated with wind power. This research compares two different approaches in wind power forecasting which are indirect and direct prediction methods. In indirect method, several times series are applied to forecast the wind speed, whereas the logistic function with five parameters is then used to forecast the wind power. In this study, backtracking search algorithm with novel crossover and mutation operators is employed to find the best parameters of five-parameter logistic function. A new feature selection technique, combining the mutual information and neural network is proposed in this paper to extract the most informative features with a maximum relevancy and minimum redundancy. From the comparative study, the results demonstrate that, in the direct prediction approach where the historical weather data are used to predict the wind power generation directly, adaptive neuro fuzzy inference system outperforms five data mining algorithms namely, random forest, M5Rules, k-nearest neighbor, support vector machine and multilayer perceptron. Moreover, it is also found that the mean absolute percentage error of the direct prediction method using adaptive neuro fuzzy inference system is 1.47% which is approximately less than half of the error obtained with the

  12. Avian fatalities at wind energy facilities in North America: A comparison of recent approaches

    Science.gov (United States)

    Johnson, Douglas H.; Loss, Scott R.; Smallwood, K. Shawn; Erickson, Wallace P.

    2016-01-01

    Three recent publications have estimated the number of birds killed each year by wind energy facilities at 2012 build-out levels in the United States. The 3 publications differ in scope, methodology, and resulting estimates. We compare and contrast characteristics of the approaches used in the publications. In addition, we describe decisions made in obtaining the estimates that were produced. Despite variation in the 3 approaches, resulting estimates were reasonably similar; about a quarter- to a half-million birds are killed per year by colliding with wind turbines.

  13. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  14. [Toxicity of puffer fish fins].

    Science.gov (United States)

    Honda, Shunichi; Ichimaru, Shunichi; Arakawa, Osamu; Takatani, Tomohiro; Noguchi, Tamao; Ishizaki, Shoichiro; Nagashima, Yuji

    2007-10-01

    Puffer fish is prized as a Japanese traditional food and its fin is also used in the cuisine. However, whether the fin is edible or not is determined for convenience from the toxicity of skin, since little information is available about the toxicity of puffer fish fins. In the present study, we examined the toxicity of fins and skin of three toxic species, Takifugu vermicularis, T. snyderi, and T. porphyreus. The toxicity of T. vermicularis fins (< 5-52.4 MU/g) was significantly lower than that of skin (<5-1200 MU/g). HPLC analysis showed that tetrodotoxin was a major toxic principle irrespective of the toxicity value in each tissue of T. vermicularis. In the case of T. snyderi and T. porphyreus, the toxicity of fins was at almost the same level as that of the skin. The toxicity (< 10-12 MU/g) of caudal fins of T. porphyreus was apparently increased to 16.5-22.0 MU/g by drying. However, the toxin amounts in the dried fins were slightly decreased as compared with those of the non-dried fins. These results demonstrate that puffer fish with toxic skin also have toxic fins.

  15. Computationally Inexpensive Approach for Pitch Control of Offshore Wind Turbine on Barge Floating Platform

    Science.gov (United States)

    Zuo, Shan; Song, Y. D.; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834

  16. A Gaussian process regression based hybrid approach for short-term wind speed prediction

    International Nuclear Information System (INIS)

    Zhang, Chi; Wei, Haikun; Zhao, Xin; Liu, Tianhong; Zhang, Kanjian

    2016-01-01

    Highlights: • A novel hybrid approach is proposed for short-term wind speed prediction. • This method combines the parametric AR model with the non-parametric GPR model. • The relative importance of different inputs is considered. • Different types of covariance functions are considered and combined. • It can provide both accurate point forecasts and satisfactory prediction intervals. - Abstract: This paper proposes a hybrid model based on autoregressive (AR) model and Gaussian process regression (GPR) for probabilistic wind speed forecasting. In the proposed approach, the AR model is employed to capture the overall structure from wind speed series, and the GPR is adopted to extract the local structure. Additionally, automatic relevance determination (ARD) is used to take into account the relative importance of different inputs, and different types of covariance functions are combined to capture the characteristics of the data. The proposed hybrid model is compared with the persistence model, artificial neural network (ANN), and support vector machine (SVM) for one-step ahead forecasting, using wind speed data collected from three wind farms in China. The forecasting results indicate that the proposed method can not only improve point forecasts compared with other methods, but also generate satisfactory prediction intervals.

  17. A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast

    Directory of Open Access Journals (Sweden)

    Marino Marrocu

    2017-11-01

    Full Text Available An accurate forecast of the power generated by a wind turbine is of paramount importance for its optimal exploitation. Several forecasting methods have been proposed either based on a physical modeling or using a statistical approach. All of them rely on the availability of high quality measures of local wind speed, corresponding generated power and on numerical weather forecasts. In this paper, a simple and effective wind power forecast technique, based on the probability distribution mapping of wind speed forecast and observed power data, is presented and it is applied to two turbines located on the island of Borkum (Germany in the North Sea. The wind speed forecast of the ECMWF model at 100 m from the ground is used as the prognostic meteorological parameter. Training procedures are based entirely on relatively short time series of power measurements. Results show that our approach has skills that are similar or better than those obtained using more standard methods when measured with mean absolute error.

  18. Evaluating a novel approach to reliability decision support for offshore wind turbine installation

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2016-01-01

    This paper briefly describes a novel approach of estimating weather windows for decision support in offshore wind turbine installation projects. The proposed methodology is based on statistical analysis of extreme physical responses of the installation equipment (such as lifting cable loads...

  19. Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance

    International Nuclear Information System (INIS)

    Höltinger, Stefan; Salak, Boris; Schauppenlehner, Thomas; Scherhaufer, Patrick; Schmidt, Johannes

    2016-01-01

    Techno-economic assessments confirm the potential of wind energy to contribute to a low carbon bioeconomy. The increasing diffusion of wind energy, however, has turned wind energy acceptance into a significant barrier with respect to the deployment of wind turbines. This article assesses whether, and at what cost, Austrian renewable energy targets can be met under different expansion scenarios considering the socio-political and market acceptance of wind energy. Land-use scenarios have been defined in a participatory modeling approach with stakeholders from various interest groups. We calculated the levelized cost of electricity (LCOE) for all of the potential wind turbine sites, which we used to generate wind energy supply curves. The results show that wind energy production could be expanded to 20% of the final end energy demand in three out of four scenarios. However, more restrictive criteria increase LCOE by up to 20%. In contrast to common views that see local opposition against wind projects as the main barrier for wind power expansion, our participatory modeling approach indicates that even on the level of key stakeholders, the future possible contribution of wind energy to Austrian renewable energy targets reaches from almost no further expansion to very high shares of wind energy. - Highlights: • Including social barriers could reduce Austria’s wind potential from 92.78 to 3.89 TWh • Costs for attaining a 20% wind energy share vary by 20% between the scenarios • Socially acceptable wind area potential ranges from 0.1 to 3.9% of Austria’s total area • Excluding forest areas lowers the maximum wind energy potential by 45%

  20. Fully-Implicit Navier-Stokes (FIN-S)

    Science.gov (United States)

    Kirk, Benjamin S.

    2010-01-01

    FIN-S is a SUPG finite element code for flow problems under active development at NASA Lyndon B. Johnson Space Center and within PECOS: a) The code is built on top of the libMesh parallel, adaptive finite element library. b) The initial implementation of the code targeted supersonic/hypersonic laminar calorically perfect gas flows & conjugate heat transfer. c) Initial extension to thermochemical nonequilibrium about 9 months ago. d) The technologies in FIN-S have been enhanced through a strongly collaborative research effort with Sandia National Labs.

  1. A characteristic correlation for heat transfer over serrated finned tubes

    International Nuclear Information System (INIS)

    Anoop, B.; Balaji, C.; Velusamy, K.

    2015-01-01

    Highlights: • Numerical investigation og heat transfer over serrated finned tubes. • Fins used on the outside of the tubes of a sodium to air heat exchanger. • RANS approach with RNG k–ε model to handle turbulence to handle closure. • Validation with in-house experiments. • Parametric studies culminating in a correlation for Nusselt number. - Abstract: Conjugate heat transfer from serrated fins on the outside of the tubes of a sodium to air tubular heat exchanger of sodium cooled fast breeder reactors, has been investigated by combined experimental and computational approaches. For the latter approach, the RNG k–ε model, which is applicable for a wide range of Reynolds numbers, was used for turbulence closure. The numerical model employed was validated by conducting in-house heat transfer experiments on a single serrated finned tube. A detailed parametric study has been carried out to investigate the effect of serration depth, fin pitch, fin height and fin thickness. In addition to pure cross flow, the effect of angle of attack of the flow on the heat transfer also has been studied. A correlation for determining the Nusselt number over a serrated finned tube has been proposed taking into account the serration parameters. This is expected to be useful in the design of sodium to air heat exchangers of fast breeder reactors

  2. Criteria for analysis and optimization of longitudinal fins with convective tip

    International Nuclear Information System (INIS)

    Gomes, E.S.

    1983-01-01

    The problem of heat transfer in longitudinal fins with the main geometries used in equipaments of heat transfer by convection is analyzed. The equation of energy is solved analytically of several geometries fins, with unidimensional formulation, through the use of the convective heat transfer coefficient. The problem of fin optimization is approached analytically yielding the parameters which allow the maximum heat transfer for each particular material waste in the fin. The use of the insulated tip model suggests the use of fins and its optimization for any Biot number of the fin. The use of the convective tip model allows us to determine when is vantageous or disadvantageous to use fins and when fin optimization is possible according to the value of the Biot number and to a convection parameter on the fin tip. (Author) [pt

  3. The Effect of Wind on Coxiella burnetii Transmission Between Cattle Herds: a Mechanistic Approach.

    Science.gov (United States)

    Nusinovici, S; Hoch, T; Brahim, M L; Joly, A; Beaudeau, F

    2017-04-01

    There is a consensus that wind plays a key role in the transmission of Coxiella burnetii, the causative agent of Q fever, between ruminants and from ruminants to humans. However, no observational study so far has focused on the mechanisms associated with this airborne transmission. This study applied a mechanistic epidemiological approach to investigate the processes underlying the wind effect and to assess its influence on the risk for a dairy herd to become C. burnetii infected. Ninety-five dairy cattle herds located in the Finistère department (western France) were subjected to samplings of bulk tank milk and indoor dust every 4 months over a 1-year period to determine their C. burnetii status using PCR tests. A total of 27 incident herd-periods (negative-tested on both PCR tests and becoming positive-tested at least once at the subsequent sampling time) and 71 negative herd-periods were retained for analysis. Using logistic regression, we assessed the effect of (i) the cumulated number of bacteria in herds located under the main wind direction and (ii) the mean wind speed in this area, on a given herd's risk of becoming incident. Compared to herds in areas with low wind speed (≤5.5 m/s), the risk was significantly higher (OR = 3.7) in herds in areas with high wind speed (>5.5 m/s) and high bacterial load (>10), whereas it was not significantly different from unity in other situations. In agreement with our assumptions, C. burnetii transmission to a previously infection-free herd occurs only when (i) the wind transporting from infected sources and (ii) the load in the contaminated particles/aerosols generated are high enough to act jointly. © 2015 Blackwell Verlag GmbH.

  4. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Carlos Quiterio Gómez Muñoz

    2016-01-01

    Full Text Available The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

  5. Using Data-Mining Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    are built and their performance compared against literature. Recently developed adaptive neuro-fuzzy-interference system models are set up and their performance compared with the other models, using the same data. Literature models often neglect the influence of the ambient temperature and the wind...... direction. The ambient temperature can influence the power output up to 20%. Nearby obstacles can lower the power output for certain wind directions. The approaches proposed in literature and the ANFIS models are compared by using wind speed only and two additional inputs. The comparison is based...... on the mean absolute error, root mean squared error, mean absolute percentage error, and standard deviation using data coming from three pitch regulated turbines rating 2 MW each. The ability to highlight performance deviations is investigated by use of realmeasurements. The comparison shows the decrease...

  6. Using Data-Mining Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    direction. The ambient temperature can influence the power output up to 20%. Nearby obstacles can lower the power output for certain wind directions. The approaches proposed in literature and the ANFIS models are compared by using wind speed only and two additional inputs. The comparison is based...... of error rates and of the ANFIS models when taking into account the two additional inputs and the ability to detect faults earlier....... are built and their performance compared against literature. Recently developed adaptive neuro-fuzzy-interference system models are set up and their performance compared with the other models, using the same data. Literature models often neglect the influence of the ambient temperature and the wind...

  7. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model

  8. Fault Detection of Wind Turbines with Uncertain Parameters: A Set-Membership Approach

    Directory of Open Access Journals (Sweden)

    Thomas Bak

    2012-07-01

    Full Text Available In this paper a set-membership approach for fault detection of a benchmark wind turbine is proposed. The benchmark represents relevant fault scenarios in the control system, including sensor, actuator and system faults. In addition we also consider parameter uncertainties and uncertainties on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic torque and uncertainties on the parameters make fault detection a challenging problem. We use an effective wind speed estimator to reduce the noise on the wind speed measurements. A set-membership approach is used generate a set that contains all states consistent with the past measurements and the given model of the wind turbine including uncertainties and noise. This set represents all possible states the system can be in if not faulty. If the current measurement is not consistent with this set, a fault is detected. For representation of these sets we use zonotopes and for modeling of uncertainties we use matrix zonotopes, which yields a computationally efficient algorithm. The method is applied to the wind turbine benchmark problem without and with uncertainties. The result demonstrates the effectiveness of the proposed method compared to other proposed methods applied to the same problem. An advantage of the proposed method is that there is no need for threshold design, and it does not produce positive false alarms. In the case where uncertainty on the torque lookup table is introduced, some faults are not detectable. Previous research has not addressed this uncertainty. The method proposed here requires equal or less detection time than previous results.

  9. Symbolic Solution Approach to Wind Turbine based on Doubly Fed Induction Generator Model

    DEFF Research Database (Denmark)

    Cañas–Carretón, M.; Gómez–Lázaro, E.; Martín–Martínez, S.

    2015-01-01

    This paper describes an alternative approach based on symbolic computations to simulate wind turbines equipped with Doubly–Fed Induction Generator (DFIG). The actuator disk theory is used to represent the aerodynamic part, and the one-mass model simulates the mechanical part. The 5th–order induct......This paper describes an alternative approach based on symbolic computations to simulate wind turbines equipped with Doubly–Fed Induction Generator (DFIG). The actuator disk theory is used to represent the aerodynamic part, and the one-mass model simulates the mechanical part. The 5th......–order induction generator is selected to model the electric machine, being this approach suitable to estimate the DFIG performance under transient conditions. The corresponding non–linear integro-differential equation system has been reduced to a linear state-space system by using an ad-hoc local linearization...

  10. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    International Nuclear Information System (INIS)

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  11. Approaching population thresholds in presence of uncertainty: Assessing displacement of seabirds from offshore wind farms

    International Nuclear Information System (INIS)

    Busch, Malte; Garthe, Stefan

    2016-01-01

    Assessment of the displacement impacts of offshore wind farms on seabirds is impeded by a lack of evidence regarding species-specific reactions to developed sites and the potential ecological consequences faced by displaced individuals. In this study, we present a method that makes best use of the currently limited understanding of displacement impacts. The combination of a matrix table displaying the full range of potential displacement and mortality levels together with seasonal potential biological removal (PBR) assessments provides a tool that increases confidence in the conclusions of impact assessments. If unrealistic displacement levels and/or mortality rates are required to equal or approach seasonal PBRs, this gives an indication of the likeliness of adverse impacts on the assessed population. This approach is demonstrated by assessing the displacement impacts of an offshore wind farm cluster in the German North Sea on the local common guillemot (Uria aalge) population. - Highlights: • A novel approach for assessing displacement impacts of offshore wind farms on seabirds is presented making best use of limited data • A displacement matrix approach is linked with PBR analysis to increased confidence in assessment conclusions drawn • A case example demonstrates the applicability of the methods described in practice

  12. Toward quantum FinFET

    CERN Document Server

    Wang, Zhiming

    2013-01-01

    This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introductio...

  13. FinFET modeling for IC simulation and design

    CERN Document Server

    Hu, Chenming; Lu, Darsen D

    2015-01-01

    This book is the first to explain FinFET modeling for IC simulation and the industry standard - BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters. With this book you will learn: * Why you should use FinFET* The physics and operation of FinFET* Details of the FinFET standard model (BSIM-CMG)* Parameter extraction in BSIM-CMG* FinFET circuit design and simulation * Authored by the lead inventor and developer of FinFET, and developers of the BSIM-CM standard model, providing an experts' insight into the specifications of the standard* The first book on the industry-standard FinFET model - BSIM...

  14. Comparative study on thermal performance of natural draft cooling towers with finned shells

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-10-15

    The cooling efficiency of natural draft cooling towers under crosswind condition should be improved. In the present research work three different externally finned shells were considered for a typical natural draft cooling tower to investigate the cooling improvement. They were numerically simulated under normal and crosswind conditions. Numerical results show that twisting four fin plates over the tower shell along the 45 peripheral angle, could improve the cooling efficiency up to 6.5 %. Because of the periodic shape of the fin plates, the cooling efficiency of the cooling tower with finned shell is less sensitive to the change of wind.

  15. Designing Trailing Edge Flaps of Wind Turbines using an Integrated Design Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    In this paper designing a controller for trailing edge flaps (TEF) as well as optimizing its position on the wind turbine blade will be considered. An integrated design approach will be used to optimize both TEF placement and controller simultaneously. Youla parameterization will be used to param......In this paper designing a controller for trailing edge flaps (TEF) as well as optimizing its position on the wind turbine blade will be considered. An integrated design approach will be used to optimize both TEF placement and controller simultaneously. Youla parameterization will be used...... to parameterize the controller and the plant. The goal is to maximize blade root bending moments while minimizing actuator activity. An optimization with linear matrix inequalities (LMI) constraints will be used to optimize the H1 norm of the system....

  16. Study of transient behavior of finned coil heat exchangers

    Science.gov (United States)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  17. A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation

    Directory of Open Access Journals (Sweden)

    Tiago Lukasievicz

    2018-02-01

    Full Text Available This paper proposes a control approach and supplementary controllers for the operation of a hybrid stand-alone system composed of a wind generation unit and a conventional generation unit based on synchronous generator (CGU. The proposed controllers allow the islanded or isolated operation of small power systems with predominance of wind generation. As an advantage and a paradigm shift, the DC-link voltage of the wind unit is controlled by means of a conventional synchronous generator connected to the AC grid of the system. Two supplementary controllers, added to a diesel generator (DIG and to a DC dump load (DL, are proposed to control the DC-link voltage. The wind generation unit operates in V-f control mode and the DIG operates in PQ control mode, which allows the stand-alone system to operate either in wind-diesel (WD mode or in wind-only (WO mode. The strong influence of the wind turbine speed variations in the DC-link voltage is mitigated by a low-pass filter added to the speed control loop of the wind turbine. The proposed control approach does not require the use battery bank and ultra-capacitor to control the DC-link voltage in wind generation units based on fully rated converter.

  18. Thermal diode cooling fin concept

    International Nuclear Information System (INIS)

    Lyall, H.G.; Watts, J.

    1983-01-01

    The heat input through the finned portions of the walls of a water-filled fuel transport flask during an accidental, hydrocarbon fire can be halved by the replacement of narrow, solid fins by wider, hollow fins of similar pitch. In a flask with lid and base heat-shields this has the effect of reducing mean water temperature rise by about one third. These savings are achieved at the relatively small expense of slightly increased (by about 1 degC/kW of decay heat load) pre-fire normal operating water temperatures. 7 references, 3 figures, 5 tables

  19. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  20. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach

    International Nuclear Information System (INIS)

    Salcedo-Sanz, S.; Pastor-Sánchez, A.; Prieto, L.; Blanco-Aguilera, A.; García-Herrera, R.

    2014-01-01

    Highlights: • A novel approach for short-term wind speed prediction is presented. • The system is formed by a coral reefs optimization algorithm and an extreme learning machine. • Feature selection is carried out with the CRO to improve the ELM performance. • The method is tested in real wind farm data in USA, for the period 2007–2008. - Abstract: This paper presents a novel approach for short-term wind speed prediction based on a Coral Reefs Optimization algorithm (CRO) and an Extreme Learning Machine (ELM), using meteorological predictive variables from a physical model (the Weather Research and Forecast model, WRF). The approach is based on a Feature Selection Problem (FSP) carried out with the CRO, that must obtain a reduced number of predictive variables out of the total available from the WRF. This set of features will be the input of an ELM, that finally provides the wind speed prediction. The CRO is a novel bio-inspired approach, based on the simulation of reef formation and coral reproduction, able to obtain excellent results in optimization problems. On the other hand, the ELM is a new paradigm in neural networks’ training, that provides a robust and extremely fast training of the network. Together, these algorithms are able to successfully solve this problem of feature selection in short-term wind speed prediction. Experiments in a real wind farm in the USA show the excellent performance of the CRO–ELM approach in this FSP wind speed prediction problem

  1. A Fuzzy-FMEA Risk Assessment Approach for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    M. Shafiee

    2013-01-01

    Full Text Available Failure Mode and Effects Analysis (FMEA has been extensively used by wind turbine assembly manufacturers for risk and reliability analysis. However, several limitations are associated with its implementation in offshore windfarms: (i the failure data gathered from SCADA system is often missing or unreliable, and hence, the assessment information of the three risk factors (i.e., severity, occurrence, and fault detection are mainly based onexperts’ knowledge; (ii it is rather difficult for experts to precisely evaluate the risk factors; (iii the relative importance among the risk factors is not taken into consideration, and hence, the results may not necessarily represent the true risk priorities; and etc. To overcome these drawbacks and improve the effectiveness of the traditional FMEA, we develop a fuzzy-FMEA approach for risk and failure mode analysis in offshore wind turbine systems. The information obtained from the experts is expressed using fuzzy linguistics terms, and a grey theory analysis is proposed to incorporate the relative importance of the riskfactors into the determination of risk priority of failure modes. The proposed approach is applied to an offshore wind turbine system with sixteen mechanical, electrical and auxiliary assemblies, and the results are compared with the traditional FMEA.

  2. Improving Wind Turbine Drivetrain Reliability Using a Combined Experimental, Computational, and Analytical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; van Dam, J.; Bergua, R.; Jove, J.; Campbell, J.

    2015-03-01

    Nontorque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling, and experimental data to evaluate a unique drivetrain design that minimizes the effects of nontorque loads on gearbox reliability: the Pure Torque(R) drivetrain developed by Alstom. The drivetrain has a hub-support configuration that transmits nontorque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces, and the resulting drivetrain loads. Main shaft bending loads are orders of magnitude lower than the rated torque and are hardly affected by wind conditions and turbine operations.

  3. A holistic approach towards optimal planning of hybrid renewable energy systems: Combining hydroelectric and wind energy

    Science.gov (United States)

    Dimas, Panagiotis; Bouziotas, Dimitris; Efstratiadis, Andreas; Koutsoyiannis, Demetris

    2014-05-01

    Hydropower with pumped storage is a proven technology with very high efficiency that offers a unique large-scale energy buffer. Energy storage is employed by pumping water upstream to take advantage of the excess of produced energy (e.g. during night) and next retrieving this water to generate hydro-power during demand peaks. Excess energy occurs due to other renewables (wind, solar) whose power fluctuates in an uncontrollable manner. By integrating these with hydroelectric plants with pumped storage facilities we can form autonomous hybrid renewable energy systems. The optimal planning and management thereof requires a holistic approach, where uncertainty is properly represented. In this context, a novel framework is proposed, based on stochastic simulation and optimization. This is tested in an existing hydrosystem of Greece, considering its combined operation with a hypothetical wind power system, for which we seek the optimal design to ensure the most beneficial performance of the overall scheme.

  4. Robust Active Disturbance Rejection Control Approach to Maximize Energy Capture in Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Horacio Coral-Enriquez

    2013-01-01

    Full Text Available This paper proposes an alternative robust observer-based linear control technique to maximize energy capture in a 4.8 MW horizontal-axis variable-speed wind turbine. The proposed strategy uses a generalized proportional integral (GPI observer to reconstruct the aerodynamic torque in order to obtain a generator speed optimal trajectory. Then, a robust GPI observer-based controller supported by an active disturbance rejection (ADR approach allows asymptotic tracking of the generator speed optimal trajectory. The proposed methodology controls the power coefficient, via the generator angular speed, towards an optimum point at which power coefficient is maximum. Several simulations (including an actuator fault are performed on a 4.8 MW wind turbine benchmark model in order to validate the proposed control strategy and to compare it to a classical controller. Simulation and validation results show that the proposed control strategy is effective in terms of power capture and robustness.

  5. Effect of the Curved Fin Top Edge on the Electrical Characteristics of FinFETs.

    Science.gov (United States)

    Ahn, Joonsung; Kim, Tae Whan

    2018-03-01

    The effect of the curved fin top edge on the electrical characteristics of FinFETs was investigated. The curvature radius of the fin top edge for the FinFETs was changed from 0 to 5 nm in order to determine the optimum condition of the electrical characteristics for the devices. The on-current level of the FinFETs with a curvature radius of 5 nm of fin top edge was 24.45% larger than that of the FinFETs with a cuboid fin. The electron current density and the electron mobility of the fin top edge for the FinFETs were larger than those for the FinFETs with a cuboid fin. The electrical characteristics of the FinFETs with a curvature radius of 5 nm for the fin top edge showed the best performance due to the largest expansion of the effective channel region.

  6. The Influence of Culture on the International Management of Shark Finning

    Science.gov (United States)

    Dell'Apa, Andrea; Chad Smith, M.; Kaneshiro-Pineiro, Mahealani Y.

    2014-08-01

    Shark finning is prohibited in many countries, but high prices for fins from the Asian market help maintain the international black-market and poaching. Traditional shark fin bans fail to recognize that the main driver of fin exploitation is linked to cultural beliefs about sharks in traditional Chinese culture. Therefore, shark finning should be addressed considering the social science approach as part of the fishery management scheme. This paper investigates the cultural significance of sharks in traditional Chinese and Hawaiian cultures, as valuable examples of how specific differences in cultural beliefs can drive individuals' attitudes toward the property of shark finning. We suggest the use of a social science approach that can be useful in the design of successful education campaigns to help change individuals' attitudes toward shark fin consumption. Finally, alternative management strategies for commercial fishers are provided to maintain self-sustainability of local coastal communities.

  7. A note on the heat transfer in convective fins

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    In this paper a generalized approach to the problem of heat transfer through convective fins is given. The proper dimensionless variables, which specify the general problem are identified, and upper bounds of the values of the dimensionless number Nsub(r) defined as 'the ratio of the heat transferred by the fin to that of the corresponding bare surface' are derived. It was shown that these limiting values of the Nsub(r) are 1/√B 1 and √2/B 1 for longitudinal fins and spines respectively, where B 1 is the Biot number hb/k, while for annular fins of constant thickness and hyperbolic profile, Nsub(r) 1 , where K(β) is a number determined by the profile of the fin and the ratio β = x 2 /x 1 of the outside to the inside radii. It was also shown that for longitudinal fins and spinces the possible adverse insulating effect by the use of the fin is avoided, if one selects the value of √hA/kC [de

  8. Estimating the Probability of Wind Ramping Events: A Data-driven Approach

    OpenAIRE

    Wang, Cheng; Wei, Wei; Wang, Jianhui; Qiu, Feng

    2016-01-01

    This letter proposes a data-driven method for estimating the probability of wind ramping events without exploiting the exact probability distribution function (PDF) of wind power. Actual wind data validates the proposed method.

  9. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    Science.gov (United States)

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  10. Thermal Characterizations of Exponential Fin Systems

    Directory of Open Access Journals (Sweden)

    A.-R. A. Khaled

    2010-01-01

    Full Text Available Exponential fins are mathematically analyzed in this paper. Two types are considered: (i straight exponential fins and (ii pin exponential fins. The possibility of having increasing or decreasing cross-sectional areas is considered. Different thermal performance indicators are derived. The maximum ratio between the thermal efficiency of the exponential straight fin to that of the rectangular fin is found to be 1.58 at an effective thermal length of 2.0. This ratio is even larger when exponential fins are compared with triangular and parabolic straight fins. Moreover, the maximum ratio between the thermal efficiency of the exponential pin fin to that of the rectangular pin fin is found to be 1.17 at an effective thermal length of 1.5. However, exponential pin fins thermal efficiencies are found to be lower than those of triangular and parabolic pin fins. Moreover, exponential joint-fins may transfer more heat than rectangular joint-fins especially when differences between their senders and receivers portions dimensionless indices are very large. Finally, it is found that increasing the joint-fin exponential index may cause straight exponential joint-fins to transfer more heat than rectangular joint-fins.

  11. Combined time-varying forecast based on the proper scoring approach for wind power generation

    DEFF Research Database (Denmark)

    Chen, Xingying; Jiang, Yu; Yu, Kun

    2017-01-01

    Compared with traditional point forecasts, combined forecast have been proposed as an effective method to provide more accurate forecasts than individual model. However, the literature and research focus on wind-power combined forecasts are relatively limited. Here, based on forecasting error...... distribution, a proper scoring approach is applied to combine plausible models to form an overall time-varying model for the next day forecasts, rather than weights-based combination. To validate the effectiveness of the proposed method, real data of 3 years were used for testing. Simulation results...... demonstrate that the proposed method improves the accuracy of overall forecasts, even compared with a numerical weather prediction....

  12. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1) No...

  13. A real options approach to analyse wind energy investments under different support schemes

    International Nuclear Information System (INIS)

    Kitzing, Lena; Juul, Nina; Drud, Michael; Boomsma, Trine Krogh

    2017-01-01

    Highlights: • Real options model for wind projects considering investment timing and sizing. • Introducing a capacity constraint in the optimisation. • Addressing several uncertainty factors while still providing analytical solution. • Comparative policy analysis of investment incentives from different support schemes. • Improved quantification of trade-off between fast deployment and large projects. - Abstract: A real options model is developed to evaluate wind energy investments in a realistic and easily applicable way. Considering optimal investment timing and sizing (capacity choice), the model introduces a capacity constraint as part of the optimisation. Several correlated uncertainty factors are combined into a single stochastic process, which allows for analytical (closed-form) solutions. The approach is well suited for quantitative policy analysis, such as the comparison of different support schemes. A case study for offshore wind in the Baltic Sea quantifies differences in investment incentives under feed-in tariffs, feed-in premiums and tradable green certificates. Investors can under certificate schemes require up to 3% higher profit margins than under tariffs due to higher variance in profits. Feed-in tariffs may lead to 15% smaller project sizes. This trade-off between faster deployment of smaller projects and slower deployment of larger projects is neglected using traditional net present value approaches. In the analysis of such trade-off, previous real options studies did not consider a capacity constraint, which is here shown to decrease the significance of the effect. The impact on investment incentives also depends on correlations between the underlying stochastic factors. The results may help investors to make informed investment decisions and policy makers to strategically design renewable support and develop tailor-made incentive schemes.

  14. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.

    Science.gov (United States)

    Liu, Hanlin; Taylor, Bevan; Curet, Oscar M

    2017-06-01

    Ribbon-fin-based propulsion has rich locomotor capabilities that can enhance the mobility and performance of underwater vehicles navigating in complex environments. Bony fishes using this type of propulsion send one or multiple traveling waves along an elongated fin with the actuation of highly flexible rays that are interconnected by an elastic membrane. In this work, we study how the use of flexible rays and different morphology can affect the performance of ribbon-fin propulsion. We developed a physical model composed of 15 rays that are interconnected with an elastic membrane. We tested four different ray flexural stiffness and four aspect ratios. The robotic model was tested in a low-turbulence flume under two flow conditions ([Formula: see text] wavelength/s). In two experimental sets, we measured fin kinematics, net surge forces, and power consumption. Using these data, we perform a thrust and power analysis of the undulating fin. We present the thrust coefficient, power coefficient, and propulsive efficiency. We find that the thrust generation was linear with the enclosed area swept by the fin, and square of the relative velocity between the incoming flow and traveling wave. The thrust coefficient levels off around 0.5. In addition, for our parameter range, we find that the power consumption scales by the cube of the effective tangential velocity of the rays [Formula: see text] (A is the amplitude of the ray oscillating motion, and [Formula: see text] is the angular velocity). We show that a decay in stiffness decreases both thrust production and power consumption. However, for rays with high flexural stiffness, the difference in thrust compared with rigid rays is minimal. Moreover, our results show that flexible rays can improve the propulsive efficiency compared with a rigid counterpart. Finally, we find that the morphology of ribbon fin affects its propulsive efficiency. For the aspect ratio considered in our experiments, [Formula: see text] was the most

  15. A new system for analyzing swim fin propulsion based on human kinematic data.

    Science.gov (United States)

    Nicolas, Guillaume; Bideau, Benoit; Bideau, Nicolas; Colobert, Briac; Le Guerroue, Gaël; Delamarche, Paul

    2010-07-20

    The use of swim fins has become popular in various water sport activities. While numerous models of swim fin with various innovative shapes have been subjectively designed, the exact influence of the fin characteristics on swimming performance is still much debated, and remains difficult to quantify. To date, the most common approach for evaluating swim fin propulsion is based on the study of "swimmer-fins" as a global system, where physiological and/or biomechanical responses are considered. However, reproducible swimming technique is difficult (or even impossible) to obtain on human body and may lead to discrepancies in data acquired between trials. In this study, we present and validate a new automat called HERMES which enables an evaluation of various swim fins during an adjustable, standardized and reproducible motion. This test bench reliably and accurately reproduces human fin-swimming motions, and gives resulting dynamic measurements at the ankle joint. Seven fins with various geometrical and mechanical characteristics were tested. For each swim fin, ankle force and hydromechanical efficiency (useful mechanical power output divided by mechanical power input delivered by the motors) were calculated. Efficiencies reported in our study were high (close to 70% for some swim fins) over a narrow range of Strouhal number (St) and peaks within the interval 0.2swimming animals. Therefore, an interesting prospect in this work would be to accurately study the impact of adjustable fin kinematics and material (design and mechanical properties) on the wake structure and on efficiency. 2010 Elsevier Ltd. All rights reserved.

  16. Transcriptional Profiling of Caudal Fin Regeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Michael Schebesta

    2006-01-01

    Full Text Available Regeneration of severed limbs in adult animals is restricted to urodele amphibians. Mammals, including humans, have very limited regenerative capabilities and even with proper treatment, only the tips of our digits can grow back. Teleost fish can regenerate amputated fins, the evolutionary ancestors of limbs. To elucidate the principles of limb-fin regeneration, we performed an Affymetrix microarray screen on regenerating caudal fins 12, 24, 48, and 72 h post amputation. Approximately 15,000 zebrafish transcripts were analyzed, identifying 829 transcripts as differentially expressed during regeneration. Of those, 563 were up-regulated and 266 were down-regulated. We constructed a comprehensive database containing expression data, functional assignment, and background information from the literature for each differentially expressed transcript. In order to validate our findings, we employed three approaches: (1 microarray expression analysis of genes previously implicated in fin regeneration, (2 RT-PCR analysis of genes newly identified as differentially expressed during regeneration, and (3 in situ hybridization of the up-regulated genes bambi, dlx5A, and her6. Moreover, we show that Smad 1/5/8 proteins, effector molecules of Bmp signaling, are phosphorylated during fin regeneration. Taken together, we provide a comprehensive database of fin regeneration that will serve as an important tool for understanding the molecular mechanisms of regeneration.

  17. Tank Made Of Connected Cooling Fins

    Science.gov (United States)

    Schultz, Donald F.; O'Donnell, John J.

    1994-01-01

    New method of fabricating fin-cooled tank requires half as many arc-welding passes and features more efficient transfer of heat. Fins integral parts of tank structure. Requires only one welding pass per fin, and pass done on unobstructed inside of tank. With inside welding, fins longer and more closely spaced. Method proposed to build tank with 256 fins. Holds water in which radioisotope heat source immersed before use. Water absorbs bremsstrahlung radiation from isotope, and fins dissipate heat generated by absorption.

  18. Mechatronic modeling of a 750kW fixed-speed wind energy conversion system using the Bond Graph Approach.

    Science.gov (United States)

    Khaouch, Zakaria; Zekraoui, Mustapha; Bengourram, Jamaa; Kouider, Nourreeddine; Mabrouki, Mustapha

    2016-11-01

    In this paper, we would like to focus on modeling main parts of the wind turbines (blades, gearbox, tower, generator and pitching system) from a mechatronics viewpoint using the Bond-Graph Approach (BGA). Then, these parts are combined together in order to simulate the complete system. Moreover, the real dynamic behavior of the wind turbine is taken into account and with the new model; final load simulation is more realistic offering benefits and reliable system performance. This model can be used to develop control algorithms to reduce fatigue loads and enhance power production. Different simulations are carried-out in order to validate the proposed wind turbine model, using real data provided in the open literature (blade profile and gearbox parameters for a 750 kW wind turbine). Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains through Integrated Design Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.

  20. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains Through Integrated Design Approaches: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.

  1. Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, B.; King, J.; Milligan, M.

    2012-06-01

    The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

  2. A Data-Driven Diagnostic Framework for Wind Turbine Structures: A Holistic Approach.

    Science.gov (United States)

    Bogoevska, Simona; Spiridonakos, Minas; Chatzi, Eleni; Dumova-Jovanoska, Elena; Höffer, Rudiger

    2017-03-30

    The complex dynamics of operational wind turbine (WT) structures challenges the applicability of existing structural health monitoring (SHM) strategies for condition assessment. At the center of Europe's renewable energy strategic planning, WT systems call for implementation of strategies that may describe the WT behavior in its complete operational spectrum. The framework proposed in this paper relies on the symbiotic treatment of acting environmental/operational variables and the monitored vibration response of the structure. The approach aims at accurate simulation of the temporal variability characterizing the WT dynamics, and subsequently at the tracking of the evolution of this variability in a longer-term horizon. The bi-component analysis tool is applied on long-term data, collected as part of continuous monitoring campaigns on two actual operating WT structures located in different sites in Germany. The obtained data-driven structural models verify the potential of the proposed strategy for development of an automated SHM diagnostic tool.

  3. A new approach to very short term wind speed prediction using k-nearest neighbor classification

    International Nuclear Information System (INIS)

    Yesilbudak, Mehmet; Sagiroglu, Seref; Colak, Ilhami

    2013-01-01

    Highlights: ► Wind speed parameter was predicted in an n-tupled inputs using k-NN classification. ► The effects of input parameters, nearest neighbors and distance metrics were analyzed. ► Many useful and reasonable inferences were uncovered using the developed model. - Abstract: Wind energy is an inexhaustible energy source and wind power production has been growing rapidly in recent years. However, wind power has a non-schedulable nature due to wind speed variations. Hence, wind speed prediction is an indispensable requirement for power system operators. This paper predicts wind speed parameter in an n-tupled inputs using k-nearest neighbor (k-NN) classification and analyzes the effects of input parameters, nearest neighbors and distance metrics on wind speed prediction. The k-NN classification model was developed using the object oriented programming techniques and includes Manhattan and Minkowski distance metrics except from Euclidean distance metric on the contrary of literature. The k-NN classification model which uses wind direction, air temperature, atmospheric pressure and relative humidity parameters in a 4-tupled space achieved the best wind speed prediction for k = 5 in the Manhattan distance metric. Differently, the k-NN classification model which uses wind direction, air temperature and atmospheric pressure parameters in a 3-tupled inputs gave the worst wind speed prediction for k = 1 in the Minkowski distance metric

  4. Modular Approach for the Optimal Wind Turbine Micro Siting Problem through CMA-ES Algorithm (abstract)

    NARCIS (Netherlands)

    Rodrigues, S.; Bauer, P.; Pierik, J.

    2013-01-01

    Although, only in recent years, northern European countries started to install large offshore wind farms, it is expected that by 2020, several dozens of far and large offshore wind farms (FLOWFs) will be built. These FLOWFs will be constituted of a considerable amount of wind turbines (WTs) packed

  5. A Review of Methodological Approaches for the Design and Optimization of Wind Farms

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Probst, Oliver; Réthoré, Pierre-Elouan

    2014-01-01

    This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up to thou...

  6. Vocalizations associated with pectoral fin contact in bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Evans-Wilent, J; Dudzinski, K M

    2013-11-01

    Pectoral fin contact in bottlenose dolphins represents one form of tactile communication. Acoustic communication associated with pectoral fin contact is an additional level of communication that may change or enhance the tactile message between two individuals. In this study, we examine vocalization types associated with pectoral fin contact in a group of captive bottlenose dolphins (Tursiops truncatus). From 2006 to 2009, vocalizations potentially associated with 748 pectoral fin contacts were examined: whistles, click trains and overlap of whistles and click trains were documented when associated with fin contact. Dolphins were also documented not vocalizing when exchanging pectoral fin contacts. Call type associated with pectoral fin contact was compared for the proportion of the type of pectoral fin contact, vocalizer sex, initiator and receiver roles, and gender pair. Overall, vocalizations differed significantly by vocalizer role as rubber or rubbee, initiator, and sex. Receivers and rubbees clicked and used overlap vocalizations more frequently, and males produced overlap vocalizations more frequently. These results suggest that whistles may be used to initiate pectoral fin contact or show preference for a particular partner, while click trains may be used to show disinterest in pectoral fin contact or to signal the end of a contact. Examining vocalizations produced in conjunction with tactile contact is a relatively new approach in the study of individual dolphin behavior and may be useful for understanding dolphin social alliances and social preferences for various individuals within a population. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A modeling approach to identify the effective forcing exerted by wind on a prealpine lake surrounded by a complex topography

    Science.gov (United States)

    Valerio, G.; Cantelli, A.; Monti, P.; Leuzzi, G.

    2017-05-01

    The representation of spatial wind distribution is recognized as a serious difficulty when modeling the hydrodynamics of lakes surrounded by a complex topography. To address this issue, we propose to force a 3-D lake model with the wind field simulated by a high-resolution atmospheric model, considering as a case study a 61 km2 prealpine lake surrounded by mountain ranges that reach 1800 m above the lake's surface, where a comprehensive data set was available in the stratified season. The improved distributed description of the wind stress over the lake surface led to a significant enhancement in the representation of the main basin-scale internal wave motions, and hence provided a reference solution to test the use of simplified approaches. Moreover, the analysis of the power exerted by the computed wind field enabled us to identify measuring stations that provide suitable wind data to be applied uniformly on the lake surface in long-term simulations. Accordingly, the proposed methodology can contribute to reducing the uncertainties associated with the definition of wind forcing for modeling purposes and can provide a rational criterion for installing representative measurement locations in prealpine lakes.

  8. Analysis of Fin Tip Temperature and Fin Efficiency for Different Fingeometries and Materials Using Abaqus

    International Nuclear Information System (INIS)

    Imran, S.; Noor, F.; Ali, H.; Hussain, A.; Ali, Z.; Shad, R.

    2015-01-01

    Fins are widely used in various engineering applications to enhance the rate of heat transfer. The effect of fin geometry and its material on the fin efficiency and the amount of heat transferred are investigated in this study. Rectangular and triangular fin geometries have been considered and two fin materials, aluminium and carbon steel, have been selected. It is found numerically that the fin tip temperature and the fin efficiency are decreased with the increase of the convective heat transfer coefficient. ABAQUS has been used to conduct this numerical study. (author)

  9. Risk analysis for U.S. offshore wind farms: the need for an integrated approach.

    Science.gov (United States)

    Staid, Andrea; Guikema, Seth D

    2015-04-01

    Wind power is becoming an increasingly important part of the global energy portfolio, and there is growing interest in developing offshore wind farms in the United States to better utilize this resource. Wind farms have certain environmental benefits, notably near-zero emissions of greenhouse gases, particulates, and other contaminants of concern. However, there are significant challenges ahead in achieving large-scale integration of wind power in the United States, particularly offshore wind. Environmental impacts from wind farms are a concern, and these are subject to a number of on-going studies focused on risks to the environment. However, once a wind farm is built, the farm itself will face a number of risks from a variety of hazards, and managing these risks is critical to the ultimate achievement of long-term reductions in pollutant emissions from clean energy sources such as wind. No integrated framework currently exists for assessing risks to offshore wind farms in the United States, which poses a challenge for wind farm risk management. In this "Perspective", we provide an overview of the risks faced by an offshore wind farm, argue that an integrated framework is needed, and give a preliminary starting point for such a framework to illustrate what it might look like. This is not a final framework; substantial work remains. Our intention here is to highlight the research need in this area in the hope of spurring additional research about the risks to wind farms to complement the substantial amount of on-going research on the risks from wind farms. © 2015 Society for Risk Analysis.

  10. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish.

    Science.gov (United States)

    Lauder, George V; Madden, Peter G A; Mittal, Rajat; Dong, Haibo; Bozkurttas, Meliha

    2006-12-01

    A full understanding of the mechanics of locomotion can be achieved by incorporating descriptions of (1) three-dimensional kinematics of propulsor movement, (2) material properties of the propulsor, (3) power input and control and (4) the fluid dynamics effects of propulsor motion into (5) a three-dimensional computational framework that models the complexity of propulsors that deform and change area. In addition, robotic models would allow for further experimental investigation of changes to propulsor design and for testing of hypothesized relationships between movement and force production. Such a comprehensive suite of data is not yet available for any flexible propulsor. In this paper, we summarize our research program with the goal of producing a comprehensive data set for each of the five components noted above through a study of pectoral fin locomotion in one species of fish: the bluegill sunfish Lepomis macrochirus. Many fish use pectoral fins exclusively for locomotion, and pectoral fins in most fish are integral to generating force during maneuvering. Pectoral fins are complex structures composed of jointed bony supports that are under active control via pectoral fin musculature. During propulsion in sunfish, the fin deforms considerably, has two leading edges, and sunfish can rotate the whole fin or just control individual sections to vector thrust. Fin material properties vary along the length of fin rays and among rays. Experimental fluid dynamic analysis of sunfish pectoral fin locomotion reveals that the fin generates thrust throughout the fin beat cycle, and that the upper and lower edges each produce distinct simultaneous leading edge vortices. The following companion paper provides data on the computational approach taken to understand locomotion using flexible pectoral fins.

  11. Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving irrigation systems

    Science.gov (United States)

    Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher

    2015-01-01

    The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...

  12. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  13. Advances in the Assessment of Wind Turbine Operating Extreme Loads via More Efficient Calculation Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Peter; Damiani, Rick R.; Dykes, Katherine; Jonkman, Jason M.

    2017-01-09

    A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the input parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.

  14. Analysis of the Drivetrain Performance of a Large Horizontal-Axis Wind Turbine: An Aeroelastic Approach

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Preidikman, Sergio; Massa, Julio C

    2010-01-01

    blades’, the drivetrain and the generator. The blades are the part of the turbine that touches energy in the wind and rotates about an axis. Extracting energy from the wind is typically accomplished by first mechanically converting the velocity of the wind into a rotational motion of the wind turbine...... scheme are implemented in a computational tool; and by using it, the behavior of the turbine in the starting initial regime is investigated, considering different laws of brake releasing. The capability to simulate these phenomena is one of the novel aspects in the present effort....

  15. A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data

    Science.gov (United States)

    Belt, Carol L.; Fuelberg, Henry E.

    1984-01-01

    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.

  16. Impact of wind farms on a power system. An eigenvalue analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Mantz, R.J.; Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)

    2007-08-15

    This paper analyzes the frequency dynamic behavior in a power system with a high wind power penetration. To this end, wind farms equipped with squirrel cage and doubly fed induction generators are compared. Aspects of the modeling of the different kinds of wind generation and power systems are cited. Then, it is shown, through an eigenvalue analysis, that wind farms equipped by doubly fed induction machines, adequately controlled, can contribute to improve the frequency dynamics. Simulations are presented which verify the theoretical results. (author)

  17. Wind Energy to Thermal and Cold Storage – A Systems Approach

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    In this paper wind energy to thermal and cold storage scenarios were examined to enable high wind integration through converting renewable electricity excess into thermal or cooling energy, saving part of the energy used in an area and eliminating the need to possibly build a new coal fired plant....... Case studies in Crete Island (not interconnected to the power grid of Greek mainland) with onshore wind power installed were investigated. The aim of this work was to review the options for greater integration of renewables into the grid and the main idea was to analyze the wind to thermal and to cold...... storage according to the needs of two small municipalities....

  18. Effects of fin fold mesenchyme ablation on fin development in zebrafish.

    Science.gov (United States)

    Lalonde, Robert L; Akimenko, Marie-Andrée

    2018-01-01

    The evolution of the tetrapod limb involved an expansion and elaboration of the endoskeletal elements, while the fish fin rays were lost. Loss of fin-specific genes, and regulatory changes in key appendicular patterning genes have been identified as mechanisms of limb evolution, however their contributions to cellular organization and tissue differences between fins and limbs remains poorly understood. During early larval fin development, hoxa13a/hoxd13a-expressing fin fold mesenchyme migrate through the median and pectoral fin along actinotrichia fibrils, non-calcified skeletal elements crucial for supporting the fin fold. Fin fold mesenchyme migration defects have previously been proposed as a mechanism of fin dermal bone loss during tetrapod evolution as it has been shown they contribute directly to the fin ray osteoblast population. Using the nitroreductase/metronidazole system, we genetically ablated a subset of hoxa13a/hoxd13a-expressing fin fold mesenchyme to assess its contributions to fin development. Following the ablation of fin fold mesenchyme in larvae, the actinotrichia are unable to remain rigid and the median and pectoral fin folds collapse, resulting in a reduced fin fold size. The remaining cells following ablation are unable to migrate and show decreased actinodin1 mesenchymal reporter activity. Actinodin proteins are crucial structural component of the actinotrichia. Additionally, we show a decrease in hoxa13a, hoxd13a, fgf10a and altered shha, and ptch2 expression during larval fin development. A continuous treatment of metronidazole leads to fin ray defects at 30dpf. Fewer rays are present compared to stage-matched control larvae, and these rays are shorter and less defined. These results suggest the targeted hoxa13a/hoxd13a-expressing mesenchyme contribute to their own successful migration through their contributions to actinotrichia. Furthermore, due to their fate as fin ray osteoblasts, we propose their initial ablation, and subsequent

  19. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number...... is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500...... problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch...

  20. Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins

    Directory of Open Access Journals (Sweden)

    Lagutin A. E.

    2016-12-01

    Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.

  1. Information theoretical approach to discovering solar wind drivers of the outer radiation belt

    NARCIS (Netherlands)

    S.P. Wing (Simon); J.R. Johnson (Jay); E. Camporeale (Enrico); G.D. Reeves (Geoffrey)

    2016-01-01

    textabstractThe solar wind-magnetosphere system is nonlinear. The solar wind drivers of geosynchronous electrons with energy range of 1.8–3.5 MeV are investigated using mutual information, conditional mutual information (CMI), and transfer entropy (TE). These information theoretical tools can

  2. Wind speed time series reconstruction using a hybrid neural genetic approach

    Science.gov (United States)

    Rodriguez, H.; Flores, J. J.; Puig, V.; Morales, L.; Guerra, A.; Calderon, F.

    2017-11-01

    Currently, electric energy is used in practically all modern human activities. Most of the energy produced came from fossil fuels, making irreversible damage to the environment. Lately, there has been an effort by nations to produce energy using clean methods, such as solar and wind energy, among others. Wind energy is one of the cleanest alternatives. However, the wind speed is not constant, making the planning and operation at electric power systems a difficult activity. Knowing in advance the amount of raw material (wind speed) used for energy production allows us to estimate the energy to be generated by the power plant, helping the maintenance planning, the operational management, optimal operational cost. For these reasons, the forecast of wind speed becomes a necessary task. The forecast process involves the use of past observations from the variable to forecast (wind speed). To measure wind speed, weather stations use devices called anemometers, but due to poor maintenance, connection error, or natural wear, they may present false or missing data. In this work, a hybrid methodology is proposed, and it uses a compact genetic algorithm with an artificial neural network to reconstruct wind speed time series. The proposed methodology reconstructs the time series using a ANN defined by a Compact Genetic Algorithm.

  3. A benders decomposition approach for solving the offshore wind farm installation planning at the North Sea

    NARCIS (Netherlands)

    Ursavas, Evrim

    2017-01-01

    Wind farm installation and particularly offshore wind farm installation is highly complex due to high dependency on weather and remarkably large components. Amongst others projects at North Sea face considerable interruptions due to severe weather conditions. The problem we refer to consists of

  4. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  5. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control

    International Nuclear Information System (INIS)

    Phelan, Chris; Tangorra, James; Lauder, George; Hale, Melina

    2010-01-01

    A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities.

  6. Mathematical Extrapolating of Highly Efficient Fin Systems

    Directory of Open Access Journals (Sweden)

    A.-R. A. Khaled

    2011-01-01

    Full Text Available Different high-performance fins are mathematically analyzed in this work. Initially, three types are considered: (i exponential, (ii parabolic, and (iii triangular fins. Analytical solutions are obtained. Accordingly, the effective thermal efficiency and the effective volumetric heat dissipation rate are calculated. The analytical results were validated against numerical solutions. It is found that the triangular fin has the maximum effective thermal length. In addition, the exponential pin fin is found to have the largest effective thermal efficiency. However, the effective efficiency for the straight one is the maximum when its effective thermal length based on profile area is greater than 1.4. Furthermore, the exponential straight fin is found to have effective volumetric heat dissipation that can be 440% and 580% above the parabolic and triangular straight fins, respectively. In contrast, the exponential pin fin is found to possess effective volumetric heat dissipation that can be 120% and 132% above the parabolic and triangular pin fins, respectively. Finally, new high performance fins are mathematically generated that can have effective volumetric heat dissipation of 24% and 12% above those of exponential pin and straight fins, respectively.

  7. Modeling and forecasting of wind power generation - Regime-switching approaches

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien

    of more renewable energy into power systems since these systems are subjected to maintain a strict balance between electricity consumption and production, at any time. For this purpose, wind power forecasts offer an essential support to power system operators. In particular, there is a growing demand...... of high and low variability. They also yield substantial gains in probabilistic forecast accuracy for lead times of a few minutes. However, these models only integrate historical and local measurements of wind power and thus have a limited ability for notifying regime changes for larger lead times....... For that purpose, there is a long tradition in using meteorological forecasts of wind speed and direction that are converted into wind power forecasts. Nevertheless, meteorological forecasts are not informative on the intra-hour wind variability and thus cannot be used in the present context focusing on temporal...

  8. An Innovative Approach To Making Ultra Light Weight Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Suhail Zaki Farooqui

    2012-04-01

    Full Text Available An innovative mould free method for the fabrication of ultimate light weight small wind turbine blades made out of composites has been suggested in this paper. The method has been practically applied with very satisfactory results. The method is low cost and is specifically suitable for individual small wind turbine makers. The airfoils used are simple to shape and possess good Cl/Cd characteristics. The blades are crafted using galvanized iron sheets, aluminum pipes, hard paper and fiberglass. A computer program is included with tip correction features to design the blades at the required power rating, wind speed, tip speed ratio and the chosen constant angle of attack. Results of the program run for designing 250 and 500 watt wind turbine blades at 8 m/s wind speed and tip speed ratios of 5.5 are tabulated. Performance results of the blades thus produced are also discussed.

  9. Innovative approach to computer-aided design of horizontal axis wind turbine blades

    Directory of Open Access Journals (Sweden)

    Seyed Farhad Hosseini

    2017-04-01

    Full Text Available The design of horizontal axis wind turbine (HAWT blades involves several geometric complexities. As a result, the modeling of these blades by commercial computer-aided design (CAD software is not easily accomplished. In the present paper, the HAWT blade is divided into structural and aerodynamic surfaces with a G1 continuity imposed on their connecting region. The widely used method of skinning is employed throughout the current work for surface approximation. In addition, to ensure the compatibility of section curves, a novel approach is developed based on the redistribution of input airfoil points. In order to evaluate deviation errors, the Hausdorff metric is used. The fairness of surfaces is quantitatively assessed using the standard strain energy method. The above-mentioned algorithms are successfully integrated into a MATLAB program so as to enhance further optimization applications. The final surfaces created by the procedure developed during the present study can be exported using the IGES standard file format and directly interpreted by commercial CAD and FE software.

  10. Wind turbine wake stability investigations using a vortex ring modelling approach

    International Nuclear Information System (INIS)

    Baldacchino, Daniel; Van Bussel, Gerard J W

    2014-01-01

    In the present study, a simple inviscid vortex ring (VR) modelling approach is used to represent the developing rotor wake. This allows a straightforward investigation and comparison of the impact of uniform, yawed and sheared flow conditions on the development of the rotor wake, with the additional possibility of including ground effect. The effect of instabilities on the development of the wake is manually introduced in the form of perturbations of strength, ring position and size. The phenomenon of vortex filament interaction or leapfrogging, could play a role in the observation of unsteady phenomena and is therefore also addressed. Such a study is hence performed in light of recent conflicting views on the causes of wake meandering: is the observed dynamic wake behaviour a result of large scale turbulent forcing or do more subtle and intrinsic wake instabilities play a role? This study concludes that the presence of the ground and external perturbations, most notably changes in the wake pitch and the rotor thrust coefficient, can significantly affect the steady development of the wake. The mutual vortex pairing instability, whilst displaying interesting periodic behaviour, does not correlate with periodic wake behaviour reported by Medici et al. However, in the absence of unsteady inflow, it is shown that the wake of a Horizontal Axis Wind Turbine (HAWT) is certainly prone to displaying unstable, dynamic behaviour caused by these additional factors

  11. Investigations into the dynamic behaviour of finned tube heat exchangers

    International Nuclear Information System (INIS)

    Sandbrink, J.; Stegemann, D.

    1981-01-01

    Atmospheric disturbances due to thunder storms, side wind effects on the shell or ground inversion can impair the heat dissipation of a cooling tower. These effects react on the overall power plant, which is reflected in the varied electrical output. This uncontrolled behaviour has been investigated in detail for the case of a boiling water reactor nuclear power station with indirect natural draught dry cooling and compared with controlled performance. A computer model, which has been checked out by means of experimental investigations on three different types of tube, is presented to describe the dynamic behaviour of finned tube heat exchangers. (orig.) [de

  12. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  13. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  14. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  15. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  16. A hybrid approach for short-term forecasting of wind speed.

    Science.gov (United States)

    Tatinati, Sivanagaraja; Veluvolu, Kalyana C

    2013-01-01

    We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods.

  17. Certificate-Based Approach to Marketing Green Power and Constructing New Wind Energy Facilities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Blank, E.; Bird, L.; Swezey, B.

    2002-05-01

    The availability of wind energy certificates in Pennsylvania's retail electricity market has made a critical difference in the economic feasibility of developing 140 MW of new wind energy projects in the region. Certificates offer important benefits to both green power suppliers and buyers by reducing transaction barriers and thus lowering the cost of renewable energy. Buyers also benefit through the increased flexibility offered by certificate products. The experience described in this paper offers important insights for selling green power certificates and achieving new wind energy development in other areas of the country.

  18. Approaches to Addressing Environmental Challenges with Wind Energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-26

    This presentation gives an overview of U.S. wind energy development's impacts on wildlife - particularly birds and bats. It includes discussion of mitigation efforts, research collaboratives, and U.S. Department of Energy funding.

  19. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  20. Solar wind ion trends and signatures: STEREO PLASTIC observations approaching solar minimum

    Directory of Open Access Journals (Sweden)

    A. B. Galvin

    2009-10-01

    Full Text Available STEREO has now completed the first two years of its mission, moving from close proximity to Earth in 2006/2007 to more than 50 degrees longitudinal separation from Earth in 2009. During this time, several large-scale structures have been observed in situ. Given the prevailing solar minimum conditions, these structures have been predominantly coronal hole-associated solar wind, slow solar wind, their interfaces, and the occasional transient event. In this paper, we extend earlier solar wind composition studies into the current solar minimum using high-resolution (1-h sampling times for the charge state analysis. We examine 2-year trends for iron charge states and solar wind proton speeds, and present a case study of Carrington Rotation 2064 (December 2007 which includes minor ion (He, Fe, O kinetic and Fe composition parameters in comparison with proton and magnetic field signatures at large-scale structures observed during this interval.

  1. A Novel Surface Thermometry Approach for use in Aerothermodynamic Wind Tunnel Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is aimed at developing a novel thermometry technology with upconverting phosphors for temperature measurement in NASA's high-enthalpy wind tunnels....

  2. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo [Hanyang Univ., Seoul (Korea, Republic of); Kim, Ook Joong [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer.

  3. Methylmercury in dried shark fins and shark fin soup from American restaurants.

    Science.gov (United States)

    Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S

    2014-10-15

    Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from contaminant for people. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Two approaches for incorporating climate change into natural resource management planning at Wind Cave National Park

    Science.gov (United States)

    Symstad, Amy J.; Long, Andrew J.; Stamm, John; King, David A.; Bachelet, Dominque M.; Norton, Parker A.

    2014-01-01

    Wind Cave National Park (WICA) protects one of the world’s longest caves, has large amounts of high quality, native vegetation, and hosts a genetically important bison herd. The park’s relatively small size and unique purpose within its landscape requires hands-on management of these and other natural resources, all of which are interconnected. Anthropogenic climate change presents an added challenge to WICA natural resource management because it is characterized by large uncertainties, many of which are beyond the control of park and National Park Service (NPS) staff. When uncertainty is high and control of this uncertainty low, scenario planning is an appropriate tool for determining future actions. In 2009, members of the NPS obtained formal training in the use of scenario planning in order to evaluate it as a tool for incorporating climate change into NPS natural resource management planning. WICA served as one of two case studies used in this training exercise. Although participants in the training exercise agreed that the scenario planning process showed promise for its intended purpose, they were concerned that the process lacked the scientific rigor necessary to defend the management implications derived from it in the face of public scrutiny. This report addresses this concern and others by (1) providing a thorough description of the process of the 2009 scenario planning exercise, as well as its results and management implications for WICA; (2) presenting the results of a follow-up, scientific study that quantitatively simulated responses of WICA’s hydrological and ecological systems to specific climate projections; (3) placing these climate projections and the general climate scenarios used in the scenario planning exercise in the broader context of available climate projections; and (4) comparing the natural resource management implications derived from the two approaches. Wind Cave National Park (WICA) protects one of the world’s longest caves

  5. Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects

    Directory of Open Access Journals (Sweden)

    Yong-Cheol Kang

    2013-10-01

    Full Text Available This paper presents a novel probabilistic optimization algorithm for simultaneous active and reactive power dispatch in power systems with significant wind power integration. Two types of load and wind-speed uncertainties have been assumed that follow normal and Weibull distributions, respectively. A PV bus model for wind turbines and the wake effect for correlated wind speed are used to achieve accurate AC power flow analysis. The power dispatch algorithm for a wind-power integrated system is modeled as a probabilistic optimal power flow (P-OPF problem, which is operated through fixed power factor control to supply reactive power. The proposed P-OPF framework also considers emission information, which clearly reflects the impact of the energy source on the environment. The P-OPF was tested on a modified IEEE 118-bus system with two wind farms. The results show that the proposed technique provides better system operation performance evaluation, which is helpful in making decisions about power system optimal dispatch under conditions of uncertainty.

  6. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  7. Heat exchanger with transpired, highly porous fins

    Science.gov (United States)

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  8. A stochastic framework for the grid integration of wind power using flexible load approach

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Shafie-khah, M.; Catalão, J.P.S.

    2014-01-01

    Highlights: • This paper focuses on the potential of Demand Response Programs (DRPs) to contribute to flexibility. • A stochastic network constrained unit commitment associated with DR is presented. • DR participation levels and electricity tariffs are evaluated on providing a flexible load profile. • Novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs. • DR types and customer participation levels are the main factors to modify the system load profile. - Abstract: Wind power integration has always been a key research area due to the green future power system target. However, the intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators (ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based DRPs are evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are the main factors to modify the system load profile to support wind power integration

  9. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  10. Combined natural convection heat and mass transfer from vertical fin arrays

    International Nuclear Information System (INIS)

    Giri, A.; Narasimham, G.S.V.L.; Krishna Murthy, M.V.

    2003-01-01

    Natural convection transport processes play an important role in many applications like ice-storage air-conditioning. A mathematical formulation of natural convection heat and mass transfer over a shrouded vertical fin array is developed. The base plate is maintained at a temperature below the dew point of the surrounding moist air. Hence there occurs condensation of moisture on the base plate, while the fins may be partially or fully wet. A numerical study is performed by varying the parameters of the problem. The local and average Nusselt numbers decrease in streamwise direction and tend to approach fully developed values for sufficiently large values of the fin length. The results show that beyond a certain streamwise distance, further fin length does not improve the sensible and latent heat transfer performance, and that if dry fin analysis is used under moisture condensation conditions, the overall heat transfer will be underestimated by about 50% even at low buoyancy ratios

  11. Preliminary Assessment of Noise Pollution Prevention in Wind Turbines Based on an Exergy Approach

    Directory of Open Access Journals (Sweden)

    Ofelia A. Jianu

    2017-06-01

    Full Text Available Most existing methods for energy transformation and use are inadvertently contaminating our watersupplies, releasing greenhouse gasses into the atmosphere, emitting compounds that diminish the earth'sprotective blanket of ozone, and depleting the earth's crust of natural resources. As a result, scientists andengineers are increasingly pursuing sustainable technologies so that costs associated with global warmingcan be minimized and adverse impact on living organisms can be prevented. A promising sustainablemethod is to harness energy from the wind via wind turbines. However, the noise generated by wind turbinesproves to be one of the most significant hindrances to the extensive use of wind turbines. In this study,noise generation produced by flow over objects is investigated to characterize the noise generated due toflow-structure interaction and aeroacoustics. As a benchmark, flow over a cylinder has been chosen for thisstudy, with the aim of correlating three main characteristics in noise generation. Hence, the generated soundpressure level, exergy destroyed and the normal flow velocity (∪ ∞ are employed to characterize the systemin order to relate the exergy destruction to the noise generated in the flow. The correlation has the potentialto be used in wind turbine designs to minimize noise pollution due to aerodynamic noise.

  12. Wind Turbine Pitch Control and Load Mitigation Using an L1 Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Danyong Li

    2014-01-01

    Full Text Available We present an application of L1 adaptive output feedback control design to wind turbine collective pitch control and load mitigation. Our main objective is the design of an L1 output feedback controller without wind speed estimation, ensuring that the generator speed tracks the reference trajectory with robustness to uncertain parameters and time-varying disturbances (mainly the uniform wind disturbance across the wind turbine rotor. The wind turbine model CART (controls advanced research turbine developed by the national renewable energy laboratory (NREL is used to validate the performance of the proposed L1 adaptive controller using the FAST (fatigue, aerodynamics, structures, and turbulence code. A comparative study is also conducted between the proposed controller and the most popular methods in practice: gain scheduling PI (GSPI controls and disturbance accommodating control (DAC methods. The results show better performance of L1 output feedback controller over the other two methods. Moreover, based on the FAST software and LQR analysis in the reference model selection of L1 adaptive controller, tradeoff can be achieved between control performance and loads mitigation.

  13. Technico-economical approach of maintenance and exploitation strategy for future offshore wind farms

    International Nuclear Information System (INIS)

    Martin, Ph.; Parouty, R.; Ruer, J.

    2004-01-01

    Within the framework of the project 'French Offshore Wind Catalogue' of ADEME (French Agency for Environment and Energy Control), SAIPEM S.A. has contemplated four typical sites for offshore wind farms. It is necessary to ask the question of having a technical-economic view over operation and maintenance to be implemented on such farms. Actually, maintenance stakes in offshore situations are different from those met in terrestrial context (just see carriage to the wind turbines for example). The aim of this article is to present the construction of a cost model of offshore wind farms operation and maintenance. This model is based on the design features of the materials and also on the sites geographical and climatic characteristics on which all the maintenance organisation depends. In particular, the season effect is taken into account because wind and access conditions are not homogeneous over the year. This model gave an estimation of operation and maintenance costs. It is also able to compare different solutions and to help for maintenance teams dimensioning. (authors)

  14. Computational Fluid Dynamic (CFD) Analysis of a Generic Missile With Grid Fins

    National Research Council Canada - National Science Library

    DeSpirito, James

    2000-01-01

    This report presents the results of a study demonstrating an approach for using viscous computational fluid dynamic simulations to calculate the flow field and aerodynamic coefficients for a missile with grid fin...

  15. Zebrafish Fins as a Model System for Skeletal Human Studies

    Directory of Open Access Journals (Sweden)

    Manuel Marí-Beffa

    2007-01-01

    Full Text Available Recent studies on the morphogenesis of the fins of Danio rerio (zebrafish during development and regeneration suggest that a number of inductive signals involved in the process are similar to some of those that affect bone and cartilage differentiation in mammals and humans. Akimenko et al. (2002 has shown that bone morphogenetic protein-2b (BMP2b is involved in the induction of dermal bone differentiation during fin regeneration. Many other groups have also shown that molecules from the transforming growth factor-beta superfamily (TGFβ, including BMP2, are effective in promoting chondrogenesis and osteogenesis in vivo in higher vertebrates, including humans. In the present study, we review the state of the art of this topic by a comparative analysis of skeletal tissue development, regeneration and renewal processes in tetrapods, and fin regeneration in fishes. A general conclusion of this study states that lepidotrichia is a special skeletal tissue different to cartilage, bone, enamel, or dentine in fishes, according to its extracellular matrix (ECM composition. However, the empirical analysis of inducing signals of skeletal tissues in fishes and tetrapods suggests that lepidotrichia is different to any responding features with main skeletal tissues. A number of new inductive molecules are arising from fin development and regeneration studies that might establish an empirical basis for further molecular approaches to mammal skeletal tissues differentiation. Despite the tissue dissimilarity, this empirical evidence might finally lead to clinical applications to skeletal disorders in humans.

  16. A New Approach to Study Stochastic Heating in the Solar Wind with Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Vech, D.; Klein, K. G.; Kasper, J. C.

    2017-12-01

    The solar wind undergoes significant heating as it propagates away from the Sun, however the exact mechanisms heating the plasma are not yet fully understood. Identifying the physical mechanisms responsible for this heating is fundamentally important to describe the solar corona and solar wind. Parker Solar Probe and Solar Orbiter will provide a wealth of data from an unexplored region to quantify the heating contribution of proposed mechanisms including stochastic heating as a function of the heliocentric distance. As a preparation for these upcoming missions we study stochastic heating at 1 AU. Stochastic heating occurs when the motion of ions becomes chaotic as the amplitude of electromagnetic field fluctuations at scales comparable to the ion gyroscale exceed a critical value. Under these conditions, the magnetic moment of ions is not conserved, allowing for diffusion across magnetic fields, consequently leading to perpendicular heating of the ions. We analyze over a decade of Wind observations using previously proposed techniques and show that the nature of stochastic heating in various subsets of the solar wind is in qualitatively good agreement with predictions, focusing on the critical amplitude of magnetic fluctuations where stochastic heating starts operating. In the second part of this study, we repeat the analysis using a new approach and we demonstrate that our technique yields results, which are in excellent agreement with predictions and rely on fewer assumptions than previous methods. Our technique allows us to study in detail how the turbulent energy is partitioned between ions and electrons. This novel analysis will be useful for studying data from Parker Solar Probe and Solar Orbiter to determine what mechanisms heat the solar wind.

  17. Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance

    Science.gov (United States)

    Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath

    2017-12-01

    Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.

  18. The wind chill temperature effect on a large-scale PV plant—an exergy approach

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    In this paper, a detailed exergetic analysis based on the variation of meteorological parameters was performed for a solar power generation system. All wind and solar energy and exergy characteristics were examined in order to identify the variables that affect the power output of the photovoltaic...... disregarded atmospheric variables in planning new PV plants, in fact, do play a significant role on the plant's overall exergetic efficiency as wind chill temperature. The solar potential around a windy coastal hilly area was studied and presented on the basis of field measurements and simulations...

  19. Wind-driven rain as a boundary condition for HAM simulations: analysis of simplified modelling approaches

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Roels, Staf

    2007-01-01

    While the numerical simulation of moisture transfer inside building components is currently undergoing standardisation, the modelling of the atmospheric boundary conditions has received far less attention. This article analyses the modelling of the wind-driven-rain load on building facades...... though: the full variability with the perpendicular wind speed and horizontal rain intensity should be preserved, where feasible, for improved estimations of the moisture transfer in building components. In the concluding section, it is moreover shown that the dependence of the surface moisture transfer...

  20. Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins

    Science.gov (United States)

    Siegel, R.; Graham, R. W.

    1977-01-01

    The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.

  1. Robust Unit Commitment Considering the Temporal and Spatial Correlations of Wind Farms Using a Data-Adaptive Approach

    DEFF Research Database (Denmark)

    Zhang, Yipu; Ai, Xiaomeng; Wen, Jinyu

    2018-01-01

    In robust optimization problems, building a proper uncertainty set for the stochastic variables plays an important role. Due to the restricted mathematical formulations of the uncertainty sets, the results derived from conventional two-stage robust optimization are usually over conservative....... In this paper, a novel data-adaptive robust optimization method for the unit commitment is proposed for the power system with wind farms integrated. The extreme scenario extraction and the two stage robust optimization are combined in the proposed method. The data-adaptive set consisting of a few extreme...... scenarios is derived to reduce the conservativeness by considering the temporal and spatial correlations of multiple wind farms. Numerical results demonstrate that the proposed data-adaptive robust optimization algorithm is less conservative than the current two-stage optimization approaches while maintains...

  2. Approach to include load sequence effects in the design of an offshore wind turbine substructure

    NARCIS (Netherlands)

    Dragt, R.C.; Allaix, D.L.; Maljaars, J.; Tuitman, J.T.; Salman, Y.; Otheguy, M.E.

    2017-01-01

    Fatigue is one of the main design drivers for offshore wind substructures. Using Fracture Mechanics methods, load sequence effects such as crack growth retardation due to large load peaks can be included in the fatigue damage estimation. Due to the sequence dependency, a method is required that

  3. A Non-Linear Upscaling Approach for Wind Turbines Blades Based on Stresses

    NARCIS (Netherlands)

    Castillo Capponi, P.; Van Bussel, G.J.W.; Ashuri, T.; Kallesoe, B.

    2011-01-01

    The linear scaling laws for upscaling wind turbine blades show a linear increase of stresses due to the weight. However, the stresses should remain the same for a suitable design. Application of linear scaling laws may lead to an upscaled blade that may not be any more a feasible design. In this

  4. Genetic approaches to understanding the population-level impact of wind energy development on migratory bats

    Energy Technology Data Exchange (ETDEWEB)

    Vonhof, Maarten J. [Western Michigan Univ., Kalamazoo MI (United States); Russell, Amy L. [Grand Valley State Univ. Allendale, MI (United States)

    2013-09-30

    Documented fatalities of bats at wind turbines have raised serious concerns about the future impacts of increased wind power development on populations of migratory bat species. Yet there is little data on bat population sizes and trends to provide context for understanding the consequences of mortality due to wind power development. Using a large dataset of both nuclear and mitochondrial DNA variation for eastern red bats, we demonstrated that: 1) this species forms a single, panmictic population across their range with no evidence for the historical use of divergent migratory pathways by any portion of the population; 2) the effective size of this population is in the hundreds of thousands to millions; and 3) for large populations, genetic diversity measures and at least one coalescent method are insensitive to even very high rates of population decline over long time scales and until population size has become very small. Our data provide important context for understanding the population-level impacts of wind power development on affected bat species.

  5. Environmental impact assessment of offshore wind farms: a simulation-based approach

    NARCIS (Netherlands)

    Perez-Lapena, Blanca; Wijnberg, Kathelijne Mariken; Hulscher, Suzanne J.M.H.; Stein, A.

    2010-01-01

    1.  Assessing and monitoring the impact of offshore wind farms on marine fauna is vital if we want to achieve ecologically sustainable development of this renewable energy resource. Given the complexity of the marine environment, a method capable of accommodating spatio-temporal behaviour of

  6. Estimating Preferences for Wind Turbine Locations - A Critical Review of Visualisation Approaches

    DEFF Research Database (Denmark)

    Hevia Koch, Pablo Alejandro; Ladenburg, Jacob

    , and which visualisation techniques to utilise. Afterwards, we propose a framework for classifying different visualisation types and utilise it to classify recent studies regarding wind turbines acceptance, highlighting the lack of visualisations in recent studies, as well as the need to raise the bar...

  7. Enhanced Forecasting Approach for Electricity Market Prices and Wind Power Data Series in the Short-Term

    Directory of Open Access Journals (Sweden)

    Gerardo J. Osório

    2016-08-01

    Full Text Available The uncertainty and variability in electricity market price (EMP signals and players’ behavior, as well as in renewable power generation, especially wind power, pose considerable challenges. Hence, enhancement of forecasting approaches is required for all electricity market players to deal with the non-stationary and stochastic nature of such time series, making it possible to accurately support their decisions in a competitive environment with lower forecasting error and with an acceptable computational time. As previously published methodologies have shown, hybrid approaches are good candidates to overcome most of the previous concerns about time-series forecasting. In this sense, this paper proposes an enhanced hybrid approach composed of an innovative combination of wavelet transform (WT, differential evolutionary particle swarm optimization (DEEPSO, and an adaptive neuro-fuzzy inference system (ANFIS to forecast EMP signals in different electricity markets and wind power in Portugal, in the short-term, considering only historical data. Test results are provided by comparing with other reported studies, demonstrating the proficiency of the proposed hybrid approach in a real environment.

  8. A numerical method for PCM-based pin fin heat sinks optimization

    International Nuclear Information System (INIS)

    Pakrouh, R.; Hosseini, M.J.; Ranjbar, A.A.; Bahrampoury, R.

    2015-01-01

    Highlights: • Optimization of PCM-based heat sink by using the Taguchi method. • Derivation of optimal PCM percentage to reach the maximum critical time. • Optimization is performed for four different critical temperatures. • Effective design factors are fins’ height and fins’ number. • The optimum configuration depends on geometric properties and the critical temperature. - Abstract: This paper presents a numerical investigation on geometric optimization of PCM-based pin fin heat sinks. Paraffin RT44HC is used as PCM while the fins and heat sink base is made of aluminum. The fins act as thermal conductivity enhancers (TCEs). The main goal of the study is to obtain the configurations that maximize the heat sink operational time. An approach witch couples Taguchi method with numerical simulations is utilized for this purpose. Number of fins, fins height, fins thickness and the base thickness are parameters which are studied for optimization. In this study natural convection and PCM volume variation during melting process are considered in the simulations. Optimization is performed for different critical temperatures of 50 °C, 60 °C, 70 °C and 80 °C. Results show that a complex relation exists between PCM and TCE volume percentages. The optimal case strongly depends on the fins’ number, fins’ height and thickness and also the critical temperature. The optimum PCM percentages are found to be 60.61% (corresponds to 100 pin fin heat sink with 4 mm thick fins) for critical temperature of 50 °C and 82.65% (corresponds to 100 pin fin heat sink with 2 mm thick fins) for other critical temperatures

  9. Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach

    International Nuclear Information System (INIS)

    Borchers, Allison M.; Xiarchos, Irene; Beckman, Jayson

    2014-01-01

    This article offers the first national examination of the determinants of adoption of wind and solar energy generation on U.S. farming operations. The inclusion of state policies and characteristics in a multilevel modeling approach distinguishes this study from past research utilizing logit models of technology adoption which focus only on the characteristics of the farm operation. Results suggest the propensity to adopt is higher for livestock operations, larger farms, operators with internet access, organic operations, and newer farmers. The results find state characteristics such as solar resources, per capita income levels, and predominantly democratic voting increasing the odds of farm adoption. This research suggests the relevance of state policy variables in explaining farm level outcomes is limited, although in combination best practice net metering and interconnection policies—policies designed to encourage the development of small scale distributed applications—are shown to increase the likelihood of farm solar and wind adoption. The prevalence of electric cooperatives—which are often not subject to state renewable energy policies and often service farms—is negatively related with the propensity to adopt and suggests that policy design may be a factor. - Highlights: • This is the first national examination of wind and solar energy adoption on U.S. farms. • Controlling for state policies distinguishes this study from past research of technology adoption. • We find net metering and interconnection policies increase the likelihood of farm adoption. • Results suggest that the design of renewable energy policies may limit their impact on farms

  10. Fin shape thermal optimization using Bejan's constuctal theory

    CERN Document Server

    Lorenzini, Giulio

    2011-01-01

    The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri

  11. Evaluation of the source area of rooftop scalar measurements in London, UK using wind tunnel and modelling approaches.

    Science.gov (United States)

    Brocklehurst, Aidan; Boon, Alex; Barlow, Janet; Hayden, Paul; Robins, Alan

    2014-05-01

    The source area of an instrument is an estimate of the area of ground over which the measurement is generated. Quantification of the source area of a measurement site provides crucial context for analysis and interpretation of the data. A range of computational models exists to calculate the source area of an instrument, but these are usually based on assumptions which do not hold for instruments positioned very close to the surface, particularly those surrounded by heterogeneous terrain i.e. urban areas. Although positioning instrumentation at higher elevation (i.e. on masts) is ideal in urban areas, this can be costly in terms of installation and maintenance costs and logistically difficult to position instruments in the ideal geographical location. Therefore, in many studies, experimentalists turn to rooftops to position instrumentation. Experimental validations of source area models for these situations are very limited. In this study, a controlled tracer gas experiment was conducted in a wind tunnel based on a 1:200 scale model of a measurement site used in previous experimental work in central London. The detector was set at the location of the rooftop site as the tracer was released at a range of locations within the surrounding streets and rooftops. Concentration measurements are presented for a range of wind angles, with the spread of concentration measurements indicative of the source area distribution. Clear evidence of wind channeling by streets is seen with the shape of the source area strongly influenced by buildings upwind of the measurement point. The results of the wind tunnel study are compared to scalar concentration source areas generated by modelling approaches based on meteorological data from the central London experimental site and used in the interpretation of continuous carbon dioxide (CO2) concentration data. Initial conclusions will be drawn as to how to apply scalar concentration source area models to rooftop measurement sites and

  12. Numerical techniques for the improved performance of a finite element approach to wind turbine aeroelastics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.B. [Renewable Energy Systems Ltd., Hemel Hempstead (United Kingdom)

    1996-09-01

    It is possible to compute the aeroelastic response of a horizontal axis wind turbine comprising; Structural: rotor substructure 144 dof, tower substructure 48 dof, induction, synchronous or variable speed, and gearbox. Aerodynamic: 3 blades (10 elements per blade), dynamic stall, and 6 different aerofoil types with combination of fixed or pitching elements. Control: stall or power regulation or speed control and shutdowns, wind shear, and tower shadow. Turbulence: 8 radial points, 32 circumferential, and 3 components. On a DEC Alpha Workstation the code will simulate the response inclose to real-time. As the code is presently formulated deflections from the initial starting point have to be small and therefore its ability to fully analyse very flexible structures is limited. (EG)

  13. Dynamic Analysis of Wind Turbine Planetary Gears Using an Extended Harmonic Balance Approach: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Parker, R. G.

    2012-06-01

    The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.

  14. A set-valued approach to FDI an FTC of wind turbines

    DEFF Research Database (Denmark)

    Casau, Pedro; Rosa, Paulo; Tabatabaeipour, Mojtaba

    2015-01-01

    A complete methodology to design robust Fault Detection and Isolation (FDI) filters and Fault Tolerant Control (FTC) schemes for Linear Parameter Varying (LPV) systems is proposed, with particular focus on its applicability to wind turbines. The paper takes advantage of the recent advances in model...... falsification using Set-Valued Observers (SVOs) that led to the development of FDI methods for uncertain linear time-varying systems, with promising results in terms of the time required to diagnose faults. An integration of such SVO-based FDI methods with robust control synthesis is described, in order...... to deploy new FTC algorithms that are able to stabilize the plant under faulty environments. The FDI and FTC algorithms are assessed by resorting to a publicly available wind turbine benchmark model, using Monte-Carlo simulation runs....

  15. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  16. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  17. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    Science.gov (United States)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  18. Performance study of a fin and tube heat exchanger with different fin geometry

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2016-01-01

    This study analyses the effect of different fin geometries on the heat transfer and pressure loss characteristics of a fin and tube heat exchanger. A numerical investigation is carried out on liquid–gas type double-finned tube heat exchanger under cross-flow condition. Three different cross......-sections namely: a) Rectangular, b) Trapezoidal, c) Triangular are adopted to define the fin geometry. The CFD simulations are performed to incorporate coupled steady state conjugate heat transfer with the turbulent flow phenomenon for the Reynolds number in the range of 5000-13000. Dimensionless heat transfer...... models show that triangular fin geometry can provide higher heat transfer performance in comparison to the fins with rectangular and trapezoidal geometry with lower pressure loss and a bonus of 7.27% reduction in weight under similar operating conditions....

  19. Thermal transport in oblique finned microminichannels

    CERN Document Server

    Fan, Yan; Singh, Pawan Kumar; Lee, Yong Jiun

    2015-01-01

    The main aim of this book is to introduce and give an overview of a novel, easy, and highly effective heat transfer augmentation technique for single-phase micro/minichannel heat sink. The specific objectives of the volume are to: Introduce a novel planar oblique fin microchannel and cylindrical oblique fin minichannel heat sink design using passive heat transfer enhancement techniques  Investigate the thermal transport in both planar and cylindrical oblique fin structures through numerical simulation and systematic experimental studies. Evaluate the feasibility of employing the proposed solution in cooling non-uniform heat fluxes and hotspot suppression Conduct the similarity analysis and parametric study to obtain empirical correlations to evaluate the total heat transfer rate of the oblique fin heat sink Investigate the flow mechanism and optimize the dimensions of cylindrical oblique fin heat sink Investigate the influence of edge effect on flow and temperature uniformity in these oblique fin chan...

  20. LWST Phase I Project Conceptual Design Study: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; June 28, 2002 -- July 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    LaNier, M. W.

    2005-01-01

    The United States Department of Energy (DOE) Wind Energy Research Program has begun a new effort to partner with U.S. industry to develop wind technology that will allow wind systems to compete in regions of low wind speed. The Class 4 and 5 sites targeted by this effort have annual average wind speeds of 5.8 m/s (13 mph), measured at 10 m (33 ft) height. Such sites are abundant in the United States and would increase the land area available for wind energy production twenty-fold. The new program is targeting a levelized cost of energy of 3 cents/kWh at these sites by 2010. A three-element approach has been initiated. These efforts are concept design, component development, and system development. This work builds on previous activities under the WindPACT program and the Next Generation Turbine program. If successful, DOE estimates that his new technology could result in 35 to 45 gigawatts of additional wind capacity being installed by 2020.

  1. Effect of Fin Porosity on Wake Geometry for Flapping Fins at Intermediate Reynolds Number

    Science.gov (United States)

    Chen, J.; Xia, B.; Krueger, P. S.

    2017-11-01

    Low aspect ratio flapping fins generate interesting 3-dimensional flow structures as has been observed, for example, in studies of fish swimming. As the Reynolds number is reduced, the exact geometry of the fin is less important and even certain amounts of porosity might be allowed without significantly affecting propulsive performance. These effects are investigated experimentally using flapping rectangular fins of aspect ratio 2 at Reynolds numbers in the range 100 - 1000. The experiments were conducted using a water tunnel to supply the free stream flow and the fin flapping parameters were set to provide a Strouhal number (based on amplitude of the fin tip motion) in the range 0.15 - 0.35. Phase-averaged measurements were made of the 3-dimensional, volumetric flow field, allowing visualization of the typical shed vortex structure behind the fin and calculation of time averaged thrust and propulsive efficiency. Results comparing the flow structure in the fin wake and the resulting propulsive performance will be presented for several fins with different planform porosities where the porosities are set using arrays of holes in the fins. This material is based on the work supported by the National Science Foundation under Grant No. 1510707.

  2. Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Ahmad Zaini

    2013-09-01

    Full Text Available Penambahan fin pada pipa penukar kalor merupakan suatu upaya memperbesar perpindahan kalor konduksi dan konveksi, dengan cara memperluas bidang geometri. Pada penelitian ini dianalisa secara analitik dan numerik perpindahan kalor pada fin dengan profil longitudinal tidak seragam atau berubah terhadap jarak dari dasar fin, dengan memvariasikan ketebalan ujung fin. Hasil dari kedua studi ini tidak jauh berbeda, pada keduanya menjelaskan bahwa fin dengan ketebalan ujung 0,9 mm (fin trapesium terbalik paling baik dari 5 variasi lainnya; serta perubahan temperatur paling besar terjadi pada sepertiga pertama dari panjang  fin, ini artinya pelepasan kalor terbesar terjadi pada daerah tersebut. Perbedaannya adalah pada persentase penurunan temperatur sepanjang  fin terhadap temperatur dasar fin, untuk ketebalan 0,9 mm pada studi analitik sebesar 91,92% dan pada studi numerik sebesar 91,78%. Hal ini berarti metode penyelesaian persamaan diferensial orde 2 dengan koefisien variabel dengan cara pembedahan koefisien variabel pada ODE, sudah benar dan valid. Namun bila ditinjau dari waktu yang diperlukan untuk komputasinya, studi analitik membutuhkan waktu lebih lama. Waktu yang diperlukan dalam komputasinya tergantung dari fungsi koefisien variabel.

  3. Assessment of extreme design loads for modern wind turbines using the probabilistic approach

    DEFF Research Database (Denmark)

    Abdallah, Imad

    as necessary, but no stronger [Veldkamp, 2006]. The original contributions of this research were:  • A comprehensive list of sources of uncertainties affecting the prediction of extreme loads on a wind turbine. Such a list is indeed subjective and subject to scrutiny and updating depending on a researcher......’s, scientist’s and engineer’s background, know-how and experiences.  • A fully encompassing stochastic model of aerofoil aerodynamic lift and drag coefficients, followed by a quantification of the effect of aerodynamic uncertainties on the extreme loads and an optimization of the partial safety factors...

  4. Influence of Characteristic-Soil-Property-Estimation Approach on the Response of Monopiles for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Sørensen, John Dalsgaard; Kim, Sun-Bin

    2015-01-01

    , and pile–soil interaction is modelled by the Winkler approach with nonlinear p–y curves for the soil resistance. The 5MW NREL reference wind turbine is employed for load estimation, utilizing the aeroelastic code FAST. The study includes comparison of monopile capacities based on a single CPT as well......Different approaches to estimation of the characteristic undrained shear strength of soil are discussed, based on 12 cone penetration tests (CPTs) carried out within a soil volume representative of an offshore monopile foundation. The paper is focused on the statistical treatment of the data...... as multiple CPTs. Comparisons are made between results obtained from a single CPT and those from all the CPTs at the site. The influence of assuming few or many layers in the deterministic soil model is assessed, and different assumptions regarding the statistical distribution of the data are compared...

  5. Evaluation of the Fluid Model Approach for the Sizing of Energy Storage in Wave-Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    José A. Domínguez-Navarro

    2016-03-01

    Full Text Available The application of energy storage in offshore renewable generation systems allows managing the intrinsic uncertainty of the resources and improving the utilization factor of the electrical network. Optimal storage design algorithms generally have to evaluate the behavior of the whole system thousands times before converging to the optimal solution and the reliability of the results obviously depends on the quality of input data. On the other hand, the utilization of simplified storage models in the design stage can reduce the simulation time drastically, while still providing useful information. The goal of this paper is to evaluate the applicability of a methodology for sizing the energy storage system in a hybrid wind and wave farm, which is based on fluid models. The description and performance of this modeling approach will be introduced and compared to standard design procedures based on extensive simulations. Advantages and limitations of each approach will be underlined and the impact of input data quality will be discussed.

  6. Wind Turbine Waste Heat Recovery—A Short-Term Heat Loss Forecasting Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-07-01

    Full Text Available The transition from the era of massive renewable energy deployment to the era of cheaper energy needed has made scientists and developers more careful with respect to energy planning compared with a few years ago. The focus is—and will be—placed on retrofitting and on extracting the maximum amount of locally generated energy. The question is not only how much energy can be generated, but also what kind of energy and how it can be utilized efficiently. The waste heat coming from wind farms (WFs when in operation—which until now was wasted—was thoroughly studied. A short-term forecasting methodology that can provide the operator with a better view of the expected heat losses is presented. The majority of mechanical (due to friction and electro-thermal (i.e., generator losses takes place at the nacelle while a smaller part of this thermal source is located near the foundation of the wind turbine (WT where the power electronics and the transformers are usually located. That thermal load can be easily collected via a working fluid and then be transported to the nearest local community or nearby agricultural or small scale industrial units using the necessary piping.

  7. Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Yang

    2016-05-01

    Full Text Available Reliable and quick response fault diagnosis is crucial for the wind turbine generator system (WTGS to avoid unplanned interruption and to reduce the maintenance cost. However, the conditional data generated from WTGS operating in a tough environment is always dynamical and high-dimensional. To address these challenges, we propose a new fault diagnosis scheme which is composed of multiple extreme learning machines (ELM in a hierarchical structure, where a forwarding list of ELM layers is concatenated and each of them is processed independently for its corresponding role. The framework enables both representational feature learning and fault classification. The multi-layered ELM based representational learning covers functions including data preprocessing, feature extraction and dimension reduction. An ELM based autoencoder is trained to generate a hidden layer output weight matrix, which is then used to transform the input dataset into a new feature representation. Compared with the traditional feature extraction methods which may empirically wipe off some “insignificant’ feature information that in fact conveys certain undiscovered important knowledge, the introduced representational learning method could overcome the loss of information content. The computed output weight matrix projects the high dimensional input vector into a compressed and orthogonally weighted distribution. The last single layer of ELM is applied for fault classification. Unlike the greedy layer wise learning method adopted in back propagation based deep learning (DL, the proposed framework does not need iterative fine-tuning of parameters. To evaluate its experimental performance, comparison tests are carried out on a wind turbine generator simulator. The results show that the proposed diagnostic framework achieves the best performance among the compared approaches in terms of accuracy and efficiency in multiple faults detection of wind turbines.

  8. Modelling Solar Energetic Particle Propagation in Realistic Heliospheric Solar Wind Conditions Using a Combined MHD and Stochastic Differential Equation Approach

    Science.gov (United States)

    Wijsen, N.; Poedts, S.; Pomoell, J.

    2017-12-01

    Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.

  9. Multi-Mode Electric Actuator Dynamic Modelling for Missile Fin Control

    Directory of Open Access Journals (Sweden)

    Bhimashankar Gurav

    2017-06-01

    Full Text Available Linear first/second order fin direct current (DC actuator model approximations for missile applications are currently limited to angular position and angular velocity state variables. Furthermore, existing literature with detailed DC motor models is decoupled from the application of interest: tail controller missile lateral acceleration (LATAX performance. This paper aims to integrate a generic DC fin actuator model with dual-mode feedforward and feedback control for tail-controlled missiles in conjunction with the autopilot system design. Moreover, the characteristics of the actuator torque information in relation to the aerodynamic fin loading for given missile trim velocities are also provided. The novelty of this paper is the integration of the missile LATAX autopilot states and actuator states including the motor torque, position and angular velocity. The advantage of such an approach is the parametric analysis and suitability of the fin actuator in relation to the missile lateral acceleration dynamic behaviour.

  10. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.

    Science.gov (United States)

    Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean

    2017-11-01

    The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.

  11. A real options approach to analyse wind energy investments under different support schemes

    DEFF Research Database (Denmark)

    Kitzing, Lena; Juul, Nina; Drud, Michael Stolbjerg Leni

    2016-01-01

    under feed-in tariffs, feed-in premiums and tradable green certificates. Investors can under certificate schemes require up to 3% higher profit margins than under tariffs due to higher variance in profits. Feed-in tariffs may lead to 15% smaller project sizes. This trade-off between faster deployment...... on investment incentives also depends on correlations between the underlying stochastic factors. The results may help investors to make informed investment decisions and policy makers to strategically design renewable support and develop tailor-made incentive schemes.......A real options model is developed to evaluate wind energy investments in a realistic and easily applicable way. Considering optimal investment timing and sizing (capacity choice), the model introduces a capacity constraint as part of the optimisation. Several correlated uncertainty factors...

  12. A multicriteria approach to evaluate wind energy plants on an Italian island

    International Nuclear Information System (INIS)

    Cavallaro, Fausto; Ciraolo, Luigi

    2005-01-01

    The decision-making process regarding the choice of alternative energy is multidimensional, made up of a number of aspects at different levels--economic, technical, environmental, and social. In this respect multicriteria analysis appears to be the most appropriate tool to understand all the different perspectives involved and to support those concerned with the decision making process by creating a set of relationships between the various alternatives. The main aim of this paper is to make a preliminary assessment regarding the feasibility of installing some wind energy turbines in a site on the island of Salina (Aeolian islands-Italy). Thus, a multicriteria method will be applied in order to support the selection and evaluation of one or more of the solutions proposed. Having analysed the local environmental conditions and its energy profile, four wind turbine configurations were postulated as options. These options were then appraised by comparison against a family of criteria and calculations were performed using a multicriteria algorithm to rank the solutions, from the best to worst. The option at the top of the ranking refers to the installation of a plant of 150 kW and this emerged as the right compromise between the costs of realization, local energy requirements and the need to conserve the area and the environment especially in view of the high/medium-bracket tourism business on the island. The sensitivity analysis performed subsequently backed up the findings. As this work demonstrates, multicriteria analysis can provide a valid tool to aid decision making for achieving targets relating to more sustainable green energy

  13. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    Science.gov (United States)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  14. A novel supervisory control approach to switching operations for hybrid wind/diesel/battery/mains energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gu, T. [Guilin Inst. of Electronic Technology, School of Computer Engineering, Guilin (China); Keerthipala, W.W.; Islam, S.M.; Nayar, C.V. [Curtin Univ. of Technology, School of Electrical and Computer Engineering, Perth (Australia)

    2000-12-01

    Hybrid energy systems, integrating renewable energy technologies with diesel generators, batteries and inverters, can provide 24 h grid quality power to remote communities. Work in the Centre for Renewable Energy Systems Technology Australia (CRESTA) has been carried out to develop a new hybrid/wind/diesel/battery/mains energy system. In the system, the switching operations of different modes play an important role in the proper running of the system. From the view of discrete event dynamic systems, a novel supervisory control approach for the switching operations of modes has been explored, in which the switching actions are defined as events, switching modes as states and events take the system from one state to another. The supervisory controller for a prototype of the hybrid wind/diesel/battery mains energy system has been designed and it has been simulated in PSCAD/EMTDC. The results reveal that this technique could facilitate the analysis and design of supervisory controllers for switching operations, particularly in the complicated hybrid energy systems. (Author)

  15. Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach

    International Nuclear Information System (INIS)

    Strazzera, Elisabetta; Mura, Marina; Contu, Davide

    2012-01-01

    A choice experiment exercise is combined with psychometric scales in order: (1) to identify factors that explain support/opposition toward a wind energy development project; and (2) to assess (monetary) trade-offs between attributes of the project. A Latent Class estimator is fitted to the data, and different utility parameters are estimated, conditional on class allocation. It is found that the probability of class membership depends on specific psychometric variables. Visual impacts on valued sites are an important factor of opposition toward a project, and this effect is magnified when identity values are attached to the specific site, so much that no trade-off would be acceptable for a class of individuals characterized by strong place attachment. Conversely, other classes of individuals are willing to accept compensations, in form of private and/or public benefits. The distribution of benefits in the territory, and preservation of the option value related to the possible development of an archeological site, are important for a class of individuals concerned with the sustainability of the local economy. - Highlights: ► A Choice Experiment approach is used to assess acceptability of a wind farm project. ► Psychometric variables are used to model heterogeneity in a Latent Class model. ► No trade-off would be acceptable for a class of individuals. ► Another class of individuals is interested in private benefits. ► Other classes are interested in public benefits and sustainability of the development.

  16. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Alpine Space wind map - Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Remund, J. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents describes the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report discusses two modelling approaches investigated for use in the definition of a wind map for the alpine area. The method chosen and its application are discussed. The various sources of information for input to the model are listed and discussed.

  17. Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2016-01-01

    Full Text Available Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD, which reduces the effect of noise on the wind speed data; (II artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM model are optimized by the cuckoo search (CS algorithm; (III parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.

  18. Hegel y el fin del arte

    Directory of Open Access Journals (Sweden)

    Óscar Cubo Ugarte

    2010-03-01

    Full Text Available Uno de los puntos de mayor interés del pensamiento estético de Hegel procede de sus Lecciones de estética, y es aquel que afirma y tematiza el fin del arte. Para entender el sentido y el alcance de esta idea, presentamos en este trabajo el modo como Hegel trata el problema del arte dentro de su filosofía especulativa y en especial en sus Lecciones de Estética. Por medio de este proceso de contextualización rastreamos finalmente las distintas interpretaciones que se han producido en nuestros días acerca de la provocativa tesis del fin del arte y dejamos planteada también la cuestión del lugar que ocupa o puede ocupar el arte después del mencionado fin del arte.

  19. Heat Transfer Analysis of Fin Tube

    International Nuclear Information System (INIS)

    Jeon, Woo-Jin; Choi, Cheng-Ryul

    2015-01-01

    This paper describes a preliminary numerical analysis of fin tube used for a heat exchanger of the air-water cooling system. The internal flow in a fin tube is steam and the external of the fin is cooled by air. Cooling system in a nuclear power plant can be divided into two categories; 1) active pump driven system powered by alternating current and 2) passive cooling system drived by natural circulation phenomena. After the accident in Hukushima Nuclear Power Plants, the importance of the passive cooling system that can provide a long-term cooling of reactor decay heat during station blackout condition is emphasized. However, the effectiveness of passive cooling system based on cooling water is limited by the capacity of water storage tank. To overcome the limit due to the exhaustion of the cooling water, an natural convection air cooling system is proposed. As the air operated cooling system utilizes natural circulation phenomena of air, it does not require cooling water. However, the heat transfer area of the air operated cooling system should be increased much as the heat removal capacity per unit area is much lower than that of water cooling system. The air-water combined cooling system can resolve this excess increase of the heat transfer area in the air operated cooling system. This air-water cooling system can be also used in the passive containment cooling system. The effect of design parameters such as fin tube arrangement, the fin height, and pitch has been analyzed and the chimney effect on the simulation of heat transfer in a heat exchanger is evaluated. The internal flows in a fin tube heat exchanger for natural circulation flow condition and forced convection (suction) condition were investigated

  20. Efficient Approach for Harmonic Resonance Identification of Large Wind Power Plants

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    and with passive components. This paper presents an efficient approach for identification of harmonic resonances in large WPPs containing power electronic converters, cable, transformer, capacitor banks, shunt reactors, etc. The proposed approach introduces a large WPP as a Multi-Input Multi-Output (MIMO) control...

  1. Superconducting niobium cavity with cooling fins

    International Nuclear Information System (INIS)

    Isagawa, Shigeru.

    1978-04-01

    Cooling efficiency of a superconducting cavity is shown to be improved by applying a fin structure. Internal heating can be suppressed in a certain degree and the higher rf field is expected to be reached on surfaces of the cavity which is immersed in superfluid He 4 liquid. The rf measurements were made on a C-band niobium cavity with cylindrical and circular fins around the wall. Fields of 39 mT and 25 MV/m were attained for TM 010 mode cavity after surface treatments including high temperature annealing in a UHV furnace. (auth.)

  2. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  3. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  4. Study of the stall delay phenomenon and of wind turbine blade dynamics using numerical approaches and NREL's wind tunnel tests

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Simon-Philippe

    2008-06-15

    The production of electricity from wind has experienced an enormous growth worldwide in the last 20 years. It is now widely seen as a serious alternative to more conventional energy production methods. Improvements are however still possible to make it more cost-effective. This can be done through a better understanding of the fundamental phenomena involved in the interaction of the wind with the wind turbine rotor. This growth in the production of energy from wind is expected to continue at a similar rate in the years to come, helped by the installation of wind turbines at sea, that is becoming a hot topic in the wind energy field today. The phenomenon of stall delay affecting rotating wind turbine blades is an example of an aerodynamic phenomenon that is not yet fully understood. Several models exist to correct for this effect. Five such models were first tested within a vortex wake simulation code based on the modelling of a prescribed wake behind the rotor of the turbine. Comparison was made with wind tunnel test data acquired in head-on flow on a two-bladed 10.1 diameter wind turbine at the National Renewable Energy Laboratories (NREL) in 2000. It revealed a general overprediction of the stall delay effects, at the same time as great disparity was obtained between the different models. Conclusions from this work served as a starting point for a much more thorough investigation on this subject, where several models were tested in terms of different quantities using the same simulation code, and where the application of some of the models was improved. Overprediction of the loads was once again obtained when comparison was made to the NREL results in head-on flow, and none of the models was found to correctly represent the flow physics involved. The premises on which each of the models relies were discussed as a means of better understanding and modelling this phenomenon. The important issue of tip loss was also covered, and guidelines were suggested to improve

  5. Experimental and Numerical Vibrational Analysis of a Horizontal-Axis Micro-Wind Turbine

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2018-02-01

    Full Text Available Micro-wind turbines are energy conversion technologies strongly affected by fatigue, as a result of their size and the variability of loads, induced by the unsteady wind conditions, and modulated by a very high rotational speed. This work is devoted to the experimental and numerical characterization of the aeroelastic behavior of a test-case horizontal-axis wind turbine (HAWT with a 2 m rotor diameter and a maximum power production of 3 kW. The experimental studies have been conducted at the wind tunnel of the University of Perugia and consisted of accelerometer measurements at the tower and the tail fin. The numerical setup was the Fatigue, Aerodynamics, Structures, and Turbulence (FAST code for aeroelastic simulations, which was fed as input with the same wind conditions employed in the wind tunnel tests. The experimental and numerical analyses were coupled with the perspective of establishing a reciprocal feedback, and this has been accomplished. On one hand, the numerical model is important for interpreting the measured spectrum of tower oscillations and, for example, inspires the detection of a mass unbalance at the blades. On the other hand, the measurements inspire the question of how to interpret the interaction between the blades and the tower. The experimental spectrum of tail fin vibrations indicates that secondary elements, in terms of weight, can also transmit to the tower, giving meaningful contributions to the vibration spectra. Therefore, an integrated numerical and experimental approach is not only valuable but is also unavoidable, to fully characterize the dynamics of small wind-energy conversion systems.

  6. Fin-tail coordination during escape and predatory behavior in larval zebrafish.

    Directory of Open Access Journals (Sweden)

    Phil McClenahan

    Full Text Available Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency, but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-body coordination using mutants, morphants, and transgenic approaches.

  7. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Science.gov (United States)

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples).

  8. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins

    International Nuclear Information System (INIS)

    Naik, Mugdha S; Singh, Sahjendra N; Mittal, Rajat

    2009-01-01

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback

  9. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Directory of Open Access Journals (Sweden)

    Andrew T Fields

    Full Text Available There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias. Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins". Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples.

  10. FinTech Adoption Across Generations

    DEFF Research Database (Denmark)

    Carlin, Bruce; Olafsson, Arna; Pagel, Michaela

    This paper analyzes how better access to financial information via new technology changes use of consumer credit and affects financial fitness. We exploit the introduction of a smartphone application for personal financial management as a source of exogenous variation. FinTech adoption reduces...

  11. Performance of tubes-and plate fins heat exchangers

    International Nuclear Information System (INIS)

    Rosman, E.C.

    1979-11-01

    By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author) [pt

  12. A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching

    International Nuclear Information System (INIS)

    Chen, Fang; Zhou, Jianzhong; Wang, Chao; Li, Chunlong; Lu, Peng

    2017-01-01

    Wind power is a type of clean and renewable energy, and reasonable utilization of wind power is beneficial to environmental protection and economic development. Therefore, a short-term hydro-thermal-wind economic emission dispatching (SHTW-EED) problem is presented in this paper. The proposed problem aims to distribute the load among hydro, thermal and wind power units to simultaneously minimize economic cost and pollutant emission. To solve the SHTW-EED problem with complex constraints, a modified gravitational search algorithm based on the non-dominated sorting genetic algorithm-III (MGSA-NSGA-III) is proposed. In the proposed MGSA-NSGA-III, a non-dominated sorting approach, reference-point based selection mechanism and chaotic mutation strategy are applied to improve the evolutionary process of the original gravitational search algorithm (GSA) and maintain the distribution diversity of Pareto optimal solutions. Moreover, a parallel computing strategy is introduced to improve the computational efficiency. Finally, the proposed MGSA-NSGA-III is applied to a typical hydro-thermal-wind system to verify its feasibility and effectiveness. The simulation results indicate that the proposed algorithm can obtain low economic cost and small pollutant emission when dealing with the SHTW-EED problem. - Highlights: • A hybrid algorithm is proposed to handle hydro-thermal-wind power dispatching. • Several improvement strategies are applied to the algorithm. • A parallel computing strategy is applied to improve computational efficiency. • Two cases are analyzed to verify the efficiency of the optimize mode.

  13. A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm

    International Nuclear Information System (INIS)

    Aghajani, Afshin; Kazemzadeh, Rasool; Ebrahimi, Afshin

    2016-01-01

    Highlights: • Proposing a novel hybrid method for short-term prediction of wind farms with high accuracy. • Investigating the prediction accuracy for proposed method in comparison with other methods. • Investigating the effect of six types of parameters as input data on predictions. • Comparing results for 6 & 4 types of the input parameters – addition of pressure and air humidity. - Abstract: This paper proposes a novel hybrid approach to forecast electric power production in wind farms. Wavelet transform (WT) is employed to filter input data of wind power, while radial basis function (RBF) neural network is utilized for primary prediction. For better predictions the main forecasting engine is comprised of three multilayer perceptron (MLP) neural networks by different learning algorithms of Levenberg–Marquardt (LM), Broyden–Fletcher–Goldfarb–Shanno (BFGS), and Bayesian regularization (BR). Meta-heuristic technique Imperialist Competitive Algorithm (ICA) is used to optimize neural networks’ weightings in order to escape from local minima. In the forecast process, the real data of wind farms located in the southern part of Alberta, Canada, are used to train and test the proposed model. The data are a complete set of six meteorological and technical characteristics, including wind speed, wind power, wind direction, temperature, pressure, and air humidity. In order to demonstrate the efficiency of the proposed method, it is compared with several other wind power forecast techniques. Results of optimizations indicate the superiority of the proposed method over the other mentioned techniques; and, forecasting error is remarkably reduced. For instance, the average normalized root mean square error (NRMSE) and average mean absolute percentage error (MAPE) are respectively 11% and 14% lower for the proposed method in 1-h-ahead forecasts over a 24-h period with six types of input than those for the best of the compared models.

  14. Periodically fully developed laminar flow and heat transfer in a two-dimensional horizontal channel with staggered fins

    Directory of Open Access Journals (Sweden)

    Turgut Oğuz

    2017-01-01

    Full Text Available The 2-D periodically fully developed laminar forced convection fluid flow and heat transfer characteristics in a horizontal channel with staggered fins are investigated numerically under constant wall heat flux boundary condition. Study is performed using ANSYS Fluent 6.3.26 which uses finite volume method. Air (Pr @ 0.7 and Freon-12 (Pr @ 3.5 are used as working fluids. Effects of Reynolds number, Prandtl number, fin height, and distances between two fins on heat transfer and friction factor are examined. Results are given in the form of non-dimensional average Nusselt number and average Darcy friction factor as a function of Reynolds number for different fin distances and Prandtl numbers. The velocity and temperature profiles are also obtained. It is seen that as the fin distance increases, behavior approaches the finless channel, as expected. Also, thermal enhancement factors are given graphically for working fluids. It is seen that heat transfer dominates the friction as both the distance between two fins and Prandtl number increase. It is also seen that fins having blockage ratio of 0.10 in 2-D periodically fully developed laminar flow is not advantageous in comparison to smooth channel without fins.

  15. Room to high temperature measurements of flexible SOI FinFETs with sub-20-nm fins

    KAUST Repository

    Diab, Amer El Hajj

    2014-12-01

    We report the temperature dependence of the core electrical parameters and transport characteristics of a flexible version of fin field-effect transistor (FinFET) on silicon-on-insulator (SOI) with sub-20-nm wide fins and high-k/metal gate-stacks. For the first time, we characterize them from room to high temperature (150 °C) to show the impact of temperature variation on drain current, gate leakage current, and transconductance. Variation of extracted parameters, such as low-field mobility, subthreshold swing, threshold voltage, and ON-OFF current characteristics, is reported too. Direct comparison is made to a rigid version of the SOI FinFETs. The mobility degradation with temperature is mainly caused by phonon scattering mechanism. The overall excellent devices performance at high temperature after release is outlined proving the suitability of truly high-performance flexible inorganic electronics with such advanced architecture.

  16. FinTech in Norway : the effect of FinTech on the traditional Norwegian banking sector

    OpenAIRE

    Omreng, Stian; Gjendem, Ida

    2017-01-01

    The purpose of this thesis is to investigate the effect of FinTech on the Norwegian banking industry. We investigate the drivers of FinTech, the current and potential Norwegian FinTech market, and the international competitiveness of the Norwegian FinTech movement. We identify nine segments of FinTech within the traditional banking functions Financing, Asset management, Payments and Authentication, and we find the key drivers behind the rapid growth of the FinTech market as cha...

  17. Numerical Investigation of Aerodynamics of Canard-Controlled Missile Using Planar and Grid Tail Fins. Part 1. Supersonic Flow

    Science.gov (United States)

    DeSpirito, James; Vaughn, Milton E., Jr.; Washington, W. D.

    2002-09-01

    Viscous computational fluid dynamic simulations were used to predict the aerodynamic coefficients and flowfield around a generic canard-controlled missile configuration in supersonic flow. Computations were performed for Mach 1.5 and 3.0, at six angles of attack between 0 and 10, with 0 and 10 canard deflection, and with planar and grid tail fins, for a total of 48 cases. Validation of the computed results was demonstrated by the very good agreement between the computed aerodynamic coefficients and those obtained from wind tunnel measurements. Visualizations of the flowfield showed that the canard trailing vortices and downwash produced a low-pressure region on the starboard side of the missile that in turn produced an adverse side force. The pressure differential on the leeward fin produced by the interaction with the canard trailing vortices is primarily responsible for the adverse roll effect observed when planar fins are used. Grid tail fins improved the roll effectiveness of the canards at low supersonic speed. No adverse rolling moment was observed with no canard deflection, or at the higher supersonic speed for either tail fin type due to the lower intensity of the canard trailing vortices in these cases. Flow visualizations from the simulations performed in this study help in the understanding of the flow physics and can lead to improved canard and tail fin designs for missiles and rockets.

  18. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  19. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  20. CTH Analyses of Fragment Penetration Through Heat Sink Fins

    National Research Council Canada - National Science Library

    Prakash, Anand

    2005-01-01

    .... This report presents more detailed calculations of the penetration and perforation of an electronic box with cooling fins by a high velocity fragment that strikes the fins with an oblique impact...

  1. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  2. Offshore wind farm repowering optimization

    DEFF Research Database (Denmark)

    Hou, Peng; Enevoldsen, Peter; Hu, Weihao

    2017-01-01

    is focused on optimization of offshore wind farm repowering, which is one option for the wind farm owner at end of life for the offshore wind farm. The LCoE is used as the evaluation index to identify whether it is economical to invest in such a way. In an optimized repowering strategy, different types...... of wind turbines are selected to replace the original wind turbines to reconstruct the wind farm, which is demonstrated to be better than the refurbishment approach which replaces the old wind turbines with the same type. The simulations performed in this research reveal that the reconstructed wind farm......, which consists of multiple types of wind turbine, has a smaller LCoE (10.43%) than the refurbishment approach, which shows the superiority of the proposed method. This research contributes an optimization tool to the wind industry, which consequently drives down the cost of energy produced by offshore...

  3. Finned Tube With Vortex Generators For A Heat Exchanger.

    Science.gov (United States)

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  4. Mongolia wind resource assessment project

    International Nuclear Information System (INIS)

    Elliott, D.; Chadraa, B.; Natsagdorj, L.

    1998-01-01

    The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia

  5. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.

    Science.gov (United States)

    Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K

    2015-11-25

    Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives.

  6. Investigation of material efficient fin patterns for cost-effective operation of fin and tube heat exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2017-01-01

    and tube heat exchanger. Computational fluid dynamic models of fin and tube heat exchanger with different fin patterns are developed to investigate the fin pattern behavior on heat transfer and pressure loss performance data. In addition, the numerical results are utilized to analyze the engineering design......Design management of a thermal energy system is a critical part of identifying basic designs that meet large scale user demand under certain operating characteristics. Fin and tube heat exchangers are among the most commonly used thermal energy systems which are generating considerable interest...... scale-up heat exchanger configurations with each fin pattern focusing on the application of chosen fin and tube heat exchanger in marine exhaust gas boiler. The analysis highlights the impact of material efficient fin patterns investigated and predicts that the polynomial and sinusoidal fin patterns...

  7. Nurturing a FinTech Ecosystem

    DEFF Research Database (Denmark)

    Leong, Carmen; Tan, Barney; Xiao, Xiao

    2017-01-01

    Financial technology, or FinTech, involves the design and delivery of financial products and services through technology. It impacts financial institutions, regulators, customers, and merchants across a wide range of industries. Pervasive digital technologies are challenging the fundamentals...... of the highly regulated financial sector, leading to the emergence of non-traditional payment systems, peer-to-peer money exchanges and increased turbulence in currency markets. This case study explores the development of a FinTech company in China that offers microloans to college students. Five lessons...... learned are presented for organizations to better manage the challenges and to leverage the opportunities amidst the disruption of financial sector. Our findings also shed light on how digital technology 1) offers the strategic capability for a firm to occupy a market niche in financial sector, 2) enables...

  8. Application of a modeling approach to designate soil and soil organic carbon loss to wind erosion on long-term monitoring sites (BDF) in Northern Germany

    Science.gov (United States)

    Nerger, Rainer; Funk, Roger; Cordsen, Eckhard; Fohrer, Nicola

    2017-04-01

    Soil organic carbon (SOC) loss is a serious problem in maize monoculture areas of Northern Germany. Sites of the soil monitoring network (SMN) "Boden-Dauerbeobachtung" show long-term soil and SOC losses, which cannot be explained by conventional SOC balances nor by other non-Aeolian causes. Using a process-based model, the main objective was to determine whether these losses can be explained by wind erosion. In the long-term context of 10 years, wind erosion was not measured directly but often observed. A suitable estimation approach linked high-quality soil/farming monitoring data with wind erosion modeling results. The model SWEEP, validated for German sandy soils, was selected using 10-minute wind speed data. Two similar local SMN study sites were compared, however, site A was characterized by high SOC loss and often affected by wind erosion, while the reference site B was not. At site A soil mass and SOC stock decreased by 49.4 and 2.44 kg m-2 from 1999 to 2009. Using SWEEP, a total soil loss of 48.9 kg m-2 resulted for 16 erosion events (max. single event 12.6 kg m-2). A share of 78% was transported by suspension with a SOC enrichment ratio (ER) of 2.96 (saltation ER 0.98), comparable to the literature. At the reference site measured and modeled topsoil losses were minimal. The good agreement between monitoring and modeling results suggested that wind erosion caused significant long-term soil and SOC losses. The approach uses results of prior studies and is applicable to similar well-studied sites without other noteworthy SOC losses.

  9. An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore

    Directory of Open Access Journals (Sweden)

    Mahmood Shafiee

    2014-02-01

    Full Text Available Failure mode and effects analysis (FMEA has been extensively used by wind turbine assembly manufacturers for analyzing, evaluating and prioritizing potential/known failure modes. However, several limitations are associated with its practical implementation in wind farms. First, the Risk-Priority-Number (RPN of a wind turbine system is not informative enough for wind farm managers from the perspective of criticality; second, there are variety of wind turbines with different structures and hence, it is not correct to compare the RPN values of different wind turbines with each other for prioritization purposes; and lastly, some important economical aspects such as power production losses, and the costs of logistics and transportation are not taken into account in the RPN value. In order to overcome these drawbacks, we develop a mathematical tool for risk and failure mode analysis of wind turbine systems (both onshore and offshore by integrating the aspects of traditional FMEA and some economic considerations. Then, a quantitative comparative study is carried out using the traditional and the proposed FMEA methodologies on two same type of onshore and offshore wind turbine systems. The results show that the both systems face many of the same risks, however there are some main differences worth considering.

  10. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  11. Studying Fin Whales with Seafloor Seismic Networks

    Science.gov (United States)

    Wilcock, W. S.; Soule, D. C.; Weirathmueller, M.; Thomson, R.

    2011-12-01

    Baleen whales are found throughout the world's oceans and their welfare captivates the general public. Depending on the species, baleen whales vocalize at frequencies ranging from ~10 Hz to several kilohertz. Passive acoustic studies of whale calls are used to investigate behavior and habitat usage, monitor the recovery of populations from whaling and assess the impacts of anthropogenic sounds. Since airguns are a significant source of sound in the oceans, the research goals of academic seismologists can lead to conflicts with those who advocate for whale conservation while being unwilling to consider the societal benefits of marine geophysical studies. In contrast, studies that monitor earthquakes with ocean bottom seismometers (OBSs) provide an opportunity to enhance studies of baleen whales and improve relationships with environmental advocates. The bandwidth of the typical high-frequency or intermediate-band ocean bottom seismometer overlaps the call frequency of the two largest baleen whale species; blue whales generate sequences of 10- to 20-s-long calls centered at ~16 Hz and fin whales produce long sequences of downswept 1-s-long chirps centered at ~20 Hz. Several studies have demonstrated the potential of OBS networks to monitor calling patterns and determine tracks for fin and blue whales. We will summarize the results from a study to track fin whales near the Endeavour hydrothermal vent fields on the Juan de Fuca Ridge and investigate a potential correlation between the density of whales and enhanced zooplankton found throughout the water column overlying the vent fields. From 2003-2006 an 8-station local seismic network that was designed to monitor hydrothermal earthquakes also recorded ~300,000 fin whale vocalizations, mostly in the fall and winter. Automatic picking and localization techniques that are analogous to those used to analyze earthquakes are employed to determine whale tracks. The tracks are then used to interpret calling patterns in the

  12. The optimization of longitudinal convective fins with internal heat generation

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)

  13. Non-steady-state heat transfer of finned surface

    International Nuclear Information System (INIS)

    Okamoto, Y.; Kameoka, T.

    1974-01-01

    For many purposes, the finned surface is being used to increase heat transfer. Heat exchangers and fuel elements of gas cooled nuclear reactors require the use of the finned surface for high flux heat transfer. The problem is analytically treated by deriving a non-steady-state equation of radiative and convective heat transfer of annular and radial fins in case of sudden change of the fin-root temperature or heat flux. The numerical solution of temperature distribution along the fin is obtained for several typical transient cases. (U.S.)

  14. The Fifth International Ice Nucleation Workshop Activities FIN-1 and FIN-2: Overview and Selected Results

    Science.gov (United States)

    Moehler, O.; Cziczo, D. J.; DeMott, P. J.; Hiranuma, N.; Petters, M. D.

    2015-12-01

    The role of aerosol particles for ice formation in clouds is one of the largest uncertainties in understanding the Earth's weather and climate systems, which is related to the poor knowledge of ice nucleation microphysics or of the nature and atmospheric abundance of ice nucleating particles (INPs). During the recent years, new mobile instruments were developed for measuring the concentration, size and chemical composition of INPs, which were tested during the three-part Fifth International Ice Nucleation (FIN) workshop. The FIN activities addressed not only instrument issues, but also important science topics like the nature of atmospheric INP and cloud ice residuals, the ice nucleation activity of relevant atmospheric aerosols, or the parameterization of ice formation in atmospheric weather and climate models. The first activity FIN-1 was conducted during November 2014 at the AIDA cloud chamber. It involved co-locating nine single particle mass spectrometers to evaluate how well they resolve the INP and ice residual composition and how spectra from different instruments compare for relevant atmospheric aerosols. We conducted about 90 experiments with mineral, carbonaceous and biological aerosol types, some also coated with organic and inorganic compounds. The second activity FIN-2 was conducted during March 2015 at the AIDA facility. A total of nine mobile INP instruments directly sampled from the AIDA aerosol chambers. Wet suspension and filter samples were also taken for offline INP processing. A refereed blind intercomparison was conducted during two days of the FIN-2 activity. The third activity FIN-3 will take place at the Desert Research Institute's Storm Peak Laboratory (SPL) in order to test the instruments' performance in the field. This contribution will introduce the FIN activities, summarize first results from the formal part of FIN-2, and discuss selected results, mainly from FIN-1 for the effect of coating on the ice nucleation (IN) by mineral

  15. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  16. Optimization of Installation, Operation and Maintenance at Offshore Wind Projects in the U.S.: Review and Modeling of Existing and Emerging Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, Nick [Garrad Hassan & Partners Ltd, Glasgow (United Kingdom); Sevilla, Fernando [Garrad Hassan & Partners Ltd, Glasgow (United Kingdom); Redfern, Robin [Garrad Hassan & Partners Ltd, Glasgow (United Kingdom); Storey, Alexis [Garrad Hassan & Partners Ltd, Glasgow (United Kingdom); Kempenaar, Anton [Garrad Hassan & Partners Ltd, Glasgow (United Kingdom); Elkinton, Chris [Garrad Hassan America, Inc., San Diego, CA (United States)

    2014-12-19

    The United States Department of Energy (DOE) awarded a grant to GL Garrad Hassan (GL GH) to investigate the logistics, opportunities, and costs associated with existing and emerging installation and operation and maintenance (O&M) activities at offshore wind projects as part of the DOE’s program to reduce barriers facing offshore wind project development in the United States (U.S.). This report (the Report) forms part of Subtopic 5.3 “Optimized Installation, Operation and Maintenance Strategies Study” which in turn is part of the “Removing Market Barriers in U.S. Offshore Wind” set of projects for the DOE. The purpose of Subtopic 5.3 is to aid and facilitate informed decision-making regarding installation and O&M during the development, installation, and operation of offshore wind projects in order to increase efficiency and reduce the levelized cost of energy (LCoE). Given the large area of U.S. territorial waters, the generally higher mean wind speeds offshore, and the proximity to the coast of many large U.S. cities, offshore wind power has the potential to become a significant contributor of energy to U.S. markets. However, for the U.S. to ensure that the development of offshore wind energy projects is carried out in an efficient and cost-effective manner, it is important to be cognizant of the current and emerging practices in both the domestic and international offshore wind energy industries. The U.S. can harness the experience gained globally and combine this with the skills and assets of an already sizeable onshore wind industry, as well as the resources of a mature offshore oil and gas industry, to develop a strong offshore wind sector. The work detailed in this report is aimed at assisting with that learning curve, particularly in terms of offshore specific installation and O&M activities. This Report and the Installation and O&M LCoE Analysis Tool, which were developed together by GL GH as part of this study, allow readers to identify, model

  17. Material and fin pitch effect on frosting CO2 in a fin-and-tube heat exchanger

    Science.gov (United States)

    Bassila, Joseph; Toubassy, Joseph; Danlos, Amélie; Descombes, Georges; Clodic, Denis

    2017-02-01

    Cryo Pur technology uses cryogenic separation to remove water vapor and carbon dioxide from biogas, in order to obtain bio-methane. To cool down the biogas at a very low temperature, a fin-and-tube heat exchanger is designed. In order to improve the fin-and-tube heat exchanger performance, a model is developed to investigate the material and fin pitch on frosting carbon dioxide. This paper will study the effect of the tubes and the fins material, and the fin pitch effect. The purpose is to extend the duration of a frosting cycle.

  18. Shuttle vertical fin flowfield by the direct simulation Monte Carlo method

    Science.gov (United States)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T.

    1985-01-01

    The flow properties in a model flowfield, simulating the shuttle vertical fin, determined using the Direct Simulation Monte Carlo method. The case analyzed corresponds to an orbit height of 225 km with the freestream velocity vector orthogonal to the fin surface. Contour plots of the flowfield distributions of density, temperature, velocity and flow angle are presented. The results also include mean molecular collision frequency (which reaches 1/60 sec near the surface), collision frequency density (approaches 7 x 10 to the 18/cu m sec at the surface) and the mean free path (19 m at the surface).

  19. Experimental study of heat transfer and pressures drops for cans with spiral herring-bone fins

    International Nuclear Information System (INIS)

    Pelce, J.; Francois, S.; Houseaux, O.; Pierre, B.

    1964-01-01

    Cans fitted with herring-bone fins are used for cooling uranium in certain nuclear reactor. By herring-bone is meant a staggered arrangement of the fins which have a plane of symmetry parallel to the general direction of liquid flow. The main geometrical parameter are then: the number of fins, the number of herring-bones, the angle of inclination of the fins with respect to the can axis, the dimensions of the fins, the can diameter and the channel diameter. The research is essentially experimental. The test are of three types: full size tests, in conditions approaching those in the reactor (constant flux, CO 2 under pressure); full size tests but with a constant wall temperature, much easier to set up, and intended to distinguish rapidly between the merits of the various types of can; large-scale tests with air at atmospheric pressure for studying the phenomena in more detail. For each can tried out there is a corresponding pressure drop coefficient, a mean thermal exchange coefficient Mo-bar and a minimum exchange coefficient Mo min and Mo-bar are related by the expression Mo min = Mo-bar * f c * f, where f c and f are respectively circumferential and longitudinal singularity factor determined from a statistical study of all the temperatures measured for each can. The results are presented in about thirty tables and figures the most noteworthy results being summarized in the conclusion. (authors) [fr

  20. Enhanced hydrodynamic performance of flexible fins using macro fiber composite actuators

    Science.gov (United States)

    Kancharala, A. K.; Philen, M. K.

    2014-10-01

    Recent studies on the role of body flexibility in propulsion suggest that fish have the ability to control the shape or modulate the stiffness of the fins for optimized performance. Inspired by nature’s ability to modulate stiffness and shape for different operating conditions, this paper investigates active control of flapping foils for thrust tailoring using Macro Fiber Composites (MFCs). A coupled piezohydroelastic model has been developed to predict the propulsive performance of an actively deforming fin. The effect of important parameters such as oscillation frequency, flexibility of the fin, applied voltage and the phase difference between applied voltage and heaving on propulsive performance are studied and reported. It is observed that distributed actuation along fin produces maximum performance through proper selection of the phase difference between heaving and voltage. The optimal phase for lower values of fin stiffness is approximately 90° and it approaches 0° for higher stiffness values. Experiments performed to determine the effect of active control using MFCs validate the theoretical results.

  1. Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Andrew J., E-mail: andy.martin@globalfoundries.com; Weng, Weihao; Zhu, Zhengmao; Loesing, Rainer; Shaffer, James; Katnani, Ahmad

    2016-02-15

    Sample preparation for atom probe tomography of 3D semiconductor devices has proven to significantly affect field evaporation and the reliability of reconstructed data. A cross-sectional preparation method is applied to state-of-the-art Si finFET technology on SOI. This preparation approach advantageously provides a conductive path for voltage and heat, offers analysis of many fins within a single tip, and improves resolution across interfaces of particular interest. Measured B and Ge profiles exhibit good correlation with SIMS and EDX and show no signs of B clustering or pile-up near the Si/SiGe interface of the fin. - Highlights: • Cross-section atom probe tomography sample preparation of fins on SOI. • >5 fins captured in single atom probe tip via cross-section method. • Oxides affect collection efficiency, reconstruction accuracy, and data reliability. • Sample orientation affects field evaporation of dissimilar materials. • Data is well-matched to SIMS and EDX analysis.

  2. Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI.

    Science.gov (United States)

    Martin, Andrew J; Weng, Weihao; Zhu, Zhengmao; Loesing, Rainer; Shaffer, James; Katnani, Ahmad

    2016-02-01

    Sample preparation for atom probe tomography of 3D semiconductor devices has proven to significantly affect field evaporation and the reliability of reconstructed data. A cross-sectional preparation method is applied to state-of-the-art Si finFET technology on SOI. This preparation approach advantageously provides a conductive path for voltage and heat, offers analysis of many fins within a single tip, and improves resolution across interfaces of particular interest. Measured B and Ge profiles exhibit good correlation with SIMS and EDX and show no signs of B clustering or pile-up near the Si/SiGe interface of the fin. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  4. Study on Application of New Approach of Fault Current Limiters in Fault Ride through Capability Improvement of DFIG Based Wind Turbine

    DEFF Research Database (Denmark)

    Naderi, Seyed Behzad; Davari, Pooya; Zhou, Dao

    2018-01-01

    Due to salient advantages, Doubly-Fed Induction Generator (DFIG) has more application in power network compared to Fixed Speed Wind Turbine. Because of employing back-to-back converters, one of the important studies regarding new grid code requirements is Fault Ride-Through (FRT) capability...... of the DFIG. To improve the FRT capability, one of the approaches is Fault Current Limiters (FCLs). In this paper, a new approach of application of the FCLs is studied and its location and impedance type will be discussed. Then, the resistive type of the FCL located in the stator side will be proposed....... The proposed FCL can insert a controllable resistance in fault current pass to not only restrict fault current level and compensate voltage sag in the stator but also consume pre-fault output active power of the DFIG regarding wind speed variation. Simulation results and analytics are presented to prove...

  5. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)

    2010-06-15

    To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)

  6. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties

    International Nuclear Information System (INIS)

    Bahmani-Firouzi, Bahman; Farjah, Ebrahim; Azizipanah-Abarghooee, Rasoul

    2013-01-01

    Renewable energy resources such as wind power plants are playing an ever-increasing role in power generation. This paper extends the dynamic economic emission dispatch problem by incorporating wind power plant. This problem is a multi-objective optimization approach in which total electrical power generation costs and combustion emissions are simultaneously minimized over a short-term time span. A stochastic approach based on scenarios is suggested to model the uncertainty associated with hourly load and wind power forecasts. A roulette wheel technique on the basis of probability distribution functions of load and wind power is implemented to generate scenarios. As a result, the stochastic nature of the suggested problem is emancipated by decomposing it into a set of equivalent deterministic problem. An improved multi-objective particle swarm optimization algorithm is applied to obtain the best expected solutions for the proposed stochastic programming framework. To enhance the overall performance and effectiveness of the particle swarm optimization, a fuzzy adaptive technique, θ-search and self-adaptive learning strategy for velocity updating are used to tune the inertia weight factor and to escape from local optima, respectively. The suggested algorithm goes through the search space in the polar coordinates instead of the Cartesian one; whereby the feasible space is more compact. In order to evaluate the efficiency and feasibility of the suggested framework, it is applied to two test systems with small and large scale characteristics. - Highlights: ► Formulates multi-objective DEED problem under a stochastic programming framework. ► Considers uncertainties related to forecasted values of load demand and wind power. ► Proposes an interactive fuzzy satisfying method based on the novel FSALPSO. ► Presents a new self-adaptive learning strategy to improve original PSO algorithm

  7. FinTech Market Development Perspectives

    OpenAIRE

    Kalmykova, Ekaterina Yurievna; Ryabova, Anna

    2016-01-01

    Fast development of technologies has led to emergence of the new market – FinTech – which is very attractive for investors today. By now this market has a great number of different concepts: P2P-crediting, E-wallets, Bitcoins, mPOS-acquiring, T-commerce, mobile banks, etc. Many of these tools have already heavily entered our ordinary life. People can obtain any credits through special services on the Internet from other users without participation of banks, pay by credit card using mobile dev...

  8. Undulating fins produce off-axis thrust and flow structures.

    Science.gov (United States)

    Neveln, Izaak D; Bale, Rahul; Bhalla, Amneet Pal Singh; Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A

    2014-01-15

    While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin.

  9. Touch sensation by pectoral fins of the catfish Pimelodus pictus

    Science.gov (United States)

    Hardy, Adam R.; Steinworth, Bailey M.

    2016-01-01

    Mechanosensation is fundamental to many tetrapod limb functions, yet it remains largely uninvestigated in the paired fins of fishes, limb homologues. Here we examine whether membranous fins may function as passive structures for touch sensation. We investigate the pectoral fins of the pictus catfish (Pimelodus pictus), a species that lives in close association with the benthic substrate and whose fins are positioned near its ventral margin. Kinematic analysis shows that the pectoral fins are held partially protracted during routine forward swimming and do not appear to generate propulsive force. Immunohistochemistry reveals that the fins are highly innervated, and we observe putative mechanoreceptors at nerve fibre endings. To test for the ability to sense mechanical perturbations, activity of fin ray nerve fibres was recorded in response to touch and bend stimulation. Both pressure and light surface brushing generated afferent nerve activity. Fin ray nerves also respond to bending of the rays. These data demonstrate for the first time that membranous fins can function as passive mechanosensors. We suggest that touch-sensitive fins may be widespread in fishes that maintain a close association with the bottom substrate. PMID:26865307

  10. Hydrodynamics of a freely movable flexible fin near the ground

    Science.gov (United States)

    Jeong, Young Dal; Lee, Jae Hwa

    2017-11-01

    In the present study, a freely movable flexible fin is numerically modelled to investigate the flapping dynamics of the fin near the ground in a Poiseuille flow. A leading edge of the fin is fixed in the streamwise direction, whereas the lateral motion is spontaneously determined by hydrodynamic interaction between the fin and surrounding fluid. When the fin is initially positioned at yo, the fin passively migrates toward another wall-normal position for an equilibrium state by the interaction between passively flapping flexible body and ground. At the equilibrium position, the drag coefficient of the fin (CD) significantly decreases due to decaying of the flapping and low flow velocity and the fin can swim consistently without the time-averaged lateral force. Two distinctive behavior at the transient state (flapping and non-flapping migration modes) and three distinctive behaviors at the equilibrium state (deflected-straight, large- and small-amplitude flapping modes) are observed depending on the bending rigidity (γ) and mass ratio (μ) of the fin. The equilibrium position of the fin is investigated as a function of initial position (yo) , bending rigidity (γ) , mass ratio (μ) and the Reynolds number (Re). This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  11. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  12. A study of the air-side heat transfer and pressure drop characteristics of tube-fin 'no-frost' evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jader R. Jr.; Melo, Claudio; Hermes, Christian J.L.; Waltrich, Paulo J. [POLO - National Institute of Science and Technology of Refrigeration and Thermophysics, Federal University of Santa Catarina, 88040-900, Florianopolis, SC (Brazil)

    2009-09-15

    A study is presented on the influence of the air flow rate and surface geometry on the thermal-hydraulic performance of commercial tube-fin 'no-frost' evaporators. A specially constructed wind-tunnel calorimeter was used in the experiments from which data on the overall thermal conductance, pressure drop, Colburn j-factor and Darcy friction factor, f, were extracted. Eight different evaporator samples with distinct geometric characteristics, such as number of tube rows, number of fins and fin pitch were tested. Semi-empirical correlations for j and f are proposed in terms of the air-side Reynolds number and the finning factor. A discussion is presented on the performance of the evaporators with respect to specific criteria such as the pumping power as a function of heat transfer capacity and the volume of material in each evaporator. (author)

  13. Anatomy and early development of the pectoral girdle, fin, and fin spine of sturgeons (Actinopterygii: Acipenseridae).

    Science.gov (United States)

    Dillman, Casey B; Hilton, Eric J

    2015-03-01

    Acipenseriformes hold an important place in the evolutionary history of bony fishes. Given their phylogenetic position as extant basal Actinopterygii, it is generally held that a thorough understanding of their morphology will greatly contribute to the knowledge of the evolutionary history and the origin of diversity for the major osteichthyan clades. To this end, we examined comparative developmental series from the pectoral girdle in Acipenser fulvescens, A. medirostris, A. transmontanus, and Scaphirhynchus albus to document, describe, and compare ontogenetic and allometric differences in the pectoral girdle. We find, not surprisingly, broad congruence between taxa in the basic pattern of development of the dermal and chondral elements of the pectoral girdle. However, we also find clear differences in the details of structure and development among the species examined in the dermal elements, including the clavicle, cleithrum, supracleithrum, posttemporal, and pectoral-fin spine. We also find differences in the internal fin elements such as the distal radials as well as in the number of fin rays and their association with the propterygium. Further, there are clear ontogenetic differences during development of the dermal and chondral elements in these species and allometric variation in the pectoral-fin spine. The characters highlighted provide a suite of elements for further examination in studies of the phylogeny of sturgeons. Determining the distribution of these characters in other sturgeons may aid in further resolution of phylogenetic relationships, and these data highlight the role that ontogenetic and comparative developmental studies provide in systematics. © 2014 Wiley Periodicals, Inc.

  14. Fin-and-tube condenser performance evaluation using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ling-Xiao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)

    2010-05-15

    The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into {+-}5%. (author)

  15. Methods and criteria for safety analysis (FIN L2535)

    International Nuclear Information System (INIS)

    1992-12-01

    In response to the NRC request for a proposal dated October 20, 1992, Westinghouse Savannah River Company (WSRC) submit this proposal to provide contractural assistance for FIN L2535, ''Methods and Criteria for Safety Analysis,'' as specified in the Statement of Work attached to the request for proposal. The Statement of Work involves development of safety analysis guidance for NRC licensees, arranging a workshop on this guidance, and revising NRC Regulatory Guide 3.52. This response to the request for proposal offers for consideration the following advantages of WSRC in performing this work: Experience, Qualification of Personnel and Resource Commitment, Technical and Organizational Approach, Mobilization Plan, Key Personnel and Resumes. In addition, attached are the following items required by the NRC: Schedule II, Savannah River Site - Job Cost Estimate, NRC Form 189, Project and Budget Proposal for NRC Work, page 1, NRC Form 189, Project and Budget Proposal for NRC Work, page 2, Project Description

  16. Laminar flow and mass transfer in channels with a porous bottom wall and with fins attached to the top wall

    Energy Technology Data Exchange (ETDEWEB)

    Varol, S.S. [Army, Technical Project Administration Office, Ankara (Turkey); Yucel, N.; Turkoglu, H. [Gazi Univ., Ankara (Turkey). Mechanical Eng. Dept.

    2000-04-01

    The steady incompressible, viscous, two- dimensional flow of a solution in a channel was considered. The bottom wall was porous and the fins were attached to the top wall. Employing control volume approach, a computer program based on SIMPLE algorithm was developed. Computations were carried out to investigate the effects of the inlet Reynolds number, the fin length, the suction Reynolds number and the slip coefficient on the flow structure and the concentration distribution. It was observed that the thickness of concentration boundary layer increases in the flow direction. The concentration on the porous wall and the concentration boundary layer thickness decrease with increasing fin length, the slip coefficient and the inlet Reynolds number. These results show that fins attached to the upper wall of the channel can be utilized to reduce the concentration polarization and hence improve the effectiveness of the separation process. (orig.)

  17. New Approaches for Very Short-term Steady-State Analysis of An Electrical Distribution System with Wind Farms

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2010-04-01

    Full Text Available Distribution networks are undergoing radical changes due to the high level of penetration of dispersed generation. Dispersed generation systems require particular attention due to their incorporation of uncertain energy sources, such as wind farms, and due to the impacts that such sources have on the planning and operation of distribution networks. In particular, the foreseeable, extensive use of wind turbine generator units in the future requires that distribution system engineers properly account for their impacts on the system. Many new technical considerations must be addressed, including protection coordination, steady-state analysis, and power quality issues. This paper deals with the very short-term, steady-state analysis of a distribution system with wind farms, for which the time horizon of interest ranges from one hour to a few hours ahead. Several wind-forecasting methods are presented in order to obtain reliable input data for the steady-state analysis. Both deterministic and probabilistic methods were considered and used in performing deterministic and probabilistic load-flow analyses. Numerical applications on a 17-bus, medium-voltage, electrical distribution system with various wind farms connected at different busbars are presented and discussed.

  18. Film Condensation of Steam on Externally Finned Horizontal Tubes.

    Science.gov (United States)

    1985-03-01

    34. 7 e - Fin Height -F - Property Function g - Acceleration of Gravity G - Condensate Flow Rate Gf - Rate of Condensate Formation h - Steam...interaction of gravitational and surface-tension forces lead to complex - three-dimensional flow patterns, which are further dependent on fin spacing, height...and thickness. Other variables include heat flux, vapor shear, tube diameter, fin shape and fuid properties just to name a few. In view ofL the

  19. Large Scale Density Estimation of Blue and Fin Whales (LSD)

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...sensors, or both. The goal of this research is to develop and implement a new method for estimating blue and fin whale density that is effective over...develop and implement a density estimation methodology for quantifying blue and fin whale abundance from passive acoustic data recorded on sparse

  20. A GIS-assisted approach to wide-area wind resource assessment and site selection for the state of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Hurley, P. [RLA Consulting, Bothell, WA (United States); Simon, R. [Consulting Meteorologist, Mill Valley, CA (United States)

    1996-12-31

    This paper describes the methodology and results of a wide-area wind resource assessment and site selection in Colorado. This was the first phase in a three-part assessment and monitoring program conducted for the State of Colorado Office of Energy Conservation and several collaborating utilities. The objective of this phase was to identify up to 20 candidate sites for evaluation and possible long-term monitoring. This was accomplished using a geographic information system (GIS), which takes into account such factors as topography, existing wind resource data, locations of transmission lines, land cover, and land use. The resulting list of sites recommended for evaluation in Phase 2 of the study includes locations throughout Colorado, but most are in the eastern plains. The GIS wind siting model may be modified and updated in the future as additional information becomes available. 3 figs., 1 tab.

  1. Effects of increased wind power generation on Mid-Norway's energy balance under climate change: A market based approach

    Science.gov (United States)

    Francois, Baptiste; Martino, Sara; Tofte, Lena; Hingray, Benoit; Mo, Birger; Creutin, Jean-Dominique

    2017-04-01

    Thanks to its huge water storage capacity, Norway has an excess of energy generation at annual scale, although significant regional disparity exists. On average, the Mid-Norway region has an energy deficit and needs to import more electricity than it exports. We show that this energy deficit can be reduced with an increase in wind generation and transmission line capacity, even in future climate scenarios where both mean annual temperature and precipitation are changed. For the considered scenarios, the deficit observed in winter disappears, i.e. when electricity consumption and prices are high. At the annual scale, the deficit behavior depends more on future changes in precipitation. Another consequence of changes in wind production and transmission capacity is the modification of electricity exchanges with neighboring regions which are also modified both in terms of average, variability and seasonality. Keywords: Variable renewable energy, Wind, Hydro, Energy balance, Energy market

  2. Lightweight Radiator Fins for Space Nuclear Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate concept radiator fins that incorporate novel carbon materials for improved performance of segmented high temperature...

  3. Evaluation of nano- and submicron particle penetration through ten nonwoven fabrics using a wind-driven approach.

    Science.gov (United States)

    Gao, Pengfei; Jaques, Peter A; Hsiao, Ta-Chih; Shepherd, Angie; Eimer, Benjamin C; Yang, Mengshi; Miller, Adam; Gupta, Bhupender; Shaffer, Ronald

    2011-01-01

    Existing face mask and respirator test methods draw particles through materials under vacuum to measure particle penetration. However, these filtration-based methods may not simulate conditions under which protective clothing operates in the workplace, where airborne particles are primarily driven by wind and other factors instead of being limited to a downstream vacuum. This study was focused on the design and characterization of a method simulating typical wind-driven conditions for evaluating the performance of materials used in the construction of protective clothing. Ten nonwoven fabrics were selected, and physical properties including fiber diameter, fabric thickness, air permeability, porosity, pore volume, and pore size were determined. Each fabric was sealed flat across the wide opening of a cone-shaped penetration cell that was then housed in a recirculation aerosol wind tunnel. The flow rate naturally driven by wind through the fabric was measured, and the sampling flow rate of the Scanning Mobility Particle Sizer used to measure the downstream particle size distribution and concentrations was then adjusted to minimize filtration effects. Particle penetration levels were measured under different face velocities by the wind-driven method and compared with a filtration-based method using the TSI 3160 automated filter tester. The experimental results show that particle penetration increased with increasing face velocity, and penetration also increased with increasing particle size up to about 300 to 500 nm. Penetrations measured by the wind-driven method were lower than those obtained with the filtration method for most of the fabrics selected, and the relative penetration performances of the fabrics were very different due to the vastly different pore structures.

  4. Inverse determination of the heat transfer characteristics on a circular plane fin in a finned-tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Benmachiche, Abdelmoumene Hakim [University of Biskra, Department of Mechanics, Biskra (Algeria); Bougriou, Cherif [University of Batna, LESEI FSI Department of Mechanics, Batna (Algeria); Abboudi, Said [UTBM, Department of Mechanical Engineering, SET Laboratory, Belfort (France)

    2010-12-15

    In this work, we present the numerical results of the average heat transfer coefficients, h{sub {phi}}, over a circular plane fin in a finned-tube bundle for both aligned and staggered arrangements as well as the fin efficiency and the heat flux dissipated from the whole fin. The study covers a wide range of Reynolds number (2 x 10{sup 3}-3 x 10{sup 4}), for three different positions of the finned tube inside the heat exchanger. The temperature distribution on the fins surfaces was obtained experimentally using infrared thermography technique. The predicted values of the heat transfer coefficient were obtained numerically using the finite element method in conjunction with the conjugate gradient algorithm and the measured temperatures. (orig.)

  5. Beyond cost-of-energy, the value-of-energy metric and value-centric approaches to design, operations, and maintenance of wind turbines

    Science.gov (United States)

    Fernandes, Kevin

    This thesis is oriented toward developers, owners, operators and investors of renewable energy projects. With increasing demand of renewables, our energy dependence comes down to reducing costs associated with this sector so as to compete with the existing sources. One way of valuing investment potential is to determine and then compare the overall value derived by investing in a particular project. Several engineering and financial levers, one of which is operation and maintenance, affect this value. This thesis provides a useful visual aid to owners and operators by which they can operate and maintain their wind farm so as to achieve maximum value throughout its lifetime. All the necessary components that go into developing a business model of a wind farm project will be discussed. Finally, this tool is valid within the assumptions that are explicitly stated. Real world data and trends are used to provide a practical approach to the optimization.

  6. Fin o metamorfosis de la escuela

    Directory of Open Access Journals (Sweden)

    José Joaquín Brunner

    1996-10-01

    Full Text Available El autor adhiere a la idea de que la escuela una es una de las matrices de la modernidad por cuanto separa la transmisión cultural de cualquier soporte físico (escritura, radicándola en el propio proceso de escolarización: su gramática consistiría en redes de clasificación del conocimiento, siendo el orden escolar esencialmente un procedimiento; el juego que juega la escuela es el de la obtención de los usos de adquisición del conocimiento. De esta forma el “fin de la escritura” como tecnología predominante del conocimiento, significara el conocimiento de una nueva era de escolarización.

  7. When real life wind speed exceeds design wind assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Winther-Jensen, M.; Joergensen, E.R. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Most modern wind turbines are designed according to a standard or a set of standards to withstand the design loads with a defined survival probability. Mainly the loads are given by the wind conditions on the site defining the `design wind speeds`, normally including extreme wind speeds given as an average and a peak value. The extreme wind speeds are normally (e.g. in the upcoming IEC standard for wind turbine safety) defined as having a 50-year recurrence period. But what happens when the 100 or 10,000 year wind situation hits a wind turbine? Results on wind turbines of wind speeds higher than the extreme design wind speeds are presented based on experiences especially from the State of Gujarat in India. A description of the normal approach of designing wind turbines in accordance with the standards in briefly given in this paper with special focus on limitations and built-in safety levels. Based on that, other possibilities than just accepting damages on wind turbines exposed for higher than design wind speeds are mentioned and discussed. The presentation does not intend to give the final answer to this problem but is meant as an input to further investigations and discussions. (au)

  8. Numerical studies on heat transfer and pressure drop characteristics of flat finned tube bundles with various fin materials

    Science.gov (United States)

    Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.

    2017-11-01

    The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.

  9. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan

    2016-01-01

    the insertion point. The presence of the wind turbine and its wake is found to have insignificant effect on upstream turbulence. Finally, the mean velocity profiles in the wake are found to be in good agreement with both lidar measurements and CFD simulations. (C) 2016 Elsevier Ltd. All rights reserved....

  10. Pectoral fin locomotion in batoid fishes: undulation versus oscillation.

    Science.gov (United States)

    Rosenberger, L J

    2001-01-01

    This study explores the dichotomy between undulatory (passing multiple waves down the fin or body) and oscillatory (flapping) locomotion by comparing the kinematics of pectoral fin locomotion in eight species of batoids (Dasyatis americana, D. sabina, D. say, D. violacea, Gymnura micrura, Raja eglanteria, Rhinobatos lentiginosus and Rhinoptera bonasus) that differ in their swimming behavior, phylogenetic position and lifestyle. The goals of this study are to describe and compare the pectoral fin locomotor behavior of the eight batoid species, to clarify how fin movements change with swimming speed for each species and to analyze critically the undulation/oscillation continuum proposed by Breder using batoids as an example. Kinematic data were recorded for each species over a range of swimming velocities (1-3 disc lengths s(-1)). The eight species in this study vary greatly in their swimming modes. Rhinobatos lentiginosus uses a combination of axial-based and pectoral-fin-based undulation to move forward through the water, with primary thrust generated by the tail. The pectoral fins are activated in short undulatory bursts for increasing swimming speed and for maneuvering. Raja eglanteria uses a combination of pectoral and pelvic locomotion, although only pectoral locomotion is analyzed here. The other six species use pectoral locomotion exclusively to propel themselves through the water. Dasyatis sabina and D. say have the most undulatory fins with an average of 1.3 waves per fin length, whereas Rhinoptera bonasus has the most oscillatory fin behavior with 0.4 waves per fin length. The remaining species range between these two extremes in the degree of undulation present on their fins. There is an apparent trade-off between fin-beat frequency and amplitude. Rhinoptera bonasus has the lowest frequency and the highest fin amplitude, whereas Rhinobatos lentiginosus has the highest frequency and the lowest amplitude among the eight species examined. The kinematic

  11. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  12. Work Function Tuning and Doping Optimization of 22-nm HKMG Raised SiGe/SiC Source-Drain FinFETs

    Science.gov (United States)

    Rezali, F. A. Md; Rasid, M. A. S. Abd; Othman, N. A. F.; Hatta, S. Wan Muhamad; Soin, N.

    2017-03-01

    The basic requirements on process design of extremely scaled devices involve appropriate work function and tight doping control due to their significant effect on the threshold voltage as well as other critical electrical parameters such as drive current and leakage. This paper presents a simulation study of 22-nm fin field-effect transistor (FinFET) performance based on various process design considerations including metal gate work function (WF), halo doping ( N halo), source/drain doping ( N sd), and substrate doping ( N sub). The simulations suggest that the n-type FinFET ( nFinFET) operates effectively with lower metal gate WF while the p-type FinFET ( pFinFET) operates effectively with high metal gate WF in 22-nm strained technology. Further investigation shows that the leakage reduces with increasing N halo, decreasing N sd, and increasing N sub. Taguchi and Pareto analysis-of-variance approaches are applied using an L27 orthogonal array combined with signal-to-noise ratio analysis to determine the best doping concentration combination for 22-nm FinFETs in terms of threshold voltage ( V t), saturation current ( I on), and off-state current ( I off). Since there is a tradeoff between I on and I off, the design with the nominal-is-best V t characteristic is proposed, achieving nominal V t of 0.259 V for the nFinFET and -0.528 V for the pFinFET. Pareto analysis revealed N halo and N sub to be the dominant factor for nFinFET and pFinFET performance, respectively.

  13. Species composition of the international shark fin trade assessed through a retail-market survey in Hong Kong.

    Science.gov (United States)

    Fields, Andrew T; Fischer, Gunter A; Shea, Stanley K H; Zhang, Huarong; Abercrombie, Debra L; Feldheim, Kevin A; Babcock, Elizabeth A; Chapman, Demian D

    2018-04-01

    The shark fin trade is a major driver of shark exploitation in fisheries all over the world, most of which are not managed on a species-specific basis. Species-specific trade information highlights taxa of particular concern and can be used to assess the efficacy of management measures and anticipate emerging threats. The species composition of the Hong Kong Special Administrative Region of China, one of the world's largest fin trading hubs, was partially assessed in 1999-2001. We randomly selected and genetically identified fin trimmings (n = 4800), produced during fin processing, from the retail market of Hong Kong in 2014-2015 to assess contemporary species composition of the fin trade. We used nonparametric species estimators to determine that at least 76 species of sharks, batoids, and chimaeras supplied the fin trade and a Bayesian model to determine their relative proportion in the market. The diversity of traded species suggests species substitution could mask depletion of vulnerable species; one-third of identified species are threatened with extinction. The Bayesian model suggested that 8 species each comprised >1% of the fin trimmings (34.1-64.2% for blue [Prionace glauca], 0.2-1.2% for bull [Carcharhinus leucas] and shortfin mako [Isurus oxyrinchus]); thus, trade was skewed to a few globally distributed species. Several other coastal sharks, batoids, and chimaeras are in the trade but poorly managed. Fewer than 10 of the species we modeled have sustainably managed fisheries anywhere in their range, and the most common species in trade, the blue shark, was not among them. Our study and approach serve as a baseline to track changes in composition of species in the fin trade over time to better understand patterns of exploitation and assess the effects of emerging management actions for these animals. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin

    NARCIS (Netherlands)

    Knopf, F.; Hammond, C.J.; Chekuru, A.; Kurth, T.; Hans, S.; Weber, C.W.; Mahatma, G.; Fisher, S.; Brand, M.; Schulte-Merker, S.; Weidinger, G.

    2011-01-01

    While mammals have a limited capacity to repair bone defects, zebrafish can completely regenerate amputated bony structures of their fins. Fin regeneration is dependent on formation of a blastema, a progenitor cell pool accumulating at the amputation plane. It is unclear which cells the blastema is

  15. Strain characterization of FinFETs using Raman spectroscopy

    NARCIS (Netherlands)

    Kaleli, B.; van Hemert, T.; Hueting, Raymond Josephus Engelbart; Wolters, Robertus A.M.

    2013-01-01

    Metal induced strain in the channel region of silicon (Si) fin-field effect transistor (FinFET) devices has been characterized using Raman spectroscopy. The strain originates from the difference in thermal expansion coefficient of Si and titanium-nitride. The Raman map of the device region is used

  16. En Defensa del Fin de Lucro en Salud.

    Directory of Open Access Journals (Sweden)

    Ramón Abel Castaño Yepes

    2007-06-01

    La quinta premisa se deriva de la cuarta y de la segunda, es decir, que si el diseño del sistema de salud introducido por la Ley 100 tiene como elemento distintivo el fin de lucro, entonces el resultado de dicho diseño tiene que ser indeseable, puesto que el fin de lucro es indeseable...

  17. Transient heat transfer in longitudinal fins of various profiles with ...

    Indian Academy of Sciences (India)

    may be constructed for the steady-state one-dimensional differential equation describing temperature distribution in a straight fin when the thermal conductivity is a constant and n = −1, 0, 1 and 2 [19]. The thermal conductivity of the fin may be assumed to vary linearly with the temperature for many engineering applications ...

  18. The heat transfer of cooling fins on moving air

    Science.gov (United States)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  19. Experimental Validation of Elliptical Fin-Opening Behavior

    Directory of Open Access Journals (Sweden)

    James M. Garner

    2003-01-01

    Full Text Available An effort to improve the performance of ordnance has led to the consideration of the use of folding elliptical fins for projectile stabilization. A second order differential equation was used to model elliptical fin deployment history and accounts for: deployment with respect to the geometric properties of the fin, the variation in fin aerodynamics during deployment, the initial yaw effect on fin opening, and the variation in deployment speed based on changes in projectile spin. This model supports tests conducted at the Transonic Experimental Facility, Aberdeen Proving Ground examining the opening behavior of these uniquely shaped fins. The fins use the centrifugal force from the projectile spin to deploy. During the deployment, the fin aerodynamic forces vary with angle-of-attack changes to the free stream. Model results indicate that projectile spin dominates the initial opening rates and aerodynamics dominate near the fully open state. The model results are examined to explain the observed behaviors, and suggest improvements for later designs.

  20. Optimum length of finned pipe for waste heat recovery

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2008-01-01

    A thermoeconomic feasibility analysis is presented yielding a simple algebraic optimization formula for estimating the optimum length of a finned pipe that is used for waste heat recovery. A simple economic optimization method is used in the present study by combining it with an integrated overall heat balance method based on fin effectiveness for calculating the maximum savings from a waste heat recovery system

  1. Body Scars and Dorsal Fin Disfigurements as Indicators Interaction ...

    African Journals Online (AJOL)

    (Peponocephala electra) and short-finned pilot whales (Globicephala macrorhynchus). Injuries on the dorsal region (especially the dorsal fin) were characterised and related to fisheries or intra-/inter-specific interactions (with sharks and other cetacean species). The results suggest interactions with fisheries involving the ...

  2. Experimental Study on Horizontal Cylinders with Triangular Fins under Natural Convection

    Directory of Open Access Journals (Sweden)

    Gu-Won Lee

    2018-04-01

    Full Text Available In this study, thermal resistances of horizontal cylinders with triangular fins were measured in regard to fin numbers, fins heights, and temperature differences. Thereafter, an empirical correlation was proposed and validated for predicting the Nusselt numbers under the following conditions: Rayleigh number, 200,000–1,000,000; fin aspect ratio, 1.6–5.0; and fin number, 9–72. Finally, with the proposed correlation, the effects of fin numbers, fins heights, and fin thicknesses on the thermal resistances of the horizontal cylinders with triangular fins were investigated. It was shown that the thermal resistance generally increases as the fin number, fin height, and fin thickness increase. It is expected that horizontal cylinders for various cooling devices with triangular fins can be designed based on the findings of the present study.

  3. Development of a Simulation Model for Swimming with Diving Fins

    Directory of Open Access Journals (Sweden)

    Motomu Nakashima

    2018-02-01

    Full Text Available The simulation model to assess the performance of diving fin was developed by extending the swimming human simulation model SWUM. A diving fin was modeled as a series of five rigid plates and connected to the human model by springs and dampers. These plates were connected to each other by virtual springs and dampers, and fin’s bending property was represented by springs and dampers as well. An actual diver’s swimming motion with fins was acquired by a motion capture experiment. In order to determine the bending property of the fin, two bending tests on land were conducted. In addition, an experiment was conducted in order to determine the fluid force coefficients in the fluid force model for the fin. Finally, using all measured and identified information, a simulation, in which the experimental situation was reproduced, was carried out. It was confirmed that the diver in the simulation propelled forward in the water successfully.

  4. Cooling characteristics of a strip fin heat sink

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Park, Cheol Woo; Jang, Chung Sun; Kim, Hyun Woo

    2005-01-01

    Air-cooled heat sinks are employed in many electronic cooling applications since they provide significant heat transfer enhancement and operational flexibility. Strip-shaped fin heat sink is of interest and needs to be investigated as general cooling products for more applicability. The purposes of this study are to evaluate heat sink performance without bypass flow condition and to determine optimal heat sink geometries. The results show that the decreasing rate of thermal resistance of a heat sink decreases with increasing inlet air velocity, and the increasing rate of pressure drop increases with increasing inlet air velocity, but is not affected by input power. The increasing rate of optimal longitudinal fin spacing is larger than that of transverse fin spacing. The strip fin heat sink tested in this study showed better cooling performance compared to that of other plate fin type

  5. A COPRAS-F base multi-criteria group decision making approach for site selection of wind farm

    Directory of Open Access Journals (Sweden)

    Nikhil Chandra Chatterjee

    2013-01-01

    Full Text Available Today global warming is on the rise and the natural resources are getting consumed at a faster rate. Power consumption has increased many folds to cater the human need. Thus renewable energy resources are the only option available at this juncture. Wind energy is one of the renewable energy. Location selection for wind farm takes an important role on power generation. However, the location selection is a complex multicriteria problem due to the criteria factors which are conflicting in nature as well as uncertain. The process becomes more complex when a group of decision makers are involved in decision making. In the present study, a COPRAS (COmplex PRoportional ASsessment based multi-criteria decision-making (MCDM methodology is done under fuzzy environment with the help of multiple decision makers. More specifically, this study is aimed to focus the applicability of COPRAS-F as a strategic decision making tools to handle the group decision-making problems.

  6. A new approach for power quality improvement of DFIG based wind farms connected to weak utility grid

    Directory of Open Access Journals (Sweden)

    Hossein Mahvash

    2017-09-01

    Full Text Available Most of power quality problems for grid connected doubly fed induction generators (DFIGs with wind turbine include flicker, variations of voltage RMS profile, and injected harmonics due to switching in DFIG converters. Flicker phenomenon is the most important problem in wind power systems. This paper described an effective method for mitigating flicker emission and power quality improvement for a fairly weak grid connected to a wind farm with DFIGs. The method was applied in the rotor side converter (RSC of the DFIG to control the output reactive power. q axis reference current was directly derived according to the mathematical relation between rotor q axis current and DFIG output reactive power without using PI controller. To extract the reference reactive power, the stator voltage control loop with the droop coefficient was proposed to regulate the grid voltage level in each operational condition. The DFIG output active power was separately controlled in d axis considering the stator voltage orientation control (SVOC. Different simulations were carried out on the test system and the flicker short term severity index (Pst was calculated for each case study using the discrete flickermeter model according to IEC 61400 standard. The obtained results validated flicker mitigation and power quality enhancement for the grid.

  7. Short term hydroelectric power system scheduling with wind turbine generators using the multi-pass iteration particle swarm optimization approach

    International Nuclear Information System (INIS)

    Lee, T.-Y.

    2008-01-01

    This paper uses multi-pass iteration particle swarm optimization (MIPSO) to solve short term hydroelectric generation scheduling of a power system with wind turbine generators. MIPSO is a new algorithm for solving nonlinear optimal scheduling problems. A new index called iteration best (IB) is incorporated into particle swarm optimization (PSO) to improve solution quality. The concept of multi-pass dynamic programming is applied to modify PSO further and improve computation efficiency. The feasible operational regions of the hydro units and pumped storage plants over the whole scheduling time range must be determined before applying MIPSO to the problem. Wind turbine power generation then shaves the power system load curves. Next, MIPSO calculates hydroelectric generation scheduling. It begins with a coarse time stage and searching space and refines the time interval between two time stages and the search spacing pass by pass (iteration). With the cooperation of agents called particles, the near optimal solution of the scheduling problem can be effectively reached. The effects of wind speed uncertainty were also considered in this paper. The feasibility of the new algorithm is demonstrated by a numerical example, and MIPSO solution quality and computation efficiency are compared to those of other algorithms

  8. Enhancement of the forced convective heat transfer on mini pin fin heat sinks with micro spiral fins

    Science.gov (United States)

    Khonsue, Osot

    2018-02-01

    This research is an experimental study on the characteristics of heat transfer and pressure drop in mini heat sinks using air as the working fluid. The experiments were performed under a constant heat flux ranging from 9.132-13.698 kW/m2 and the air Reynolds number range 322-1982. Three different types of mini heat sinks were rectangle pin fins, cylindrical pin fins, and spiral pin fins with 36x28x9 mm and 5 mm fins high. There were 63 fins altogether and all were made of aluminum. The results showed that the characteristics of the temperature of heat sink of spiral pin fins was the least. Meanwhile the average heat transfer coefficient and Nusselt number of spiral pin fins were the most . Regarding the pressure drop, the rectangular pin fins was the least. The results of this study can be used to guide the design and development of electronic devices cooling system with forced convective heat transfer for higher performance in the future.

  9. FinTech Market Development Perspectives

    Directory of Open Access Journals (Sweden)

    Kalmykova Ekaterina

    2016-01-01

    Full Text Available Fast development of technologies has led to emergence of the new market – FinTech – which is very attractive for investors today. By now this market has a great number of different concepts: P2P-crediting, E-wallets, Bitcoins, mPOS-acquiring, T-commerce, mobile banks, etc. Many of these tools have already heavily entered our ordinary life. People can obtain any credits through special services on the Internet from other users without participation of banks, pay by credit card using mobile devices, and get information about expenses and incomes according to the card anywhere in the world. Users do not need to go to banks anymore and to spend their time for credit arrangements, currency exchange, to look for ATMs to remove cash. Purchases on the Internet can be paid not only in rubles, but also in new digital currency. These tools make life easier, however, they pose a serious threat for banks. Now, bank institutions should create more convenient and utility services for the clients to keep clients. Therefore, bank and credit systems start to change actively.

  10. THE SUBSTANTIATION OF THE METHODICAL APPROACH FOR ESTIMATION OF DYNAMICS OF DEVELOPMENT OF TECHNOLOGIES OF OFFSHORE WIND ENERGY USING (THE GERMAN EXAMPLE

    Directory of Open Access Journals (Sweden)

    A. A. Gorlov

    2018-01-01

    Full Text Available Purpose: the introduction of renewable energy technologies (RES occurs against the backdrop of a developed hydrocarbon energy market, which raises the risk of seeing unreasonable decisions by investors. The development and use of various analytical tools can reduce such risks. Economic models based on calculations by dozens of experts of a number of macro- and micro-economic factors have been used to study the replacement of traditional energy technologies with already developed RES technologies. At the same time, simpler but more effective econometric methods are being developed, based on the data of real projects and allowing to conduct research for the recently launched RES technologies. The main purpose of this article is to substantiate one of such methodologies used to asses growth dynamics of developing offshore wind energy based on the example of Germany – the leading country in the North Sea basin.Methods: many foreign and domestic authoritative organizations have developed a number of fairly complex models in order to study the economic substitution processes in fuel and energy complexes of different countries, calculate trends and forecasts in this area. Such models take into account findings of dozens of experts focusing on various macro and micro economic parameters and factors, including GDP, growth of employment, welfare, trade and many others. However, econometric methods based on the study of learning curves and calculations of the present value of LCOE electricity according to real energy projects tend to be simpler and effective tool used in order to estimates the recently developed RES technologies for which substantial volumes of data have not yet developed. This article considers substantiation of such methodical and mathematical approaches used to evaluate the dynamics of the development of offshore wind energy technologies using the model "Times model", modified by the author.Results: the feasibility analysis of using

  11. 3D modeling of dual-gate FinFET.

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  12. Challenges in wind farm optimization

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    for the wind turbine modeling, where aeroelastic models are required, and for the wind farm flow field description, where in-stationary flow field modeling is needed to capture the complicated mixture of atmospheric boundary layer (ABL) flows and upstream emitted meandering wind turbine wakes, which together...... dictates the fatigue loading of the individual wind turbines. Within an optimization context, the basic challenge in describing the in-stationary wind farm flow field is computational speed. The Dynamic Wake Meandering (DWM) model includes the basic features of a CFD Large Eddy Simulation approach...

  13. Robotic Pectoral Fin Thrust Vectoring Using Weighted Gait Combinations

    Directory of Open Access Journals (Sweden)

    John S. Palmisano

    2012-01-01

    Full Text Available A method was devised to vector propulsion of a robotic pectoral fin by means of actively controlling fin surface curvature. Separate flapping fin gaits were designed to maximize thrust for each of three different thrust vectors: forward, reverse, and lift. By using weighted combinations of these three pre-determined main gaits, new intermediate hybrid gaits for any desired propulsion vector can be created with smooth transitioning between these gaits. This weighted gait combination (WGC method is applicable to other difficult-to-model actuators. Both 3D unsteady computational fluid dynamics (CFD and experimental results are presented.

  14. Air cooling effect of fins on a Honda shine bike

    OpenAIRE

    Padhiyar Abhesinh J; Vasim G Machhar

    2015-01-01

    The main of aim of this work is to study various researches done in past to improve heat transfer rate of cooling fins by changing cylinder block fin geometry. Low rate of heat transfer through cooling fins is the main problem in this type of cooling. So efficiency of the engine is increase by increase the heat transfer. Examples of direct air cooling in modern automobiles are rare. The most common example is the commercials Automobile bike like a Honda Shine, Bajaj bike, Honda sp...

  15. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    Science.gov (United States)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  16. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  17. A land use regression model for explaining spatial variation in air pollution levels using a wind sector based approach.

    Science.gov (United States)

    Naughton, O; Donnelly, A; Nolan, P; Pilla, F; Misstear, B D; Broderick, B

    2018-03-02

    Estimating pollutant concentrations at a local and regional scale is essential in environmental and health policy decision making. Here we present a novel land use regression (LUR) modelling methodology that exploits the high temporal resolution of fixed-site monitoring (FSM) to produce a national-scale air quality model for the key pollutant NO 2 . The methodology partitions concentration time series from a national FSM network into wind-dependent sectors or "wedges". A LUR model is derived using predictor variables calculated within the directional wind sectors, and compared against the long-term average concentrations within each sector. Validation results, based on 15 FSM training sites, show that the model captured 78% of the spatial variability in NO 2 across the Republic of Ireland. This compares favourably to traditional LUR models based on purpose-designed monitoring campaigns despite using approximately half the number of monitoring points. Results also demonstrate the value of incorporating the relative position of emission source and receptor into the empirical LUR model structure. We applied the model at a high-resolution across the Republic of Ireland to enable applications such as the study of environmental exposure and human health, assessing representativeness of air quality monitoring networks and informing environmental management and policy makers. While the study focuses on Ireland, the methodology also has potential applicability for other criteria pollutants where appropriate FSM and meteorological networks exist. Copyright © 2018. Published by Elsevier B.V.

  18. El proteccionismo de fin de siglo

    Directory of Open Access Journals (Sweden)

    Marcela SABATÉ SORT

    2010-02-01

    Full Text Available RESUMEN: Dentro del análisis de la política comercial de la Europa continental, este trabajo profundiza en la reacción proteccionista que, contrastando con la apertura anterior, caracteriza el final del siglo XIX y los primeros años del XX, justo hasta el comienzo de la Gran Guerra. Para ello indaga en los factores, especialmente las consecuencias de la "Gran Depresión", que provocan este cambio, en las políticas comerciales de los principales países europeos ante la crisis y en los niveles de protección establecidos. Unas reflexiones finales sobre el común movimiento de elevación arancelaria que preside la evolución de las políticas comerciales del continente en esta etapa y el diverso grado de protección decidido, permiten definir con exactitud la reacción proteccionista realmente acometida. Palabras Clave. Política comercial, Proteccionismo, Crisis económica, Estado, Fin de siglo. ABSTRACT: Within the analysis of the commercial policy of continental Europe, this study delves deeper into the protectionist reaction which, in contrast with the former openness, characterised the end of the nineteenth century and the beginning of the twentieth, right up until he beginning of the Great War. It inquires into the factors that provoked this change, especially the consequences of the Great Depression, and into the commercial policies of the main European countries in the face of this crisis, as well as the levels of protection established. Some final reflections on the common movement to raise tariffs which presided the evolution of the continent's commercial policies during this stage and the diverse degree of protection decided on make it possible to precisely define the protectionist action really undertaken. Key Words: Commercial Policy, Protectionism, Economic Crisis, State, Turn of the Century.

  19. Tracing the spatio-temporal dynamics of endangered fin whales (Balaenoptera physalus) within baleen whale (Mysticeti) lineages: a mitogenomic perspective.

    Science.gov (United States)

    Yu, Jihyun; Nam, Bo-Hye; Yoon, Joon; Kim, Eun Bae; Park, Jung Youn; Kim, Heebal; Yoon, Sook Hee

    2017-12-01

    To explore the spatio-temporal dynamics of endangered fin whales (Balaenoptera physalus) within the baleen whale (Mysticeti) lineages, we analyzed 148 published mitochondrial genome sequences of baleen whales. We used a Bayesian coalescent approach as well as Bayesian inferences and maximum likelihood methods. The results showed that the fin whales had a single maternal origin, and that there is a significant correlation between geographic location and evolution of global fin whales. The most recent common female ancestor of this species lived approximately 9.88 million years ago (Mya). Here, North Pacific fin whales first appeared about 7.48 Mya, followed by a subsequent divergence in Southern Hemisphere approximately 6.63 Mya and North Atlantic about 4.42 Mya. Relatively recently, approximately 1.76 and 1.42 Mya, there were two additional occurrences of North Pacific populations; one originated from the Southern Hemisphere and the other from an uncertain location. The evolutionary rate of this species was 1.002 × 10 -3 substitutions/site/My. Our Bayesian skyline plot illustrates that the fin whale population has the rapid expansion event since ~ 2.5 Mya, during the Quaternary glaciation stage. Additionally, this study indicates that the fin whale has a sister group relationship with humpback whale (Meganoptera novaeangliae) within the baleen whale lineages. Of the 16 genomic regions, NADH5 showed the most powerful signal for baleen whale phylogenetics. Interestingly, fin whales have 16 species-specific amino acid residues in eight mitochondrial genes: NADH2, COX2, COX3, ATPase6, ATPase8, NADH4, NADH5, and Cytb.

  20. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  1. Heat transfer in laminar flow for a finned double - tube

    International Nuclear Information System (INIS)

    Colle, S.

    1977-01-01

    An analitical study of the steady-state heat transfer in laminar flow in finned double-tube heat exchangers is presented. The fins are plane, straight and continous, equally spaced and are fixed over the external surface of the inner tube. A constant peripheral temperature distribution is assumed to apply over the inner tube surface and each fin, and a constant peripheral heat flux is assumed to apply over the outer tube surface, while the overall heat flux is suposed to be uniform in the longitudinal direction of the duct. The prediction of the thermal performance of the finned double-tube is made by means of the relationship between the Nusselt number, the boundary conditions and the geometric characteristcs of the duct. (author) [pt

  2. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  3. Numerical Study on Hydrodynamic Performance of Bionic Caudal Fin

    OpenAIRE

    Kai Zhou; Junkao Liu; Weishan Chen

    2016-01-01

    In this work, numerical simulations are conducted to reveal the hydrodynamic mechanism of caudal fin propulsion. In the modeling of a bionic caudal fin, a universal kinematics model with three degrees of freedom is adopted and the flexible deformation in the spanwise direction is considered. Navier-Stokes equations are used to solve the unsteady fluid flow and dynamic mesh method is applied to track the locomotion. The force coefficients, torque coefficient, and flow field characteristics are...

  4. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  5. Comparison of different modelling approaches of drive train temperature for the purposes of wind turbine failure detection

    Science.gov (United States)

    Tautz-Weinert, J.; Watson, S. J.

    2016-09-01

    Effective condition monitoring techniques for wind turbines are needed to improve maintenance processes and reduce operational costs. Normal behaviour modelling of temperatures with information from other sensors can help to detect wear processes in drive trains. In a case study, modelling of bearing and generator temperatures is investigated with operational data from the SCADA systems of more than 100 turbines. The focus is here on automated training and testing on a farm level to enable an on-line system, which will detect failures without human interpretation. Modelling based on linear combinations, artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian process regression is compared. The selection of suitable modelling inputs is discussed with cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling techniques react in different ways to an increased number of inputs. The case study highlights advantages of modelling with linear combinations and artificial neural networks in a feedforward configuration.

  6. Stress analysis of plate-fin structures in recuperator

    International Nuclear Information System (INIS)

    Matsui, Shingo; Muto, Yasushi; Shiina, Yasuaki

    2001-01-01

    A high performance compact recuperator with 95% effectiveness is required to achieve a high thermal efficiency power generation of up to 50% in High Temperature Gas Cooled Reactor (HTGR) coupled with closed cycle helium gas turbine. Though a plate-fin type heat exchanger is proposed for this recuperator, much research and development works are needed to establish this high performance goal since there exists no state-of-the-art technology in such a high pressure and high temperature one. One of the important works is to establish the structural analysis and evaluation method in this plate-fin type heat exchanger. This paper describes the results of stress analysis of the plate-fin structure under the internal pressure as the first step of this work. First, the modeling of a unit plate-fin structure for the analysis was examined and a three layers model was confirmed to be most adequate. The stress distribution within the structure was clarified by using this model. Second, the three layers model was simplified to one layer model with sufficient accuracy. By using this model, both the effects of an inclined angle of fin and a thickness of separate on the strength were examined parametrically. Under the relevant design conditions, it was revealed that the optimum inclined angle of fin locates in the neighborhood of 76 degree rather than most difficult fabrication angle 90 degree and there is possibility to adopt thinner thickness than 0.5 mm in the current design. (author)

  7. Thermal stability of germanium-tin (GeSn) fins

    Science.gov (United States)

    Lei, Dian; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Masudy-Panah, Saeid; Tan, Chuan Seng; Tok, Eng Soon; Gong, Xiao; Yeo, Yee-Chia

    2017-12-01

    We investigate the thermal stability of germanium-tin (Ge1-xSnx) fins under rapid thermal annealing in N2 ambient. The Ge1-xSnx fins were formed on a GeSn-on-insulator substrate and were found to be less thermally stable than blanket Ge1-xSnx films. The morphology change and material quality of the annealed Ge1-xSnx fin are investigated using scanning electron microscopy, Raman spectroscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy. Obvious degradation of crystalline quality of the Ge0.96Sn0.04 fin was observed, and a thin Ge layer was formed on the SiO2 surface near the Ge0.96Sn0.04 fin region after 500 °C anneal. A model was proposed to explain the morphology change of the Ge0.96Sn0.04 fin.

  8. Experimental Research and Simulation of Fin and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Artur Rubcov

    2017-09-01

    Full Text Available The paper provides the results of experimental and theoretical test of a wavy fin and tube heat exchanger used to cool air in a ventilation system when the wavy fin of the heat exchanger is dry and wet. The experimental tests, performed in the range of 1000fins, the thickness of the fin and the diameter of the tube. The experimental tests were performed on 9 heat exchangers in heating and 6 heat exchangers in cooling mode. After processing the results of the experimental tests, empirical equation defining the characteristics of the heat transfer coefficient of all heat exchangers were derived. The maximum heat transfer coefficient deviation is 11.6 percent. The correction factor of the wet fin (Lewis number depending on the number of Reynolds, which ranges from 0.75 to 1.1 also is determined. Maximum capacity deviation equals 3.7 percent. The obtained equations can only be applied to a certain group of heat exchangers (with the same shape of fins or the distance between the tubes. The results of the experimental test and simulation with ANSYS program are compared and the heat transfer coefficients vary from 6.5 to 11.4 percent.

  9. Wind and tornado guidelines

    International Nuclear Information System (INIS)

    McDonald, J.R.

    1989-01-01

    The objective of the Department of Energy Natural Phenomena Hazards Project is to provide guidance and criteria for design of new facilities and for evaluation of existing ones subjected to extreme winds, earthquakes, and floods. This paper describes the treatment of wind and tornado hazards. Four facility-use categories are defined which represent increasing levels of risk to personnel or the environment in the event of a high wind event. Facilities are assigned to a particular category, depending on their mission, value, or toxic material content. The assigned facility-use category determines the design and evaluation criteria. The criteria are based on probabilistic hazard assessment. Performance goals are also specified for each facility-use category. A uniform approach to design wind loads, based on the ANSI A58.1-1982 standard, allows treatment of high winds and hurricane and tornado winds in a similar manner. Based on the wind hazard models, some sites must account for the possibility of tornadoes while others do not. Atmospheric pressure changes and missiles must be taken into account when considering tornadoes. The design and evaluation guidelines are designed to establish consistent levels of risk for different natural phenomena hazards and for facilities at different geographical locations

  10. A recurrent neural network approach to quantitatively studying solar wind effects on TEC derived from GPS; preliminary results

    Directory of Open Access Journals (Sweden)

    J. B. Habarulema

    2009-05-01

    Full Text Available This paper attempts to describe the search for the parameter(s to represent solar wind effects in Global Positioning System total electron content (GPS TEC modelling using the technique of neural networks (NNs. A study is carried out by including solar wind velocity (Vsw, proton number density (Np and the Bz component of the interplanetary magnetic field (IMF Bz obtained from the Advanced Composition Explorer (ACE satellite as separate inputs to the NN each along with day number of the year (DN, hour (HR, a 4-month running mean of the daily sunspot number (R4 and the running mean of the previous eight 3-hourly magnetic A index values (A8. Hourly GPS TEC values derived from a dual frequency receiver located at Sutherland (32.38° S, 20.81° E, South Africa for 8 years (2000–2007 have been used to train the Elman neural network (ENN and the result has been used to predict TEC variations for a GPS station located at Cape Town (33.95° S, 18.47° E. Quantitative results indicate that each of the parameters considered may have some degree of influence on GPS TEC at certain periods although a decrease in prediction accuracy is also observed for some parameters for different days and seasons. It is also evident that there is still a difficulty in predicting TEC values during disturbed conditions. The improvements and degradation in prediction accuracies are both close to the benchmark values which lends weight to the belief that diurnal, seasonal, solar and magnetic variabilities may be the major determinants of TEC variability.

  11. A recurrent neural network approach to quantitatively studying solar wind effects on TEC derived from GPS; preliminary results

    Directory of Open Access Journals (Sweden)

    J. B. Habarulema

    2009-05-01

    Full Text Available This paper attempts to describe the search for the parameter(s to represent solar wind effects in Global Positioning System total electron content (GPS TEC modelling using the technique of neural networks (NNs. A study is carried out by including solar wind velocity (Vsw, proton number density (Np and the Bz component of the interplanetary magnetic field (IMF Bz obtained from the Advanced Composition Explorer (ACE satellite as separate inputs to the NN each along with day number of the year (DN, hour (HR, a 4-month running mean of the daily sunspot number (R4 and the running mean of the previous eight 3-hourly magnetic A index values (A8. Hourly GPS TEC values derived from a dual frequency receiver located at Sutherland (32.38° S, 20.81° E, South Africa for 8 years (2000–2007 have been used to train the Elman neural network (ENN and the result has been used to predict TEC variations for a GPS station located at Cape Town (33.95° S, 18.47° E. Quantitative results indicate that each of the parameters considered may have some degree of influence on GPS TEC at certain periods although a decrease in prediction accuracy is also observed for some parameters for different days and seasons. It is also evident that there is still a difficulty in predicting TEC values during disturbed conditions. The improvements and degradation in prediction accuracies are both close to the benchmark values which lends weight to the belief that diurnal, seasonal, solar and magnetic variabilities may be the major determinants of TEC variability.

  12. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin

    International Nuclear Information System (INIS)

    Low, K H; Chong, C W

    2010-01-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  13. Fins effectiveness and efficiency with position function of rhombus sectional area in unsteady condition

    Science.gov (United States)

    Nugroho, Tito Dwi; Purwadi, P. K.

    2017-01-01

    The function of the fin is to extend surfaces so that objects fitted with fin can remove the heat to the surrounding environment so that the cooling process can take place more quickly. The purpose of this study is to calculate and determine the effect of (a) the convective heat transfer coefficient of fluid on the value of the fin on the efficiency and effectiveness of non-steady state, and (b) the fin material to the value of the fins on the efficiency and effectiveness of non-steady state. The studied fins are in the form of straight fins with rhombus sectional area which is a function of position x with the short diagonal length of D1 and D2 as long diagonal length, L as fin's length and α as fin's tilt angle. Research solved numerical computation, using a finite difference method on the explicit way. At first, the fin has the same initial temperature with essentially temperature Ti = Tb, then abruptly fin conditioned on fluid temperature environment T∞. Fin's material is assumed with uniform properties, does not change with changes in temperature, and fin does not change the shape and volume during the process. The temperature of the fluid around the fins and the value of the convective heat transfer coefficient are permanently constant, and there is no energy generation in the fin. Fin's heat transfer conduction only take place in one direction, namely in the direction perpendicular to the fin base (or x-direction). The entire surface of the fin makes the process of heat transfer to a fluid environment around the fins. The results show that (a) the greater the value of heat transfer coefficient of convection h, the smaller the efficiency fin and effectiveness fins (b) In circumstances of unsteady state, the efficiency and effectivity influenced by the value of density, specific heat, heat transfer coefficient of conduction and thermal diffusivity fin material.

  14. Impact of Climate Change on Natural Snow Reliability, Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Osman Cenk Demiroglu

    2016-04-01

    Full Text Available Many ski resorts worldwide are going through deteriorating snow cover conditions due to anthropogenic warming trends. As the natural and the artificially supported, i.e., technical, snow reliability of ski resorts diminish, the industry approaches a deadlock. For this reason, impact assessment studies have become vital for understanding vulnerability of ski tourism. This study considers three resorts at one of the rapidly emerging ski destinations, Northeast Turkey, for snow reliability analyses. Initially one global circulation model is dynamically downscaled by using the regional climate model RegCM4.4 for 1971–2000 and 2021–2050 periods along the RCP4.5 greenhouse gas concentration pathway. Next, the projected climate outputs are converted into indicators of natural snow reliability, snowmaking capacity, and wind conditions. The results show an overall decline in the frequencies of naturally snow reliable days and snowmaking capacities between the two periods. Despite the decrease, only the lower altitudes of one ski resort would face the risk of losing natural snow reliability and snowmaking could still compensate for forming the base layer before the critical New Year’s week. On the other hand, adverse high wind conditions improve as to reduce the number of lift closure days at all resorts. Overall, this particular region seems to be relatively resilient against climate change.

  15. Wind power forecast error smoothing within a wind farm

    International Nuclear Information System (INIS)

    Saleck, Nadja; Bremen, Lueder von

    2007-01-01

    Smoothing of wind power forecast errors is well-known for large areas. Comparable effects within a wind farm are investigated in this paper. A Neural Network was taken to predict the power output of a wind farm in north-western Germany comprising 17 turbines. A comparison was done between an algorithm that fits mean wind and mean power data of the wind farm and a second algorithm that fits wind and power data individually for each turbine. The evaluation of root mean square errors (RMSE) shows that relative small smoothing effects occur. However, it can be shown for this wind farm that individual calculations have the advantage that only a few turbines are needed to give better results than the use of mean data. Furthermore different results occurred if predicted wind speeds are directly fitted to observed wind power or if predicted wind speeds are first fitted to observed wind speeds and then applied to a power curve. The first approach gives slightly better RMSE values, the bias improves considerably

  16. Implications of fin profiles on overall performance and weight reduction of a fin and tube heat exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Simonsen, Anders Schou

    2017-01-01

    ,000 using computational fluid dynamics. The numerical results obtained for the reference fin profile are verified with the experimental correlations. Dimensionless parameters such as Nusselt number, Euler number, and efficiency index are calculated to predict the overall performance of the heat exchanger......Fin and tube heat exchangers are being used in several industrial applications by means of novel design and optimized performance. Improvements in geometric design may deliver energy efficient and cost-effective heat exchanger performance with reduced weight. In this paper, a systematic study...... on a cross-flow type fin and tube heat exchanger design for a waste heat recovery application is conducted. The geometric profile of the fin is characterized by a dimensionless design variable named aspect ratio which is parametrically varied to obtain different profiles. Two cases, case-I, and case...

  17. Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006

    Energy Technology Data Exchange (ETDEWEB)

    George, K.; Schweizer, T.

    2008-01-01

    This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

  18. A new observational approach to investigate the heliospheric interstellar wind interface - The study of extreme and far ultraviolet resonantly scattered solar radiation from neon, oxygen, carbon and nitrogen

    Science.gov (United States)

    Bowyer, Stuart; Fahr, Hans J.

    1990-01-01

    One of the outstanding uncertainties in the understanding of the heliosphere concerns the character of the interaction between the outflowing solar wind and the interstellar medium. A new possibility for obtaining information on this topic is suggested. The cosmically abundant elements neon, oxygen, carbon, and nitrogen will be affected differently at their interface passage depending upon the character of this region. Consequently, the distribution of these atoms and their ions will vary within the inner heliosphere. The study of resonantly scattered solar radiation from these species will then provide information on the nature of the interface. A preliminary evaluation of this approach has been carried out, and the results are encouraging. The relevant lines to be studied are in the extreme and far ulraviolet. The existing data in these bands are reviewed; unfortunately, past instrumentation has had insufficient resolution and sensitivity to provide useful information. The capabilities of future approved missions with capabilities in this area are evaluated.

  19. Data report: the wake of a horizontal-axis wind turbine model, measurements in uniform approach flow and in a simulated atmospheric boundary layer

    NARCIS (Netherlands)

    Talmon, A.M.

    1985-01-01

    Wake effects will cause power loss when wínd turbínes are grouped in so called wind turbine parks. Wind tunnel measurements of the wake of a wind turbíne model are conducted in order to refine calculatíons of wake effects. Wake effects caused by tower and nacelle are studied in uniform flow. Wake

  20. A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management: Part I. Model formulation and comparison against measurements

    Science.gov (United States)

    Jason M. Forthofer; Bret W. Butler; Natalie S. Wagenbrenner

    2014-01-01

    For this study three types of wind models have been defined for simulating surface wind flow in support of wildland fire management: (1) a uniform wind field (typically acquired from coarse-resolution (,4 km) weather service forecast models); (2) a newly developed mass-conserving model and (3) a newly developed mass and momentumconserving model (referred to as the...

  1. The performance of a new gas to gas heat exchanger with strip fin

    NARCIS (Netherlands)

    Wang, J.; Hirs, Gerard; Rollmann, P.

    1999-01-01

    A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents a

  2. Fish larvae exploit edge vortices along their dorsal and ventral fin folds to propel themselves

    NARCIS (Netherlands)

    Li, G.; Müller, U.K.; Leeuwen, van J.L.; Liu, Hao

    2016-01-01

    Larvae of bony fish swim in the intermediate Reynolds number (Re) regime,
    using body- and caudal-fin undulation to propel themselves. They share a
    median fin fold that transforms into separate median fins as they grow into
    juveniles. The fin fold was suggested to be an adaption for

  3. Experimental and numerical investigation of a louvered fin and elliptical tube compact heat exchanger

    Directory of Open Access Journals (Sweden)

    Pooranachandran Karthik

    2015-01-01

    Full Text Available In the present work, an experimental investigation is carried out to analyze the heat transfer characteristics of a louvered fin and elliptical tube compact heat exchanger used as a radiator in an internal combustion engine. Experiments are conducted by positioning the radiator in an open-loop wind tunnel. A total of 24 sets of air, water flow rate combinations are tested, and the temperature drops of air and water were acquired. A numerical analysis has been carried out using Fluent software (a general purpose computational fluid dynamics simulation tool for three chosen data from the experiments. The numerical air-side temperature drop is compared with those of the experimental values. A good agreement between the experimental and numerical results validates the present computational methodology.

  4. 3D modeling of dual-gate FinFET

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at V g1 > V g2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  5. Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).

    Science.gov (United States)

    Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie

    2017-11-01

    Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The aversive effect of electromagnetic radiation on foraging bats: a possible means of discouraging bats from approaching wind turbines.

    Directory of Open Access Journals (Sweden)

    Barry Nicholls

    Full Text Available Large numbers of bats are killed by collisions with wind turbines and there is at present no accepted method of reducing or preventing this mortality. Following our demonstration that bat activity is reduced in the vicinity of large air traffic control and weather radars, we tested the hypothesis that an electromagnetic signal from a small portable radar can act as a deterrent to foraging bats. From June to September 2007 bat activity was compared at 20 foraging sites in northeast Scotland during experimental trials (radar switched on and control trials (no radar signal. Starting 45 minutes after sunset, bat activity was recorded for a period of 30 minutes during each trial and the order of trials were alternated between nights. From July to September 2008 aerial insects at 16 of these sites were sampled using two miniature light-suction traps. At each site one of the traps was exposed to a radar signal and the other functioned as a control. Bat activity and foraging effort per unit time were significantly reduced during experimental trials when the radar antenna was fixed to produce a unidirectional signal therefore maximising exposure of foraging bats to the radar beam. However, although bat activity was significantly reduced during such trials, the radar had no significant effect on the abundance of insects captured by the traps.

  7. Renewable energy management through microgrid central controller design: An approach to integrate solar, wind and biomass with battery

    Directory of Open Access Journals (Sweden)

    Zaheeruddin

    2015-11-01

    Full Text Available In this study, an isolated microgrid comprising of renewable energy (RE sources like wind, solar, biogas and battery is considered. Provision of utility grid insertion is also given if total microgrid sources falls short of supplying the total load. To establish an efficient energy management strategy, a central controller takes the decision based on the status of the loads and sources. The status is obtained with the assistance of multi-agent concept (treating each source and load as an agent. The data acquisition system of these renewable sources and loads consists of multiple sensors interconnected through Low Power Radio over one of many GPRS communication. The Microgrid Central Controller (MGCC would use an embedded energy management algorithm to take decisions, which are then transmitted to the controllable RE systems to manage the utilization of their power outputs as per the load-supply power balance. A control strategy is adopted to regulate the power output from the battery in case of supply shortage, which results in a floating battery scheme in steady state.

  8. Simple correlation equations for optimum design of annular fins with uniform thickness

    International Nuclear Information System (INIS)

    Arslanturk, Cihat

    2005-01-01

    Simple correlation equations for optimum design of annular fins with uniform cross section are obtained in the present work. The fin volume is fixed to obtain the dimensionless geometrical parameters of the fin with maximum heat transfer rates. The optimum radii ratio of an annular fin which maximizes the heat transfer rate has been found as a function of Biot number and the fin volume. The data from the present solutions is correlated for a suitable range of Biot number and the fin volume. The simple correlation equations presented in this work can assist for thermal design engineers for optimum design of annular fins of uniform thickness

  9. A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nils; Strubegger, Manfred; McPherson, Madeleine; Parkinson, Simon C.; Krey, Volker; Sullivan, Patrick

    2017-05-01

    In many climate change mitigation scenarios, integrated assessment models of the energy and climate systems rely heavily on renewable energy technologies with variable and uncertain generation, such as wind and solar PV, to achieve substantial decarbonization of the electricity sector. However, these models often include very little temporal resolution and thus have difficulty in representing the integration costs that arise from mismatches between electricity supply and demand. The global integrated assessment model, MESSAGE, has been updated to explicitly model the trade-offs between variable renewable energy (VRE) deployment and its impacts on the electricity system, including the implications for electricity curtailment, backup capacity, and system flexibility. These impacts have been parameterized using a reduced-form approach, which allows VRE integration impacts to be quantified on a regional basis. In addition, thermoelectric technologies were updated to include two modes of operation, baseload and flexible, to better account for the cost, efficiency, and availability penalties associated with flexible operation. In this paper, the modeling approach used in MESSAGE is explained and the implications for VRE deployment in mitigation scenarios are assessed. Three important stylized facts associated with integrating high VRE shares are successfully reproduced by our modeling approach: (1) the significant reduction in the utilization of non-VRE power plants; (2) the diminishing role for traditional baseload generators, such as nuclear and coal, and the transition to more flexible technologies; and (3) the importance of electricity storage and hydrogen electrolysis in facilitating the deployment of VRE.

  10. Research on flight stability of non rotating fin arrow shaft

    Science.gov (United States)

    Guo, Yachao; He, Guanglin; Zhang, Jiashuo

    2017-09-01

    To research the influence of the variable density fin arrow shaft warhead on flight stability, three different structures of non rotating fin arrow shaft warhead of the individual small caliber cluster arrow projectile is put forward and designed. The aerodynamic characteristics, static stability reserve and the change of the attack angle in the fin arrow shaft warhead are calculated and analyzed through using the static stability reserve theory and the rigid body trajectory equations. The results show that the static stability reserve of the variable density steel-aluminum composite fin arrow shaft warhead is about 21% ~ 27%, which is obviously higher than 13% ~ 17% of the single density steel material. When the initial velocity is 280 m/s and range is 100 m, the attack angle of the fin arrow shaft warhead of variable density and single density are reduced from ± 5 degree to within ± 1 degree.It is indicated that dynamic stability is guaranteed; however, dynamic stability of the former is better than that of the latter according to the decay rate of the attack angle.

  11. Strain characterization of FinFETs using Raman spectroscopy

    International Nuclear Information System (INIS)

    Kaleli, B.; Hemert, T. van; Hueting, R.J.E.; Wolters, R.A.M.

    2013-01-01

    Metal induced strain in the channel region of silicon (Si) fin-field effect transistor (FinFET) devices has been characterized using Raman spectroscopy. The strain originates from the difference in thermal expansion coefficient of Si and titanium-nitride. The Raman map of the device region is used to determine strain in the channel after preparing the device with the focused ion beam milling. Using the Raman peak shift relative to that of relaxed Si, compressive strain values up to – 0.88% have been obtained for a 5 nm wide silicon fin. The strain is found to increase with reducing fin width though it scales less than previously reported results from holographic interferometry. In addition, finite-element method (FEM) simulations have been utilized to analyze the amount of strain generated after thermal processing. It is shown that obtained FEM simulated strain values are in good agreement with the calculated strain values obtained from Raman spectroscopy. - Highlights: ► Strain is characterized in nanoscale devices with Raman spectroscopy. ► There is a fin width dependence of the originated strain. ► Strain levels obtained from this technique is in correlation with device simulations

  12. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  13. Nano-fin based mercury-sensor for environmental surveillance.

    Science.gov (United States)

    Keller, L O; Kallis, K T; Fiedler, H L

    2010-09-01

    This Nano-Fin-Sensor bases on a lithography-independent technology-process, enabling research on Nano-Sensors without cost-intensive technology-equipment. Background for the sensor described within this paper is the high pollution with mercury of the environment and the lack of cheap, easy to use and portable sensors. The lithography-independent process is based on a "deposition and etch-back" technique defining Nano-Fins. Active sensor-material is a gold-layer, deposited on the fin, increasing resistance being exposed to mercury-vapor due to the process of amalgamation. Regeneration is done by heating-up the gold-layer using the poly-silicon fin as resistance-heating-device driving out the adsorbed mercury. To increase the measurement-accuracy, the sensor is made up of four Nano-Fin-Sensors, connected as Wheatstone-bridge. Two sensors have to be passivated by a mercury diffusion barrier, here a silicon-nitride-layer.

  14. Pectoral fin of the megamouth shark: skeletal and muscular systems, skin histology, and functional morphology

    OpenAIRE

    Tomita, Taketeru; Tanaka, Sho; Sato, Keiichi; Nakaya, Kazuhiro

    2014-01-01

    This is the first known report on the skeletal and muscular systems, and the skin histology, of the pectoral fin of the rare planktivorous megamouth shark Megachasma pelagios. The pectoral fin is characterized by three features: 1) a large number of segments in the radial cartilages; 2) highly elastic pectoral fin skin; and 3) a vertically-rotated hinge joint at the pectoral fin base. These features suggest that the pectoral fin of the megamouth shark is remarkably flexible and mobile, and th...

  15. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  16. Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism

    Science.gov (United States)

    Hu, Gang; Tse, K. T.; Kwok, K. C. S.

    2016-03-01

    This letter presents the effects that fitting fins to various corners of a square-prism galloping-based piezoelectric energy harvester (PEH) has on its performance, based on results from a series of wind tunnel model tests. The results show that attaching fins to the leading edge significantly improves the efficiency of the harvester, achieving a maximum power 2.5 times that attained by a plain square prism PEH. Furthermore, a length that is 1/6 of the prism's cross-sectional width is found to be optimal for fins that are attached to the harvester.

  17. Structure of supporting elements in the dorsal fin of percid fishes.

    Science.gov (United States)

    Weickhardt, Alexander F; Feilich, Kara L; Lauder, George V

    2017-12-01

    The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny-finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin. © 2017 Wiley Periodicals, Inc.

  18. Kinematics of ribbon-fin locomotion in the bowfin, Amia calva.

    Science.gov (United States)

    Jagnandan, Kevin; Sanford, Christopher P

    2013-12-01

    An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon-fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon-fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon-fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon-fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon-fin kinematics revealed no differences in kinematic patterns along the ribbon-fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon-fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon-fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon-fin locomotion among a broad range of teleosts. © 2013 Wiley Periodicals, Inc.

  19. A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing

    DEFF Research Database (Denmark)

    Fischetti, Martina; Leth, John-Josef; Borchersen, Anders Bech

    2015-01-01

    A Mixed-Integer Linear Programming (MILP) approach is proposed to optimize the turbine allocation and inter-array offshore cable routing. The two problems are considered with a two steps strategy, solving the layout problem first and then the cable problem. We give an introduction to both problems...

  20. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  1. A thermal study of pipes with outer transverse fins

    Directory of Open Access Journals (Sweden)

    S. Gil

    2016-10-01

    Full Text Available This paper provides results of thermal investigations on pipes with outer transverse fins produced by placing a strip, being a form of helical spring which functions as a radiator, on the basis pipe. The investigations were carried out at the facility that enables measurements with respect to both natural and forced convection. Performance of the investigated pipes was assessed in relation to a non-finned pipe and a pipe welded with the use of Metal Active Gas (MAG technology. The experiments have shown that the finned pipe welding technology does not markedly affect their thermal efficiency, which has been confirmed by performed model calculations, while the welding technology has a crucial impact on their operating performance.

  2. Development and evolution of the muscles of the pelvic fin.

    Directory of Open Access Journals (Sweden)

    Nicholas J Cole

    2011-10-01

    Full Text Available Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.

  3. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Directory of Open Access Journals (Sweden)

    Stolecki M.

    2015-09-01

    Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.

  4. Application of fin system to reduce pitch motion

    Directory of Open Access Journals (Sweden)

    B. Rajesh Reguram

    2016-07-01

    Full Text Available Container ships are prone to move at a greater speed compared to other merchant ships. The slenderness of the hull of container vessel is for better speed, but it leads to unfavorable motions. The pitch and roll are related and sometimes the vessel might be forced to parametric roll condition which is very dangerous. A fin attached to the ship hull proves to be more efficient in controlling the pitch. The fin is fitted at a lowest possible location of the hull surface and it is at the bow part of the ship. Simulations are done using proven software package ANSYS AQWA and the results are compared. Simulations are done for both regular and irregular seas and the effect of fin on ship motion is studied. P-M spectrum is considered for various sea states.

  5. Thermohydraulic analysis of smooth and finned annular ducts

    International Nuclear Information System (INIS)

    Braga, C.V.M.

    1987-01-01

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author) [pt

  6. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  7. 3D modeling of dual-gate FinFET

    OpenAIRE

    Mil?shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-01-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence...

  8. Bio-inspired propulsor using internally powered flexible fins

    Science.gov (United States)

    Yeh, Peter; Erturk, Alper; Alexeev, Alexander

    2014-11-01

    Using experiments and three dimensional numerical simulations, we study the underwater locomotion of internally powered flexible plates. The flexible plate is composed of Macro-Fiber Composite (MFC) piezoelectric laminates. A sinusoidally varying voltage is applied to the MFCs, causing bending and generating thrust similar to a flapping fin in carangiform motion. In our fully coupled FSI simulations, we model the swimmer as a rectangular elastic plate actuated by a sinusoidal internal moment. The steady state swimming velocity and thrust are measured experimentally and compared to our numerical simulations. Our results can be used to design underwater self-propelling vehicles driven by internally powered flexible fins.

  9. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...

  10. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  11. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM). For the ......In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM...

  12. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  13. Experimental Study of Natural Convection Cooling of Vertical Cylinders with Inclined Plate Fins

    Directory of Open Access Journals (Sweden)

    Jong Bum Lee

    2016-05-01

    Full Text Available In this paper, natural convection from vertical cylinders with inclined plate fins is investigated experimentally for use in cooling electronic equipment. Extensive experimental investigations are performed for various inclination angles, fin numbers, and base temperatures. From the experimental data, a correlation for estimating the Nusselt number is proposed. The correlation is applicable when the Rayleigh number, inclination angle, and fin number are in the ranges 100,000–600,000, 30°–90°, and 9–36, respectively. Using the correlation, a contour map depicting the thermal resistance as a function of the fin number and fin thickness is presented. Finally, the optimal thermal resistances of cylinders with inclined plate fins and conventional radial plate fins are compared. It is found that that the optimal thermal resistance of the cylinder with inclined fins is 30% lower than that of the cylinder with radial plate fins.

  14. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  15. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling

    International Nuclear Information System (INIS)

    Zhao, Jin; Huang, Shanbo; Gong, Liang; Huang, Zhaoqin

    2016-01-01

    Micro pin-fin heat sink, characterized by low thermal resistance, compact structure and uniform temperature distribution along the flow direction, is effective and valuable for thermal management of electronic devices. To enhance the cooling performance of the micro square pin-fin heat sink, a geometry optimizing method changing pin-fin porosity and pin-fin located angle is proposed in this paper. The flow and heat transfer characteristics were studied numerically and the geometry of the micro square pin-fin heat sink was optimized. To reveal the characteristics and advantages of the micro square pin-fin heat sink, the comparison between the square pin-fin and the column pin-fin was made. Numerical results indicate that both the pin-fin porosity and located angle are important for the cooling capacity and thermal performance of the micro square pin-fin heat sink; the optimal porosity and located angle for thermal performance are 0.75 and 30° respectively. Furthermore, micro heat sinks with the optimized square pin-fin present better thermal performance than micro column pin-fin heat sinks, which implies that there is great potential to employ micro square pin-fin heat sinks for thermal management on electronic devices with high energy density. - Highlights: • An optimization method on geometry is proposed for micro square pin-fin heat sink. • Pin-fin porosity and pin-fin located angle are important on thermal performance. • Heat sinks with optimized square pin-fin hold higher cooling capacity than column pin-fin.

  16. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions

  17. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  18. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  19. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J.; Vilkko, M.; Antila, H.; Lautala, P. [Tampere Univ. of Technology (Finland)

    1995-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  20. Tariff based value of wind energy

    International Nuclear Information System (INIS)

    Raekkoelaeinen, J.; Vilkko, M.; Antila, H.; Lautala, P.

    1995-01-01

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  1. A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Hu, Jianming

    2015-01-01

    With the increasing importance of wind power as a component of power systems, the problems induced by the stochastic and intermittent nature of wind speed have compelled system operators and researchers to search for more reliable techniques to forecast wind speed. This paper proposes a combination model for probabilistic short-term wind speed forecasting. In this proposed hybrid approach, EWT (Empirical Wavelet Transform) is employed to extract meaningful information from a wind speed series by designing an appropriate wavelet filter bank. The GPR (Gaussian Process Regression) model is utilized to combine independent forecasts generated by various forecasting engines (ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM)) in a nonlinear way rather than the commonly used linear way. The proposed approach provides more probabilistic information for wind speed predictions besides improving the forecasting accuracy for single-value predictions. The effectiveness of the proposed approach is demonstrated with wind speed data from two wind farms in China. The results indicate that the individual forecasting engines do not consistently forecast short-term wind speed for the two sites, and the proposed combination method can generate a more reliable and accurate forecast. - Highlights: • The proposed approach can make probabilistic modeling for wind speed series. • The proposed approach adapts to the time-varying characteristic of the wind speed. • The hybrid approach can extract the meaningful components from the wind speed series. • The proposed method can generate adaptive, reliable and more accurate forecasting results. • The proposed model combines four independent forecasting engines in a nonlinear way.

  2. Transfer coefficients in elliptical tubes and plate fin heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.

    1979-09-01

    Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt

  3. Eddy current test of fin tubes for a heat exchanger

    International Nuclear Information System (INIS)

    KIm, Young Joo; Lee, Se Kyung; Chung, Min Hwa

    1992-01-01

    Eddy current probes were designed for the test of fin tubes. Fin tubes, often used for heat exchangers, have uneven outer and inner surfaces to enhance the heat emission. The surface roughness make it difficult to detect flaws employing eddy current test(ECT). In order to overcome the difficulties we performed two types of works, one is the delopment of ECT probes, and the other is the signal processing including fast Fourier transform and digital filtering. In the development of ECT probes, we adopted empirical design method. Our ECT probes for fin tubes are inside diameter type. And we are specially concerned about geometric features such as the widths of the coils composing an ECT probe. We fabricated four probes with various coil widths. Eddy current test was performed using those ECT probes on specimens with artificial flaws. After analyzing the output signals, we found that, in order for the effective testing, the width of a coil should be determined considering the pitch of the fins of a tube. And we also learned that the frequency filtering could improve the s/n ratio.

  4. Trophic relationships of the long-finned squid loligo Sanpaulensis ...

    African Journals Online (AJOL)

    The diet and predators of Loligo sanpaulensis (Cephalopoda: Loliginidae) on the southern Brazilian shelf were studied by examining the stomach contents of 668 long-finned squid (12–184 mm mantle length) caught by bottom trawl and the stomach contents of 47 potential predators, including stranded penguins and ...

  5. Los Grammy Latino, su meta inicial y su fin comercial

    OpenAIRE

    Marinés Arroyo Sotomayor

    2015-01-01

    El artículo refiere lo que es este festival musical que premia el talento latino, quienes participan, su meta inicial y su fin comercial. Muestra que a pesar de la tradición de intolerancia del exilio cubano, la música sirvió, una vez más, como puente de cultura

  6. New Design Heaters Using Tubes Finned by Deforming Cutting Method

    Science.gov (United States)

    Zubkov, N. N.; Nikitenko, S. M.; Nikitenko, M. S.

    2017-10-01

    The article describes the results of research aimed at selecting and assigning technological processing parameters for obtaining outer fins of heat-exchange tubes by the deformational cutting method, for use in a new design of industrial water-air heaters. The thermohydraulic results of comparative engineering tests of new and standard design air-heaters are presented.

  7. Transient heat transfer in longitudinal fins of various profiles with ...

    Indian Academy of Sciences (India)

    Abstract. Transient heat transfer through a longitudinal fin of various profiles is studied. The ther- mal conductivity and heat transfer coefficients are assumed to be temperature dependent. The resulting partial differential equation is highly nonlinear. Classical Lie point symmetry methods are employed and some reductions ...

  8. Extreme wind atlases of South Africa from global reanalysis data

    OpenAIRE

    Larsén, Xiaoli Guo; Kruger, Andries; Badger, Jake; Ejsing Jørgensen, Hans

    2013-01-01

    Extreme wind atlases of South Africa were developed using three reanalysis data and recently developed approaches. The results are compared with the maps produced using standard wind measurements over the region. It was found that different reanalyses with the same approach provide similar spatial distribution of the extreme wind with coarse resolution data giving smaller extreme winds. The CFSR surface winds at 38 km horizontal resolution provides the best spatial distribution of the extreme...

  9. The Effect of a Piezoelectric Fan on Forced Air Heat Transfer in a Pin-Fin Heat Sink

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2015-02-01

    Full Text Available An investigation was carried out on the effect of airflow from the blade of a piezoelectric fan on the main cooling airflow across a pin-fin heat sink. The study considered the respective orientation and distances between the piezoelectric blade and the heat sink in a rectangular channel where the airflow was uniform and axial. Three different pin-fin heat sinks with in-line pin-fin arrays were used: 5´5, 7´7 and 9´9. Variable parameters included the Reynolds number of the main airflow and the relative position of the piezoelectric blade and the heat sink. The results showed that the smaller the horizontal distance between the blade and the heat sink, or the greater the vertical distance between the piezoelectric blade and the channel floor, the better the total heat transfer enhancement. Of the three heat sinks used, the 9´9 unit coupled with transverse oscillation of the piezoelectric blade had a slightly higher heat-transfer ratio enhancement. The heat-transfer enhancement ratio Nu/Nu0 (Nu0 is the Nusselt number of the system without the piezoelectric blade will gradually approach 1 with an increase of the Reynolds number of the main flow. At ReL=1200, and with the assistance of the piezoelectric blade, the maximum value of Nu/Nu0 for the 9´9 pin-fin heat sink exceeded 2.

  10. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  11. Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors.

    Science.gov (United States)

    Youngerman, Eric D; Flammang, Brooke E; Lauder, George V

    2014-10-01

    The maneuverability demonstrated by the weakly electric ghost knifefish (Apteronotus albifrons) is a result of its highly flexible ribbon-like anal fin, which extends nearly three-quarters the length of its body and is composed of approximately 150 individual fin rays. To understand how movement of the anal fin controls locomotion we examined kinematics of the whole fin, as well as selected individual fin rays, during four locomotor behaviors executed by free-swimming ghost knifefish: forward swimming, backward swimming, heave (vertical) motion, and hovering. We used high-speed video (1000 fps) to examine the motion of the entire anal fin and we measured the three-dimensional curvature of four adjacent fin rays in the middle of the fin during each behavior to determine how individual fin rays bend along their length during swimming. Canonical discriminant analysis separated all four behaviors on anal fin kinematic variables and showed that forward and backward swimming behaviors contrasted the most: forward behaviors exhibited a large anterior wavelength and posterior amplitude while during backward locomotion the anal fin exhibited both a large posterior wavelength and anterior amplitude. Heave and hover behaviors were defined by similar kinematic variables; however, for each variable, the mean values for heave motions were generally greater than for hovering. Individual fin rays in the middle of the anal fin curved substantially along their length during swimming, and the magnitude of this curvature was nearly twice the previously measured maximum curvature for ray-finned fish fin rays during locomotion. Fin rays were often curved into the direction of motion, indicating active control of fin ray curvature, and not just passive bending in response to fluid loading. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  13. Nusselt Number Correlation for Vertical Tubes with Inverted Triangular Fins under Natural Convection

    Directory of Open Access Journals (Sweden)

    Byeong Dong Kang

    2017-08-01

    Full Text Available Vertical tubes with inverted triangular fins under natural convection are investigated experimentally. The thermal resistances of tubes with inverted triangular fins are measured for various fin numbers, fin heights, and heat inputs. A Nusselt number correlation that best predicts the measured thermal resistances is proposed. The proposed correlation is applicable to the following conditions: Rayleigh numbers of 1000–125,000, fin height to fin length ratios of 0.2–0.6, and fin numbers of 9–72. Finally, a contour map of the thermal resistances calculated from the proposed correlation for various fin thicknesses and fin numbers is presented. The contour map shows that there exist optimal values of the fin thickness and fin number at which the thermal resistance of the inverted-triangular-finned tube is minimized. Therefore, the proposed correlation enables a search for the optimal dimensions and has potential to be used in the designing of inverted-triangular-finned tubes of various cooling devices.

  14. Chromium Is Elevated in Fin Whale (Balaenoptera physalus) Skin Tissue and Is Genotoxic to Fin Whale Skin Cells

    Science.gov (United States)

    Wise, Catherine F.; Wise, Sandra S.; Thompson, W. Douglas; Perkins, Christopher; Wise, John Pierce

    2015-01-01

    Hexavalent chromium (Cr(VI)) is present in the marine environment and is a known carcinogen and reproductive toxicant. Cr(VI) is the form of chromium that is well absorbed through the cell membrane. It is also the most prevalent form in seawater. We measured the total Cr levels in skin biopsies obtained from healthy free-ranging fin whales from the Gulf of Maine and found elevated levels relative to marine mammals in other parts of the world. The levels in fin whale biopsies ranged from 1.71 ug/g to 19.6 ug/g with an average level of 10.07 ug/g. We also measured the cytotoxicity and genotoxicity of Cr(VI) in fin whale skin cells. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to fin whale skin cells in a concentration-dependent manner. The concentration range used in our cell culture studies used environmentally relevant concentrations based on the biopsy measurements. These data suggest that Cr(VI) may be a concern for whales in the Gulf of Maine. PMID:25805270

  15. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  16. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  17. Constructal design of finned tubes used in air-cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Shokouhmand, Hossein; Mahjoub, Shoeib [University of Tehran, Tehran (Iran, Islamic Republic of); Salimpour, Mohammad Reza [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2014-06-15

    The present study documents the constructal design and optimization of finned tubes used in air-cooled heat exchangers. The considered tubes are equipped with annular fins. The aim is to minimize the overall thermal resistance by morphing the geometry. The geometrical and thermo-physical parameters considered are the number of fins, ratio of fin height to tube diameter, Stanton number, ratio of fin conductivity to air conductivity, ratio of in-tube fluid conductivity to air conductivity and dimensionless pressure drop. Two constraints are applied in the optimization process: fixed overall volume of heat exchanger and fixed volume fraction of fin material. It is found that there exist optimal values for the number and the height of fins. Moreover, the optimal heat transfer has an extremum in a special volume fraction of fin material.

  18. Constructal design of finned tubes used in air-cooled heat exchangers

    International Nuclear Information System (INIS)

    Shokouhmand, Hossein; Mahjoub, Shoeib; Salimpour, Mohammad Reza

    2014-01-01

    The present study documents the constructal design and optimization of finned tubes used in air-cooled heat exchangers. The considered tubes are equipped with annular fins. The aim is to minimize the overall thermal resistance by morphing the geometry. The geometrical and thermo-physical parameters considered are the number of fins, ratio of fin height to tube diameter, Stanton number, ratio of fin conductivity to air conductivity, ratio of in-tube fluid conductivity to air conductivity and dimensionless pressure drop. Two constraints are applied in the optimization process: fixed overall volume of heat exchanger and fixed volume fraction of fin material. It is found that there exist optimal values for the number and the height of fins. Moreover, the optimal heat transfer has an extremum in a special volume fraction of fin material.

  19. Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins

    Directory of Open Access Journals (Sweden)

    Fengming Wang

    2012-12-01

    Full Text Available The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated. Several differently shaped pin fins (i.e., circular, elliptical, and drop-shaped with the same cross-sectional areas were compared in a staggered arrangement. The Reynolds number based on the obstructed section hydraulic diameter (defined as the ratio of the total wetted surface area to the open duct volume available for flow was varied from 4800 to 8200. The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them, which decreased the aerodynamic penalty compared to circular pin fins. The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins. In terms of specific performance parameters, drop-shaped pin fins are a promising alternative configuration to circular pin fins.

  20. A comparison of top-down and bottom-up approaches to benthic habitat mapping to inform offshore wind energy development

    Science.gov (United States)

    LaFrance, Monique; King, John W.; Oakley, Bryan A.; Pratt, Sheldon

    2014-07-01

    Recent interest in offshore renewable energy within the United States has amplified the need for marine spatial planning to direct management strategies and address competing user demands. To assist this effort in Rhode Island, benthic habitat classification maps were developed for two sites in offshore waters being considered for wind turbine installation. Maps characterizing and representing the distribution and extent of benthic habitats are valuable tools for improving understanding of ecosystem patterns and processes, and promoting scientifically-sound management decisions. This project presented the opportunity to conduct a comparison of the methodologies and resulting map outputs of two classification approaches, “top-down” and “bottom-up” in the two study areas. This comparison was undertaken to improve understanding of mapping methodologies and their applicability, including the bottom-up approach in offshore environments where data density tends to be lower, as well as to provide case studies for scientists and managers to consider for their own areas of interest. Such case studies can offer guidance for future work for assessing methodologies and translating them to other areas. The traditional top-down mapping approach identifies biological community patterns based on communities occurring within geologically defined habitat map units, under the concept that geologic environments contain distinct biological assemblages. Alternatively, the bottom-up approach aims to establish habitat map units centered on biological similarity and then uses statistics to identify relationships with associated environmental parameters and determine habitat boundaries. When applied to the two study areas, both mapping approaches produced habitat classes with distinct macrofaunal assemblages and each established statistically strong and significant biotic-abiotic relationships with geologic features, sediment characteristics, water depth, and/or habitat

  1. FinTech transformation: how it-enabled innovations shape the financial sector

    OpenAIRE

    Zavolokina, Liudmila; Dolata, Mateusz; Schwabe, Gerhard

    2016-01-01

    FinTech, the phenomenon which spans over the areas of information technologies and financial innovation, is currently on the rise and is gaining more and more attention from practitioners, investors and researchers. FinTech is broadly discussed by the media, which constitutes its understanding and represents social opinion, however, this perception of FinTech should be supported by empirical evidences. Therefore, we examine five Swiss FinTech companies through the lens of the conceptual frame...

  2. Efficiency of a fin with convective cooling at variable parameters of heat exchange

    International Nuclear Information System (INIS)

    Kurganov, V.A.

    2003-01-01

    The analysis of the effect of changes in the temperature by the fin length on the efficiency of the fins with the convective cooling and the heat exchange coefficient of the cooling liquid, as well as on the dependence of the fin heat conductivity on the temperature, is carried out through the spline method. It is shown, that by high rates of the λ change the effect of its variability may be essential especially for long fins [ru

  3. Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage

    OpenAIRE

    Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung

    2014-01-01

    In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and ...

  4. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  5. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  6. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  7. Neural adaptive control for vibration suppression in composite fin-tip of aircraft.

    Science.gov (United States)

    Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P

    2008-06-01

    In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.

  8. Velocity Deficits in the Wake of Model Lemon Shark Dorsal Fins Measured with Particle Image Velocimetry

    Science.gov (United States)

    Terry, K. N.; Turner, V.; Hackett, E.

    2017-12-01

    Aquatic animals' morphology provides inspiration for human technological developments, as their bodies have evolved and become adapted for efficient swimming. Lemon sharks exhibit a uniquely large second dorsal fin that is nearly the same size as the first fin, the hydrodynamic role of which is unknown. This experimental study looks at the drag forces on a scale model of the Lemon shark's unique two-fin configuration in comparison to drag forces on a more typical one-fin configuration. The experiments were performed in a recirculating water flume, where the wakes behind the scale models are measured using particle image velocimetry. The experiments are performed at three different flow speeds for both fin configurations. The measured instantaneous 2D distributions of the streamwise and wall-normal velocity components are ensemble averaged to generate streamwise velocity vertical profiles. In addition, velocity deficit profiles are computed from the difference between these mean streamwise velocity profiles and the free stream velocity, which is computed based on measured flow rates during the experiments. Results show that the mean velocities behind the fin and near the fin tip are smallest and increase as the streamwise distance from the fin tip increases. The magnitude of velocity deficits increases with increasing flow speed for both fin configurations, but at all flow speeds, the two-fin configurations generate larger velocity deficits than the one-fin configurations. Because the velocity deficit is directly proportional to the drag force, these results suggest that the two-fin configuration produces more drag.

  9. Effect of storage media and time on fin explants culture in the ...

    African Journals Online (AJOL)

    The effect of storage media and time was investigated on fin explants culture in the goldfish (Carassius auratus). Fin explants under sterile conditions were able to produce cells at different storage media and time. On the outgrowth of cells, fin explants stored for seven days before culturing showed significantly higher growth ...

  10. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

    Science.gov (United States)

    W. J. Massman; J. M. Forthofer; M. A. Finney

    2017-01-01

    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  11. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; van Beeck, Jeroen

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-la...

  12. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  13. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  14. Het fin-de-siècle als vertoning

    Directory of Open Access Journals (Sweden)

    W. Krul

    2002-01-01

    Full Text Available 1900Wessel KrulIn their publication entitled 1900: Hoogtij van burgerlijke cultuur, the authors, Jan Bank and Maarten van Buuren, failed to pay adequate attention to the contrasts and differences that typified Dutch culture at the fin de siècle. The book therefore lacks analytical precision. The term 'bourgeois culture' should not have been applied in such an all-inclusive and unambiguous manner.

  15. A first approach to deal with cumulative effects on birds and bats of offshore wind farms and other human activities in the southern North Sea

    OpenAIRE

    Leopold, M.F.; Boonman, M.; Collier, M.P.; Davaasuren, N.; Jongbloed, R.H.; Lagerveld, S.; Wal, van der, J.T.; Scholl, M.M.

    2014-01-01

    Around 100 offshore wind farms are scheduled to be operational by 2023 in the southern North Sea (51-56°N) alone. There may be two sides to this development in environmental terms: on the one hand this will help reduce CO2 emissions, on the other hand protected North Sea biota may be negatively impacted. This report considers the cumulative impact of all projected wind farms in the southern North Sea (by 2023) on birds and bats.

  16. Numerical Study on Hydrodynamic Performance of Bionic Caudal Fin

    Directory of Open Access Journals (Sweden)

    Kai Zhou

    2016-01-01

    Full Text Available In this work, numerical simulations are conducted to reveal the hydrodynamic mechanism of caudal fin propulsion. In the modeling of a bionic caudal fin, a universal kinematics model with three degrees of freedom is adopted and the flexible deformation in the spanwise direction is considered. Navier-Stokes equations are used to solve the unsteady fluid flow and dynamic mesh method is applied to track the locomotion. The force coefficients, torque coefficient, and flow field characteristics are extracted and analyzed. Then the thrust efficiency is calculated. In order to verify validity and feasibility of the algorithm, hydrodynamic performance of flapping foil is analyzed. The present results of flapping foil compare well with those in experimental researches. After that, the influences of amplitude of angle of attack, amplitude of heave motion, Strouhal number, and spanwise flexibility are analyzed. The results show that, the performance can be improved by adjusting the motion and flexibility parameters. The spanwise flexibility of caudal fin can increase thrust force with high propulsive efficiency.

  17. ''Del'fin'' high-power laser thermonuclear machine

    International Nuclear Information System (INIS)

    Basov, N.G.; Krokhin, O.N.; Mikhailov, Yu.A.; Sklizkov, G.V.; Fedotov, S.I.

    The high-power 12-channel ''Del'fin'' laser device, designed for high-temperature heating of thermonuclear targets in a spherical irradiation geometry, is described. The device includes a neodymium laser with a maximum radiative energy of approximately 10 kJ, a light pulse lasting 10 -10 -- 10 -9 sec with an irradiation divergence of approximately 5.10 -4 rad, a vacuum chamber in which the laser radiation interacts with a plasma, and a set of devices for laser parameter and plasma diagnostics. The optical design and structural characteristics of the laser system are discussed. Designs for focusing the radiation on a target are analyzed, and the focusing system of the ''Del'fin'' device, permitting a high degree of symmetry of the spherical irradiation of the target with a maximum flux density of approximately 10 15 W/cm 2 on its surface, is described. Also discussed is the problem of realizing the maximum possibilities of heating of spherical thermonuclear targets with the radiation of high-power laser systems. The practically attainable laser radiation parameters are also considered. In the case of a laser system with a series-parallel arrangement of the amplification stages, relationships are obtained which make it possible to analyze the effect of the target and laser parameters on the magnitude of the maximum possible laser pulse energy in a spherical heating geometry. The results obtained were used in the design of the ''Del'fin'' high-power laser device

  18. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.

    2014-06-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.

  19. A common geometric data-base approach for computer-aided manufacturing of wind-tunnel models and theoretical aerodynamic analysis

    Science.gov (United States)

    See, M. J.; Cozzolongo, J. V.

    1983-01-01

    A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.

  20. FinTech in Taiwan: a case study of a Bank's strategic planning for an investment in a FinTech company

    OpenAIRE

    Hung, Jui-long; Luo, Binjie

    2016-01-01

    Introduction: Since 2015 is the year of FinTech in Taiwan, it is worth investigating the challenges that emerged when banks were encouraged to invest in FinTech companies for collaboration. This study aims to identify the strategic considerations in the process of searching for FinTech investment targets. Case description: This study used a case study investigation of a top-5 bank in Taiwan. The major data sources include the meeting notes of the FinTech investment task force and interviews w...

  1. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  2. Comparative analysis of different cooling fin types for countering LED luminaires' heat problems

    OpenAIRE

    KARATEKİN, CANAN; KÖKKAYA, OYTUN

    2018-01-01

    A significant problem with high-power LED luminaires is heat. Aluminum heat sinks have been extensively used as a solution. The most common method for heat sinks that increases surface area uses fins. In the present study, pin- and plate-fins were compared and it was observed that, in equal surface areas, better cooling was achieved by pin-fins. Thus, the study's concentration narrowed to pin-fins and the results of different pin-fins were compared. Simulations of a sample group were...

  3. Prediction of forces and moments on finned bodies at high angle of attack in transonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W. L.

    1981-04-01

    This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.

  4. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    International Nuclear Information System (INIS)

    Fry, C.J.

    1985-08-01

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  5. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  6. An improved model for predicting performance of finned tube heat exchanger under frosting condition, with frost thickness variation along fin

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.P. [Multimedia University, Jalan Ayer Keroh Lama, Melaka (Malaysia). Faculty of Engineering and Technology; Cheng, Y.C.; Lai, A.C.K. [Nanyang Technological University, Singapore (Singapore). School of Mechanical and Aerospace Engineering

    2006-01-15

    Frost accumulation on a heat exchanger, a direct result of combined heat and mass transfer between the moist air flowing across a cold surface, causes heat transfer performance degradation due to the insulating effect of frost layer and the coil blockage as the frost grows. The complex geometry of finned tube heat exchangers leads to uneven wall and air temperature distribution inside the coil, and causes variations of frost growth rate and densification along the coil. In this study, a general distributed model with frost formation was developed. The equations for finned tube heat exchanger were derived in non-steady-state manner and quasi-steady state in the frost model. In order to make the model more realistic, the variation of frost along fin due to uneven temperature distribution was included. The presented model is able to predict the dynamic behavior of an air cooler both under non-frost and frost condition. Comparisons were made based on the frost mass accumulation, pressure drop across coil and energy transfer coefficient, and results were found to agree well with reported experimental results. (author)

  7. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  8. Pectoral fin of the megamouth shark: skeletal and muscular systems, skin histology, and functional morphology.

    Directory of Open Access Journals (Sweden)

    Taketeru Tomita

    Full Text Available This is the first known report on the skeletal and muscular systems, and the skin histology, of the pectoral fin of the rare planktivorous megamouth shark Megachasma pelagios. The pectoral fin is characterized by three features: 1 a large number of segments in the radial cartilages; 2 highly elastic pectoral fin skin; and 3 a vertically-rotated hinge joint at the pectoral fin base. These features suggest that the pectoral fin of the megamouth shark is remarkably flexible and mobile, and that this flexibility and mobility enhance dynamic lift control, thus allowing for stable swimming at slow speeds. The flexibility and mobility of the megamouth shark pectoral fin contrasts with that of fast-swimming sharks, such as Isurus oxyrhinchus and Lamna ditropis, in which the pectoral fin is stiff and relatively immobile.

  9. Pectoral fin of the megamouth shark: skeletal and muscular systems, skin histology, and functional morphology.

    Science.gov (United States)

    Tomita, Taketeru; Tanaka, Sho; Sato, Keiichi; Nakaya, Kazuhiro

    2014-01-01

    This is the first known report on the skeletal and muscular systems, and the skin histology, of the pectoral fin of the rare planktivorous megamouth shark Megachasma pelagios. The pectoral fin is characterized by three features: 1) a large number of segments in the radial cartilages; 2) highly elastic pectoral fin skin; and 3) a vertically-rotated hinge joint at the pectoral fin base. These features suggest that the pectoral fin of the megamouth shark is remarkably flexible and mobile, and that this flexibility and mobility enhance dynamic lift control, thus allowing for stable swimming at slow speeds. The flexibility and mobility of the megamouth shark pectoral fin contrasts with that of fast-swimming sharks, such as Isurus oxyrhinchus and Lamna ditropis, in which the pectoral fin is stiff and relatively immobile.

  10. Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming

    Science.gov (United States)

    Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo

    2017-11-01

    It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.

  11. Design optimization of pin fin geometry using particle swarm optimization algorithm.

    Directory of Open Access Journals (Sweden)

    Nawaf Hamadneh

    Full Text Available Particle swarm optimization (PSO is employed to investigate the overall performance of a pin fin.The following study will examine the effect of governing parameters on overall thermal/fluid performance associated with different fin geometries, including, rectangular plate fins as well as square, circular, and elliptical pin fins. The idea of entropy generation minimization, EGM is employed to combine the effects of thermal resistance and pressure drop within the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including base plate and applying the conservations equations for mass and energy with the entropy balance. Selected fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate corresponding to different parameters including axis ratio, aspect ratio, and Reynolds number. The results clearly indicate that the preferred fin profile is very dependent on these parameters.

  12. Model Predictive Control with Constraints of a Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2007-01-01

    Model predictive control of wind turbines offer a more systematic approach of constructing controllers that handle constraints while focusing on the main control objective. In this article several controllers are designed for different wind conditions and appropriate switching conditions ensure...... an efficient control of the wind turbine over the entire range of wind speeds. Both onshore and floating offshore wind turbines are tested with the controllers....

  13. Muscle activity and hydrodynamic function of pelvic fins in trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Standen, E M

    2010-03-01

    Contrary to the previous premise that pelvic fins lacked obvious function, recent work on three-dimensional fin motions suggests that pelvic fins actively control stability and speed in slowly swimming trout. This study used electromyography to measure pelvic fin muscle activity and particle imaging velocimetry to quantify flow along the ventral body region to test this hypothesis. Fish swam at slow speeds (0.13-1.36 BL s(-1)) while being filmed with three high speed cameras. Three-dimensional kinematics were captured for all trials. During EMG trials pelvic fin muscle activity was synchronized to kinematic motion, during particle imaging velocimetry trials, a laser light-sheet was used to visualize the flow surrounding the ventral aspect of the fish. Four main conclusions are reached: first, pelvic fins are actively oscillated during slow-speed swimming; antagonistic abductor and adductor muscles contracted simultaneously, their collective action producing a unique contralateral oscillating behaviour in the fins. Second, pelvic fins slow the flow along the ventral side affecting pitch and yaw instabilities; flow upstream of the pelvic fins is slowed by 0.02 m s(-1) and flow downstream of the pelvic fins is slowed by 0.034 m s(-1) compared with free stream flow. Third, pelvic fin wake influences anal fin angle of attack; flow angle in the wake of the pelvic fin was 33.84+/-2.4 deg. (max) and -11.83+/-11.2 deg. (min) compared with the free stream flow angle of 1.27+/-0.1 deg. Fourth, pelvic fins appear to actively damp body oscillation during slow-speed swimming, providing drag to help control speed and stabilize the body position during slow-speed swimming.

  14. Reducing Turbine Mechanical Loads Using Flow Model-Based Wind Farm Controller

    DEFF Research Database (Denmark)

    Kazda, Jonas; Cutululis, Nicolaos Antonio

    WindFarm [2]. SimWindFarm allows for the simultaneous simulation of the turbulent hub height flow field in the wind farm, the turbine dynamics and the wind farm control. The tests show a reduction of loads when compared to other optimal wind farm control approaches. Future work shall enhance the controller......Cumulated O&M costs of offshore wind farms are comparable with wind turbine CAPEX of such wind farm. In wind farms, wake effects can result in up to 80% higher fatigue loads at downstream wind turbines [1] and consequently larger O&M costs. The present work therefore investigates to reduce...... these loads during the provision of grid balancing services using optimal model-based wind farm control. Wind farm controllers coordinate the operating point of wind turbines in a wind farm in order to achieve a given objective. The investigated objective of the control in this work is to follow a total wind...

  15. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Lauder, George V; Wilga, Cheryl D

    2017-11-01

    A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks ( Chiloscyllium plagiosum ) and spiny dogfish ( Squalus acanthias ). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady

  16. A study on heat transfer through the fin-wick structure mounted in the evaporator for a plate loop heat pipe system

    International Nuclear Information System (INIS)

    Nguyen, Xuan Hung; Sung, Byung Ho; Choi, Jee Hoon; Kim, Chul Ju; Yoo, Jung Hyung; Seo, Min Whan

    2008-01-01

    This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components

  17. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  18. Design and Performance Analysis of 1-Bit FinFET Full Adder Cells for Subthreshold Region at 16 nm Process Technology

    Directory of Open Access Journals (Sweden)

    ‘Aqilah binti Abdul Tahrim

    2015-01-01

    Full Text Available The scaling process of the conventional 2D-planar metal-oxide semiconductor field-effect transistor (MOSFET is now approaching its limit as technology has reached below 20 nm process technology. A new nonplanar device architecture called FinFET was invented to overcome the problem by allowing transistors to be scaled down into sub-20 nm region. In this work, the FinFET structure is implemented in 1-bit full adder transistors to investigate its performance and energy efficiency in the subthreshold region for cell designs of Complementary MOS (CMOS, Complementary Pass-Transistor Logic (CPL, Transmission Gate (TG, and Hybrid CMOS (HCMOS. The performance of 1-bit FinFET-based full adder in 16-nm technology is benchmarked against conventional MOSFET-based full adder. The Predictive Technology Model (PTM and Berkeley Shortchannel IGFET Model-Common Multi-Gate (BSIM-CMG 16 nm low power libraries are used. Propagation delay, average power dissipation, power-delay-product (PDP, and energy-delay-product (EDP are analysed based on all four types of full adder cell designs of both FETs. The 1-bit FinFET-based full adder shows a great reduction in all four metric performances. A reduction in propagation delay, PDP, and EDP is evident in the 1-bit FinFET-based full adder of CPL, giving the best overall performance due to its high-speed performance and good current driving capabilities.

  19. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  20. Operational reliability evaluation of restructured power systems with wind power penetration utilizing reliability network equivalent and time-sequential simulation approaches

    DEFF Research Database (Denmark)

    Ding, Yi; Cheng, Lin; Zhang, Yonghong

    2014-01-01

    In the last two decades, the wind power generation has been rapidly and widely developed in many regions and countries for tackling the problems of environmental pollution and sustainability of energy supply. However, the high share of intermittent and fluctuating wind power production has also...... and reserve provides, fast reserve providers and transmission network in restructured power systems. A contingency management schema for real time operation considering its coupling with the day-ahead market is proposed. The time-sequential Monte Carlo simulation is used to model the chronological...

  1. A spinner-integrated wind lidar for enhanced wind turbine control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Angelou, Nikolas; Hansen, Kasper Hjorth

    2013-01-01

    diameter, 59 m hub height 2.3 MW wind turbine (Vestas NM80), located at Tjæreborg Enge in western Denmark is presented. Preview wind data at two selected upwind measurement distances, acquired during two measurement periods of different wind speed and atmospheric stability conditions, are analyzed...... of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed-forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd.......A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m rotor...

  2. Economic performance indicators of wind energy based on wind speed stochastic modeling

    International Nuclear Information System (INIS)

    D’Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2015-01-01

    Highlights: • We propose a new and different wind energy production indicator. • We compute financial profitability of potential wind power sites. • The wind speed process is modeled as an indexed semi-Markov chain. • We check if the wind energy is a good investment with and without incentives. - Abstract: We propose the computation of different wind energy production indicators and financial profitability of potential wind power sites. The computation is performed by modeling the wind speed process as an indexed semi-Markov chain to predict and simulate the wind speed dynamics. We demonstrate that the indexed semi-Markov chain approach enables reproducing the indicators calculated on real data. Two different time horizons of 15 and 30 years are analyzed. In the first case we consider the government incentives on the energy price now present in Italy, while in the second case the incentives have not been taken into account

  3. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  4. En Defensa del Fin de Lucro en Salud.

    OpenAIRE

    Ramón Abel Castaño Yepes

    2007-01-01

    INTRODUCCIÓN Uno de los planteamientos de fondo sobre los que se ha basado la crítica al sistema de seguridad social en salud creado por la ley 100, es el de la inconveniencia del fin de lucro en la organización del sistema (Academia de Medicina, 1999). Sin embargo, los argumentos basados en este planteamiento parten de premisas que no necesariamente son ciertas, y por lo tanto sus conclusiones no necesariamente son válidas. Así pues, una vez analizadas más de cerca dichas pr...

  5. Compensation of airflow maldistribution in fin-and-tube evaporators

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Tiedemann, Thomas

    2012-01-01

    Compensation of airflow maldistribution in fin-and tube evaporators for residential air-conditioning is investigated with regards to circuitry design and control of individual channel superheats. In particularly, the interlaced and the face split circuitry designs are compared numerically using......, however with lower gains in wet conditions (around 3% in cooling capacity and 7-9% in UA-value). This performance gain in cooling capacity is below the uncertainty in standard experiments, however the gain may be revealed and/or validated by the possible area savings experimentally, i.e. in terms...

  6. Transfer coefficients for plate fin and elliptical tube heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.; Saboya, F.E.M.

    1981-01-01

    In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt

  7. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  8. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  9. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  10. Analysis of counter flow of corona wind for heat transfer enhancement

    Science.gov (United States)

    Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo

    2018-03-01

    A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.

  11. Effects of the partially movable control fin with end plate of underwater vehicle

    Directory of Open Access Journals (Sweden)

    Chul-Min Jung

    2017-01-01

    Full Text Available Underwater torpedo has control fin with very low aspect ratio due to launching from limited size of cylindrical torpedo tube. If the aspect ratio of control fin of underwater vehicle is very low three-dimensional flow around control fin largely reduces control forces. In this study, the end plate was applied to reduce the three-dimensional flow effects of partially movable control fin of underwater vehicle. Through numerical simulations the flow field around control fin was examined with and without end plate for different flap angles. The pressure, vorticity, lift and torque on the control fin were analyzed and compared to experiments. The comparison have shown a reasonable agreement between numerical and experimental results and the effect of end plate on a low aspect ratio control fin. When the end plate was attached to the movable control fin, the lift increased and the actuator shaft torque did not significantly change. As this means less consumption of the actuator shaft torque compared to the control fin that has the same control force, the inner actuator capacity can be reduced and energy consumption can be saved. Considering this, it is expected to be effectively applied to the control fin design of underwater vehicles such as torpedoes.

  12. N. meningitidis 1681 is a member of the FinO family of RNA chaperones.

    Energy Technology Data Exchange (ETDEWEB)

    Chaulk, S.; Lu, J.; Tan, K.; Arthur, D.; Edwards, R.; Frost, L.; Joachimiak, A.; Glover, J. (Biosciences Division); (Univ. of Alberta)

    2010-11-01

    The conjugative transfer of F-like plasmids between bacteria is regulated by the plasmid-encoded RNA chaperone, FinO, which facilitates sense - antisense RNA interactions to regulate plasmid gene expression. FinO was thought to adopt a unique structure, however many putative homologs have been identified in microbial genomes and are considered members of the FinO-conjugation-repressor superfamily. We were interested in determining whether other members were also able to bind RNA and promote duplex formation, suggesting that this motif does indeed identify a putative RNA chaperone. We determined the crystal structure of the N. meningitidis MC58 protein NMB1681. It revealed striking similarity to FinO, with a conserved fold and a large, positively charged surface that could function in RNA interactions. Using assays developed to study FinO-FinP sRNA interactions, NMB1681, like FinO, bound tightly to FinP RNA stem-loops with short 5-foot and 3-foot single-stranded tails but not to ssRNA. It also was able to catalyze strand exchange between an RNA duplex and a complementary single-strand, and facilitated duplexing between complementary RNA hairpins. Finally, NMB1681 was able to rescue a finO deficiency and repress F plasmid conjugation. This study strongly suggests that NMB1681 is a FinO-like RNA chaperone that likely regulates gene expression through RNA-based mechanisms in N. meningitidis.

  13. Highly flexible SRAM cells based on novel tri-independent-gate FinFET

    Science.gov (United States)

    Liu, Chengsheng; Zheng, Fanglin; Sun, Yabin; Li, Xiaojin; Shi, Yanling

    2017-10-01

    In this paper, a novel tri-independent-gate (TIG) FinFET is proposed for highly flexible SRAM cells design. To mitigate the read-write conflict, two kinds of SRAM cells based on TIG FinFETs are designed, and high tradeoff are obtained between read stability and speed. Both cells can offer multi read operations for frequency requirement with single voltage supply. In the first TIG FinFET SRAM cell, the strength of single-fin access transistor (TIG FinFET) can be flexibly adjusted by selecting five different modes to meet the needs of dynamic frequency design. Compared to the previous double-independent-gate (DIG) FinFET SRAM cell, 12.16% shorter read delay can be achieved with only 1.62% read stability decrement. As for the second TIG FinFET SRAM cell, pass-gate feedback technology is applied and double-fin TIG FinFETs are used as access transistors to solve the severe write-ability degradation. Three modes exist to flexibly adjust read speed and stability, and 68.2% larger write margin and 51.7% shorter write delay are achieved at only the expense of 26.2% increase in leakage power, with the same layout area as conventional FinFET SRAM cell.

  14. Thermal-fluid characteristics of plate-fin heat sinks cooled by impingement jet

    International Nuclear Information System (INIS)

    Li Hungyi; Chen Kuanying; Chiang Minghung

    2009-01-01

    This work experimentally and numerically studies the thermal-fluid characteristics of plate-fin heat sinks under impingement cooling by adjusting the impinging Reynolds number, the impingement distance, and the fin dimensions. The parameters and the ranges under consideration are the impinging Reynolds number (Re = 5000-25,000), the impingement distance (Y/D = 4-28), the fin width (W/L = 0.08125-0.15625) and the fin height (H/L = 0.375-0.625). The results show that the heat transferred by the heat sink increases with the impinging Reynolds number. The thermal performance can be improved significantly even at low impinging Reynolds number. However, the improvement becomes indistinct as the impinging Reynolds number increases. The thermal resistance declines as the impingement distance increases, and is minimal at Y/D = 20 for various impinging Reynolds numbers. Additionally, the thermal resistance increases as the impingement distance increases further. Increasing the fin width can effectively reduce the thermal resistance. However, as the fin width increases beyond a particular value, the thermal resistance increases dramatically. Reducing the thermal resistance by increasing the fin height depends on a suitable impinging Reynolds number and fin width. Therefore, the effect of the fin height is weaker than that of the impinging Reynolds number or the fin width.

  15. Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines

    International Nuclear Information System (INIS)

    Liu, Heping; Shi, Jing; Qu, Xiuli

    2013-01-01

    Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate

  16. A first approach to deal with cumulative effects on birds and bats of offshore wind farms and other human activities in the southern North Sea

    NARCIS (Netherlands)

    Leopold, M.F.; Boonman, M.; Collier, M.P.; Davaasuren, N.; Jongbloed, R.H.; Lagerveld, S.; Wal, van der J.T.; Scholl, M.M.

    2014-01-01

    Around 100 offshore wind farms are scheduled to be operational by 2023 in the southern North Sea (51-56°N) alone. There may be two sides to this development in environmental terms: on the one hand this will help reduce CO2 emissions, on the other hand protected North Sea biota may be negatively

  17. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  18. Patella dislocation with vertical axis rotation: the "dorsal fin" patella.

    Science.gov (United States)

    Gamble, David; Otto, Quentin; Carrothers, Andrew D; Khanduja, Vikas

    2015-01-01

    A 44-year-old woman presented following minor trauma to her right knee. While dancing she externally rotated around a planted foot and felt sudden pain in her right knee. She presented with her knee locked in extension with a "dorsal fin" appearance of the soft tissues tented over the patella. This was diagnosed as a rare case of an intraarticular patella dislocation, which was rotated 90 degrees about the vertical axis. Closed reduction in the emergency room was unsuccessful but was achieved in theatre under general anaesthetic with muscle relaxation. Postreduction arthroscopy demonstrated that no osteochondral or soft tissue damage to the knee had been sustained. In patients presenting with a knee locked in extension with tenting of skin over the patella (the "dorsal fin" appearance), intra-articular patella dislocation should be suspected. Attempts to reduce vertical patella dislocations under sedation with excessive force or repeatedly without success should be avoided to prevent unnecessary damage to the patellofemoral joint. In this clinical situation we recommend closed reduction under general anaesthetic followed by immediate knee arthroscopy under the same anaesthetic to ensure that there is no chondral damage to the patella or femoral trochlea and to rule out an osteochondral fracture.

  19. Vitrification of caudal fin explants from zebrafish adult specimens.

    Science.gov (United States)

    Cardona-Costa, J; Roig, J; Perez-Camps, M; García-Ximénez, F

    2006-01-01

    No data on vitrification of tissue samples are available in fishes. Three vitrification solutions were compared: V1: 20% ethylene glycol and 20% dimethyl sulphoxide; V2: 25% propylene glycol and 20% dimethyl sulphoxide, and; V3: 20% propylene glycol and 13% methanol, all three prepared in Hanks' buffered salt solution plus 20 percent FBS, following the same one step vitrification procedure developed in mammals. Caudal fin tissue pieces were vitrified into 0.25 ml plastic straws in 30s and stored in liquid nitrogen for 3 days minimum, warmed (10s in nitrogen vapour and 5s in a 25 degree C water bath) and cultured (L-15 plus 20% FBS at 28.5 degree C). At the third day of culture, both attachment and outgrowing rates were recorded. V3 led to the worst results (8% of attachment rate). V1 and V2 allow higher attachment rates (V1: 63% vs V2: 50%. P < 0.05) but not significantly different outgrowing rates (83% to 94%). Vitrification of caudal fin pieces is advantageous in fish biodiversity conservation, particularly in the wild, due to the simplicity of procedure and equipment.

  20. Fast breeder cladding tubes provided with helical fins

    International Nuclear Information System (INIS)

    Baumgaertner, E.; Hoffmann, H.; Miller, H.; Jacobi, O.; Bojarski, E.; Freund, D.; Reiser, H.

    1977-04-01

    Development of fast breeder tubes with helical fins started around 1966. The development was initiated mainly by the search for a more favorable alternative to the conventional spacers such as grids and spiral wires. First of all the possibility was investigated of fabricating them on an industrial scale. The first thermohydraulic and fluiddynamic tests were made in parallel by AEG, GfK and Interatom. Besides the possibility of industrial fabrication the problems of non-destructive testing for geometry and material defects had to be treated with priority. In this report the different stages of development are shown and, finally, two rather large projects are described. These projects are the study ready for the licensing procedure concerning the irradiation of finned tube oxide fuel elements in KNK II and the already completed 19-rod fuel element bundle irradiation experiment Mol 7D of GfK performed in the 500 kW sodium loop of the Belgian BR2 reactor. In this BR2 experiment the maximum target burnup of 85,000 MWd/t of oxide was attained without trouble. (orig.) [de

  1. FinFET and UTBB for RF SOI communication systems

    Science.gov (United States)

    Raskin, Jean-Pierre

    2016-11-01

    Performance of RF integrated circuit (IC) is directly linked to the analog and high frequency characteristics of the transistors, the quality of the back-end of line process as well as the electromagnetic properties of the substrate. Thanks to the introduction of the trap-rich high-resistivity Silicon-on-Insulator (SOI) substrate on the market, the ICs requirements in term of linearity are fulfilled. Today partially depleted SOI MOSFET is the mainstream technology for RF SOI systems. Future generations of mobile communication systems will require transistors with better high frequency performance at lower power consumption. The advanced MOS transistors in competition are FinFET and Ultra Thin Body and Buried oxide (UTBB) SOI MOSFETs. Both devices have been intensively studied these last years. Most of the reported data concern their digital performance. In this paper, their analog/RF behavior is described and compared. Both show similar characteristics in terms of transconductance, Early voltage, voltage gain, self-heating issue but UTBB outperforms FinFET in terms of cutoff frequencies thanks to their relatively lower fringing parasitic capacitances.

  2. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    Science.gov (United States)

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish.

    Science.gov (United States)

    Thorimbert, Valentine; König, Désirée; Marro, Jan; Ruggiero, Florence; Jaźwińska, Anna

    2015-10-01

    Zebrafish fin regeneration involves initial formation of the wound epidermis and the blastema, followed by tissue morphogenesis. The mechanisms coordinating differentiation of distinct tissues of the regenerate are poorly understood. Here, we applied pharmacologic and transgenic approaches to address the role of bone morphogenetic protein (BMP) signaling during fin restoration. To map the BMP transcriptional activity, we analyzed the expression of the evolutionarily conserved direct phospho-Smad1 target gene, id1, and its homologs id2a and id3. This analysis revealed the BMP activity in the distal blastema, wound epidermis, osteoblasts, and blood vessels of the regenerate. Blocking the BMP function with a selective chemical inhibitor of BMP type I receptors, DMH1, suppressed id1 and id3 expression and arrested regeneration after blastema formation. We identified several previously uncharacterized functions of BMP during fin regeneration. Specifically, BMP signaling is required for remodeling of plexus into structured blood vessels in the rapidly growing regenerate. It organizes the wound epithelium by triggering wnt5b expression and promoting Collagen XIV-A deposition into the basement membrane. BMP represents the first known signaling that induces actinotrichia formation in the regenerate. Our data reveal a multifaceted role of BMP for coordinated morphogenesis of distinct tissues during regeneration of a complex vertebrate appendage. © FASEB.

  4. Influence of wind loading

    OpenAIRE

    MAVLONOV RAVSHANBEK ABDUJABBOROVICH; VAKKASOV KHAYRULLO SAYFULLAHANOVICH

    2015-01-01

    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  5. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  6. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  7. Fins coloration of perch in relation to external activity concentration of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Yegoreichenkov, E.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority and University of Tromsoe (Norway)

    2014-07-01

    -hoc criterion, number of specimens: RT1 - 10, RT2 - 12, RT3 - 13 and RM - 10). Perch in the upper part have a wave length that is closer to the red part of the spectre (595.0 nm and 594.8 nm respectively) which indicate higher concentration of red carotenoids (f.e. astaxanthin). In line with this, significant differences between RM and RT-2 stations fish were found (p=0.0101). The values of channel *a for perch fins were measured. The result of perch from RT-2 and RT-1 stations showed higher values, than those from RT-3 station (p=0.00003 and p=0.00002 respectively). Same differences were discovered for station RT-2 relatively to station RM (p=0.03853). The results are contradictory to our prediction, that perch in caught in upper part of Techa River would be paler. On possible explanation could be that low quality perch (i.e. pale fish) would not be able to inhabit the upper part. However, this would need experimental approach to be tested. This work was performed with the support by NRPA. Document available in abstract form only. (authors)

  8. Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.

    Science.gov (United States)

    Rigante, Sara; Scarbolo, Paolo; Wipf, Mathias; Stoop, Ralph L; Bedner, Kristine; Buitrago, Elizabeth; Bazigos, Antonios; Bouvet, Didier; Calame, Michel; Schönenberger, Christian; Ionescu, Adrian M

    2015-05-26

    Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates. We also provide an analytical insight of the concept of sensitivity for the electronic integration of sensors. N-channel fully depleted FinFETs with critical dimensions on the order of 20 nm and HfO2 as a high-k gate insulator have been developed and characterized, showing excellent electrical properties, subthreshold swing, SS ∼ 70 mV/dec, and on-to-off current ratio, Ion/Ioff ∼ 10(6), at room temperature. The same FinFET architecture is validated as a highly sensitive, stable, and reproducible pH sensor. An intrinsic sensitivity close to the Nernst limit, S = 57 mV/pH, is achieved. The pH response in terms of output current reaches Sout = 60%. Long-term measurements have been performed over 4.5 days with a resulting drift in time δVth/δt = 0.10 mV/h. Finally, we show the capability to reproduce experimental data with an extended three-dimensional commercial finite element analysis simulator, in both dry and wet environments, which is useful for future advanced sensor design and optimization.

  9. A demonstration of nesting in two antarctic icefish (genus Chionodraco) using a fin dimorphism analysis and ex situ videos.

    Science.gov (United States)

    Ferrando, Sara; Castellano, Laura; Gallus, Lorenzo; Ghigliotti, Laura; Masini, Maria Angela; Pisano, Eva; Vacchi, Marino

    2014-01-01

    Visual observations and videos of Chionodraco hamatus icefish at the "Acquario di Genova" and histological analyses of congeneric species C. hamatus and C. rastrospinosus adults sampled in the field provided new anatomical and behavioral information on the reproductive biology of these white blooded species that are endemic to the High-Antarctic region. During the reproductive season, mature males of both species, which are different from females and immature males, display fleshy, club-like knob modifications of their anal fin that consisted of a much thicker epithelium. Histology indicated that the knobs were without any specialized glandular or sensorial organization, thus suggesting a mechanical and/or ornamental role of the modified anal fin. In addition, the occurrence of necrotic regions at the base of the thickened epithelium and the detachment of the knobs in post-spawning C. hamatus males indicated the temporary nature of the knobs. The role of these structures was confirmed as mechanical and was clarified using visual observations and videos of the behavior of two C. hamatus during a reproductive event that occurred in an exhibit tank at the "Acquario di Genova". The reproductive process included pre-spawning activity, preparation of the nest, egg guarding and successfully ended with egg hatching. When the spawning event approached, the male prepared the nest. The nest was constructed on an accurately selected bottom surface, which was flattened and maintained free from sand or debris by a combination of radial body movements and continuous anal fin sweeping, thus demonstrating the important mechanical/abrasive function of the anal fin knobs. The present data are the first records of active nesting in icefish and clarify the meaning of dimorphic temporary structures, whose function would have been difficult to obtain in the field.

  10. Evidence for the secondary sexual development of the anal fin in female kokanee salmon Oncorhynchus nerka.

    Science.gov (United States)

    Thorn, M W; Morbey, Y E

    2016-02-01

    This study examines whether the anal fin undergoes secondary sexual development similar to other reproductive traits in salmonids. This hypothesis was tested by comparing the anal-fin size of female kokanee salmon Oncorhynchus nerka that were in the early and late stages of sexual development. Females in an advanced stage of maturation had significantly larger anal fins relative to females in an early state of maturation (+4-7%), indicating that the anal fin undergoes secondary sexual development. The magnitude of this secondary growth was comparable with snout length (+9-10%), which is known to undergo secondary sexual development in female salmonids. When morphological trait dimensions were compared between the sexes, the anal fin was the only morphological trait found to have a female-biased sexual size dimorphism. This is the first study to show that the anal fin of female salmonids undergoes secondary sexual development. © 2015 The Fisheries Society of the British Isles.

  11. Thermal performance of functionally graded parabolic annular fins having constant weight

    Energy Technology Data Exchange (ETDEWEB)

    Gaba, Vivek Kumar; Tiwari, Anil Kumar; Bhowmick, Shubhankar [National Institute of Technology Raipur, Raipur (India)

    2014-10-15

    The proposed work reports the performance of parabolic annular fins of constant weight made of functionally graded materials. The work involves computation of temperature gradient, efficiency and effectiveness of such fins and compares the performances for different functionally graded parabolic fin profiles obtained by varying grading parameters and profile parameters respectively keeping the weight of the fins constant. The functional grading of thermal conductivity is based on a power function of radial co-ordinate which consists of parameters, namely grading parameters, varying which different grading combinations are studied. A general second order ordinary differential equation has been derived for all the profiles and material grading. The efficiency and effectiveness of the annular fins of different profile and grading combinations have been calculated and plotted and the results reveal the dependence of fin performance on profile and grading parameter.

  12. Forced convective performance of perforated circular pin-fin heat sinks

    Science.gov (United States)

    Wen, Mao-Yu; Yeh, Cheng-Hsiung

    2017-05-01

    This study examines heat transfer performance under forced convection for two different types (Type A and Type B) of pin-fin heat sinks with and without a hollow in the heated base. The effects of the Reynolds number, heights of the fin and base plate, finning factor, heat sink porosity and perforated base plate on the heat-transfer coefficient, fin effectiveness and pressure drop were investigated and evaluated. The present study strongly suggests the use of a small hollow [( D h / D b ) plate of the pin-fin heat sink. In order to obtain insight into the fluid flow phenomena, flow visualization was also made to observe the detailed fluid flow characteristics of the present pin-fin heat sinks.

  13. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  14. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  15. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  16. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  17. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  18. Computational thermal analysis of cylindrical fin design parameters and a new methodology for defining fin structure in LED automobile headlamp cooling applications

    International Nuclear Information System (INIS)

    Sökmen, Kemal Furkan; Yürüklü, Emrah; Yamankaradeniz, Nurettin

    2016-01-01

    Highlights: • In the study, cooling of LED headlamps in automotive is investigated. • The study is based on free convection cooling of LED module. • Besides free convection, Monte Carlo model is used as radiation model as well. • A new algorithm is presented for designing optimum fin structure. • Suggested algorithm for optimum design is verified by various simulations. - Abstract: In this study, the effects of fin design, fin material, and free and forced convection on junction temperature in automotive headlamp cooling applications of LED lights are researched by using ANSYS CFX 14 software. Furthermore a new methodology is presented for defining the optimum cylindrical fin structure within the given limits. For measuring the performance of methodology, analyses are carried out for various ambient temperatures (25 °C, 50 °C and 80 °C) and different LED power dissipations (0.5 W, 0.75 W, 1 W and 1.25 W). Then, analyses are repeated at different heat transfer coefficients and different fin materials in order to calculate LED junction temperature in order to see if the fin structure proposed by the methodology is appropriate for staying below the given safety temperature limit. As a result, the suggested method has always proposed proper fin structures with optimum characteristics for given LED designs. As another result, for safe junction temperature ranges, it is seen that for all LED power dissipations, adding aluminum or copper plate behind the printed circuit board at low ambient temperatures is sufficient. Also, as the ambient temperature increases, especially in high powered LED lights, addition of aluminum is not sufficient and fin usage becomes essential. High heat transfer coefficient and using copper fin affect the junction temperature positively.

  19. Simulation study of a 3-D device integrating FinFET and UTBFET

    KAUST Repository

    Fahad, Hossain M.

    2015-01-01

    By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate FinFETs with unprecedented levels of chip-area efficiency. This makes it suitable for ultralarge-scale integration high-performance logic at and beyond the 10-nm technology node.

  20. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Directory of Open Access Journals (Sweden)

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  1. Plate-fin array cooling using a finger-like piezoelectric fan

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Syu, Jhih-Zong

    2014-01-01

    In this study, the heat transfer of a plate-fin array cooled by a vibrating finger-like piezoelectric fan comprising four flexible rectangular blades was investigated. The results indicated that the heat transfer enhancement of the fin array cooled by a vibrating piezoelectric fan at x/L = 0.5 and H = 5 mm ranged between 1.5 and 3.3, regardless of the fin array orientation. However, the heat transfer enhancement caused by a fan being placed at either edge of the fin array yielded a dissimilar result between both of the fin array orientations because of the superimposed effects of the boundary layer development and the air flow induced by the fan. This dissimilarity was especially noticeable when the piezoelectric fan was composed of aluminum blades to accommodate the moderate Reynolds number. In addition to the Reynolds number, the ratio of the fan blade vibration envelope to the source area determined the Nu number of the piezoelectric fan-cooled fin array. This design enhanced the fin array heat transfer and reduced cooler volume by embedding multiple vibrating beams into the fin array. -- Highlights: • Heat transfer of a piezoelectric fan-cooled plate-fin array was investigated. • Effects of fan position, fan height and fan material on heat transfer were examined. • Similar heat transfer enhancement range was shown for both fin array orientations. • Fin heat transfer with a running Al fan at x = 0 was higher than that at x = 0.25L. • Besides fan Reynolds number, the area ratio also determined Nu of the fin array

  2. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control

    Science.gov (United States)

    2016-04-01

    ARL-TR-7660 ● APR 2016 US Army Research Laboratory Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with... Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control by Jubaraj Sahu Weapons and Materials Research...TITLE AND SUBTITLE Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control 5a. CONTRACT NUMBER 5b

  3. Flow structure of natural dehumidification over a horizontal finned-tube

    Science.gov (United States)

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2016-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  4. The FinTech phenomenon: antecedents of financial innovation perceived by the popular press

    OpenAIRE

    Zavolokina, Liudmila; Dolata, Mateusz; Schwabe, Gerhard

    2016-01-01

    The financial industry has been strongly influenced by digitalization in the past few years reflected by the emergence of 'FinTech,' which represents the marriage of 'finance' and 'information technology.' FinTech provides opportunities for the creation of new services and business models and poses challenges to traditional financial service providers. Therefore, FinTech has become a subject of debate among practitioners, investors, and researchers and is highly visible in the popular media. ...

  5. A Numerical Investigation of the Thermal-Hydraulic Characteristics of Perforated Plate Fin Heat Sinks

    OpenAIRE

    Al-Sallami, W; Al-Damook, A; Thompson, HM

    2017-01-01

    The benefits of using notch, slot and multiple circular perforations in plate fin heat sinks (PFHSs), are investigated numerically, using a conjugate heat transfer model. Comparisons show that each type of perforation can provide significantly reduced pressure drops over PFHSs but that fins with slot perforations provide the most effective design in terms of heat transfer and pressure drop. The practical benefits of each type of perforated fin for micro-electronics cooling is also explored an...

  6. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack

    International Nuclear Information System (INIS)

    Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.

    2011-01-01

    Forced air convection heat pipe cooling systems play an essential role in the thermal management of electronic and power electronic devices such as microprocessors and IGBT's (Integrated Gate Bipolar Transistors). With increasing heat dissipation from these devices, novel methods of improving the thermal performance of fin stacks attached to the heat pipe condenser section are required. The current work investigates the use of a wing type surface protrusions in the form of 3-D delta wing tabs adhered to the fin surface, thin wings punched-out of the fin material and TiNi shape memory alloy delta wings which changed their angles of attack based on the fin surface temperature. The longitudinal vortices generated from the wing designs induce secondary mixing of the cooler free stream air entering the fin stack with the warmer fluid close to the fin surfaces. The change in angle of the attack of the active delta wings provide heat transfer enhancement while managing flow pressure losses across the fin stack. A heat transfer enhancement of 37% compared to a plain fin stack was obtained from the 3-D tabs in a staggered arrangement. The punched-out delta wings in the staggered and inline arrangements provided enhancements of 30% and 26% respectively. Enhancements from the active delta wings were lower at 16%. However, as these devices reduce the pressure drop through the fin stack by approximately 19% in the de-activate position, over the activated position, a reduction in fan operating cost may be achieved for systems operating with inlet air temperatures below the maximum inlet temperature specification for the device. CFD analysis was also carried out to provide additional detail of the local heat transfer enhancement effects. The CFD results corresponded well with previously published reports and were consistent with the experimental findings. - Highlights: → Heat transfer enhancements of heat pipe fin stacks was successfully achieved using fixed and active delta

  7. Numerical simulation and experimental research of a flexible caudal fin by piezoelectric fiber composite

    Directory of Open Access Journals (Sweden)

    Yuan-Lin Guan

    2015-07-01

    Full Text Available A flexible caudal fin made of the macro fiber composites and the carbon fiber orthotropic composite was investigated by the numerical simulations and the experiments. First, a three-dimensional numerical simulation procedure was adopted to research the torsion propulsion mode of the caudal fin and the impact of the water for the structural torsion frequency of the caudal fin. Then, a two-dimensional unsteady fluid computational method was used to analyze the hydrodynamic performance with the periodic swing of the caudal fin on the torsion mode. Based on the simulation results, the flow field was demonstrated and discussed. The interaction between the caudal fin and the water was explained. Finally, the laser vibrometer system was built to verify the torsion propulsion mode. Meanwhile, the application of the caudal fin was realized on the torsion propulsion, and the measured system was established to demonstrate the performance of the caudal fin. The established simulation procedures and experimental methods in this study may provide guidance to the fins made of the composite materials during the structural design and the investigation of the flow field characteristics with the movement of the fins.

  8. Genomic Sequence of a Ranavirus Isolated from Short-Finned Eel (Anguilla australis)

    DEFF Research Database (Denmark)

    Subramaniam, Kuttichantran; Toffan, Anna; Cappellozza, Elisabetta

    2016-01-01

    The short-finned eel ranavirus (SERV) was isolated from short-finned eel imported to Italy from New Zealand. Phylogenomic analyses revealed that SERV is a unique member of the genus Ranavirus, family Iridoviridae, branching at the base of the tree near other fish ranaviruses.......The short-finned eel ranavirus (SERV) was isolated from short-finned eel imported to Italy from New Zealand. Phylogenomic analyses revealed that SERV is a unique member of the genus Ranavirus, family Iridoviridae, branching at the base of the tree near other fish ranaviruses....

  9. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  10. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    Rubin, I.R.; Pul'kin, I.N.; Roizen, L.I.

    1986-01-01

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  11. Preliminary experiments on natural convection heat transfer of the vertical plate with fin arrays

    International Nuclear Information System (INIS)

    Kim, Seung Sin; Chung, Bum Jin

    2012-01-01

    Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters of the fin arrays should be optimized. According to Welling and Woodridge, a natural convection on vertical plate fin is function of Nu = f(Gr, Pr, L, t, S, H). Present study aimed at the determination of the effects of geometric parameters, L(fin length) and S(fin spacing), and H(fin height) on the heat transfer, in order to find optimum parameters on the natural convection heat transfer

  12. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  13. Foundations for offshore wind turbines.

    Science.gov (United States)

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  14. TOPFARM wind farm optimization tool

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.; Fuglsang, P.; Larsen, Torben J.; Buhl, T.; Larsen, Gunner C.

    2011-02-15

    A wind farm optimization framework is presented in detail and demonstrated on two test cases: 1) Middelgrunden and 2) Stags Holt/Coldham. A detailed flow model describing the instationary flow within a wind farm is used together with an aeroelastic model to determine production and fatigue loading of wind farm wind turbines. Based on generic load cases, the wind farm production and fatigue evaluations are subsequently condensed in a large pre-calculated database for rapid calculation of lifetime equivalent loads and energy production in the optimization loop. The objective function defining the optimization problem includes elements as energy production, turbine degradation, operation and maintenance costs, electrical grid costs and foundation costs. The objective function is optimized using a dedicated multi fidelity approach with the locations of individual turbines in the wind farm spanning the design space. The results are over all satisfying and are giving some interesting insights on the pros and cons of the design choices. They show in particular that the inclusion of the fatigue loads costs give rise to some additional details in comparison with pure power based optimization. The Middelgrunden test case resulted in an improvement of the financial balance of 2.1 M Euro originating from a very large increase in the energy production value of 9.3 M Euro mainly counterbalanced by increased electrical grid costs. The Stags Holt/Coldham test case resulted in an improvement of the financial balance of 3.1 M Euro. (Author)

  15. Two-layer optimization methodology for wind distributed generation planning considering plug-in electric vehicles uncertainty: A flexible active-reactive power approach

    International Nuclear Information System (INIS)

    Ahmadian, Ali; Sedghi, Mahdi; Aliakbar-Golkar, Masoud; Fowler, Michael; Elkamel, Ali

    2016-01-01

    Highlights: • Flexible active-reactive power control of WDGs is proposed for WDGs planning. • The uncertainty of PEVs effect is considered in WDGs planning. • The wind data is classified in four separate seasons to reach more accurate results. • The PSO algorithm is modified to overcome the complexity of problem. - Abstract: With increasing the penetration of wind power, the voltage regulation becomes a more important problem in active distribution networks. In addition, as an uncertain load Plug-in Electric Vehicles (PEVs) will introduce a new concern in voltage adjustment of future distribution networks. Hence, this paper presents a flexible active-reactive power based Wind Distributed Generation (WDG) planning procedure to address the mentioned challenges. The uncertainties related to WDGs, load demand as well as PEVs load have been handled using the Point Estimate Method (PEM). The distribution network under study is equipped to on-load tap-changer and, as a conventional voltage control component, the Capacitor Banks (CBs) will be planned simultaneously with WDGs. The planning procedure has been considered as a two-loop optimization problem that is solved using Particle Swarm Optimization (PSO) and Tabu Search (TS) algorithms. The tap position and power factor of WDGs are taken into account as stochastic variables with practical limitations. The proposed methodology is applied to a typical distribution network and several scenarios are considered and analyzed. Simulation results show that the standard deviation of power factor depends on PEVs penetration that highlights the capability curve of WDGs. The optimal penetration of wind power increases nonlinearly versus increasing of PEVs connected to the distribution network, however the fixed CBs are required to increase the optimal penetration of WDGs. The proposed Modified PSO (MPSO) is compared with the conventional PSO in numerical studies that show MPSO is more efficient than the conventional

  16. Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the suprathermal electrons in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Lazar, M.; Shaaban, S. M.; Poedts, S.; Štverák, Štěpán

    2017-01-01

    Roč. 464, č. 1 (2017), s. 564-571 ISSN 0035-8711 Institutional support: RVO:68378289 Keywords : instabilities * plasmas * methods * analytical * methods: observational * solar wind Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.961, year: 2016 https://academic.oup.com/mnras/article-abstract/464/1/564/2236068/Firehose-constraints-of-the-bi-Kappa-distributed?redirectedFrom=fulltext

  17. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.

    Science.gov (United States)

    Joshuva, A; Sugumaran, V

    2017-03-01

    Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Fish Individual-based Numerical Simulator (FINS): A particle-based model of juvenile salmonid movement and dissolved gas exposure history in the Columbia River Basin

    International Nuclear Information System (INIS)

    Scheibe, Timothy D.; Richmond, Marshall C.

    2002-01-01

    This paper describes a numerical model of juvenile salmonid migration in the Columbia and Snake Rivers. The model, called the Fish Individual-based Numerical Simulator or FINS, employs a discrete, particle-based approach to simulate the migration and history of exposure to dissolved gases of individual fish. FINS is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories can be input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. Therefore, FINS serves as a critical linkage between hydrodynamic models of the river system and models of biological impacts. FINS was parameterized and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998 . A quasi-inverse approach was used to decouple fish swimming movements from advection with the local water velocity, allowing inference of time series of non-advective displacements of individual fish from the radiotelemetry data. Statistical analyses of these displacements are presented, and confirm that strong temporal correlation of fish swimming behavior persists in some cases over several hours. A correlated random-walk model was employed to simulate the observed migration behavior, and parameters of the model were estimated that lead to close correspondence between predictions and observations

  19. The effect of substrate conduction on boiling data on pin-fin heat sinks

    International Nuclear Information System (INIS)

    McNeil, D.A.; Raeisi, A.H.; Kew, P.A.; Hamed, R.S.

    2015-01-01

    Heat-transfer experiments for a copper heat sink containing pin-fins with a cross section of 1 mm by 1 mm and a height of 1 mm have been reported previously. The pin-fins were manufactured on a 5 mm thick, 50 mm square base plate in a square, in-line arrangement with a pitch of 2 mm. Data were produced while boiling R113 and water at atmospheric pressure. The heat sink was heated from below through a 5 mm thick aluminium wall by an electrical heating method that is normally associated with the uniform heat flux boundary condition. However, variations in the heat-transfer coefficient and the liquid subcooling interacted with the high thermal conductivity of the aluminium and copper materials to produce a near isothermal wall boundary condition. Thus, heat conduction effects had to be taken into account when determining the heat-flux distribution required in the analysis of the data. Many experiments like these have used the uniform heat-flux assumption to analyse the data. The discrepancies produced from this approach are explored. Single-phase flows across a pin-fin surface produce a reasonably uniform distribution of heat-transfer coefficient. However, the liquid temperature increases as it moves across the heat sink. This produces a non-uniform heat flux distribution at the solid–fluid interface. The uniform heat-flux assumption is shown to lead to errors of ±17% in the estimation of the heat-transfer coefficient. The original boiling flow experiments found that the water data were confined and that the majority of the R113 data were not. The confined and unconfined data are processed with the thermal conduction in the walls taken into account and by assuming a uniform heat flux at the solid–fluid interface. The uniform heat-flux distribution analysis for unconfined flows shows errors in the heat-transfer coefficient to be typically ±17%. Confined flows produce smaller errors, typically ±12%, close to the onset of nucleation. However, these damp out

  20. El fin del mundo según Lacunza

    Directory of Open Access Journals (Sweden)

    Fredy Parra C.

    2000-01-01

    Full Text Available El artículo presenta el pensamiento milenarista del jesuita chileno Manuel Lacunza (1731-1801 en torno al fin del mundo. Se indaga la visión del autor sobre el fin del siglo, el fin del milenio y su concepto de bienaventuranza eterna. El lacunzismo sostiene que antes del final de la historia se espera un reino terrestre del Mesías Jesucristo en el cual tendrán pleno cumplimiento las promesas de vida y justicia que Dios ha hecho a la humanidad. En este contexto se explica que para Lacunza el reino mesiánico (milenio comienza con una transformación de la naturaleza que transita a una etapa de mayor perfección y que el mundo nuevo que adviene es mejor que el presente no solamente en lo moral sino también en lo físico y material. Asimismo, el universo renovado, acabada toda generación y corrupción, participará de la plenitud eterna y, tras la resurrección universal, los bienaventurados gozarán juntos eternamente de la contemplación del mundo transfigurado y de la comunión con Dios. Siempre se trata de una transformación de la materia de mal en bien, o de bien en mejor. Se excluye, clara y expresamente, la idea de un "fin del mundo" como aniquilación del mismo.The article presents the millienarist thought of the Chilean Jesuit Manuel Lacunza (1731-1801 regarding the end of the world. It looks into the author’s views on the end of the century, the end of the milliemium, and his concept of eternal beatitude. Lacunza affirms that an earthly kingdom of Jesus Christ the Messiah will come before the end of the history, in which, all the promises of life and justice made by God will have full accomplishment. Within this context, it is easy to undestand that for Lacunza, the messianic kingdom (Millenium starts with a transformation of nature, which moves onto a stage of greater perfection, and that this coming renewed world, is much better than the present one, not only in the moral aspect, but also in the physical and material aspects