WorldWideScience

Sample records for wind energy benefits

  1. The environmental benefits of wind energy

    International Nuclear Information System (INIS)

    Sips, H.W.

    1990-01-01

    Three more or less reliable methods to determine the financial acceptance of the external effects of the use of wind energy are discussed. Attention is paid to the appreciation of external effects based on the environmental pollution or damage, appreciation based on prevented costs (implied valuation), and appreciation based on surveys, by which the willingness of the civilians to pay for a clean environment can be determined. A first indication of the environmental benefits of wind energy based on the above-mentioned methods is 0.04 to 0.08 DFl per kWh. For the total service life of a wind turbine this amounts to 800-1600 DFl per kW. The environmental benefits can be re-calculated in the form of subsidies, increasing the sellback prices or by means of an environmental levy on electric power generated by conventional power plants. 2 figs., 1 tab., 12 refs

  2. Evaluating the risk-reduction benefits of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Bell, K. [Convergence Research, Seattle, WA (United States); Bernow, S.; Duckworth, M. [Tellus Inst., Boston, MA (United States); Spinney P. [Charles River Associates, Boston, MA (United States)

    1996-12-31

    This paper presents preliminary results of a study to evaluate the risk-reduction benefits of wind power for a case study utility system using decision analysis techniques. The costs and risks of two alternative decisions-whether to build a 400 MW gas-fired combined cycle plant or a 1600 MW wind plant in 2003-were compared through computer simulations as fuel prices, environmental regulatory costs, wind and conventional power plant availability, and load growth were allowed to vary. Three different market scenarios were examined: traditional regulation, a short-term power pool, and fixed-price contracts of varying duration. The study concludes that, from the perspective of ratepayers, wind energy provides a net levelized risk-reduction benefit of $3.4 to $7.8/MWh under traditional regulation, and less in the other scenarios. From the perspective of the utility plant owners, wind provides a significant risk benefit in the unregulated market scenarios but none in a regulated market. The methodology and findings should help inform utility resource planning and industry restructuring efforts. 2 figs., 3 tabs.

  3. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    Science.gov (United States)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  4. Wind power planning: assessing long-term costs and benefits

    International Nuclear Information System (INIS)

    Kennedy, Scott

    2005-01-01

    In the following paper, a new and straightforward technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic load duration curves to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. The model is applied to potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO 2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on CO 2 charges, and capital costs for wind turbines and IGCC plant is also discussed. The methodology is intended for use by energy planners in assessing the social benefit of future investments in wind power

  5. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  6. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  7. Wind farm investment risks under uncertain CDM benefit in China

    International Nuclear Information System (INIS)

    Yang, Ming; Nguyen, Francois; T'Serclaes, Philippine de; Buchner, Barbara

    2010-01-01

    China has set an ambitious target to increase its wind power capacity by 35 GW from 2007 to 2020. The country's hunger for clean power provides great opportunities for wind energy investors. However, risks from China's uncertain electricity market regulation and an uncertain energy policy framework, mainly due to uncertain Clean Development Mechanism (CDM) benefits, prevent foreign investors from investing in China's wind energy. The objectives of this paper are to: (1) quantify wind energy investment risk premiums in an uncertain international energy policy context and (2) evaluate the impact of uncertain CDM benefits on the net present values of wind power projects. With four scenarios, this study simulates possible prices of certified emissions reductions (CERs) from wind power projects. Project net present values (NPVs) have been calculated. The project risk premiums are drawn from different and uncertain CER prices. Our key findings show that uncertain CDM benefits will significantly affect the project NPVs. This paper concludes that the Chinese government needs revising its tariff incentives, most likely by introducing fixed feed-in tariffs (FITs), and re-examining its CDM-granting policy and its wind project tax rates, to facilitate wind power development and enable China to achieve its wind energy target. (author)

  8. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  9. Wind energy: A viable alternative

    International Nuclear Information System (INIS)

    Soin, R.S.

    1991-01-01

    This article examines the economic feasibility of wind energy in the current economic and political environment. The article specifically addresses the wind farm application to India, with asides to Europe and the US. Topics discussed include cost of energy generation for a 10 MW wind farm, cost comparison for captive energy options (diesel, coal, wind), environmental impacts, and social benefits

  10. A preliminary benefit-cost study of a Sandia wind farm.

    Energy Technology Data Exchange (ETDEWEB)

    Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.

    2011-03-01

    In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm. Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.

  11. The Economics of Wind Energy

    International Nuclear Information System (INIS)

    Krohn, S.; Morthorst, P.E.; Awerbuch, S.

    2009-03-01

    This report is the result of an effort by the European Wind Energy Association (EWEA) to assemble a team of professional economists to assess the costs, benefits and risks associated with wind power generation. In particular, the authors were asked to evaluate the costs and benefits to society of wind energy compared to other forms of electricity production. In the present context of increasing energy import dependency in industrialised countries as well as the volatility of fuel prices and their impact on GDP, the aspects of energy security and energy diversification have to be given particular weight in such an analysis. Chapter 1 examines the basic (riskless) cost components of wind energy, as it leaves the wind farm, including some international comparisons and a distinction between onshore and offshore technologies. Chapter 2 illustrates other costs, mainly risks that are also part of the investment and thus have to be incorporated in the final price at which electricity coming from wind can be sold in the markets. The chapter discusses why the electricity market for renewable energy sources (RES) is regulated and how different support systems and institutional settings affect the final cost (and hence, price) of wind power. Chapter 3 discusses how the integration of wind energy is modifying the characteristics and management of the electrical system including grids, and how such modifications can affect the global price of electricity. Chapter 4 analyses how the external benefits of wind energy, such as its lower environmental impact and the lower social risk it entails can be incorporated into its valuation. Chapter 5 develops a methodology for the correct economic comparison of electricity costs coming from wind and from fuel-intensive coal and gas power generation. Chapter 5 uses as a starting point the methodology currently applied by the International Energy Agency (IEA) and improves it by incorporating some of the elements described in the previous

  12. Intraday Trading of Wind Energy

    DEFF Research Database (Denmark)

    Skajaa, Anders; Edlund, Kristian; Morales González, Juan Miguel

    2015-01-01

    In this paper, we tackle the problem of a wind power producer participating in a short-term electricity market that allows for the continuous, but potentially illiquid, intraday trading of energy. Considering the realistic case of a wind farm operating in the western Danish price area of Nord Pool......, we build a simple but effective algorithm for the wind power producer to fully benefit from the Elbas intraday market. We then investigate the sensitivity of the obtained benefits to the maximum volume of energy the wind power producer is willing to trade in the intraday market, the ultimate aim...... of the trade (either to decrease energy imbalances or to increase profits) and to the installed capacity of the wind farm. Our numerical results reveal that the wind power producer can substantially increase his revenues by partaking in the intraday market but with diminishing returns to scale—a result that we...

  13. Benefit of regional energy balancing service on wind integration in the western interconnection of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael; Kirby, Brendan; King, Jack [National Renewable Energy Laboratory, Golden, CO (United States); Beuning, Stephen [Xcel Energy Inc., Minneapolis, MN (United States)

    2010-07-01

    Interest in various wide-area balancing schemes to help integrate wind have generated significant interest. As we have shown in past work, large balancing areas not only help with wind integration, but can also increase the efficiency of operations in systems without wind. Recent work on the Western Wind and Solar Integration Study (WWSIS) has found that combining balancing over the WestConnect footprint will increase the efficiency of commitment and dispatch at wind penetrations ranging from 10-30% of annual electricity demand, and will be essential for high penetrations and small balancing areas. In addition the northwest Wind Integration Action Plan recommended balancing area cooperation as a method to help integrate the large potential wind development. In this paper we investigate the potential impact of a proposed Energy Imbalance Service on the ability of the non-market portions of Western Electricity Coordinating Councils (WECC) United States footprint to integrate wind energy. We will utilize data adapted from the WWSIS for the Western Interconnection. The analysis uses time-synchronized wind and load data to evaluate the potential for ramp requirement reduction that could be achieved with combined operation. Chronological analysis and ramp duration analysis quantify the benefit in terms of not only the ramp sizes, but the frequency of the potentially avoided ramps that must be managed by the non-wind generation fleet. Multiple approaches that can be used to achieve these benefits are also suggested in the paper. We also suggest other approaches that can help achieve much of the benefit of full consolidation without requiring the physical consolidation of balancing areas. (orig.)

  14. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    .... Environmental Impacts of Wind-Energy Projects offers an analysis of the environmental benefits and drawbacks of wind energy, along with an evaluation guide to aid decision-making about projects...

  15. Mini-review of wind energy 1995

    International Nuclear Information System (INIS)

    1996-01-01

    At the 1995 meeting of the International Energy Agency CADDET renewable energy technologies programme, contributors aimed to advise on wind energy use and identify future needs for analysis of future trends and review research tasks. Three major trends leading to the commercial exploitation of wind energy are identified. Firstly, cost reduction and increased efficiency is aimed at through technical innovation, economies of scale and reduced labour costs. The environmental and social benefits of wind energy are acknowledged in the second place. Lastly, wind turbine deployment has been given decisive market incentives. Two major barriers block the development of the wind energy market, availability of site locations and the current economic state of countries likely to espouse wind energy. (UK)

  16. An analysis of the performance benefits of short-term energy storage in wind-diesel hybrid power systems

    International Nuclear Information System (INIS)

    Shirazi, M.; Drouilhet, S.

    1996-01-01

    A variety of prototype high penetration wind-diesel hybrid power systems have been implemented with different amounts of energy storage. They range from systems with no energy storage to those with many hours worth of energy storage. There has been little consensus among wind-diesel system developers as to the appropriate role and amount of energy storage in such systems. Some researchers advocate providing only enough storage capacity to supply power during the time it takes the diesel genset to start. Others install large battery banks to allow the diesel(s) to operate at full load and/or to time-shift the availability of wind-generated electricity to match the demand. Prior studies indicate that for high penetration wind-diesel systems, short-term energy storage provides the largest operational and economic benefit. This study uses data collected in Deering, Alaska, a small diesel-powered village, and the hybrid systems modeling software Hybrid2 to determine the optimum amount of short-term storage for a particular high penetration wind-diesel system. These findings were then generalized by determining how wind penetration, turbulence intensity, and load variability affect the value of short term energy storage as measured in terms of fuel savings, total diesel run time, and the number of diesel starts

  17. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J; Vilkko, M; Antila, H; Lautala, P [Tampere Univ. of Technology (Finland)

    1996-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  18. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J.; Vilkko, M.; Antila, H.; Lautala, P. [Tampere Univ. of Technology (Finland)

    1995-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  19. The economic benefit of short-term forecasting for wind energy in the UK electricity market

    International Nuclear Information System (INIS)

    Barthelmie, R.J.; Murray, F.; Pryor, S.C.

    2008-01-01

    In the UK market, the total price of renewable electricity is made up of the Renewables Obligation Certificate and the price achieved for the electricity. Accurate forecasting improves the price if electricity is traded via the power exchange. In order to understand the size of wind farm for which short-term forecasting becomes economically viable, we develop a model for wind energy. Simulations were carried out for 2003 electricity prices for different forecast accuracies and strategies. The results indicate that it is possible to increase the price obtained by around pound 5/MWh which is about 14% of the electricity price in 2003 and about 6% of the total price. We show that the economic benefit of using short-term forecasting is also dependant on the accuracy and cost of purchasing the forecast. As the amount of wind energy requiring integration into the grid increases, short-term forecasting becomes more important to both wind farm owners and the transmission/distribution operators. (author)

  20. Wind power and community benefits: Challenges and opportunities

    International Nuclear Information System (INIS)

    Aitken, Mhairi

    2010-01-01

    A challenge relating to the development of renewable energy in the UK concerns how large companies can foster positive relationships with local communities. The concepts of 'trust' and 'fairness' are central to debates around proposed renewable energy developments, however, these concepts are complex, ambiguous and interrelated. In the UK the provision of community benefits stemming from the development of renewable energy projects remains a voluntary activity. This paper presents the findings of a case study of one wind power development and how community benefits associated with this were perceived by the local community throughout various stages of the case study (notably during planning, construction and operation). The case study highlights the challenging nature of community benefits from wind power developments. Important decisions regarding who the relevant local community is or what form community benefits should take present opportunities for disagreement between conflicting interests. It is argued that institutionalised guidance would serve a number of worthwhile purposes. Firstly, they would provide greater clarity. Secondly, they would give developers greater confidence to discuss the community benefits package in the early planning stages, and thirdly, they would reduce the likelihood of community benefits being perceived as bribes.

  1. Quantifying the health and environmental benefits of wind power to natural gas

    International Nuclear Information System (INIS)

    McCubbin, Donald; Sovacool, Benjamin K.

    2013-01-01

    How tangible are the costs of natural gas compared to the benefits of one of the fastest growing sources of electricity – wind energy – in the United States? To answer this question, this article calculates the benefits of wind energy derived from two locations: the 580 MW wind farm at Altamont Pass, CA, and the 22 MW wind farm in Sawtooth, ID. Both wind farms have environmental and economic benefits that should be considered when evaluating the comparative costs of natural gas and wind energy. Though there are uncertainties within the data collected, for the period 2012–2031, the turbines at Altamont Pass will likely avoid anywhere from $560 million to $4.38 billion in human health and climate related externalities, and the turbines at Sawtooth will likely avoid $18 million to $104 million of human health and climate-related externalities. Translating these negative externalities into a cost per kWh of electricity, we estimate that Altamont will avoid costs of 1.8–11.8 cents/kWh and Sawtooth will avoid costs of 1.5–8.2 cents/kWh. - Highlights: ► This study compares the benefits of wind energy with natural gas. ► The Altamont Pass windfarm will avoid $560 million to $4.38 billion in externalities. ► The Sawtooth wind farm will produce about $18 million to $104 million in human health and climate benefits. ► Natural gas prices rise by 1.5–11.8 cents/kWh if they include the cost of such externalities.

  2. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  3. Estimation of cost and value of energy from wind turbines

    International Nuclear Information System (INIS)

    Tande, J.O.; Fransden, S.

    1995-01-01

    The International Energy Agency expert group on recommended practices for wind turbine testing and evaluation is finalizing a second edition of the E stimation of cost of energy from wind energy conversion systems . This paper summarizes those recommendations. Further, the value of wind energy in terms of the associated savings is discussed, and a case study is undertaken to illustrate wind energy cost/benefit analyses. The paper concludes that while the recommended practices on cost estimation may be useful in connection with wind energy feasibility studies there is still a need for further international agreement upon guidelines on how to assess wind energy benefits. (author)

  4. Wind Energy and Air Emission Reduction Benefits: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.; High, C.

    2008-02-01

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  5. Regional variations in the health, environmental, and climate benefits of wind and solar generation

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay

    2013-01-01

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region. PMID:23798431

  6. Regional variations in the health, environmental, and climate benefits of wind and solar generation.

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay

    2013-07-16

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region.

  7. Basics on wind energy; Introduction a l'energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, B. [ONERA, Dept. Mecanique des Structures et de L' endommagement (DMSE), 59 - Lille (France)

    2005-05-01

    Among all the renewable energies, wind energy knows the strongest progression. The EEC, and more particularly Germany, are at the world top position. Many countries now consider offshore as an alternative to land sites saturation. The three-bladed horizontal axis wind turbines largely dominate the market. The tendency lies now in the multi-megawatts wind turbines exceeding 80 m in diameter. Wind energy takes benefits from mature technologies, since there are less and less expensive and easily exploitable. However many technological challenges still remain to raise. In some countries, the obligation to buy the electricity produced by wind energy at attractive rates allowed the growth of a wind industrial sector, exporting technologies and generating employment. Within the framework of sustainable development, the resource durability has direct repercussions on the local economies. (author)

  8. Wind energy global trends: Opportunities and challenges

    International Nuclear Information System (INIS)

    Ancona, D.F.

    1995-01-01

    Wind energy is one of the least cost and environmentally attractive new electricity source options for many parts of the world. Because of new wind turbine technology, reduced costs, short installation time, and environmental benefits, countries all over the world are beginning to once again develop one of the world's oldest energy technologies. A unique set of opportunities and challenges now faces the wind industry and its proponents. This paper discusses the potential and challenges of wind power. The US Department of Energy (DOE) is working closely with industry to develop new, improved wind turbine technology and to support both domestic and international deployment. The US DOE Wind Program is discussed within this context

  9. Wind energy: Past experience and future

    International Nuclear Information System (INIS)

    Baldi, G.

    1993-01-01

    Reductions in the cost of producing wind energy are helping to make this renewable energy source competitive with conventional energy sources. The market for this type of energy in Italy, however, hasn't yet gained a foothold even though close examination of Italy's geomorphology reveals that this country is in fact endowed with many areas having good potential for wind power production. This paper discusses the measures to be taken to bolster wind energy commercialization efforts in Italy. It provides a brief assessment of the current state of wind power technology, national and international market trends, and the directions being taken by other national governments to promote wind turbine manufacturing industries and applications. The comparative analysis indicates that in order to have this energy source alternative taken seriously as an economically viable energy option in Italy, greater financial assistance should be given to local manufacturers involved in commercialization efforts. In addition, a suitable rate structure should be created favouring wind power by taking into account cost benefits afforded by this renewable energy source in terms of reduced air pollution, as well as, reduced national dependency on foreign energy imports

  10. Attractiveness Evaluation of Investment in Wind Energy Projects

    Directory of Open Access Journals (Sweden)

    Paulius Rudzkis

    2012-07-01

    Full Text Available Last decade as prices of fossil energy resources were almost constantly going upwards, increasing flow of investments is directed to renewable energy resources. Development and application of green energy became one of priority objectives in many countries. While in the context of wind energy production Lithuania lags behind the EU average, its potential of wind energy usage has great perspective. In this article using random processes, cost-benefit and financial analysis, attractiveness of investment in wind energy projects is examined. Given the stochastic nature of wind energy and by looking into investment profitableness and risk factors, effectiveness of wind turbine is evaluated. Analysis showed that wind energy projects could be considered as having high profit-to-risk factor and should generate significant interest of investment community.

  11. Benefit Evaluation of Wind Turbine Generators in Wind Farms Using Capacity-Factor Analysis and Economic-Cost Methods

    DEFF Research Database (Denmark)

    Chen, Zhe; Wang, L.; Yeh, T-H.

    2009-01-01

    Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine gen...... height for WTGs that have been installed in Taiwan. Important outcomes affecting wind cost of energy in comparison with economic results using the proposed economic-analysis methods for different WFs are also presented.......Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine...... generators (WTGs). To fully capture wind energy, different wind farms (WFs) should select adequate capacity of WTGs to effectively harvest wind energy and maximize their economic benefit. To establish selection criterion, this paper first derives the equations for capacity factor (CF) and pairing performance...

  12. Developments on the wind energy scene

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The recently published report of the British Wind Energy Association (BWEA), entitled ''Power for a Sustainable Future'', is summarised. It calls on the government to: set a target of 10% of United Kingdom electricity from wind by 2025; encourage green energy trading by not charging value added tax on electricity from renewable sources; establish a fair market price for wind power; adopt a new development policy for renewable energies based on a rolling programme of equitable fixed contracts to encourage long-term investment; broaden the basis of the final Non Fossil Fuel Option, introducing new development bands and increasing the number of projects in Scotland which has half of Britain's wind resource; continue support for research and development into wind energy technologies and manufacturing methods; implement foreign aid programmes to benefit the British wind industry as well as aid recipients; continue to develop international standards for turbine design and construction to facilitate trade for manufacturers throughout the European Union. (UK)

  13. Wind Energy: A Maturing Power Supply Possibility.

    Science.gov (United States)

    Petersen, Erik Lundtang; And Others

    1987-01-01

    Suggests that wind energy for electrification will prove to be an appropriate technology with very positive socioeconomic benefits, especially in developing countries. Provides examples of projects conducted by a Danish wind research laboratory. (TW)

  14. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  15. Evaluating the risk-reduction benefits of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C.; Bell, K.; Spinney, P. [and others

    1997-05-01

    The question of uncertainty and risk in electric utility resource planning has received considerable attention in recent years. During the 1980s, many utilities suffered financial losses because of unexpectedly high plant construction costs and low growth in electricity demand. In addition, the introduction of competition to the electric industry is creating new risks for power companies. No longer will utilities be able to count on regulatory protections and a base of captive consumers to provide a stable market and adequate return on their investments. Alternative risk management strategies will have to be considered instead. One approach to managing risk is for a utility company to invest in diverse power sources such as wind power plants. Since wind plants consume no fuel, can be built in relatively small increments with short construction lead times, and generate no pollutants, it is often said that they offer significant protection from risks associated with conventional fossil-fuel power plants. So far there have been few efforts to quantify these benefits, however. The study compares the costs and risks of two competing resource options, a gas-fired combined cycle plant and a wind plant, both utility-owned, through decision analysis. The case study utility is Texas Utilities Electric, a very large investor-owned company serving an area with substantial, high-quality wind resources. The authors chose a specific moment in the future - the year 2003 - when the utility currently plans to build a large fossil-fueled power plant, and examined the implications for the utility`s expected revenues, costs, and profits if a wind plant were to be built instead.

  16. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  17. Lessons learned from Ontario wind energy disputes

    Science.gov (United States)

    Fast, Stewart; Mabee, Warren; Baxter, Jamie; Christidis, Tanya; Driver, Liz; Hill, Stephen; McMurtry, J. J.; Tomkow, Melody

    2016-02-01

    Issues concerning the social acceptance of wind energy are major challenges for policy-makers, communities and wind developers. They also impact the legitimacy of societal decisions to pursue wind energy. Here we set out to identify and assess the factors that lead to wind energy disputes in Ontario, Canada, a region of the world that has experienced a rapid increase in the development of wind energy. Based on our expertise as a group comprising social scientists, a community representative and a wind industry advocate engaged in the Ontario wind energy situation, we explore and suggest recommendations based on four key factors: socially mediated health concerns, the distribution of financial benefits, lack of meaningful engagement and failure to treat landscape concerns seriously. Ontario's recent change from a feed-in-tariff-based renewable electricity procurement process to a competitive bid process, albeit with more attention to community engagement, will only partially address these concerns.

  18. A green energy for a blue growth: offshore wind energy. Proposals by France Energie Eolienne for the development of a competitive and job-creating offshore wind energy sector

    International Nuclear Information System (INIS)

    2013-06-01

    This report outlines the significant and efficient contribution of wind energy to the energy mix, highlights the high potential of offshore wind energy for France, and stresses the need of an ambitious programme as a sine qua non condition for the development of this sector. It also makes ten proposals for this development. It describes how to specify ambitious objectives for offshore wind turbines (grounded or floating) in compliance with the French potential and the European market. It analyses means to reach an ambitious objective of 15 GW of grounded offshore wind energy and 6 GW of floating offshore wind energy by 2030. It discusses how benefits can be drawn from such a development for the community and future generations

  19. An integrated assessment for wind energy in Lake Michigan coastal counties.

    Science.gov (United States)

    Nordman, Erik; VanderMolen, Jon; Gajewski, Betty; Isely, Paul; Fan, Yue; Koches, John; Damm, Sara; Ferguson, Aaron; Schoolmaster, Claire

    2015-04-01

    The benefits and challenges of onshore and offshore wind energy development were assessed for a 4-county area of coastal Michigan. Economic, social, environmental, and spatial dimensions were considered. The coastal counties have suitable wind resources for energy development, which could contribute toward Michigan's 10% renewable energy standard. Wind energy is cost-effective with contract prices less than the benchmark energy price of a new coal-fired power plant. Constructing a 100 MW wind farm could have a $54.7 million economic impact. A patchwork of township-level zoning ordinances regulates wind energy siting. Voluntary collaborations among adjacent townships standardizing the ordinances could reduce regulatory complexity. A Delphi Inquiry on offshore wind energy in Lake Michigan elicited considerable agreement on its challenges, but little agreement on the benefits to coastal communities. Offshore turbines could be acceptable to the participants if they reduced pollution, benefited coastal communities, involved substantial public participation, and had minimal impact on property values and tourism. The US Coast Guard will take a risk-based approach to evaluating individual offshore developments and has no plans to issue blanket restrictions around the wind farms. Models showed that using wind energy to reach the remainder of the 10% renewable energy standard could reduce SO2 , NOx , and CO2 pollution by 4% to 7%. Turbines are highly likely to impact the area's navigational and defense radar systems but planning and technological upgrades can reduce the impact. The integrated assessment shows that responsible wind energy development can enhance the quality of life by reducing air pollution and associated health problems and enhancing economic development. Policies could reduce the negative impacts to local communities while preserving the benefits to the broader region. © 2015 SETAC.

  20. Global wind energy outlook 2008

    International Nuclear Information System (INIS)

    2008-10-01

    An overview is given of the global potential of wind power up to 2050. This potential could play a key part in achieving a decline in emissions by 2020, which the IPCC indicates is necessary to avoid the worst consequences of climate change. By 2020, wind power could save as much as 1.5 billion tonnes of CO2 every year, which would add up to over 10 billion tonnes in this timeframe. The report also explains how wind energy can provide up to 30% of the word's electricity by the middle of the century. More importantly, wind power could save as much as 1.5 billion tonnes of CO2 every year by 2020. GWEO 2008 explores three different scenarios for wind power: a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an Advanced Scenario which assumes that all policy options in favour of renewables have been adopted. These are then set against two demand projections for global energy demand. Wind energy has already become a mainstream power generation source in many regions around the world, and it is being deployed in over 70 countries. In addition to environmental benefits, wind energy also provides a sustainable answer to increasing concerns about security of energy supply and volatile fossil fuel prices. Moreover, wind energy is becoming a substantial factor in economic development, providing more than 350,000 'green collar' jobs today both in direct and indirect employment. By 2020, this figure is projected to increase to over 2 million

  1. Wind Vision: A New Era for Wind Power in the United States (Highlights); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.

  2. Exploiting synergies in European wind and hydrogen sectors: A cost-benefit assessment

    International Nuclear Information System (INIS)

    Shaw, Suzanne; Peteves, Estathios

    2008-01-01

    This article outlines an assessment of the perspectives for exploiting synergies between European wind and hydrogen energy sectors, where wind energy conversion to hydrogen is used as a common strategy for reducing network management costs in high wind energy penetration situations, and for production of renewable hydrogen. The attractiveness of this approach, referred to here as a 'wind-hydrogen strategy', is analysed using a cost-benefit approach to evaluate the final impact at the level of the end-consumer when this strategy is implemented. The analysis is conducted for four scenarios, based on different levels of: wind energy penetration in the electricity network area, hydrogen energy price, and environmental taxation on fuels. The effect of technological learning on the outcome is also analysed for the period up to 2050. The results of the analysis indicate that the relative value of the wind energy in the electricity market compared to the hydrogen market is a deciding factor in the attractiveness of the strategy; here the wind energy penetration in the network is a key consideration. Finally, in order to exploit learning effects from linking European wind and hydrogen sectors, action would need to be taken in the short term. (author)

  3. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  4. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  5. Retrospective Benefit-Cost Evaluation of U.S. DOE Wind Energy R&D Program: Impact of Selected Energy Technology Investments

    Energy Technology Data Exchange (ETDEWEB)

    Pelsoci, Thomas M. [Delta Research Co., Evanston, IL (United States)

    2010-06-01

    This benefit-cost analysis focuses on the DOE Wind Energy Program's public sector R&D investments and returns. The analysis accounts for the program's additionality – that is, comparing what has happened as a result of the program to what would have happened without it. The analysis does not address the return on the investments of private companies ("private returns"). Public returns on the program's investments from 1976 to 2008 are identified and analyzed using retrospective analysis.

  6. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  7. Cost and Benefit Analysis of VSC-HVDC Schemes for Offshore Wind Power Transmission

    Institute of Scientific and Technical Information of China (English)

    Sheng WANG; Chunmei FENG; An WEN; Jun LIANG

    2013-01-01

    Due to low load factors of wind power generation,it is possible to reduce transmission capacity to minimize the cost of transmission system construction.Two VSC-HVDC schemes for offshore wind farm,called the point to point (PTP) and DC mesh connections are compared in terms of the utilization of transmission system and its cost.A Weibull distribution is used for estimating offshore wind power generation,besides,the cross correlation between wind farms is considered.The wind energy curtailment is analyzed using the capacity output possibility table (COPT).The system power losses,costs of transmission investment and wind energy curtailment are also computed.A statistic model for the wind generation and transmission is built and simulated in MATLAB to validate the study.It is concluded that a DC mesh transmission can reduce the energy curtailment and power losses.Further benefit is achievable as the wind cross correlation between wind farms decreases.

  8. Wind energy's role in a deregulated environment

    International Nuclear Information System (INIS)

    Gallagher, F.M.

    1998-01-01

    The current status of wind energy in Canada was the focus of this presentation. Wind energy is the fastest growing source of new electrical power in the world. In 1997 the world-wide capacity was 1495 MW, with Germany (535 MW), Spain (263 MW) and Denmark (259 MW) leading the way. It is clear that Canadian markets lag behind the world in recognizing the value of wind energy. The rationale for this is economic downturn, cheap hydrocarbon energy, a closed electricity market, minimal commitment to greenhouse gas reduction, and a significant oversupply of installed capacity. Nevertheless, there are many potential benefits for Canadian grids by wind generated electricity, not the least of which are tangible reductions in carbon emissions per kWh. It was noted that significant risk reductions have resulted from size and technological improvements. Besides being environmentally benign, wind energy also provides unequaled opportunities for load matching, distributed generation, and low operating and ongoing fuel costs. Aggressive marketers such as Enron and Vision Quest have predicted that because of these advantages, and the willingness of many potential customers to pay more for 'green' energy, renewable energy sources such as wind and solar, will capture a significant share of the world energy market over the next 20 years. tabs., figs

  9. Cost-benefit analysis of wind energy. A case study of Kayathar wind mills in Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, D B [Madurai Kamaraj Univ., Madurai (India). Dept. of Environmental Economics

    1996-12-31

    In recent years we have been encountering what is termed as Energy Crisis. Energy crisis is not only a threat to any economy but also posses a challenge in correcting the deficiency. India which is going in for massive industrialization is a population giant and has to reckon with the very relevant issue of energy crisis. In this regard the Indian Government has laid a great deal of emphasis on the development and harnessing of alternative sources of energy. Among the various types of renewable energy sources wind energy is present by the only proven alternative in the energy structure. Along with the evolution of man form primitive stage to the present civilisation, the wind energy has also moved with time from its ancient period to the present stage of sophistication which can be adopted to various needs like water pumping and power generation. (author)

  10. Cost-benefit analysis of wind energy. A case study of Kayathar wind mills in Tamil Nadu

    International Nuclear Information System (INIS)

    Varadarajan, D.B.

    1995-01-01

    In recent years we have been encountering what is termed as Energy Crisis. Energy crisis is not only a threat to any economy but also posses a challenge in correcting the deficiency. India which is going in for massive industrialization is a population giant and has to reckon with the very relevant issue of energy crisis. In this regard the Indian Government has laid a great deal of emphasis on the development and harnessing of alternative sources of energy. Among the various types of renewable energy sources wind energy is present by the only proven alternative in the energy structure. Along with the evolution of man form primitive stage to the present civilisation, the wind energy has also moved with time from its ancient period to the present stage of sophistication which can be adopted to various needs like water pumping and power generation. (author)

  11. Cost-benefit analysis of wind energy. A case study of Kayathar wind mills in Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, D.B. [Madurai Kamaraj Univ., Madurai (India). Dept. of Environmental Economics

    1995-12-31

    In recent years we have been encountering what is termed as Energy Crisis. Energy crisis is not only a threat to any economy but also posses a challenge in correcting the deficiency. India which is going in for massive industrialization is a population giant and has to reckon with the very relevant issue of energy crisis. In this regard the Indian Government has laid a great deal of emphasis on the development and harnessing of alternative sources of energy. Among the various types of renewable energy sources wind energy is present by the only proven alternative in the energy structure. Along with the evolution of man form primitive stage to the present civilisation, the wind energy has also moved with time from its ancient period to the present stage of sophistication which can be adopted to various needs like water pumping and power generation. (author)

  12. Wind-energy harnessing - global, national and local considerations

    International Nuclear Information System (INIS)

    Price, T.; Bunn, J.

    1996-01-01

    A review of the global issues of wind-energy capture and use is given, along with a case for developing the wind-energy potential of part of the Rhymney Valley, South Wales. Such an energy-supply project should be incorporated into an integrated energy and environmental strategy for the region. This would not only yield benefits with respect to the local, national and global environments, but also aid in enhancing the quality of life for the Rhymney Valley region and its inhabitants. (UK)

  13. Canadian wind energy technical and market potential

    International Nuclear Information System (INIS)

    Templin, R.J.; Rangli, R.S.

    1992-01-01

    The current status of wind energy technology in Canada is reviewed, the technical potential of wind energy in Canada is estimated, and the economic market potential is assessed under several scenarios over about the next 25 years. The technical potential is seen to be large, with applications to water pumping on farms, the coupling of wind turbines to diesel-electric systems in remote communities where fuel costs are high, and the supply of electricity to main power grids. The main-grid application has greatest technical potential, but it cannot be economically exploited under the present utility buyback rate structure for intermittent power sources. A change in government policy toward market development of renewable energy sources, such as is already taking place in several European countries, would greatly increase market potential, decrease emissions of CO 2 and SO 2 , and benefit the Canadian wind energy industry. 2 figs., 1 tab

  14. Wind energy statistics

    International Nuclear Information System (INIS)

    Holttinen, H.; Tammelin, B.; Hyvoenen, R.

    1997-01-01

    The recording, analyzing and publishing of statistics of wind energy production has been reorganized in cooperation of VTT Energy, Finnish Meteorological (FMI Energy) and Finnish Wind Energy Association (STY) and supported by the Ministry of Trade and Industry (KTM). VTT Energy has developed a database that contains both monthly data and information on the wind turbines, sites and operators involved. The monthly production figures together with component failure statistics are collected from the operators by VTT Energy, who produces the final wind energy statistics to be published in Tuulensilmae and reported to energy statistics in Finland and abroad (Statistics Finland, Eurostat, IEA). To be able to verify the annual and monthly wind energy potential with average wind energy climate a production index in adopted. The index gives the expected wind energy production at various areas in Finland calculated using real wind speed observations, air density and a power curve for a typical 500 kW-wind turbine. FMI Energy has produced the average figures for four weather stations using the data from 1985-1996, and produces the monthly figures. (orig.)

  15. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  16. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  17. The role of values in public beliefs and attitudes towards commercial wind energy

    International Nuclear Information System (INIS)

    Bidwell, David

    2013-01-01

    Mandates for renewable energy lead to siting disputes, because meeting the mandates requires the development of renewable energy production facilities. Proposals for one common form of renewable energy, commercial wind farms, are frequently met with forceful local opposition. Dissatisfied with simplistic explanations for this opposition (i.e., NIMBY), social scientists have urged a more nuanced understanding of public attitudes towards wind energy and other renewables. Based on a survey of residents of coastal Michigan, this article explores the role of general values and beliefs in shaping attitudes towards the potential development of commercial wind energy projects in or near respondents’ communities. Structural equation modeling reveals that support of commercial wind energy depends largely on a belief that wind farms will provide economic benefits to the community. Underlying values have substantial and important indirect effects on beliefs regarding the likely economic outcomes of wind farm development. Altruistic values buoy wind energy attitudes, while values of traditionalism diminish wind energy support. The pivotal role of values in attitudes towards renewables lends support for more participatory development processes. - Highlights: ► Predictors of attitudes towards commercial wind energy development are examined. ► Support is influenced by beliefs in community economic benefit. ► Underlying values have substantial and important indirect effects on beliefs. ► Altruistic values buoy attitudes towards wind energy. ► Values associated with traditionalism diminish wind energy support

  18. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  19. To end with the untruth on the wind energy cost

    International Nuclear Information System (INIS)

    Le Biez, V.

    2008-01-01

    In a study published by the Montaigne institute, in July 2008, Vincent Le Biez aimed to criticize the development of the wind energy and more especially its cost. Experts of the SER (Syndicat of the Renewable Energies) and the FEE (France Wind Energy ) answer, in this report, to the criticisms of V. Le Biez. Their analysis shows that the wind energy already constitutes a protection against the increase of the electrical market prices and will offer a real benefit for the collectivity in 2020. The increase of the wind energy in the world shows the trumps of this electricity production form. (A.L.B.)

  20. Benefits for wind energy in electricity markets from using short term wind power prediction tools: a simulation study

    International Nuclear Information System (INIS)

    Usaola, J.; Ravelo, O.; Gonzalez, G.; Soto, F.; Davila, M.C.; Diaz-Guerra, B.

    2004-01-01

    One of the characteristics of wind energy, from the grid point of view, is its non-dispatchability, i.e. generation cannot be ordered, hence integration in electrical networks may be difficult. Short-term wind power prediction-tools could make this integration easier, either by their use by the grid System Operator, or by promoting the participation of wind farms in the electricity markets and using prediction tools to make their bids in the market. In this paper, the importance of a short-term wind power-prediction tool for the participation of wind energy systems in electricity markets is studied. Simulations, according to the current Spanish market rules, have been performed to the production of different wind farms, with different degrees of accuracy in the prediction tool. It may be concluded that income from participation in electricity markets is increased using a short-term wind power prediction-tool of average accuracy. This both marginally increases income and also reduces the impact on system operation with the improved forecasts. (author)

  1. The climate and air-quality benefits of wind and solar power in the United States

    Science.gov (United States)

    Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    2017-09-01

    Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).

  2. The dual sustainability of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jonathan B.; Venkateswaran, Anand [413 Hayden Hall, College of Business, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States)

    2009-06-15

    Academics, practitioners, and policy makers continue to debate the benefits and costs of alternative sources of energy. Environmental and economic concerns have yet to be fully reconciled. One view is that decisions that incorporate both society's concern with the environment and investors' desire for shareholder value maximization are more likely to be truly sustainable. We coin the term dual sustainability to mean the achievement of environmental and financial sustainability simultaneously. Many experts believe that wind energy can help to meet society's needs without harming future generations. It is clean and renewable. Because the fuel is free it provides the ultimate in energy independence. Wind energy has emerged as a leading prospect, in part, because it is considered by many to be environmentally sustainable. However, a key question that remains is whether wind energy is financially sustainable without the extensive government support that has helped to create and nurture this growth industry. Using reliable, proprietary data from field research, our analysis employs a capital budgeting framework to evaluate the financial economics of investments in wind energy. We find that because of the convergence of improved technology, greater efficiency, and with the increasing cost of traditional, competing sources such as oil and natural gas, wind energy is close to becoming self-sustaining financially without the extensive federal government support that exists today. Wind energy can provide the best of both worlds. It is sustainable from an environmental perspective and it is becoming sustainable financially. In short, those companies investing in wind energy will be able to do well by doing good. Perhaps the achievement of dual sustainability is true sustainability. Our research findings and dual sustainability have several interesting and important implications for public policy towards wind energy. All imply that public policy can now be

  3. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  4. Present and prospective role of wind energy in electricity supply

    International Nuclear Information System (INIS)

    Sesto, E.; Ancona, D.F.

    1995-01-01

    Information is provided on world-wide wind energy applications for the production of electricity and the various factors driving the wind turbine market: technology improvements and cost reduction, national research, incentives, utility and public acceptance. Possible restraints to (noise, aesthetics) and benefits (especially in isolated systems) from wind plant integration in utility systems are considered, as well as the use of stand-alone wind systems. Some possible forecasts on the role of wind energy in the next two decades are also given. 4 refs., 2 figs., 1 tab

  5. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  6. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  7. 'Wind in motion'. The rough guide to wind energy development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-15

    This project, which will run from January 2005 to October 2005, aims to develop a promotional DVD to inform and reassure the public and specific audiences on controversial aspects of proposed new wind farms. The DVD would also be used as a tool to gain acceptance and contributions from bodies involved in wind energy developments. 'Wind in Motion' complements a number of other public relations campaigns being undertaken bor proposed by the Department of Trade and Industry (DTI) and the British Wind Energy Association (BWEA). The DVD would cover issues such as the impact of wind farms of wild birds, the visual impact of wind farms on the landscape, the impact on tourism in scenic areas, the impact of local house prices, the impact on local residents during the construction and operational phases, and comparisons with the capacity and efficiencies of other electricity generating systems such as coal, gas and nuclear. The project's objectives are to facilitate the deployment of wind energy by addressing information barriers and providing information to help industry with transferable skills to diversify in the supply chain. Work will include cataloguing the footage taken for the DVD to allow it to be made available to the industry and producing case studies of the benefits of skills transfer.

  8. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  9. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  10. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  11. Certificate-Based Approach to Marketing Green Power and Constructing New Wind Energy Facilities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Blank, E.; Bird, L.; Swezey, B.

    2002-05-01

    The availability of wind energy certificates in Pennsylvania's retail electricity market has made a critical difference in the economic feasibility of developing 140 MW of new wind energy projects in the region. Certificates offer important benefits to both green power suppliers and buyers by reducing transaction barriers and thus lowering the cost of renewable energy. Buyers also benefit through the increased flexibility offered by certificate products. The experience described in this paper offers important insights for selling green power certificates and achieving new wind energy development in other areas of the country.

  12. A certificate-based approach to marketing green power and constructing new wind energy facilities

    International Nuclear Information System (INIS)

    Blank, Eric; Bird, Lori; Swezey, Blair

    2003-01-01

    The availability of wind energy certificates in Pennsylvania's retail electricity market has made a critical difference in the economic feasibility of developing 140 MW of new wind energy projects in the region. Certificates offer important benefits to both green power suppliers and buyers by reducing transaction barriers. They thus lower the cost of renewable energy. Buyers also benefit through the increased flexibility offered by certificate products. The experience described in this paper offers important insights for selling green power certificates and achieving new wind energy development in other areas of the country. (Author)

  13. Energy researchers - 8. Wind power production: Wind power, the energy of the future; A mature sector; The ecological attraction of wind

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisan, Francois; Salha, Bernard; Tardieu, Bernard; Florette, Marc; Ghidaglia, Jean-Michel; Viterbo, Jerome

    2012-01-01

    A first article comments the development in the design of wind turbines which become more powerful, with higher performance. Researchers are also working on blade shape, on alternator technology, on the use of multiplier to enable the reduction of the alternator weight, on better control and command systems to increase the load factor. The development of offshore wind farms is also a challenge in terms of maintenance, in wind turbine design in order to withstand sea corrosion, and in terms of connection to the grid. A second article comments the evolution of the wind energy sector in terms of installed capacity, costs and competitiveness. In an interview, three researchers outline the extremely positive carbon footprint and other benefits of wind power, and also discuss its disadvantages: they mainly concern the impact on landscape, but also birds and marine fauna

  14. Exploitation of wind as an energy source to meet the world's electricity demand

    International Nuclear Information System (INIS)

    Sesto, Ezio; Casale, Claudio

    1998-01-01

    This paper provides an introduction to the basic aspects of the exploitation of wind energy for electricity generation, as regards both the characteristics of the source and the features and state-of-the-art of today's wind energy conversion systems. It also provides an overview of worldwide applications of wind energy and of the various factors currently driving the wind turbine market. Possible restraints to and benefits from wind plant integration in utility systems are considered, as well as the use of stand-alone wind systems. Some possible forecasts on the role of wind energy in the next two decades are also given

  15. Renewable energy as a natural gas price hedge: the case of wind

    International Nuclear Information System (INIS)

    Berry, David

    2005-01-01

    Electric utilities use natural gas to fuel many of their power plants, especially those plants which provide electricity at peak and intermediate hours. Natural gas prices are highly volatile and have shown a general upward trend. Wind energy can provide a cost-effective hedge against natural gas price volatility or price increases. This conclusion is based on analysis of the costs of marginal conventional generation given the historical probability distribution of natural gas prices, the cost of wind energy, wind integration costs, transmission costs for wind energy, the capacity value of wind, and environmental benefits of wind energy for a hypothetical utility in the Southwestern United States. The efficacy of using wind energy as a hedge at a particular utility will depend on site specific conditions

  16. Wind Energy Basics | NREL

    Science.gov (United States)

    Wind Energy Basics Wind Energy Basics We have been harnessing the wind's energy for hundreds of grinding grain. Today, the windmill's modern equivalent-a wind turbine can use the wind's energy to most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and

  17. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  18. Emissions and temperature benefits: The role of wind power in China

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongbo, E-mail: hbduan@ucas.ac.cn

    2017-01-15

    Background: As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. Methods: We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Results: Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Conclusions: Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. - Highlights: • We assess the warming benefits associated with substitution of wind power for coal. • The effect of emission space limits on climate responses is deeply examined. • China is responsible for at most 21.76% of global warming given the 2-degree target. • Wind power alone may not be sufficient to face the challenge of climate change. • A fertile policy soil and an aggressive plan are necessary to boost renewables.

  19. Emissions and temperature benefits: The role of wind power in China

    International Nuclear Information System (INIS)

    Duan, Hongbo

    2017-01-01

    Background: As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. Methods: We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Results: Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Conclusions: Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. - Highlights: • We assess the warming benefits associated with substitution of wind power for coal. • The effect of emission space limits on climate responses is deeply examined. • China is responsible for at most 21.76% of global warming given the 2-degree target. • Wind power alone may not be sufficient to face the challenge of climate change. • A fertile policy soil and an aggressive plan are necessary to boost renewables.

  20. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  1. Current status of wind energy and wind energy policy in Turkey

    International Nuclear Information System (INIS)

    Yaniktepe, B.; Savrun, M.M.; Koroglu, T.

    2013-01-01

    Highlights: • Present installations of wind power in the world. • Focus on the current state, potential, and development of Turkey’s wind energy. • Explain the institutional framework and support/incentive mechanisms in Turkey. • Investigate and give information about the new Turkish Renewable Energy Law. - Abstract: Over the past decades, the importance of renewable and sustainable energy resources has increased in the world due to both the rapid increase in energy demand and disadvantages of the fossil fuels. Many countries, such as Turkey, aim to increase the use of renewable and sustainable energy sources with different incentive mechanisms. In parallel with these incentive methods being implemented, wind energy capacity in Turkey has a remarkable increase in the growing rates of renewable energy sources according to installed wind power. Up to now, several wind power projects have been developed at different regions of Turkey. This paper aims to analyze the potential and development of wind energy systems in Turkey. Besides, the current usage and development of wind power installations have been explored for the World and Turkey in detail at the end of the 2011. Furthermore, this study also presents tax exemption, support, and incentive mechanisms to develop new wind energy investments in Turkey

  2. Kepler-Chevreux: 100 billions invested in solar photovoltaic and wind energy produce more energy than with oil

    International Nuclear Information System (INIS)

    Danielo, Olivier

    2014-01-01

    This article discusses the calculation of a new index created by Kepler-Chevreux experts: the energy return on invested capital, EROCI. This index reveals the benefit of solar-energy and wind-energy based electro-mobility compared to the oil-based thermo-mobility. This index only takes economic issues into account, but not the benefits in terms of public health, environment, climate or geopolitics. It also outlines that whenever oil prices increase or decrease, the oil sector has reached a dead end, and that photovoltaic and wind energy present a growing interest among not only ecologists but also finance experts

  3. Can the future EU ETS support wind energy investments?

    International Nuclear Information System (INIS)

    Blanco, Maria Isabel; Rodrigues, Gloria

    2008-01-01

    This article discusses how the future Emissions Trading Scheme legislation should be designed to allow the European Union to comply with the 20% CO 2 emissions reduction target, while at the same time promoting wind energy investments. We examine whether CO 2 prices could eventually replace the existing support schemes for wind and if they adequately capture its benefits. The analysis also looks at the effectiveness of the clean development and joint implementation mechanisms to trigger wind projects and technology transfer in developing countries. We find out that climate policy is unlikely to provide sufficient incentives to promote wind power, and that other policies should be used to internalise the societal benefits that accrue from deploying this technology: CO 2 prices can only reflect the beneficial impact of wind on climate change but not its contribution to the security of supply or employment creation. A minimum price of around Euro 40/tCO 2 should be attained to maintain present support levels for wind and this excludes income risks and intermediation costs. Finally, CDM improves the return rate of wind energy projects in third countries, but it is the local institutional framework and the long-term stability of the CO 2 markets that matters the most

  4. Can the future EU ETS support wind energy investments?

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel [Department of Economic Analysis, Faculty of Economics,University of Alcala, Plaza de la Victoria 3, 28002 Alcala de Henares, Madrid (Spain); Rodrigues, Gloria [European Wind Energy Association, EWEA, Rue D' Arlon 63-65, 1040 Brussels (Belgium)

    2008-04-15

    This article discusses how the future Emissions Trading Scheme legislation should be designed to allow the European Union to comply with the 20% CO{sub 2} emissions reduction target, while at the same time promoting wind energy investments. We examine whether CO{sub 2} prices could eventually replace the existing support schemes for wind and if they adequately capture its benefits. The analysis also looks at the effectiveness of the clean development and joint implementation mechanisms to trigger wind projects and technology transfer in developing countries. We find out that climate policy is unlikely to provide sufficient incentives to promote wind power, and that other policies should be used to internalise the societal benefits that accrue from deploying this technology: CO{sub 2} prices can only reflect the beneficial impact of wind on climate change but not its contribution to the security of supply or employment creation. A minimum price of around EUR40/tCO{sub 2} should be attained to maintain present support levels for wind and this excludes income risks and intermediation costs. Finally, CDM improves the return rate of wind energy projects in third countries, but it is the local institutional framework and the long-term stability of the CO{sub 2} markets that matters the most. (author)

  5. Wind Power Today: 1998 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tromly, K.

    1999-06-17

    The US Department of Energy's Office of Energy Efficiency and Renewable Energy manages the Federal Wind Energy Program. The mission of the program is to help the US wind industry to complete the research, testing, and field verification needed to fully develop advanced wind technologies that will lead the world in cost-effectiveness and reliability. This publication, printed annually, provides a summary of significant achievements in wind energy made during the previous calendar year. Articles include wind energy in the Midwest, an Alaskan wind energy project, the US certification program, structural testing, and the federal program in review.

  6. Factors of Renewable Energy Deployment and Empirical Studies of United States Wind Energy

    Science.gov (United States)

    Can Sener, Serife Elif

    Considered essential for countries' development, energy demand is growing worldwide. Unlike conventional sources, the use of renewable energy sources has multiple benefits, including increased energy security, sustainable economic growth, and pollution reduction, in particular greenhouse gas emissions. Nevertheless, there is a considerable difference in the share of renewable energy sources in national energy portfolios. This dissertation contains a series of studies to provide an outlook on the existing renewable energy deployment literature and empirically identify the factors of wind energy generation capacity and wind energy policy diffusion in the U.S. The dissertation begins with a systematic literature review to identify drivers and barriers which could help in understanding the diverging paths of renewable energy deployment for countries. In the analysis, economic, environmental, and social factors are found to be drivers, whereas political, regulatory, technical potential and technological factors are not classified as either a driver or a barrier (i.e., undetermined). Each main category contains several subcategories, among which only national income is found to have a positive impact, whereas all other subcategories are considered undetermined. No significant barriers to the deployment of renewable energy sources are found over the analyzed period. Wind energy deployment within the states related to environmental and economic factors was seldom discussed in the literature. The second study of the dissertation is thus focused on the wind energy deployment in the United States. Wind energy is among the most promising clean energy sources and the United States has led the world in per capita newly installed generation capacity since 2000. In the second study, using a fixed-effects panel data regression analysis, the significance of a number of economic and environmental factors are investigated for 39 states from 2000 to 2015. The results suggested that the

  7. Urban Wind Energy

    DEFF Research Database (Denmark)

    Beller, Christina

    important for the implementation of wind energy conversion systems are the macro and micro wind climate, the siting within a micro wind climate and the choice of a wind turbine model most appropriate for the selected site. In the frame of this work, all these important elements are analyzed and a row......New trends e.g. in architecture and urban planning are to reduce energy needs. Several technologies are employed to achieve this, and one of the technologies, not new as such, is wind energy. Wind turbines are installed in cities, both by companies and private persons on both old and new buildings....... However, an overview of the energy content of the wind in cities and how consequently turbines shall be designed for such wind climates is lacking. The objective of the present work is to deliver an objective and fundamental overview of the social, practical and physical conditions relevant...

  8. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  9. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  10. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    compare different storage solutions. In chapter 5, energy storage is evaluated as an alternative for increasing the value of wind power in a market-based power system. A method for optimal short-term scheduling of wind power with energy storage has been developed. The basic model employs a dynamic programming algorithm for the scheduling problem. Moreover, different variants of the scheduling problem based on linear programming are presented. During on-line operation, the energy storage is operated to minimize the deviation between the generation schedule and the actual power output of the wind-storage system. It is shown how stochastic dynamic programming can be applied for the on-line operation problem by explicitly taking into account wind forecast uncertainty. The model presented in chapter 6 extends and improves the linear programming model described in chapter 5. An operation strategy based on model predictive control is developed for effective management of uncertainties. The method is applied in a simulation model of a wind-hydrogen system that supplies the local demand for electricity and hydrogen. Utilization of fuel cell heat and electrolytic oxygen as by-products is also considered. Computer simulations show that the developed operation method is beneficial for grid-connected as well as for isolated systems. For isolated systems, the method makes it possible to minimize the usage of backup power and to ensure a secure supply of hydrogen fuel. For grid-connected wind-hydrogen systems, the method could be applied for maximizing the profit from operating in an electricity market. Comprehensive simulation studies of different example systems have been carried out to obtain knowledge about the benefits and limitations of using energy storage in conjunction with wind power. In order to exploit the opportunities for energy storage in electricity markets, it is crucial that the electrical efficiency of the storage is as high as possible. Energy storage combined with

  11. Wind Energy: Forecasting Challenges for its Operational Management

    DEFF Research Database (Denmark)

    Pinson, Pierre

    2013-01-01

    with the generation of forecasts tailored to the various operational decision problems involved. Indeed, while wind energy may be seen as an environmentally friendly source of energy, full benefits from its usage can only be obtained if one is able to accommodate its variability and limited predictability. Based...... on a short presentation of its physical basics, the importance of considering wind power generation as a stochastic process is motivated. After describing representative operational decision-making problems for both market participants and system operators, it is underlined that forecasts should be issued...

  12. Wind energy in Vietnam: Resource assessment, development status and future implications

    International Nuclear Information System (INIS)

    Nguyen, Khanh Q.

    2007-01-01

    The aim of this study is to estimate the technical potential of wind energy in Vietnam and discuss strategies for promoting the market penetration of wind energy in the country. For the wind resource assessment, a geographical information system (GIS)- assisted approach has been developed. It is found that Vietnam has a good potential for wind energy. About 31,000 km 2 of land area can be available for wind development in which 865 km 2 equivalents to a wind power of 3572 MW has a generation cost less than 6 US cents/kWh. The study also proves that wind energy could be a good solution for about 300,000 rural non-electrified households. While wind energy brings about ecological, economic and social benefits, it is only modestly exploited in Vietnam, where the main barrier is the lack of political impetus and a proper framework for promoting renewable energy. The priority task therefore is to set a target for renewable energy development and to find instruments to achieve such a target. The main instruments proposed here are setting feed-in tariff and providing investment incentives

  13. Wind energy economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy have improved rapidly in the past few years, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. As bank loan periods for wind projects are shorter than for thermal plant, the effect on the price of wind energy is discussed. It is argued that wind energy has a higher value than that of centralised plant, since it is fed into the low voltage distribution network and it follows that the price of wind energy is converging with its value. The paper also includes a brief review of the capacity credit of wind plant and an assessment of the cost penalties which are incurred due to the need to hold extra plant on part load. These penalties are shown to be small. (author)

  14. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  15. Social attitude towards wind energy applications in Greece

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2005-01-01

    During the last 3 yr (1999-2002) a significant increase in the utilization of the existing wind power has taken place in Greece, after a long period (1993-1998) of inactivity. Unfortunately, the largest part of new scheduled installations is concentrated in a few geographical regions, in an attempt to take advantage of the existing electrical network capabilities and the acceptable infrastructure situation. This significant concentration of very large size wind turbines, rapidly installed in a few geographical areas, led to serious reactions from the local population, which in some cases even led to the complete cancellation of the wind power projects. In this context, an extensive study is conducted, concerning the public attitude towards wind energy applications, in several island and mainland Greek territories possessing high wind potential and investment interest. The results obtained significantly reveal acceptance of the existing wind parks, being, however, rather against new installations. More specifically, in the Greek islands the public attitude is clearly supportive, while in the Greek mainland the public attitude is either divided or definitely against wind power applications. The most troublesome outcome of this survey is the existence of a specific minority that is strongly against wind energy applications, disregarding any financial benefits. Among the primary conclusions drawn, one may underline the necessity of additional public information regarding the wind energy sector

  16. HUSUM Wind Energy 2012 - side event on wind energy in France

    International Nuclear Information System (INIS)

    Wolff, Nicolas; Cassin, Fabrice

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on wind energy in France. In the framework of this French-German exchange of experience, about a hundred participants exchanged views on the status of the French wind energy market and to present the perspectives of this industry for the coming years. Emphasis was given on the legal framework and on the authorization procedures actually in force. This document brings together the two presentations (slides) made during this event: 1 - Current status and perspectives of the French wind energy market (Nicolas Wolff); 2 - Regulatory framework for wind energy and authorisation procedures in France (Fabrice Cassin)

  17. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  18. Wind energy - an overview

    International Nuclear Information System (INIS)

    Rangi, R.; Oprisan, M.

    1998-01-01

    The current status of wind technology developments in Canada and around the world was reviewed. Information regarding the level of wind turbine deployment was presented. It was shown that significant effort has been made on the national and international level to increase the capacity of this clean, non-polluting form of energy. Wind energy has become competitive with conventional sources of electricity due to lower cost, higher efficiency and improved reliability of generating equipment. The advantages and disadvantages of wind electricity generating systems and the economics and atmospheric emissions of the systems were described. At present, there is about 23 MW of wind energy generating capacity installed in Canada, but the potential is very large. It was suggested that wind energy could supply as much as 60 per cent of Canada's electricity needs if only one per cent of the land with 'good winds' were covered by wind turbines. Recently, the Canadian government has provided an accelerated capital cost allowance for certain types of renewable energies under the Income Tax Act, and the flow-through share financing legislation to include intangible expenses in certain renewable energy projects has been extended. Besides the support provided to the private sector through tax advantages, the Government also supports renewable energy development by purchasing 'green' energy for its own buildings across the country, and by funding a research and development program to identify and promote application of wind energy technologies, improve its cost effectiveness, and support Canadian wind energy industries with technology development to enhance their competitiveness at home and abroad. Details of the Wind Energy Program, operated by Natural Resources Canada, are described. 3 tabs., 5 figs

  19. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  20. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  1. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  2. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  3. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  4. New England Wind Energy Education Project (NEWEEP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

  5. Overview of the wind energy market and renewable energy policy in Romania

    Science.gov (United States)

    Chioncel, C. P.; Tirian, G. O.; Gillich, N.; Hatiegan, C.; Spunei, E.

    2017-01-01

    The modern, developed society becomes aware of the necessity to conserve and protect the environment, increasing the gained benefits from a rational use of the natural resources. The pollution and the limitation of the fossil fuels, associated with the political situation worldwide that affects direct the energy strategies, have opened opportunities in the area of operation renewable energy sources. The development of the exploitation of renewable energy sources is directly linked to the energy politic, which, in terms of Romania, has the focus to integrate into the European Union energy strategy. The year 2014 brought in Romania many legislative changes to the renewable support scheme, that proves, once again, the legislative unpredictability and limitations introduced by the legislator ”during the game” that overthrew all economic profitability calculation of the existent and planned investments in this sector. The actual stage of the wind energy across Europe and the particular situation in Romania are highlighted; also a 2020 forecast for Romania tries to evaluate the perspective for the wind, and general, renewable energy market. The actual Romanian renewable energy support scheme, mainly regulated by “Law 220/2008” ends December 2016. The so-called “ready to build” projects especially wind- or hydropower, can’t be finalized until this deadline, being unable to qualify to the existing, mainly to inoperable, support scheme. Another legislation that has to clarify how investments in renewable energy will be supported is still not in place, blocking any project development, implementation and economical benefit of the producer. The paper presents in this respect an updated overview of the Romanian renewable energy sector and its perspective.

  6. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  7. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  8. Bioinspired turbine blades offer new perspectives for wind energy

    Science.gov (United States)

    Cognet, V.; Courrech du Pont, S.; Dobrev, I.; Massouh, F.; Thiria, B.

    2017-02-01

    Wind energy is becoming a significant alternative solution for future energy production. Modern turbines now benefit from engineering expertise, and a large variety of different models exists, depending on the context and needs. However, classical wind turbines are designed to operate within a narrow zone centred around their optimal working point. This limitation prevents the use of sites with variable wind to harvest energy, involving significant energetic and economic losses. Here, we present a new type of bioinspired wind turbine using elastic blades, which passively deform through the air loading and centrifugal effects. This work is inspired from recent studies on insect flight and plant reconfiguration, which show the ability of elastic wings or leaves to adapt to the wind conditions and thereby to optimize performance. We show that in the context of energy production, the reconfiguration of the elastic blades significantly extends the range of operating regimes using only passive, non-consuming mechanisms. The versatility of the new turbine model leads to a large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms involved for the reconfiguration capability of the new blades are analysed in detail, using experimental observations and modelling.

  9. Wind for Schools: A Wind Powering America Project

    Science.gov (United States)

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…

  10. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-04-01

    Full Text Available China’s renewable energy power has developed rapidly in recent years. Evaluating the external benefits of renewable energy power can provide a reference for the Chinese government to set diverse development goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was applied to evaluate the external benefits of China’s renewable energy power. Firstly, the impacts of renewable energy power accessing the power grid for multiple stakeholders in the electric power system were analyzed. Secondly, the external benefit evaluation index system for renewable energy power was built from the economic, social and environmental factors, based on the concept of sustainability. Then, the basic theory of the hybrid MCDM method employed in this paper was introduced in two parts: the superiority linguistic ratings and entropy weighting method for index weight determination and the fuzzy grey relation analysis for ranking alternatives. Finally, the external benefits of wind power, solar PV power and biomass power were evaluated. Taking a regional electric power system as an example, the results show that PV power has the greatest external benefit, followed by wind power and biomass power. Therefore, more policies supporting PV power should be put in place to promote the harmonious and sustainable development of the whole renewable energy power industry.

  11. EDITORIAL: Wind energy

    Science.gov (United States)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  12. The use of wind to produce energy in Ketodestrin province

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadkia, H.; Talebi, F.; Mojib, J.

    2004-01-01

    Productivity of oil and gas and their high cost benefit in matters than combustion, in one hand and their problem of environmental pollution when they are burnt, on the other hand attracted the decision markers in Iran to consider the wind energy as a good alternative for energy resources . It is especially important because of the existence of regions with high potential for wind energy in Iran. The Kurdestan province is one of the windy places in Iran that has not been considered for wind energy yet. In this paper, the general characteristics of the different kinds of winds which are blown throughout the year in Kurdestan province are considered firstly. Then by using the information from the stations in the sixth major cities in the province, the wind characteristics including power, direction, intensity and probability at different months of the year, are considered. The statistical studies show that Bijar, Zarine Obatoo, Ghorveh, Sanandaj and Marivan have the most wind energy potential, and Bijar and Ghorveh are the best places to install the wind turbine. for all of the above regions, the maximum of the wind average speed and powe are obtained in March, April. May, and the minimum of the average wind speed occurs in December. Bijar, Ghorveh and Zarine Obatoo have high average wind speed and its recommended to search for best places in these regions for the wind turbine sites

  13. 75 FR 47301 - Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC...

    Science.gov (United States)

    2010-08-05

    ...- 000; EG10-34-000; EG10-34-000; EG10-35-000; EG10-36-000; EG10-37-000; EG10-38-000] Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC; Wessington Wind Energy Center, LLC; Juniper Canyon Wind Power LLC; Loraine Windpark Project, LLC; White Oak Energy LLC; Meadow...

  14. Wind energy in Europe

    International Nuclear Information System (INIS)

    Sesto, E.

    1992-02-01

    Interest in wind energy as a supplementary source for the production of electricity has recently gained renewed momentum due to widespread concern about environmental impacts from the large scale use of fossil fuels and nuclear energy. In addition, political unrest in the Middle East has drawn attention to the importance of national energy self-sufficiency. European government administrations, however, have not yet fully appreciated the real worth of the 'clean energy' afforded by wind energy. In this regard, the European Wind Energy Association (EWEA) is acting as a strong voice to inform the public and energy planners by stimulating international wind energy R ampersand D cooperation, and organizing conferences to explain the advantages of wind energy. In October 1991, EWEA published a strategy document giving a picture of the real possibilities offered by wind energy within the geographical, social, and European economic context. This paper provides an overview of the more significant features to emerge from this document which represents a useful guideline for wind power plant technical/economic feasibility studies in that it contains brief notes on resource availability, land requirements, visual and acoustic impacts, turbine sizing, performance, interconnection to utility grids, maintenance and operating costs, safety, as well as, on marketing aspects

  15. Externalities in utility resource selection: A means to formally recognize the envionmental benefits of wind farms

    International Nuclear Information System (INIS)

    Birner, S.

    1992-01-01

    Wind can only make its full contribution to the minimization of the total cost of energy services if it is valued for all the costs that it avoids, including avoided environmental costs. Means of incorporating environmental costs, or externalities, into utility planning decisions are described. Externalities are defined as uncompensated costs or benefits of an action borne by a party other than the one causing the costs. A simple example of the use of externalities in utility resource selection is presented, comparing costs of a coal-fired power plant and a wind farm. Externalities of wind farms are analyzed and found to be very low. An examination of some aspects of legislation in the USA and Canada shows a trend for utility commissions and other regulatory bodies to determine that including externalitites lies within their mandate. By formally recognizing and accounting for the environmental benefits of wind farms, it is seen that externalities can have a significant effect on utility demand for wind energy. A review of USA state actions regarding externalities is appended. 10 refs

  16. Large-scale integration of wind power into different energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands......, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system...... and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results...

  17. Analysis of Strategic Wind Power Participation in Energy Market using MASCEM simulator

    DEFF Research Database (Denmark)

    Soares, Tiago; Santos, Gabriel; Pinto, Tiago

    2015-01-01

    offering strategy for wind power plants to participate in both energy and ancillary services markets. MASCEM (Multi-Agent System for Competitive Electricity Markets) is used to simulate and validate the impact of wind power plants in market equilibrium. A case study based on real and recent data...... technology, suggests that wind power plants may participate in both energy and ancillary services markets with strategic behavior to improve their benefits. Thus, wind power generation with strategic behavior may have impact on market equilibrium and pricing. This paper evaluates the impact of a proportional...

  18. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  19. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  20. Wind energy potential in Bulgaria

    International Nuclear Information System (INIS)

    Shtrakov, Stanko Vl.

    2009-01-01

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  1. Betting on wind energy

    International Nuclear Information System (INIS)

    2009-11-01

    In the first part of this study, the authors try to identify whether the economical and environmental context is adapted to the wind energy development. In order to do so, they discuss wind energy as a possible answer to climate emergency, critics formulated against wind energy, the effects of the financial crisis and the opportunities offered by wind energy within this crisis. In the second part, they discuss the French context and the debates on wind energy, highlighting the importance of some parameters in the cost analysis of wind turbine, presenting the results of a sensitivity analysis, and highlighting the importance of the over-cost calculation. They assess the current development status of the French wind energy industry and underline the opportunities for the future. In the third part, they describe the development status, lever and perspectives in different countries: Germany where the development of this sector has been successful, China which is becoming a major actor, the United States which are displaying the highest growth in this area, and Denmark which is the world leader

  2. Emissions impacts of wind and energy storage in a market environment.

    Science.gov (United States)

    Sioshansi, Ramteen

    2011-12-15

    This study examines the emissions impacts of adding wind and energy storage to a market-based electric power system. Using Texas as a case study, we demonstrate that market power can greatly effect the emissions benefits of wind, due to most of the coal-fired generation being owned by the two dominant firms. Wind tends to have less emissions benefits when generators exercise market power, since coal-fired generation is withheld from the market and wind displaces natural gas-fired generators. We also show that storage can have greater negative emissions impacts in the presence of wind than if only storage is added to the system. This is due to wind increasing on- and off-peak electricity price differences, which increases the amount that storage and coal-fired generation are used. We demonstrate that this effect is exacerbated by market power.

  3. Electricity cost effects of expanding wind power and integrating energy sectors

    DEFF Research Database (Denmark)

    Rodriguez, Victor Adrian Maxwell; Sperling, Karl; Hvelplund, Frede Kloster

    2015-01-01

    Recently, questions have arisen in Denmark as to how and why public funding should be allocated to wind power producers. This is, among other reasons, due to pressure from industrial electricity consumers who want their overall energy costs lowered. Utilising existing wind power subsidies across...... conditions which could allow wind power producers to reduce their reliance on subsidies. It is found that the strategy may be effective in lowering the overall energy costs of electricity consumers. Further, it is found possible to scale up this strategy and realise benefits on a national scale....

  4. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  5. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    Science.gov (United States)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  6. Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits

    Science.gov (United States)

    Zhao, Liya; Liang, Junrui; Tang, Lihua; Yang, Yaowen; Liu, Haili

    2015-04-01

    Galloping phenomenon has attracted extensive research attention for small-scale wind energy harvesting. In the reported literature, the dynamics and harvested power of a galloping-based energy harvesting system are usually evaluated with a resistive AC load; these characteristics might shift when a practical harvesting interface circuit is connected for extracting useful DC power. In the family of piezoelectric energy harvesting interface circuits, synchronized switching harvesting on inductor (SSHI) has demonstrated its advantage for enhancing the harvested power from existing base vibrations. This paper investigates the harvesting capability of a galloping-based wind energy harvester using SSHI interfaces, with a focus on comparing the performances of Series SSHI (S-SSHI) and Parallel SSHI (P-SSHI) with that of a standard DC interface, in terms of power at various wind speeds. The prototyped galloping-based piezoelectric energy harvester (GPEH) comprises a piezoelectric cantilever attached with a square-sectioned bluff body made of foam. Equivalent circuit model (ECM) of the GPEH is established and system-level circuit simulations with SSHI and standard interfaces are performed and validated with wind tunnel tests. The benefits of SSHI compared to standard circuit become more significant when the wind speed gets higher; while SSHI circuits lose the benefits at small wind speeds. In both experiment and simulation, the superiority of P-SSHI is confirmed while S-SSHI demands further investigation. The power output is increased by 43.75% with P-SSHI compared to the standard circuit at a wind speed of 6m/s.

  7. Useful energy from wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mayer-Schwinning, W

    1976-01-01

    The work group regards the use of wind energy as the third leg of energy technology. It calculates the wind utilization in Vogelsberg over an area of 1500 km/sup 2/ with 5 plants each 100 m big on 1 km/sup 2/ as example. Production of 14,000 MW electricity through 7500 wind wheels can be generated with an investment sum of up to 28 thousand million D-Mark without maintenance costs.

  8. Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados

    International Nuclear Information System (INIS)

    Bishop, Justin D.K.; Amaratunga, Gehan A.J.

    2008-01-01

    The island of Barbados is 99% dependent on fossil fuel imports to satisfy its energy needs, which is unsustainable. This study proposes a 10 MW distributed wind energy scheme using micro wind turbines (WT) of horizontal (HAWT) and vertical axis (VAWT) configurations. These units are rated less than 500 W, and the scheme is hereafter referred to as mWT10. mWT10 is compared to the proposed 10 MW medium WT farm by the Barbados Light and Power Company (BL and P). The economic bottom line is the levelized cost of electricity (LCOE). The results highlight the BL and P proposal as the best economic option at BDS$0.19 per kWh, while that of both mWT10 configurations exceeds the conventional cost of BDS$0.25 by two to nine times. This is attributed to significantly higher relative installation and operational costs. However, the financial gap between mWT10 LCOE and the retail price of electricity is much smaller due to a large fuel surcharge passed on to each customer. Annual additional benefits of using wind energy include: greenhouse gas emissions savings of 6-23 kt of carbon dioxide; and anavoided fuel costs of BDS$1.5-5.3 million. The distributed mWT10 using HAWTs competes directly with the BL and P farm, however, it provides these benefits without the visual or ecological impacts of the larger machines. Conversely, VAWTs have features that favour a visually discrete and widely repeatable scheme but suffer relatively high costs. Therefore, this study illustrates the great potential of small wind turbines to be competitive with conventional wind farms, thus challenging the small wind industry to meet its potential by producing reliable and robust machines at lower cost

  9. 2016 Fee Wind energy directory

    International Nuclear Information System (INIS)

    2015-12-01

    France is currently engaged in the energy transition where ambitious goals are at stake to allow the country to be one of the leading European countries in renewable energies. The cost of onshore wind is getting more and more competitive and for this reason, wind energy professionals are committed in contributing actively to reach the 32 % objective of renewable energies in the final energy consumption and 40 % of renewable energies in the electricity mix for 2030. 2014 was marked by a swift growth of the installed onshore wind energy, the positive trend is confirmed in 2015 with more than 500 MW connected to the grid in the first half of the year, corresponding to the annual forecast of 1,200 MW for 2015. Thanks to the energy transition law, operational policies will be implemented through the multi-annual energy programming (PPE- programmation pluriannuelle de l'energie). France will therefore continue increasing its development of renewable energies. This law will also allow France to develop offshore wind energy and to strengthen its position regarding wind energy: with an objective of 15 GW of fixed offshore wind energy and 6 GW of floating wind energy to be built in the 2030 horizon, the sector will be able to guarantee its development, especially in the current context of strong worldwide competition. Some 10,000 direct and indirect jobs are awaited for offshore wind energy on the national territory and wind energy professionals underline that the development of the offshore wind sector will contribute to the economic dynamism of the country. This sector is thus a job creating sector as confirmed in the figures of the wind employment monitor (observatoire de l'emploi) in France, recording a significant growth in 2013 with 10,800 jobs. This upward trend was confirmed in 2014. This proves the continuous commitment of the wind industry in seeing the success of the energy transition in France in a context marked by numerous energy and climate events

  10. Tenth ASME wind energy symposium

    International Nuclear Information System (INIS)

    Berg, D.E.; Veers, P.S.

    1991-01-01

    This book contains papers presented at the Fourteenth Annual Energy-Sources Technology Conference and Exhibition. Included are the following papers: Wind Power Farm Site Selection, Turbulence characterization for wind energy development, Effects of insect configuration on wind turbine airfoils, Power fluctuations from horizontal and vertical axis wind turbines, Power regulation by active yaw control for a teetered wind rotor, and economic aspects of wind energy

  11. Integration of 18 GW Wind Energy into the Energy Market. Practical Experiences in Germany. Experiences with large-scale integration of wind power into power systems

    International Nuclear Information System (INIS)

    Krauss, C.; Graeber, B.; Lange, M.; Focken, U.

    2006-01-01

    This work describes the integration of 18 GW of wind power into the German energy market. The focus lies on reporting practical experiences concerning the use of wind energy in Germany within the framework of the renewable energy act (EEG) and the immediate exchange of wind power between the four German grid control areas. Due to the EEG the demand for monitoring the current energy production of wind farms and for short-term predictions of wind power has significantly increased and opened a broader market for these services. In particular for trading on the intraday market ultra short term predictions in the time frame of 1 to 10 hours require different approaches than usual dayahead predictions because the large numerical meteorological models are not sufficiently optimized for very short time horizons. It is shown that for this range a combination of a statistical and a deterministic model leads to significant improvements and stable results as it unites the characteristics of the current wind power production with the synoptic-scale meteorological situation. The possible concepts of balancing the remaining differences between predicted and actual wind power generation are discussed. As wind power prediction errors and load forecasting errors are uncorrelated, benefits can arise from a combined balancing. Finally practical experiences with wind power fluctuations and large forecast errors are presented.

  12. Mapping Wind Energy Controversies

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    As part the Wind2050 project funded by the Danish Council for Strategic Research we have mapped controversies on wind energy as they unfold online. Specifically we have collected two purpose built datasets, a web corpus containing information from 758 wind energy websites in 6 different countries......, and a smaller social media corpus containing information from 14 Danish wind energy pages on Facebook. These datasets have been analyzed to answer questions like: How do wind proponents and opponents organize online? Who are the central actors? And what are their matters of concern? The purpose of this report...

  13. Manual to application of wind energy

    International Nuclear Information System (INIS)

    Pinilla, S. A.

    1995-01-01

    The National Government of Colombia assigned to INEA (Institute of Nuclear Sciences and Alternative Energies), the paper of promotion, diffusion and utilization of sources of energy not - conventional, the one which includes the wind energy. These studies were accomplished mainly in winding zones as the Department La Guajira, area of the Eastern Plains and some sites of mountain chains of the Andes. Internationally, renewable energies utilization is widely used and is included as an important factor in the energetic strategic planning in some countries, where this renewable energy becomes more than 20% to total energy supply. An introduction to the wind energy in some aspects as: the wind resource, global traffic standards of the wind, calculation of the potential of the wind and methods for the calculation of speed measure of the wind are presented. The methodologies for the evaluation of the wind as an energy source, the wind energy technologies, the equipment to wind energy utilization and the implementation of small systems of energy conversion of wind are described

  14. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  15. Wind Energy Workforce Development & Jobs

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-11-08

    The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.

  16. Perspectives of China's wind energy development

    Institute of Scientific and Technical Information of China (English)

    He Dexin; Wang Zhongying

    2009-01-01

    Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with large-scale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relation-ship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship be-tween the wind turbine generator system and the components, relationship between wind energy technology and wind en-ergy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regula-tion, as well as giving out some suggestions.

  17. Profitability Analysis of Residential Wind Turbines with Battery Energy Storage

    Science.gov (United States)

    She, Ying; Erdem, Ergin; Shi, Jing

    Residential wind turbines are often accompanied by an energy storage system for the off-the-grid users, instead of the on-the-grid users, to reduce the risk of black-out. In this paper, we argue that residential wind turbines with battery energy storage could actually be beneficial to the on-the-grid users as well in terms of monetary gain from differential pricing for buying electricity from the grid and the ability to sell electricity back to the grid. We develop a mixed-integer linear programming model to maximize the profit of a residential wind turbine system while meeting the daily household electricity consumption. A case study is designed to investigate the effects of differential pricing schemes and sell-back schemes on the economic output of a 2-kW wind turbine with lithium battery storage. Overall, based on the current settings in California, a residential wind turbine with battery storage carries more economical benefits than the wind turbine alone.

  18. Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria

    Directory of Open Access Journals (Sweden)

    Oluseyi O. Ajayi

    2014-12-01

    Full Text Available The study assessed the wind energy potential of ten selected sites in the south western region of Nigeria and carried out a cost benefit analysis of wind power generation at those sites. Twenty four years’ (1987 to 2010 wind speed data at 10 m height obtained from the Nigerian meteorological agency were employed to classify the sites wind profiles for electricity generation. The energy cost analysis of generating wind electricity from the sites was also carried out. The outcome showed that sites in Lagos and Oyo States were adequately suited for large scale generation with average wind speeds ranged between 2.9 and 5.8 m/s. Those from other sites may be suitable for small scale generation or as wind farms, with several small turbines connected together, to generate large enough wind power. The turbine matching results shows that turbines cut-in and rated wind speeds of between 2.0 and 3.0 m/s, and between 10 and 12.0 m/s respectively will be very suited to all the sites, particularly those in locations outside Lagos and Oyo States. The energy cost analysis shows that generation cost can be as low as 0.02 €/kWh and as high as 5.03/kWh, depending on the turbine model employed.

  19. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  20. A Wind Forecasting System for Energy Application

    Science.gov (United States)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.

  1. Comprehensive Benefit Evaluation of the Wind-PV-ES and Transmission Hybrid Power System Consideration of System Functionality and Proportionality

    Directory of Open Access Journals (Sweden)

    Huizheng Ji

    2017-01-01

    Full Text Available In the background of decreasing fossil fuels and increasing environmental pollution, the wind-photovoltaic energy storage and transmission hybrid power system (or called the wind-PV-ES and transmission hybrid system has become a strategic choice to achieve energy sustainability. However, the comprehensive benefit evaluation of such a combined power system is in a relatively blank state in China, which will hinder the reasonable and orderly development of this station. Four parts, the technical performance, economic benefit, ecological impact and social benefit, are considered in this paper, and a multi-angle evaluation index system of the wind-PV-ES and transmission system is designed. The projection pursuit model is used to evaluated system functionality conventionally; relative entropy theory is used to evaluate the system functionality simultaneously; and a comprehensive benefit evaluation model of the technique for order preference by similar to ideal solution (TOPSIS considering both system functionality and proportionality is constructed. Finally, the national demonstration station of the wind-PV-ES-transmission system is taken as an example to testify to the practicability and validity of the evaluation index system and model.

  2. Regional variations in the health, environmental, and climate benefits of wind and solar generation

    OpenAIRE

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay

    2013-01-01

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. De...

  3. Reliability Assessment Considering the Coordination of Wind Power, Solar Energy and Energy Storage

    Institute of Scientific and Technical Information of China (English)

    WANG Haiying; BAI Xiaomin; XU Jing

    2012-01-01

    Large-scale integration of wind power and solar photovoltaic (PV) power in an electric grid can result in a high operating risk due to their randomness and intermi- ttency. Energy storage (ES) can be used to coordinate with them to reduce this risk by improving supply continuity. It is therefore important to evaluate the reliability benefits of systems consist of wind power, solar photovoltaic power and energy storage. The objective of this paper is to evaluate how the parameters such as the capacity and characteristics of ES and the configuration of a hybrid generation system (HGS) affect the system adequacy based on the sequential Monte Carlo approach.

  4. Economics of wind energy

    International Nuclear Information System (INIS)

    Ranganathan, V.; Kumar, H.P.S.

    1991-01-01

    Conventional economic analysis of wind energy often ignores the fact that it is not an energy source available on tap, but is intermittent. The analysis at times is discriminatory in the sense that the costs of transmission and distribution are added to the central grid alternative but the costs of the locational constraints of wind energy siting are not quantified. This paper evaluates wind energy after correcting for these two factors. The results are not encouraging

  5. U.S. Department of Energy Regional Resource Centers Report: State of the Wind Industry in the Regions

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, Ruth [National Renewable Energy Lab. (NREL), Golden, CO (United St; Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United St; Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United St; Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United St

    2016-03-01

    The wind industry and the U.S. Department of Energy (DOE) are addressing technical challenges to increasing wind energy's contribution to the national grid (such as reducing turbine costs and increasing energy production and reliability), and they recognize that public acceptance issues can be challenges for wind energy deployment. Wind project development decisions are best made using unbiased information about the benefits and impacts of wind energy. In 2014, DOE established six wind Regional Resource Centers (RRCs) to provide information about wind energy, focusing on regional qualities. This document summarizes the status and drivers for U.S. wind energy development on regional and state levels. It is intended to be a companion to DOE's 2014 Distributed Wind Market Report, 2014 Wind Technologies Market Report, and 2014 Offshore Wind Market and Economic Analysis that provide assessments of the national wind markets for each of these technologies.

  6. Wind energy, status and opportunities

    International Nuclear Information System (INIS)

    Van Wijk, A.

    1994-01-01

    Wind energy is diffuse but was widely used before the industrial revolution. The first oil crisis triggered renewed interest in wind energy technology in remote areas. Winds develop when solar radiation reaches the earth's highly varied surface unevenly, creating temperature density and pressure differences. The earth's atmosphere has to circulate to transport heat from the tropics towards the poles. On a global scale, these atmospheric currents work as an immense energy transfer medium. Three main applications can be distinguished: wind pumps, off-grid applications and grid-connected applications. The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime (the wind energy potential is proportional to v 3 where v is the wind speed), the efficiency and availability of the wind turbine. The main gains are achieved as a result of improved reliability. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives, it can be calculated by the avoided costs of damage to flora, fauna and mankind due to acid rain deposition, enhancement of the greenhouse effect. The environmental aspects are bird hindrance, noise, telecommunication interference and safety. 2 tabs., 1 fig

  7. Monthly Wind Characteristics and Wind Energy in Rwanda

    African Journals Online (AJOL)

    user

    Abstract. Evaluating wind power potential for a site is indispensable before making any decision for the installation of wind energy infrastructures and planning for relating projects. This paper presents a branch of a composite analysis whose objective was to investigate the potential of wind energy resource in Rwanda.

  8. Wind energy: Overcoming inadequate wind and modeling uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Vivek

    2010-09-15

    'Green Energy' is the call of the day, and significance of Wind Energy can never be overemphasized. But the key question here is - What if the wind resources are inadequate? Studies reveal that the probability of finding favorable wind at a given place on land is only 15%. Moreover, there are inherent uncertainties associated with wind business. Can we overcome inadequate wind resources? Can we scientifically quantify uncertainty and model it to make business sense? This paper proposes a solution, by way of break-through Wind Technologies, combined with advanced tools for Financial Modeling, enabling vital business decisions.

  9. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  10. Wind Energy Resource Atlas of Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-07-01

    This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

  11. Wind energy. Market prospects to 2006

    International Nuclear Information System (INIS)

    Huckle, R.

    2002-01-01

    Renewable energy is becoming an increasingly significant source in the energy portfolio of most countries. Several sources of renewable energy are now being pursued commercially and wind energy is the most advanced in terms of installed electricity generation capacity. Of all types of renewable energy wind energy is the one with which there is the greatest experience - wind wheels and windmills have been used in various forms for hundreds of years. Chapter 1 is an introduction to the market study. Chapter 2 begins with a review of the wind energy industry. Topics included here are the case for wind energy (sustainability, security, non-polluting etc), market structure (the relationship between developers, operators, manufacturers, consortia etc) and environmental issues. This is followed by a discussion of the wind energy market for major countries in terms of installed wind power capacity. Within each country market there is an account of government policy, major wind energy programmes, major projects with information on developers and wind turbine manufacturers. A market analysis is given which includes an economic review, wind energy targets (where they exist) and forecasts to 2006. Chapter 3 is a review of wind turbine applications covering electricity generation for public supply networks, stand alone/community applications, water pumping and water desalination. Chapter 4 provides the basic principles of wind turbine operation and associated technologies. A brief account is given of the development of wind turbines and the main components such as the tower, rotor blades, gearbox, generator and electrical controls. Electricity generation and control are outlined and the challenge of electricity storage is also discussed. Meteorological factors (wind speed etc) and the move towards off-shore wind farms are also covered. Chapter 5 contains profiles of leading wind project developers and wind turbine manufacturers. A selection of existing and proposed wind farms

  12. Wind energy - The facts. An analysis of wind energy in the EU-25

    International Nuclear Information System (INIS)

    2004-02-01

    Since the previous edition of Wind Enera - The Facts was published five years ago, the wind energy sector has undergone rapid change and transformation. There has been an explosion in demand for and Interest in a cleaner energy world from politicians, institutions, policy makers and regulators, the media, commentators and the general public. Such interest necessitates a greater depth of understanding of the wind power sector if informed choices and policy decisions are to be made. The European Wind Energy Association (EWEA), and the European Commission's Directorate General for Transport' and Energy have collaborated on this report to provide a detailed overview of the wind power sector. Wind Enera - The Facts provides a comprehenslve overview of the essential issues concerning wind power today: technology, cost, prices, environment, industry and employment, market, and research and development. Wind energy is a relatively young but rapidly expanding industry. Over the past decade, global installed capacity has increased from 2,500 megawatts (MW) in 1992 to just over 40,000 MW at the end of 2003, at an annual growth rate of near 30%. Almost three quarters of this capacity has been installed in Europe. Penetration levels in the electricity sector have reached 20% in Denmark and about 5% in both Germany and Spain. The north German state of Schleswig-Holstein has 1,800 MW of installed wind capacity, enough to meet 30% of the region's total electricity demand, while in Navarra, in Spain, 50% of consumption is met by wind power. If positive policy support continues to develop, EWEA has projected that wind power will achieve an installed capacity of 75,000 MW in the EU-15 by 2010. This would represent an overall contribution to electricity supply of 5.5%. By 2020, this figure is expected to increase to more than 12%, with wind power providing energy equal to the demand of 195 million European household consumers. (au)

  13. The North Sea offshore wind park network and the role of SMEs in project benefit management across actors

    DEFF Research Database (Denmark)

    Brink, Tove

    routes for SMEs to enhance Project Benefit Management. It is especially difficult to move to the partner-driven approach. Here the intermediary roles of either demand-driven or supplier-driven SME approach are needed before the partner-driven approach is likely to be achieved. A contribution is hereby......The research in this paper reveals how Small and Medium-sized Enterprises (SMEs) can contribute to project benefit management for offshore wind energy to be competitive. The research is based on a longitudinal qualitative study starting in 2011 with 10 SME wind park suppliers. The research...... continued with a focus group interview and individual interviews with 20 larger enterprises and SMEs within operation and maintenance in wind parks with follow up in a seminar May 2015. The findings reveal opportunities and challenges for SMEs to contribute to project benefit management in wind parks. Four...

  14. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A [Harvard Inst. for International Development, Cambridge, MA (United States)

    1996-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  15. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A. [Harvard Inst. for International Development, Cambridge, MA (United States)

    1995-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  16. The avoided external costs of using wind energy

    International Nuclear Information System (INIS)

    Markandya, A.

    1995-01-01

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  17. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2013-05-01

    Full Text Available Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be horizontal axis or verticalaxis Savonius and Darrieus rotor. Latest innovations allow operation of variable speed wind turbines, or turbinespeed control based on wind speed. Wind energy is considered one of the most sustainable choices betweenvariants future wind resources are immense.

  18. A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yanzhe Hu

    2017-03-01

    Full Text Available As a type of renewable energy, wind energy is integrated into the power system with more and more penetration levels. It is challenging for the power system operators (PSOs to cope with the uncertainty and variation of the wind power and its forecasts. A chance-constrained economic dispatch (ED model for the wind-thermal-energy storage system (WTESS is developed in this paper. An optimization model with the wind power and the energy storage system (ESS is first established with the consideration of both the economic benefits of the system and less wind curtailments. The original wind power generation is processed by the ESS to obtain the final wind power output generation (FWPG. A Gaussian mixture model (GMM distribution is adopted to characterize the probabilistic and cumulative distribution functions with an analytical expression. Then, a chance-constrained ED model integrated by the wind-energy storage system (W-ESS is developed by considering both the overestimation costs and the underestimation costs of the system and solved by the sequential linear programming method. Numerical simulation results using the wind power data in four wind farms are performed on the developed ED model with the IEEE 30-bus system. It is verified that the developed ED model is effective to integrate the uncertain and variable wind power. The GMM distribution could accurately fit the actual distribution of the final wind power output, and the ESS could help effectively decrease the operation costs.

  19. Limitation of solar energy and wind energy

    International Nuclear Information System (INIS)

    White, R. S.

    2008-01-01

    Wind turbines, solar energy collectors and photovoltaic cells have been popular sources of electricity since the oil crisis in the late seventies, and they are increasingly favored by many scientists and much of the public as methods for reducing global warming. The older wind farms in California are outdated. New wind turbines have not followed, primarily because of competition from lower-cost natural gas. The Times urges increased federal and state subsidies for the wind and solar industries. The primary reason that wind and solar energies have not made inroads in the past, and will never supply more than a few percentage points of the world's electrical energy, is their unpredictable variations in time and their constant need for back-ups. The only non-carbon-dioxide-emitting generator capable of backing up wind and solar energy and replacing coal and gas generators is nuclear fission. Nuclear power may be the practical solution to global warming, after all.

  20. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  1. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Science.gov (United States)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  2. Dollars from Sense: The Economic Benefits of Renewable Energy

    Science.gov (United States)

    1997-09-01

    This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources.

  3. Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation

    Science.gov (United States)

    Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...

  4. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  5. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  6. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  7. Global wind energy outlook 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The global market for wind power has been expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 the world total has multiplied more than twelve-fold to reach over 59,000 MW at the end of 2005. The international market is expected to have an annual turnover in 2006 of more than euro 13 billion, with an estimated 150,000 people employed around the world. The success of the industry has attracted investors from the mainstream finance and traditional energy sectors. In a number of countries the proportion of electricity generated by wind power is now challenging conventional fuels. The Global Wind Energy Outlook 2006 reports that over a third of the world's electricity - crucially including that required by industry - can realistically be supplied by wind energy by the middle of the century. The report provides an industry blueprint that explains how wind power could supply 34% of the world's electricity by 2050. Most importantly, it concludes that if wind turbine capacity implemented on this scale it would save 113 billion tonnes of CO2 from entering the atmosphere by 2050. This places wind power as one of the world's most important energy sources for the 21st century. The 'Global Wind Energy Outlook 2006' runs three different scenarios for wind power - a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an advanced version assuming that all policy options in favour of renewables have been adopted. These are then set against two scenarios for global energy demand. Under the Reference scenario, growth in demand is again based on IEA projections; under the High Energy Efficiency version, a range of energy efficiency measures result in a substantial reduction in demand

  8. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  9. Large-scale wind power integration and wholesale electricity trading benefits: Estimation via an ex post approach

    International Nuclear Information System (INIS)

    Gil, Hugo A.; Gomez-Quiles, Catalina; Riquelme, Jesus

    2012-01-01

    The integration of large-scale wind power has brought about a series of challenges to the power industry, but at the same time a number of benefits are being realized. Among those, the ability of wind power to cause a decline in the electricity market prices has been recognized. In quantifying this effect, some models used in recent years are based on simulations of the market supply-side and the price clearing process. The accuracy of the estimates depend on the quality of the input data, the veracity of the adopted scenarios and the rigorousness of the solution technique. In this work, a series of econometric techniques based on actual ex post wind power and electricity price data are implemented for the estimation of the impact of region-wide wind power integration on the local electricity market clearing prices and the trading savings that stem from this effect. The model is applied to the case of Spain, where the estimated savings are compared against actual credit and bonus expenses to ratepayers. The implications and extent of these results for current and future renewable energy policy-making are discussed. - Highlights: ► Wholesale electricity market trading benefits by wind power are quantified. ► Actual wind power forecast-based bids and electricity price data from Spain are used. ► Different econometric tools are used and compared for improved estimation accuracy. ► Estimated benefits outweigh current credit overhead paid to wind farms in Spain. ► An economically efficient benefit surplus allocation framework is proposed.

  10. Wind energy comes of age

    International Nuclear Information System (INIS)

    Swisher, R.

    1991-01-01

    This article discusses the maturation of the wind energy industry into a reliable and cost-effective utility technology. The topics discussed include the environmental impact of windfarms, the potential of wind energy, integrating wind technology into today's utility systems, and state policy decisions critical for renewable energy development

  11. Wind energy and Turkey.

    Science.gov (United States)

    Coskun, Aynur Aydin; Türker, Yavuz Özhan

    2012-03-01

    The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.

  12. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miner-Nordstrom, L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  13. Spin-off wind energy. A study on the economic, sustainability and regional effects of wind energy

    International Nuclear Information System (INIS)

    Terbijhe, A.; Oltmer, K.; Van der Voort, M.

    2009-09-01

    This study focuses on collecting and organizing information. This information can be used as the basis for a policy line by the Dutch Ministry of Agriculture, Nature and Food Quality (LNV) for wind energy in agricultural companies. The aim of the project is to gain insight in: (1) the possible role of agricultural wind energy in the national energy supply; (2) the current and future business economic effects of wind energy on the agricultural farm; and (3) the current and future effect of wind energy on the local rural economy in general and specifically the economic meaning of wind energy for the regional economy in the region of Flevoland. [nl

  14. The wind energy takes off

    International Nuclear Information System (INIS)

    Rapin, M.; Degobert, Ph.

    2010-01-01

    After having evoked the objectives defined for wind energy production by 2050, the important growth of wind energy in Europe and in other parts of the world, and its importance in terms of business and jobs, this article presents the Denmark model where the wind energy industry is a world leader but now faces the need of a new development model. It comments the investments and incentives implemented in Western countries after the first oil crisis. It outlines the increasing power of wind generators and their technological evolution, the development of offshore wind farms and their cost, and finally the intermittency problem and the case of small wind turbines

  15. Far offshore wind conditions in scope of wind energy

    NARCIS (Netherlands)

    Holtslag, M.C.

    2016-01-01

    Far offshore atmospheric conditions are favourable for wind energy purposes since mean wind speeds are relatively high (i.e., high power production) while turbulence levels are relatively low (i.e., less fatigue loads) compared to onshore conditions. Offshore wind energy, however, is still expensive

  16. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  17. Small wind in Canada's energy future : fostering domestic manufacturers

    International Nuclear Information System (INIS)

    Rhoads-Weaver, H.; Gluckman, M.; Weis, T.; Moorhouse, J.; Taylor, A.; Maissan, J.; Sherwood, L.; Whittaker, S.

    2008-01-01

    While large-scale wind power projects are sustaining a 30 per cent annual growth rate, residential-scale wind power is increasingly being adopted in Germany, Japan, and the United States. This presentation discussed the benefits associated with fostering strong domestic wind turbine markets in Canada. Small wind turbine markets typically consist of grid-connected, net-metered turbines of less than 1 kW, off-grid micro-turbines used for battery charging, and net-metered, grid-connected, mid-sized turbines larger than 10 kW used in farming and small business applications. Continued energy price hikes are expected to cause the rapid growth of distributed generation, and nearly half of the world's 10 to 300 kW wind turbine generator manufacturers are located in Canada. However, federal support for small-scale distributed wind systems is lacking, and financial incentives are needed to mature the technology in Canada and leverage private investment. The use of decentralized energy will help to prevent line losses and reduce peak demands on the electricity grid. Use of the technology offers farms and small businesses a revenue stream and can reduce energy costs and demands. It is also expected that small wind jobs in Canada will grow from 50 to 640 by 2025. It was concluded that in order to ensure small wind development, capital cost incentive levels must be coupled with good interconnection and permitting policies. In addition, minimum safety and performance standards must be developed, along with rebate policies and siting analysis methods. tabs., figs

  18. Draft South African wind energy technology platform: preliminary wind energy research and development framework

    CSIR Research Space (South Africa)

    Szewczuk, S

    2011-08-01

    Full Text Available The South African Wind Energy Technology Programme (SAWEP) Phase 1 aims to achieve two key strategic outputs that will guide South Africa on wind energy development. One of these outputs is the Wind Atlas for South Africa (WASA) which will play a...

  19. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  20. Community investment in wind farms: funding structure effects in wind energy infrastructure development.

    Science.gov (United States)

    Beery, Joshua A; Day, Jennifer E

    2015-03-03

    Wind energy development is an increasingly popular form of renewable energy infrastructure in rural areas. Communities generally perceive socioeconomic benefits accrue and that community funding structures are preferable to corporate structures, yet lack supporting quantitative data to inform energy policy. This study uses the Everpower wind development, to be located in Midwestern Ohio, as a hypothetical modeling environment to identify and examine socioeconomic impact trends arising from corporate, community and diversified funding structures. Analysis of five National Renewable Energy Laboratory Jobs and Economic Development Impact models incorporating local economic data and review of relevant literature were conducted. The findings suggest that community and diversified funding structures exhibit 40-100% higher socioeconomic impact levels than corporate structures. Prioritization of funding sources and retention of federal tax incentives were identified as key elements. The incorporation of local shares was found to mitigate the negative effects of foreign private equity, local debt financing increased economic output and opportunities for private equity investment were identified. The results provide the groundwork for energy policies focused to maximize socioeconomic impacts while creating opportunities for inclusive economic participation and improved social acceptance levels fundamental to the deployment of renewable energy technology.

  1. Identification of wind energy systems

    NARCIS (Netherlands)

    Van der Veen, G.J.

    2013-01-01

    In the next decades wind energy is expected to secure a firm share of the total energy production capacity in many countries. To increase competitiveness of wind power with other power sources it is essential to lower the cost of wind energy. Given the design of a turbine, this objective can be

  2. Wind energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  3. Hexcrete Tower for Harvesting Wind Energy at Taller Hub Heights - Budget Period 2

    Energy Technology Data Exchange (ETDEWEB)

    Sritharan, Sri [Iowa State Univ., Ames, IA (United States)

    2017-05-01

    Interest in designing taller towers for wind energy production in the United States (U.S.) has been steadily growing. In May 2015, it was revealed that taller towers will make wind energy production a reality in all 50 states, including some states that have nearly zero renewables in their energy portfolio. Facilitating wind energy production feasibility in all 50 states will no doubt contribute to increasing the electricity produced by wind from 4.5% in 2013 to a targeted scenario of 35% by 2050 in the Wind Vision report. This project focuses on the Hexcrete tower concept developed for tall towers using High Strength Concrete (HSC) and/or Ultra-High Performance Concrete (UHPC). Among other benefits, the Hexcrete concept overcomes transportation and logistical challenges, thus facilitating construction of towers with hub heights of 100-m (328-ft) and higher. The goal of this project is to facilitate widespread deployment of Hexcrete towers for harvesting wind energy at 120 to 140-m (394 to 459-ft) hub heights and reduce the Levelized Cost of Energy (LCOE) of wind energy production in the U.S. The technical scope of the project includes detailed design and optimization of at least three wind turbine towers using the Hexcrete concept together with experimental validation and LCOE analyses and development of a commercialization plan.

  4. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., KS (United States)

    2010-03-01

    The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has

  5. Community : a powerful label? Connecting wind energy to rural Ireland

    NARCIS (Netherlands)

    Walsh, B.M.

    2016-01-01

    Much of the research on the social sustainability of renewable technologies has focused on local acceptance issues, community benefits from exogenous developments, and matters related to the planning and development process. Grassroots-initiated wind energy schemes as a form of rural enterprise have

  6. Wind energy in a global world

    DEFF Research Database (Denmark)

    Hjuler Jensen, Peter

    2007-01-01

    For the past 25 years there has been a dramatic development in the wind energy sector, with regard to the increase in overall utilisation of wind energy as well as technological development, the development of markets and expectations to the role of wind energy in the global electricity supply...... system. The purpose of this paper is to outline developments in the global capacity of wind energy this past quarter of a century, including technology, market aspects, scientific developments, testing and certification, formulation of standards and scenarios for the future development of wind energy...

  7. SCBA (social cost-benefit analysis) Wind energy Flevoland, Netherlands; MKBA Windenergie Flevoland

    Energy Technology Data Exchange (ETDEWEB)

    Warringa, G.E.A.; Blom, M.J.; Bles, M.

    2012-02-15

    The Dutch province of Flevoland aims to recover its open landscape by reducing the number of wind turbines , while also generating more wind energy. To this end, an integrated spatial and social exploration was carried out and different policy scenarios were developed. These scenarios have different financial but also social effects, such as stimulating the regional economy, impact on the landscape, etc. It is not clear in advance which of the scenarios scores most favorably from a social perspective. To obtain more insight in the social impact, a social cost-benefit analysis (SCBA) was conducted. The main conclusion is that the net welfare effect can be both positive and negative, depending on the scenario. As with any financial calculation and SCBA, the results depend on the assumptions. Factors such as the price of electricity, the investment, the amount of SDE subsidy (subsidy for production of renewable energy), the time of reorganizing, the discount rate applied, etc., all affect the results and may change over time. Therefore, in parallel with this report, a calculation model was developed which makes it easy to adjust these variables. This way results can easily be adjusted based on modified starting points [Dutch] De provincie Flevoland heeft als oorspronkelijke doelstelling haar open landschap te herstellen door het aantal windmolens te verminderen, en tegelijkertijd meer windenergie op te wekken. Hiertoe is een integrale ruimtelijke en maatschappelijke verkenning uitgevoerd en zijn verschillende beleidsscenario's ontwikkeld. Deze scenario's hebben verschillende financiële maar ook maatschappelijke effecten tot gevolg, zoals stimulering van de regionale economie, effect op het landschap, etc. Het is vooraf niet duidelijk welk van de scenario's vanuit maatschappelijk perspectief het meest gunstig scoort. Om meer inzicht te verkrijgen in het maatschappelijke effect, is daarom een maatschappelijke kosten-batenanalyse (MKBA) uitgevoerd

  8. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  9. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  10. Renewable energy policy and wind energy development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zitzer, Suzanne E [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Department Urban Ecology, Environmental Planing and Transport

    2009-07-15

    The author of the contribution under consideration reports on the renewable energy policy and wind energy development in the Federal Republic of Germany. First of all, the author describes the historical development of the renewable energy policy since the 1970ies. Then, the environmental policies of the Red-Green Coalition (till to 2005) and of the Grand Coalition (since 2005) as well as the Renewable Energy Sources Act are described. The next section of this contribution is concern to the development of wind energy in the Federal Republic of Germany under consideration of onshore wind energy and offshore wind energy.

  11. Wind energy: A renewable energy option

    Science.gov (United States)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  12. Wind Energy Resource Atlas of Oaxaca

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  13. Renewable energy in pakistan part 1: wind energy

    International Nuclear Information System (INIS)

    Maher, M.J.

    2005-01-01

    Energy plays a very enhanced role in mans struggle with the capricious act of nature than merely sustaining life. And according to Cipolla the more successfully man can use his own energy-output to control and put to use other forms of energy, t he more he acquires control over his environment and achieves goals other than those strictly related to animal existence . He then adds what is certainly obvious -but does not suffer from repetition -that fundamental to the utilization of nonmuscular energy is the problem of transforming it into the needed form at a selected time; place and at convenient cost. In the present article an attempt is being made to encompass different sources of renewable energy, with special reference to wind energy and its role in sustaining the development process Wind-data generated through measurements by the meteorological department have their limitations. Therefore, for accurate analysis, a dedicated wind-monitoring system will have to be used for properly exploiting this form of energy. In practice, a mean annual wind speed (at 20 m above ground) of 12 mph is considered as the minimum requirement for economic power-generation. With this criterion, only a bare minimum area of the country, comprising the coastal areas of Sind and Baluchistan, desert parts of Cholistan and Thar regions are considered to possess adequate resource. Bulk of this wind potential is derived from the wind energy, which blows from southwest system during the major parts of the year. Daily and monthly variations of wind speed at potential locations need to be determined in order to bring out the highly seasonal behaviour of the wind resources. The significance of wind-power density is another important parameter to assess the wind potential. The capacity-factor, which is the ratio of the actual power-output to the rated output of typical wind machine to be used, has to be worked out using the frequency-distribution of hourly wind-speeds at the potential site. The

  14. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  15. Assessment of wind resources and annual energy production of wind farms

    DEFF Research Database (Denmark)

    the last 17 years. In Denmark the plan is to increase to 50% share of total electricity consumption in 2020 compared to 26% in 2011. In EU this was 6.3% in 2011. In EU new installed wind power was 9 GW and 0.8 GW, onshore and offshore, respectively, in 2011. The total capacity in Europe is 96 GW......Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during...

  16. Wind energy conversion 1994. Proceedings

    International Nuclear Information System (INIS)

    Elliot, G.

    1995-01-01

    At the British Wind Energy Association's 16th Annual Conference, held in Stirling, over 60 high quality papers were presented, including a session devoted to 'Wind Energy in Scotland'. Under the Non Fossil Fuel Obligation (NFFO) wind energy has experienced rapid growth in England and Wales and with Scotland now having its own 'Scottish Renewables Obligation' (SRO) the opportunity to tap one of Europe's most important renewable energy resources now exists. The main contemporary issues concerning wind farming today, namely technical, social, economic and environmental were examined in the Geoff Pontin Memorial Lecture, which focused on these aspects in the context of grid integrated wind energy development. The remaining conference themes included machine development, aerodynamics and control, small machines, fatigue and dynamics, public attitudes, noise emissions, electrical integration, resource measurement, and standards, safety and planning. (author)

  17. Breezing ahead: the Spanish wind energy market

    International Nuclear Information System (INIS)

    Avia Aranda, Felix; Cruz, I.C.

    2000-01-01

    This article traces the rapid increase in Spain's wind generating capacity, and examines Spain's wind strategy, the assessment of wind power potential at regional level, and the guaranteeing of the market price for power generators using wind energy with yearly reviews of the price of electricity from wind power. Prices payable for electricity generated from renewable sources are listed, and the regional distribution of wind energy production is illustrated. Recent wind power installations in Spain, target levels for wind energy installations, wind farms larger than 1MW installed in 1999, and the impact of the growth of the wind energy market on the manufacturing industry and the manufacturers are discussed. Details of the wind energy capacity in the provinces of Navarra and Galicia are given, and plans for wind energy projects in the New National Plan for Scientific research, Development and Technological innovation (2000-2003) are considered

  18. Wind energy - The facts. Vol. 5: Market development

    International Nuclear Information System (INIS)

    2004-01-01

    Wind energy is becoming increasingly competitive with conventional sources. However, it is likely that some form of incentive will be required for the foreseeable future, at least until environmental costs are fully internalised or increased economies of scale and technological development makes wind power fully competitive with conventional sources, such as coal and gas, without the need to consider externalities. 'There are currently five main systems to support electricity from renewable energy sources in the EU member states: investment subsidies, fixed price systems, fixed premium systems, auctions, and certificates systems. The idea behind the mechanisms is to offset at least some of the competitive disadvantage for renewable as a consequence of electricity markets neglecting the environmental cost of production from conventional technologies. Low electricity prices are of little benefit if they lead to high costs to society as a whole through higher health care costs and environmental costs levied on current and future taxpayers and citizens. If the environmental costs of power production were reflected in European power prices, wind power and many other renewable energy technologies would not need support, as pointed out in the European Commission's Green Paper on Security of Supply. (au)

  19. Wind energy in Africa; L'energie eolienne en Afrique

    Energy Technology Data Exchange (ETDEWEB)

    Kone, A. [Moncton Univ., NB (Canada)

    2008-04-15

    This article discussed the opportunities that wind energy technology can bring to developing countries in Africa. Solar, hydro and wind energy along with biofuels are among the renewable energy sources being used in Africa, although wind energy is not being used to its potential due to a lack of financial means; constraints in regulatory legislation; lack of structure; lack of knowledge concerning wind energy; and the lack of competent human resources for the installation and management of wind turbines. Technical barriers also exist, such as the lack of interconnection networks and the already existing facilities for power generation. According to a 2004 Canadian study, the greatest potential for wind energy development lies in the northern part of Africa followed by regions in the east, west and south of the continent. Morocco and Tunisia have established regulations regarding wind energy development. Countries such as Algeria and Egypt, which have abundant fossil fuel, would turn to wind energy from an environmental standpoint. The countries of Djibouti, Lesotho, Tchad, Seychelles, Mauritius rely on other forms of renewable energy, including hydro, geothermal, photovoltaic and biofuels. It was concluded that the future of wind energy relies on regional cooperation, technology transfer and subsidies from industrialized nations. 1 fig.

  20. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Cathy [WindLogics, St. Paul, MN (United States)

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the

  1. Questions-answers - Ground-based wind energy

    International Nuclear Information System (INIS)

    2017-11-01

    After a presentation of some key data on wind energy in France, this publication proposes a set of questions and answers to highlight the reasons of the development of wind energy, to show that wind energy is a reliable one, to discuss various issues related to the presence of wind turbines (regulations, information, impact on biodiversity, on health and on dwelling environment, exploitation and control, end of life), and to determine the role of wind energy in the French economy (economic returns, costs, and so on)

  2. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying...... an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly...... to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also...

  3. Science Activities in Energy: Wind Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  4. Wind, Sun and Water: Complexities of Alternative Energy Development in Rural Northern Peru

    Science.gov (United States)

    Love, Thomas; Garwood, Anna

    2011-01-01

    Drawing on recent research with NGO-driven projects in rural Cajamarca, Peru, we examine the paradoxes of relying on wind, solar and micro-hydro generation of electricity for rural community development. In spite of cost, vagaries of these energy resources and limited material benefits, especially with wind and solar systems, villagers are eagerly…

  5. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  6. Wind energy basics a guide to home- and community-scale wind energy systems

    CERN Document Server

    Gipe, Paul

    2009-01-01

    The availability of clean, renewable power is without question going to be the defining challenge and goal of the 21st century, and wind will lead the way. Internationally acclaimed wind energy expert Paul Gipe is as soberly critical of past energy mistakes as he is convincingly optimistic about the future. The overwhelming challenge of transforming our world from one of fossil carbon to one of clean power seems daunting at best-and paralyzingly impractical at worst. "Wind Energy Basics" offers a solution. Wind power can realistically not only replace the lion's share of oil-, coal-, and natural gasndash; fired electrical plants in the U.S., but also can add enough extra power capacity to allow for most of the cars in the nation to run on electricity. Gipe explains why such a startlingly straightforward solution is eminently doable and can be accomplished much sooner than previously thought-and will have the capacity to resuscitate small and regional economies. "Wind Energy Basics" offers a how-to for home-ba...

  7. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  8. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  9. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  10. Wind energy in South Africa

    International Nuclear Information System (INIS)

    Linde, H.A. van der

    1996-01-01

    Wind, in South Africa, has been a source of energy for many years but at the same time it is taking as much time and effort to receive the recognition it deserves as anywhere else in the world. The wind resource is comparable to a number of areas in the world wind is exploited as a grid connected source of electrical energy. Although the environmental impact of conventional sources of energy is not as widespread as most of the industrial nations some areas should be looked at critically. Wind as a bulk generator of energy is tentatively being looked at with some demonstration projects being planned. (author)

  11. A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2017-12-01

    Full Text Available The development of the wind energy industry is seriously restricted by grid connection issues and wind energy generation rejections introduced by the intermittent nature of wind energy sources. As a solution of these problems, a wind power system integrating with a thermal energy storage (TES system for district heating (DH is designed to make best use of the wind power in the present work. The operation and control of the system are described in detail. A one-dimensional system model of the system is developed based on a generic model library using the object-oriented language Modelica for system modeling. Validations of the main components of the TES module are conducted against experimental results and indicate that the models can be used to simulate the operation of the system. The daily performance of the integrated system is analyzed based on a seven-day operation. And the influences of system configurations on the performance of the integrated system are analyzed. The numerical results show that the integrated system can effectively improve the utilization of total wind energy under great wind power rejection.

  12. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  13. Questions/answers on onshore wind energy

    International Nuclear Information System (INIS)

    2015-11-01

    After a presentation of some key data on wind energy in France over the last 15 years, this publication proposes a set of questions and answers to highlight the reasons of the development of wind energy, to show that wind energy is a reliable one, to discuss various issues related to the presence of wind turbines (regulations, information, impact on biodiversity, on health and on dwelling environment, exploitation and control, end of life), and to determine the role of wind energy in the French economy (economic returns, costs, and so on)

  14. Wind energy sector in British Columbia

    International Nuclear Information System (INIS)

    2010-01-01

    British Columbia (BC) possesses significant wind energy resources, and many wind energy projects are currently in the planning phase or are already under construction. Wind power policies in the province have been designed to ensure the secure and orderly development of the wind power industry. Policies in the province include a 10-year exemption from participation rents for new projects as well as a policy that has established the maximum permissible noise levels for wind farms located near residential properties. BC's wind power development plan forms part of the province's aim to become electricity self-sufficient by 2016 while ensuring that clean or renewable energy generation accounts for at least 90 per cent of total generation. This guide provided an outline of the province's wind energy sector, and provided a listing of selected wind power operators. Details of new wind power projects were also presented. 11 fig.

  15. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium

  16. Reducing Wind Curtailment through Transmission Expansion in a Wind Vision Future

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Department of Energy's 2015 Wind Vision study, which analyzed an ambitious scenario where wind power served 35% of U.S. electricity consumption in 2050, showed the potential for wind energy to provide substantial health, environmental, and economic benefits. Using a commercial unit commitment and economic dispatch model, we build on this research by assessing the hourly operational feasibility of a similar high wind future in the Western United States. Our detailed simulations found no hours of unmet load or reserve violations with more than 35% potential wind (and 12% potential solar) available on the system, which highlights the technical possibility of integrating large amounts of wind energy. However, absent significant changes to the western grid, we find that substantial wind curtailment could be an issue, as it could degrade the potential for wind power to reduce fuel costs and lowering the emission benefits. To assess the value of transmission to mitigate wind curtailment, we model a suite of transmission expansion scenarios. We find that wind curtailment could be reduced by approximately half under a scenario where new transmission is based only on proposed projects. This avoided wind curtailment could lower annual production costs and reduce carbon dioxide emissions substantially. Greater transmission expansion was found to yield further benefits, although the marginal benefits of these new lines were found to decline. Overall, these results suggest that power systems operation can be realized with more than 35% wind penetration, but that transmission expansion is likely to play a vital role.

  17. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  18. Wind energy options in the Netherlands

    International Nuclear Information System (INIS)

    Arkesteijn, L.A.G.; Havinga, R.J.

    1992-07-01

    Next to a study of the title subject attention is paid to the quantification of the wind energy potential and the conditions under which such potentials can be realized. The options are influenced by technical-economical, planning and socio-political factors, which are summarized in appendix 1 and discussed in chapter three. Results of interviews with experts in the field of wind energy can be found in appendix 2. Based on the impacts on the wind energy potential four wind energy development scenarios are compared in chapter four. The reference scenario is based on the present wind energy policy in the Netherlands. The other three scenarios are the Price-scenario (higher societal appreciation of electricity generated by wind power), the Site-scenario (matters of site selection and planning), and a Combined-scenario (combination of the Price- and the Site-scenario). For each scenario potential estimations were made for the years 2000, 2010, 2015, and restricted estimations for the year 2025. It is concluded that within 25 years 2,500 MW wind power can be realized on land and 6,000 MW on water. The main problems for the location on land and inland waterways are the planning restrictions, and for sea locations the limiting factor is the high cost price. Recommendations to the Dutch government to realize the potentials concern the facts that social advantages of wind energy should be part of the price of the energy, more sites should be made available for the application of wind energy, more research has to be carried out on the possibility of locating wind power generating systems at sea, and the social basis for wind energy should be maintained and even increased. 18 figs., 5 app., 47 refs

  19. Conference on wind energy development and biodiversity

    International Nuclear Information System (INIS)

    Gossement, Arnaud; Prevors, Lionel; Nagel, Paul-Bastian; Otto, Iris; Gourat, Fabrice; Sornin-Petit, Nicolas; Kelm, Volker; Beucher, Yannick; Rosenthal, Sonja; Strobl, Reinhard; Kozlowski, Sonia; Herrholz, Thomas; Hannemann, Thomas; Lange, Helmut; Behr, Oliver; Hochradel, Klaus; Mages, Juergen; Nagy, Martina; Korner-Nievergelt, Fraenzi; Niermann, Ivo; Simon, Ralph; Stiller, Florian; Weber, Natalie; Brinkmann, Robert

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on wind energy development and biodiversity. In the framework of this French-German exchange of experience, about 90 participants exchanged views on the existing regulatory systems for nature protection in a wind energy context in both countries. In particular, birds fauna and chiropters protection were in the center of the debates. The question of wind energy development in a forest environment was addressed as well. This document brings together the available presentations (slides) made during this event: 1 - The development of onshore wind farms and the French environmental Code (Arnaud Gossement); 2 - Wind energy development priority - recent advances in environmental regulation (Lionel Prevors); 3 - environmental legislation and wind power deployment in Germany: An overview (Paul-Bastian Nagel); 4 - Avifauna and wind energy plants - To bring the expansion of wind energy in line with environmental issues (Iris Otto) 5 - environmental impact study in France and Germany: what challenges and what bird fauna specificities? (Fabrice Gourat); 6 - How to take into account the chiropters' aspect in authorization procedures? Regional scale experience feedback: the Champagne-Ardenne case (Nicolas Sornin-Petit); 7 - France and Germany - a comparison of bat monitoring experience (Volker Kelm, Yannick Beucher); 8 - Bat-friendly operation algorithms: reducing bat fatalities at wind turbines in central Europe (Oliver Behr); 9 - Wind energy use in forests? specifics from an environmental planning perspective (Sonja Rosenthal); 10 - expansion of wind energy in the Bavarian State Forest (Reinhard Strobl); 11 - Environmental impact assessment and environmental follow-up study for the forest wind farms: experience feedback (Sonia Kozlowski); 12 - German aviation light regulations - German aviation light regulations. Case study: eno 92 at wind farm Schoenerlinde (Thomas Herrholz); 13 - Welcome to

  20. To end with the untruth on the wind energy cost; Pour en finir avec les contre-verites sur le cout de l'energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Le Biez, V

    2008-07-01

    In a study published by the Montaigne institute, in July 2008, Vincent Le Biez aimed to criticize the development of the wind energy and more especially its cost. Experts of the SER (Syndicat of the Renewable Energies) and the FEE (France Wind Energy ) answer, in this report, to the criticisms of V. Le Biez. Their analysis shows that the wind energy already constitutes a protection against the increase of the electrical market prices and will offer a real benefit for the collectivity in 2020. The increase of the wind energy in the world shows the trumps of this electricity production form. (A.L.B.)

  1. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    Science.gov (United States)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  2. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  3. Wind energy: Science or fiction?

    International Nuclear Information System (INIS)

    Sisouw de Zilwa, L.G.

    1993-01-01

    The energy policy of the Dutch government is aimed at the use of different energy sources (diversification). Therefore the Dutch government supports the implementation of wind turbines and stimulates product improvement and research by means of the TWIN-program (a program to support the application of wind energy in the Netherlands). The purpose of the program is to commercialize efficient wind turbines. Without subsidies it is not yet possible to exploit wind turbines in an efficient way. Around the year 2000 a capacity of 1000 MW must be realized. 1 fig., 1 ill., 5 tabs., 1 ref

  4. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  5. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2015-01-01

    In this chapter, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine (WT) design, low-noise airfoil and blade design, control device development, wake modelling and wind farm layout optimization....

  6. Wind energy prospecting: socio-economic value of a new wind resource assessment technique based on a NASA Earth science dataset

    Science.gov (United States)

    Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.

    2012-12-01

    Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.

  7. Public acceptability of California's wind energy developments: three studies

    Energy Technology Data Exchange (ETDEWEB)

    Bosley, P.; Bosley, K.

    1988-01-01

    Qualitative and quantitative research was conducted during 1988 to determine perceptions and attitudes regarding wind energy development as held by government and regulatory officials involved with windfarm development in the three major wind resource regions in California; environmentalists and community activists in these regions; and members of the wind industry. Results indicate that realization of large windfarm projects is being affected by local opposition which exists partly because of lack of knowledge about the technical maturity and economics of today's windpower; opposed interests between the developers and the locality; and development-created problems such as ''Visual Intrusion''. Public acceptability, essential for industry success, may be hindered because wind energy benefits to a locality are not perceived to equal the risks incurred by that particular region. Therefore, the industry needs to continue improving its performance as well as its communications with all affected parties.

  8. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  9. Wind energy developments in the Americas

    International Nuclear Information System (INIS)

    Swisher, R.; Ancona, D.F.

    1990-01-01

    This paper will highlight the key wind energy activities and programs of American countries. In South and Central America, wind technology awareness and opportunity is spreading. Countries have projects in the beginning stages of development and many sites with excellent wind resources are believed to exist. Argentina, Costa Rica, Colombia, Mexico, and several Caribbean countries are among those active in wind energy development. In Canada, after a decade of research and systems development, the Department of Energy Mines and Resources is conducting a review of all renewable energy technologies, including wind, to develop a strategic plan for future activities. Canadian industry continues development of various vertical axis projects and the Province of Alberta has begun a program to assess wind potential in that region. In the United States, commercial application of wind energy is continuing to expand. During 1989, over 140 MW of new wind turbine capacity was installed in wind power plants, bringing the total operating in the U.S. to 14600 turbines and 1,400 MW. During 1989, these machines produced over 2.1 billion kWh, enough to supply the residential needs of Washington D.C. or San Francisco. This is an increase of 15% over the 1988 total, even though installed operating capacity dropped by about 10% as smaller, out-dated turbines were phased out or replaced. The U.S. government is in the process of formulating a new National Energy Strategy. It seems clear that renewable energy and energy efficiency will play an increasingly important role in this strategy. The U.S. wind program continues to emphasize broad-based technology development, but has also initiated conceptual design studies for an advanced wind turbine for power generation in the late 1990s. (Author)

  10. Wind Vision: A New Era for Wind Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy

    2015-03-12

    With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a future where wind continues to provide key contributions to the nation’s energy portfolio. Building on and updating the 2008 20% Wind Energy by 2030 report, the new Wind Vision Report quantifies the economic, environmental, and social benefits of a robust wind energy future and the actions that wind stakeholders can take to make it a reality.

  11. The role of hydrogen in high wind energy penetration electricity systems: the Irish case

    International Nuclear Information System (INIS)

    Gonzalez, A.; McKeogh, E.; Gallachoir, B.O.

    2004-01-01

    The deployment of wind energy is constrained by wind uncontrollability, which poses operational problems on the electricity supply system at high penetration levels, lessening the value of wind-generated electricity to a significant extent. This paper studies the viability of hydrogen production via electrolysis using wind power that cannot be easily accommodated on the system. The potential benefits of hydrogen and its role in enabling a large penetration of wind energy are assessed, within the context of the enormous wind energy resource in Ireland. The exploitation of this wind resource may in the future give rise to significant amounts of surplus wind electricity, which could be used to produce hydrogen, the zero-emissions fuel that many experts believe will eventually replace fossil fuels in the transport sector. In this paper the operation of a wind powered hydrogen production system is simulated and optimised. The results reveal that, even allowing for significant cost-reductions in electrolyser and associated balance-of-plant equipment, low average surplus wind electricity cost and a high hydrogen market price are also necessary to achieve the economic viability of the technology. These conditions would facilitate the installation of electrolysis units of sufficient capacity to allow an appreciable increase in installed wind power in Ireland. The simulation model was also used to determine the CO 2 abatement potential associated with the wind energy/hydrogen production. (author)

  12. Wind power statistics and an evaluation of wind energy density

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)

    1995-11-01

    In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)

  13. Wind energy - environmental impact assessment: the UK experience and the EU perspective

    International Nuclear Information System (INIS)

    Holmes, S.C.

    1997-01-01

    Planning systems play a critical role in the deployment of wind turbines. Wind energy developers in the UK are familiar with the plan-led system in which the acceptability of each development is determined by balancing local environmental impact with the benefits of the proposed scheme. This contrasts with the position in much of Northern Europe where development plants have the status of law, and wind farm development may take place only in areas identified in the Local Plan. In much of Southern Europe inconsistent implementation of national law tends to be a feature of planning systems. This paper will compare policies and practices in the planning systems of the UK and mainland Europe, north and south, and examine the consequences for wind energy development. Particular attention will be paid to the role of environmental assessment and to the wide variations between requirements placed on developers in individual member states to fund and prepare environmental statements. Factors which either encourage or hinder wind energy will be highlighted and consideration given to the impact of planning constraints on the European Untion wind market growth rate and its ultimate potential. (author)

  14. The Current Situation of Wind Energy in Turkey

    Directory of Open Access Journals (Sweden)

    Raşit Ata

    2013-01-01

    Full Text Available Wind energy applications and turbine installations at different scales have increased since the beginning of this century. As wind energy is an alternative clean energy source compared to the fossil fuels that pollute the atmosphere, systems that convert wind energy to electricity have developed rapidly. Turkey’s domestic fossil fuel resources are extremely limited. In addition, Turkey’s geographical location has several advantages for extensive use of wind power. In this context, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Among the renewable sources, Turkey has very high wind energy potential. According to the Organization for Economic Cooperation and Development (OECD Turkey theoretically has 166 TWh a year of wind potential. However the installed wind power capacity is approximately 14% of total economical wind potential. In this study, Turkey’s installed electric power capacity and electric energy production are investigated and also the current situation of wind energy in Turkey is examined. The wind data used in this study were taken from Turkish Wind Energy Association (TUREB for the year 2012. This paper reviews the assessment of wind energy in Turkey as of the end of July 2012 including wind energy applications.

  15. Financing renewables - wind energy

    International Nuclear Information System (INIS)

    Armstrong, J.

    1998-01-01

    This paper describes the status of the wind energy markets world-wide, in Europe and in the UK. It outlines the main methods of financing wind energy installations and discusses why different institutional structures have led to different markets in the UK and in Germany, with some concern about the state of the UK onshore industry. The paper looks ahead to the opening up of the potentially much larger offshore wind resource, concluding that in this area, existing UK development and financing structures are well suited. (Author)

  16. Wind energy in ''Basse Normandie'': the energies of the sustainable development

    International Nuclear Information System (INIS)

    2005-01-01

    This paper brings together the main topics discussed during the 4. colloquium on the wind energy: the french lateness concerning the wind energy development, the regulatory framework concerning the wind turbines implementation sites, the wind energy situation in ''Basse Normandie'', the offshore wind energy, the site of Sortosville-en-Beaumont, the public relations, the employment and an analysis of some rumors and prejudices. (A.L.B.)

  17. 77 FR 48138 - Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC...

    Science.gov (United States)

    2012-08-13

    ... Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC; Pacific Wind, LLC; Colorado Highlands Wind, LLC; Shooting Star Wind Project, LLC; Notice of Effectiveness of Exempt Wholesale Generator or... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG12-63-000; EG12-64-000...

  18. Wind energy in Bavaria; Windenergie in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    For centuries we use the wind for our purposes. Previously, the wind was almost exclusively important for the economy, and propels windmills and merchant ships. During the 20th century, wind was used especially in leisure such as sailing, surfing and flying. Now we remind ourselves to use the wind energy to our livelihoods - in the power generation by means of wind turbines. Thanks to the financial support from the Renewable Energy Law, wind energy is utilized more and more for ten years. Meanwhile, Germany is internationally ranked third in terms of installed capacity in wind energy.

  19. The urban wind energy potential for integrated roof wind energy systems based on local building height distributions

    NARCIS (Netherlands)

    Blok, R.; Coers, M.D.

    2017-01-01

    An Integrated Roof Wind Energy System (IRWES) is a roof mounted structure with an internal wind turbine that uses smart aerodynamics to catch and accelerate wind flow. It has been designed for application on (existing) buildings in the urban environment. To estimate the maximum total wind energy

  20. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  1. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  2. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  3. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  4. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  5. Wind's share in global energy markets

    International Nuclear Information System (INIS)

    Madsen, B.T.

    1997-01-01

    The question of how great of a contribution wind power can really make to the world's energy needs is discussed. Emphasis up until recently has been mainly on improving wind turbine technology and siting practices as it is these that will provide an answer. The International Energy Agency predicts that world energy demand will increase by 30-50% by 2010. More countries than ever are either using wind power now or are preparing for its use. Wind power continues to improve its price competitiveness. There is enough wind to cover our energy needs many times over, according to some reports twice the world's electricity supply could be met by utilizing just 5-10% of areas identified as having average wind speeds of 5 m/s or greater - ignoring population centers, forests and specially protected areas. But a major limiting factor to utilizing the available wind resource is the established grid systems, which can only base 20% of supply on wind power. It is concluded that wind can contribute significantly to the world's energy needs in the next century and beyond. If wind, which has taken giant leaps in improving its competitiveness over the past 20 hears, can be a major energy contributor by early next century, other renewables such as solar and biomass might also evolve to become major contributors too. If so, renewables, including hydro, could conceivably cover 50% of our energy needs by the middle of the next century. Much will depend on decision-makers at the centers of power. For Europe and certain other areas of the world, policies governing cross-border trade of electricity as well as the framework for environmental protection related to energy production will determine the final outcome

  6. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    International Nuclear Information System (INIS)

    Ning, A; Dykes, K

    2014-01-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent

  7. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    Science.gov (United States)

    Ning, A.; Dykes, K.

    2014-06-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.

  8. Offshore wind energy. An overview on the activities in Germany; Offshore-Windenergie. Ein Ueberblick ueber die Aktivitaeten in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Worm, Anja [media consulta Deutschland GmbH, Berlin (Germany)

    2013-02-15

    The brochure under consideration provides an overview of the activities of offshore wind energy in Germany. The first offshore wind farms are built and generate more electricity than expected. The offshore wind farms serve as a field of learning for new technologies. The power of offshore wind farms opened new prospects for the economy. The northern Federal States of Germany as well as the traditional locations for mechanical engineering and steel production benefit from offshore wind energy.

  9. Introduction to wind energy systems

    Science.gov (United States)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  10. Wind energy a reference handbook

    CERN Document Server

    Newton, PhD, David E

    2014-01-01

    While covering the fascinating history of wind power as a whole, this timely handbook focuses on current technological developments and the promise--and pitfalls--of wind energy as part of the world's energy future.

  11. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  12. Wind energy literature survey no. 34

    DEFF Research Database (Denmark)

    Pavese, Christian

    2015-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawnfrom recent issues of Wind Energy itself and a large number of periodicals including Journal of Wind Engineering andIndustrial Aerodynamics, International Journal of Energy...... Research, Renewable Energy, Energy Sources, Journal of SolarEnergy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systemsalong with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list...... is limitedexclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separatedinto broad categories. Although many papers fit several categories, each paper is listed only once under the categorythought most appropriate. Please note that the inclusion...

  13. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  14. Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

  15. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  16. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  17. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    Directory of Open Access Journals (Sweden)

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  18. Joint Planning Of Energy Storage and Transmission Considering Wind-Storage Combined System and Demand Side Response

    Science.gov (United States)

    Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.

    2017-12-01

    In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.

  19. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  20. Wind energy potential analysis in Al-Fattaih-Darnah

    Energy Technology Data Exchange (ETDEWEB)

    Tjahjana, Dominicus Danardono Dwi Prija, E-mail: danar1405@gmail.com; Salem, Abdelkarim Ali, E-mail: keemsalem@gmail.com; Himawanto, Dwi Aries, E-mail: dwiarieshimawanto@gmail.com [University of Sebelas Maret, Jl. Ir. Sutami No. 36 A, Surakarta, Indonesia 57126 (Indonesia)

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  1. National Offshore Wind Energy Grid Interconnection Study

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  2. Economic performance indicators of wind energy based on wind speed stochastic modeling

    International Nuclear Information System (INIS)

    D’Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2015-01-01

    Highlights: • We propose a new and different wind energy production indicator. • We compute financial profitability of potential wind power sites. • The wind speed process is modeled as an indexed semi-Markov chain. • We check if the wind energy is a good investment with and without incentives. - Abstract: We propose the computation of different wind energy production indicators and financial profitability of potential wind power sites. The computation is performed by modeling the wind speed process as an indexed semi-Markov chain to predict and simulate the wind speed dynamics. We demonstrate that the indexed semi-Markov chain approach enables reproducing the indicators calculated on real data. Two different time horizons of 15 and 30 years are analyzed. In the first case we consider the government incentives on the energy price now present in Italy, while in the second case the incentives have not been taken into account

  3. AirborneWind Energy: Airfoil-Airmass Interaction

    OpenAIRE

    Zanon , Mario; Gros , Sebastien; Meyers , Johan; Diehl , Moritz

    2014-01-01

    The Airborne Wind Energy paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. While Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. A study proposed in Zanon et al. (2013) confirms this claim by showing that, in the ...

  4. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  5. Wind Energy literature survey no. 32

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2014-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of Wind Energy itself and a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International...... Journal of Energy Research, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so...... on. The list is limited exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate...

  6. Wind Energy literature survey no. 31

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2014-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of Wind Energy itself and a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy...... Research, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so on. The list...... is limited exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note...

  7. Wind energy literature survey no. 33

    DEFF Research Database (Denmark)

    Pavese, Christian

    2014-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of Wind Energy itself and a large number of periodicals, including the following: Journal of Wind Engineering and Industrial Aerodynamics, International...... Journal of Energy Research, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so...... on. The list is limited exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate...

  8. Wind energy impact of turbulence

    CERN Document Server

    Hölling, Michae; Ivanell, Stefan

    2014-01-01

    This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application

  9. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO 2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO 2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  10. Wind Energy. The Facts. Executive Summary

    International Nuclear Information System (INIS)

    2009-02-01

    Considered to be the most important wind energy reference in the world. It presents a detailed overview of the wind energy sector, with the most up-to-date and in-depth information on the essential issues concerning wind power today. The new edition includes chapters on: Technology; Grid integration; The economics of wind; Industry and markets; Environmental issues; and Scenarios and targets

  11. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.

    2010-01-01

    Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheri...

  12. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  13. Worldwide potential of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C

    1982-01-01

    A well-documented discussion is presented dealing with the worldwide potential of wind energy as a source of electrical and mechanical power. It is pointed out that 2% of the solar insolation is converted to wind kinetic energy; it is constantly renewed and nondepletable. Efficiency of windmills are discussed (20 to 40%) and payback periods of less than 5 years are cited. Effects of wind velocity and site location are described. Wind pumps are reviewed and the need for wind pumps, particularly in the developing countries is stressed. The generation of electricity by windmills using small turbines is reviewed and appears promising in areas with wind velocities greater than 12 mi/hr. The development of large windmills and groups of windmills (windfarms) for large scale electrical power is discussed, illustrated, and reviewed (offshore sites included). Environmental and safety problems are considered as well as the role of electrical utilities, government support and research activities. It is concluded that the potential contribution of wind energy is immense and that mechanical windmills may become one of the most important renewable technologies. Electrical generating potential is estimated at 20 to 30% of electrical needs. International programs are discussed briefly. 57 references. (MJJ)

  14. Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model

    Directory of Open Access Journals (Sweden)

    Andrew Stiel

    2012-10-01

    Full Text Available With an increased focus on solutions to the ensuing “climate crisis”, the need for energy storage systems is becoming increasingly important as a means to increase the penetration of renewable technologies such as wind energy. The Vanadium Redox Battery is one such energy storage system showing considerable potential owing to its flexibility in power output and capacity, high efficiency and long operating life. This study models the use of the Vanadium Redox Battery as an integration technology in realistic large-scale remote wind/diesel power systems using the HOMER Micropower Optimization Model computer program developed by the US National Renewable Energy Laboratory. Results from this modelling demonstrate the significant financial and environmental benefits to be gained in installing energy storage in a wind farm. The storage system considered here was a Vanadium Redox Battery.

  15. Wind energy in France: impossible?

    International Nuclear Information System (INIS)

    Marie-Josette, R.

    2005-01-01

    Since the end of 2004, the European Union is the first producer of wind energy in the world (34205 MW), far beyond the USA (6740 MW) and India (2110 MW). Three countries are in the pole position: Germany (16629 MW), Spain (8263 MW) and Denmark (3117 MW). On the other hand, despite a voluntarist policy, the other countries encounter administrative and local difficulties in the development of wind energy. This is the case with France which has the second biggest potential wind resource of Europe, behind the UK. The French situation is explained by its centralized energy system, by the priority given to nuclear power, by important wind variations, and by a bad image of wind turbines in general (aesthetic, environmental). This situation should change in the future with the scheduling of pluri-annual investments, with adapted tariffs and with improved administrative procedures. (J.S.)

  16. Valuation of switchable tariff for wind energy

    International Nuclear Information System (INIS)

    Yu, Wang; Sheble, Gerald B.; Lopes, Joao A. Pecas; Matos, Manuel Antonio

    2006-01-01

    The current fixed tariff remuneration for wind energy is not compatible with the deregulation of the electric power industry. The time-varying and location-dependent value of renewable energy is not acknowledged. The newly announced switchable tariff for wind energy in the Spanish electricity market provides a promising solution to compensating renewable energy within the deregulated electric power industry. The new switchable tariff provides wind generators more flexibility in operating wind generation assets. Such flexibilities provide option value in coordinating the seasonality of wind energy, demand on electric power and electricity prices movement. This paper models and valuates the flexibility on switching tariff as real compound options for wind generators. Numerical examples valuate wind generation assets under fixed tariff, spot market price taking, and yearly and monthly switchable tariffs. The optimal switching strategies are identified. The impacts of the switchable tariff on sitting criteria and values of wind generation assets are investigated. An improvement on the yearly switchable tariff is suggested to further reduce the operation risk of wind generators and fully explore the efficiency provided by competitive electricity markets. (author)

  17. Resolving Environmental Effects of Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeGeorge, Elise M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Copping, Andrea E. [Pacific Northwest National Laboratory; May, Roel [Norwegian Institute for Nature Research; Bennet, Finlay [Marine Scotland Science; Warnas, Marijke [Rijkswaterstaat; Perron, Muriel [nateco AG; Elmqvist, Asa [Swedish Environmental Protection Agency

    2018-04-25

    Concerns for potential wildlife impacts resulting from land-based and offshore wind energy have created challenges for wind project development. Research is not always adequately supported, results are neither always readily accessible nor are they satisfactorily disseminated, and so decisions are often made based on the best available information, which may be missing key findings. The potential for high impacts to avian and bat species and marine mammals have been used by wind project opponents to stop, downsize, or severely delay project development. The global nature of the wind industry - combined with the understanding that many affected species cross-national boundaries, and in many cases migrate between continents - also points to the need to collaborate on an international level. The International Energy Agency (IEA) Wind Technology Collaborative Programs facilitates coordination on key research issues. IEA Wind Task 34 - WREN: Working Together to Resolve Environmental Effects of Wind Energy-is a collaborative forum to share lessons gained from field research and modeling, including management methods, wildlife monitoring methods, best practices, study results, and successful approaches to mitigating impacts and addressing the cumulative effects of wind energy on wildlife.

  18. Large-scale wind energy application. Transporting wind energy over long distances using an HVDC transmission line, in combination with hydro energy or biomass energy

    International Nuclear Information System (INIS)

    Coelingh, J.P.; Van Wijk, A.J.M.; Betcke, J.W.H.; Geuzendam, C.; Gilijamse, W.; Westra, C.A.; Curvers, A.P.W.M.; Beurskens, H.J.M.

    1995-08-01

    The main objective of the study on the title subject is to assess the long-term prospects for large-scale application of wind energy, in combination with hydro energy in Norway and in combination with biomass energy in Scotland. These countries have high wind resource areas, however they are located far away from load centres. The development of new transmission technologies as High Voltage Direct Current (HVDC) transmission lines, in combination with highly suitable places for wind energy in Norway and Scotland, forms the driving force behind this study. The following two cases are being considered: (1) a large-scale wind farm (1,000 MW) in Norway from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with hydro energy. Hydro energy already makes a large contribution to the energy supply of Norway. Wind farms can contribute to the electricity production and save hydro energy generated electricity and make the export of electricity profitable; and (2) a large-scale wind farm (1,000 MW) in Scotland from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with biomass energy. Scotland has a large potential for biomass production such as energy crops and forestry. Poplars and willows cultivated on set-aside land can be gasified and fed into modern combined-cycle plants to generate electricity. In Scotland the usable potential of wind energy may be limited in the short and medium term by the capacity of the grid. New connections can overcome this constraint and allow wind energy to be treated as a European Union resource rather than as a national resource. Thus, the concept of this study is to look at the possibilities of making a 1,000 MW link from The Netherlands to Norway or to Scotland, in order to supply electricity at competitive costs generated with renewable energy sources. 16 figs., 24 tabs., 80 refs

  19. Developing wind energy for the UK

    Energy Technology Data Exchange (ETDEWEB)

    Rand, Marcus [Open Univ., Milton Keynes (GB). Faculty of Technology

    1990-01-01

    There is now emerging a consensus that the sensitive development of renewable sources of energy, and in particular wind energy, is going to be of major environmental significance for the UK. Primarily, renewable sources of energy can act as a means of combating the Greenhouse Effect and of reducing the other environmental impacts of conventional energy technology, including the build-up of radioactive waste and the damaging emissions from fossil fuelled power stations. The UK has a large natural potential for harnessing energy from the wind (between 20% and 200% of our current electrical requirements). This potential is beginning to be tapped. Wind energy is now in a position where it can take advantage of the profound changes taking place in the form of the privatisation of the Electricity Supply Industry. In other countries wind energy has developed successfully. (author).

  20. The wind energy potential in Argentina

    International Nuclear Information System (INIS)

    Alvarez, P

    2005-01-01

    The wind energy are increasing its contribution to large scale electricity generation in many countries.The high technical maturity reached by modern wind turbines returns it viable and competitive in many regions, specially in those where a suitable legal framework stimulates the generation from renewable sources of energy.As this regard, the objective of this report is to demonstrate that, far from being limited to provide energy to remote, dispersed or geographically isolated sites not served by conventional networks, the wind energy has fully potential to supply a pretty relevant part of the electrical consumption of the great urban centers located in those zones of the country favored with this resource.For it, two preliminary estimations has done: the total 'windy' surface area in geographic proximity of the high voltage lines and electrical substations of the Argentine System of Interconnection (SADI) able 'to be seeded' with wind turbines, and the total electrical energy feasible of being generated from them.The paper supposes the exclusion of important non apt areas by virtue of strictly geographic, economic or environmental considerations.Even so, the result of the final calculation is extraordinarily high and promissory: if only 4% of the total surface of the contiguous land areas (in a maximum radius of 62 km) to the high voltage transmission system (in which the annual mean wind speed surpasses the 5.55 m/s) would be filled with power wind turbines, the annual average energy produced by them would be equivalent to 89% of the estimated national electrical consumption for year 2013.The usable wind potential in favorable technical conditions for commercial generation rounds this way around 40,000 MW, that would report an annual average energy of 100,000 GWh, occupying an area near 5000 km 2 .The total wind energy potential is (of course) considerably greater. Anyway, given the random nature of the wind and the consequent characteristics of not firm power

  1. Development of wind energy in Morocco

    International Nuclear Information System (INIS)

    Enzili, M.

    2008-01-01

    Morocco's national energy policy includes the use of renewable energy sources to lessen its reliance on fossil fuels such as coal and oil. Legislation was recently passed to increase the threshold of electrical power from 10 MW to 50 MW. Solar and wind energy are the most abundant renewable energy resources in the country and are recommended for exploitation on a large scale. Feasibility studies conducted by the Centre de Developpement des Energies Renouvelables have shown that Morocco has enough wind energy to produce electricity on a large scale and interconnect it with the national power grid. Wind energy in the country could also be used for on-site power generation in remote villages or for desalination of seawater, particularly in the southern regions of Morocco which are most affected by drought. Essaouira, Tangier, Tetouan, Tarfaya, Dakhla, Laayoune and Taza were among the regions identified with significant wind resources. The total wind energy potential for Morocco is estimated to be 2,650 GW, while the technical wind energy potential is estimated to be 1,600 GW. Several projects have been realized in the areas of electricity production, interconnection to the national power grid, decentralized rural electrification and eventually the introduction of water pumping. It was concluded that exporting green energy to Europe, via the Morocco-Spain route after the restructuring of Morocco's electricity sector will create a viable market for the medium and long-term. 3 figs

  2. 4MW per month: the economics and reliability of private wind energy in Denmark

    International Nuclear Information System (INIS)

    Palmer, C.

    1991-01-01

    Denmark has an established wind energy industry. For more than 10 years they have had companies which manufacture production wind turbines for sale on the open market. Over the last five years this industry has matured considerably and there are now at least five companies which sell wind turbines as off the shelf products. Many thousands of Danish wind turbines have been sold around the world and the industry has benefitted greatly from this experience. There are no other European manufacturers who have access to such a large bank of experience. Within Denmark itself, wind energy is considered to be an essentially proven technology. As a result it is an accepted part of the investment market. Approximately 1% of the Danish population (50,000 people) have money invested in wind turbines. Borrowing money for this purpose is almost as well established as the house mortgage system in the UK. (Author)

  3. In Search of the Wind Energy Potential

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what...... is the perspective for future improvements of the assessment methods. We take as the starting point the methodology of The European Wind Atlas [I. Troen and E. L. Petersen, European Wind Atlas (Risø National Laboratory, Roskilde, Denmark, 1989)]. From there to the global wind atlas methodology [J. Badger et al...

  4. Wind energy - Opinions of the ADEME

    International Nuclear Information System (INIS)

    2016-04-01

    This publication proposes brief presentations and discussions and some data related to the production of electricity by means of wind energy: principle and description, key data (international context, electric power production in France, economic development of the sector), status of knowledge regarding various aspects (assets of wind energy, a clean and local energy, a predictable and manageable source, an increasing competitiveness, a focus on offshore wind energy, control of acoustic and landscape impacts, protection of biodiversity, management of interactions with radars, a steady and clear regulation), perspectives of evolution (a sector of innovations, an opportunity for the development of circular economy, promotion of a participative and citizen wind energy), the case a small units, actions undertaken by the ADEME, and global opinion by the ADEME

  5. ewec 2007 - Europe's premier wind energy event

    International Nuclear Information System (INIS)

    Chaviaropoulos, T.

    2007-01-01

    This online collection of papers - the ewec 2007 proceedings - reflects the various sessions and lectures presented at the ewec wind-energy convention held in Milan in 2007. The first day's sessions looked at the following topics: Renewable Energy Roadmap, the changing structure of the wind industry, politics and programmes, aerodynamics and innovation in turbine design, wind resources and site characterisation (2 sessions), energy scenarios, harmonisation of incentive schemes, structural design and materials, forecasting, integration studies, integrating wind into electricity markets, wind-turbine electrical systems and components, as well as loads, noise and wakes. The second day included sessions on offshore: developments and prospects, extreme wind conditions and forecasting techniques, small wind turbines, distributed generation and autonomous systems cost effectiveness, cost effectiveness of wind energy, financing wind energy concepts, wind and turbulence, wind power plants and grid integration, offshore technology, global challenges and opportunities, aero-elasticity, loads and control, operations and maintenance, carbon trading and the emission trading schemes, investment strategies of power producers, wind power plants and grid integration, wind turbine electrical systems and components, and wakes. The third day offered sessions on environmental issues, condition monitoring, operation and maintenance, structural design and materials, the Up-Wind workshop, winning hearts and minds, offshore technology, advances in measuring methods and advancing drive-train reliability. In a closing session the conference was summarised, awards for poster contributions were made and the Poul la Cour Prize was presented

  6. Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea

    Directory of Open Access Journals (Sweden)

    Yong Wan

    2018-02-01

    Full Text Available The South China Sea is a major shipping hub between the West Pacific and Indian Oceans. In this region, the demand for energy is enormous, both for residents’ daily lives and for economic development. Wave energy and wind energy are two major clean and low-cost ocean sources of renewable energy. The reasonable development and utilization of these energy sources can provide a stable energy supply for coastal cities and remote islands of China. Before wave energy and wind energy development, however, we must assess the potential of each of these sources. Based on high-resolution and high-accuracy wave field data and wind field data obtained by ERA-Interim reanalysis for the recent 38-year period from 1979–2016, the joint development potential of wave energy and wind energy was assessed in detail for offshore and nearshore areas in the South China Sea. Based on potential installed capacity, the results revealed three promising areas for the joint development of nearshore wave energy and wind energy, including the Taiwan Strait, Luzon Strait and the sea southeast of the Indo-China Peninsula. For these three dominant areas (key stations, the directionality of wave energy and wind energy propagation were good in various seasons; the dominant wave conditions and the dominant wind conditions were the same, which is advantageous for the joint development of wave and wind energy. Existing well-known wave energy converters (WECs are not suitable for wave energy development in the areas of interest. Therefore, we must consider the distributions of wave conditions and develop more suitable WECs for these areas. The economic and environmental benefits of the joint development of wave and wind energy are high in these promising areas. The results described in this paper can provide references for the joint development of wave and wind energy in the South China Sea.

  7. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind......Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  8. Wind energy potential in India

    International Nuclear Information System (INIS)

    Rangarajan, S.

    1995-01-01

    Though located in the tropics, India is endowed with substantial wind resources because of its unique geographical location which gets fully exposed to both the south-west and north-east monsoon winds. The westerly winds of the south-west monsoons provide bulk of the wind potential. Areas with mean annual wind speed exceeding 18 k mph and areas with mean annual power density greater than 140 W/m 2 have been identified using the wind data collected by the wind monitoring project funded by the Ministry of Non-conventional Energy Sources (MNES). Seasonal variations in wind speed at selected locations are discussed as also the frequency distribution of hourly wind speed. Annual capacity factors for 250 kW wind electric generators have been calculated for several typical locations. A good linear correlation has been found between mean annual wind speed and mean annual capacity factor. A method is described for assessing wind potential over an extended region where adequate data is available. It is shown that the combined wind energy potential over five selected areas of limited extent in Gujarat, Andhra Pradesh and Tamil Nadu alone amounts to 22,000 MW under the assumption of 20 per cent land availability for installing wind farms. For a higher percentage of land availability, the potential will be correspondingly higher. (author). 12 refs., 6 figs., 3 tabs

  9. Look at Use of Wind Energy

    International Nuclear Information System (INIS)

    Tolun, Suleyman

    2006-01-01

    Electricity from wind energy has expanded globally 43.4% in 2005. The goal of the contributing countries is to increase its share in electricity production to 20% in 2020-30 period. Incentives play an important role in promoting the wind energy in countries. As wind energy conversion technology is the most developed one among other renewable energies there is a chance of installing advanced technology turbines on windy sites of the country by precise evaluation of the source and technology it needs.

  10. Wind energy in the agricultural sector. Tailwind or head wind?

    International Nuclear Information System (INIS)

    Van der Knijff, A.

    1999-06-01

    The state of the art in the use of wind energy in the agricultural sector in the Netherlands is given in order to map opportunities. Obstacles to expansion of wind capacity in that sector in the short term are described, as well as the most important developments with respect to wind energy. An estimated 275 wind turbines with a capacity of 50 MW are in use in the Netherlands. This means that the agricultural sector accounts for approximately 14% of the total wind capacity in the Netherlands (363 MW in 1998). Most of the agricultural businesses supply all the electricity generated to the public networks. Only a small number of farmers use some of the generated electricity themselves. The most important obstacles for the agrarian sector are the proposed policies of provinces and municipalities, the limited capacity of the public electricity network, and the lack of clarity regarding the liberalisation of the electricity market. In particular, provincial and municipal policies (solitary wind turbines versus wind farms) will determine the prospects for the future of wind energy in the agrarian sector. Despite possible adversities, there are good prospects for the future for the sector because farmers own land in windy locations. 33 refs

  11. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  12. The benefits of geographical dispersion of offshore wind turbines.

    NARCIS (Netherlands)

    Assen van, Vincent

    2012-01-01

    Summary Wind energy is one of the possible solutions to minimise the greenhouse gas emissions of our electricity production. Therefore, the Dutch government aims to install 6000 MW of wind turbines on the Dutch North Sea. The power output of wind turbine

  13. Downscaling of Airborne Wind Energy Systems

    NARCIS (Netherlands)

    Fechner, U.; Schmehl, R.

    2016-01-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that can not be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the

  14. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  15. Report on wind energy for small communities

    Energy Technology Data Exchange (ETDEWEB)

    Maissan, J.F. [Leading Edge Projects Inc., Whitehorse, YT (Canada)

    2006-04-15

    Wind energy projects can be economically viable in the north under a range of conditions when oil prices are in the range of $60 U.S. per barrel. Some of the requirements for economic viability include locations with economies of scale, availability of local equipment, availability of local technical human resources, access to reasonable transportation, and a committed community and project proponent. This paper presented the results of a study on wind energy in small northern communities. The objective of the paper was to provide an assessment of the feasibility of wind power to community leaders in diesel-dependant remote communities. The paper provided a review of wind power technologies including wind turbines; wind turbine towers; wind-diesel integration; wind penetration levels; anti-icing technology; suppliers of wind-diesel integration systems; and wind turbine manufacturers promoting wind-diesel systems. The paper also provided a review of the historical capital costs for the installation of wind projects; recommendations from project developers; project site selection criteria; as well as a simplified economic analyses for small communities. The paper also discussed the successful Kotzebue Alaska wind-diesel project as a model to follow. It described how to start a wind energy program with reference to the roles of the federal government, territorial governments and their power utilities. It was demonstrated that wind energy can be a cost effective option to reduce diesel generation requirements in the appropriate circumstances. It was concluded that deployment of wind energy in the north still needs to proceed on a carefully planned path beginning with leader projects and branching out from there. In addition, there is a need for good quality wind resource assessment at potential wind project locations in many communities in the north. refs., tabs., figs.

  16. World trends in wind energy

    International Nuclear Information System (INIS)

    Kane, Mamadou

    2016-01-01

    A set of articles proposes an overview of some recent, important and characteristic trends in the field of wind energy all over the world. China, with 30,8 GW of newly installed capacities in 2015 has just overtaken the European Union as far as the total installed power is concerned (145 GW against 142 GW). Job growth in the wind energy sector has reached 20 per cent in the USA in 2015. In this country, major companies held 52 per cent of the market in 2015 while a new American research plan has been approved for the development of offshore wind energy. In South Africa, a German company specialised in blade inspection and repair will provide the Obelisk group with its services on blades and towers for wind turbines. As far as the UK is concerned, the article outlines and comments the continuing decrease of production costs. In India, General Electric is about to launch a new technology of digital wind farm which is supposed to improve production by simulating availability and productivity over the farm lifetime while reducing costs. In Norway, a Norwegian company proposes a new battery-based storage solution, Batwind, for offshore wing energy

  17. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  18. Wind energy developments in the 20th century

    Science.gov (United States)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  19. Feasibility of Wind Energy Parks

    International Nuclear Information System (INIS)

    Villar, Jose

    2000-01-01

    The paper discuss the feasibility of wind energy parks including aspects of supply and demand of energy, costs of generation and risks of investment associated. The paper introduce to the situation of wind energy in the word and specifically in Spain, describes the legal framework in promotion of renewables in Spain, the analysis of revenues and the risk of this business in the european market

  20. Wind energy in 1996: Looking forward, looking back

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, R.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. A brief review of progress in wind energy is given. The impact of world market forces and restructuring of the electric industry in the U.S. on the wind energy market are discussed. An outline of the American Wind Energy Association`s Renewables Portfolio Standard is presented. Legislative activities in wind energy are also reviewed.

  1. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Science.gov (United States)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  2. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Directory of Open Access Journals (Sweden)

    Bieniek Andrzej

    2017-01-01

    Full Text Available The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 ms-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  3. DOE/NREL supported wind energy activities in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

  4. Wind energy and social acceptability

    International Nuclear Information System (INIS)

    Feurtey, E.

    2008-01-01

    This document was prepared as part of a decentralized collaboration between Quebec and France to share knowledge regarding strategies and best practices in wind power development. It reviewed the social acceptance of Quebec's wind power industry, particularly at the municipal level. The wind industry is growing rapidly in Quebec, and this growth has generated many reactions ranging from positive to negative. The purpose of this joint effort was to describe decision making steps to developing a wind turbine array. The history of wind development in Quebec was discussed along with the various hardware components required in a wind turbine and different types of installations. The key element in implementing wind turbine arrays is to establish public acceptance of the project, followed by a good regulatory framework to define the roles and responsibilities of participants. The production of electricity from wind turbines constitutes a clean and renewable source of energy. Although it is associated with a reduction in greenhouse gas emissions, this form of energy can also have negative environmental impacts, including noise. The revenues generated by wind parks are important factors in the decision making process. Two case studies in Quebec were presented. refs., tabs., figs.

  5. Energy potential of the wind and possibility for construction of big energy systems

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    In this paper a brief theoretical survey is given on the wind as a clean and renewable energy source.The wind energy potential is analyzed as well as the power limits that could be obtained as a result of the wind kinetic energy.The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime, the efficiency and availability of the wind turbine. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives

  6. Quantifying uncertainties in wind energy assessment

    Science.gov (United States)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  7. The European wind energy programmes

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.; Lalas, D.

    1993-01-01

    A general review is given of national wind energy programmes in European countries. First, tendencies of the past wind energy programmes are described and linked to the present developments. Not only the separate aspects are reviewed (R+D, wind turbine development, market stimulation, utility involvement, regulatory issues and operational experiences), but also the synergetic aspects of their integration is addressed. The main conclusion is that the integration of R+D, industrial development and market stimulation works. 4 ills., 3 tabs

  8. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  9. Wind energy survey in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Wolde-Ghiorgis, W.

    1988-01-01

    The results are presented of a wind energy survey made for one country in Eastern Africa (Ethiopia) using mean wind speed data obtained from meteorological observations. The paper also presents reasons for expecting the calculated energy estimates to be potentially useful around most of the sites considered in the study.

  10. 2015 wind energy observatory. Analysis of market, jobs and future of the wind energy sector in France

    International Nuclear Information System (INIS)

    Perot, Olivier; Autier, Emmanuel

    2015-11-01

    This Power Point presentation proposes graphs, figures, tables and comments on the status and evolution of jobs in the wind energy sector (a growing sector, analysis of job locations), of the wind energy market (assessment of a growing market, dynamic French regions, competitive context, evolution of technologies with higher machines, larger wind farms and a growing production), and on the future of wind energy (a growing number of training courses, an active R and D all over the country, a structuring sector). Sheets presenting actors per categories, and maps of regional activity location are provided in appendix

  11. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  12. Monthly Wind Characteristics and Wind Energy in Rwanda | Sarari ...

    African Journals Online (AJOL)

    Evaluating wind power potential for a site is indispensable before making any ... objective was to investigate the potential of wind energy resource in Rwanda. ... fit to the distribution of the measured wind data varies from a location to another. ... (14); Eritrea (1); Ethiopia (30); Ghana (27); Kenya (29); Lesotho (1); Libya (2) ...

  13. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  14. Adaptations of renewable energy policies to unstable macroeconomic situations - case study: wind power in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, J.M. [Technical University, Berlin (Germany). Dept. of Renewable Energies; Federal University, Rio de Janeiro (Brazil); World Council for Renewable Energy, Rio de Janeiro (Brazil); Krauter, S.C.W. [Technical University, Berlin (Germany). Dept. of Renewable Energies; World Council for Renewable Energy, Rio de Janeiro (Brazil); State University of Ceara (Brazil). Dept. of Physics

    2006-12-15

    Despite the massive cost reduction in the last decade, wind power generation is generally still more expensive than conventional energy sources which benefit from the exclusion of externality costs in the price structure. Support policies for renewable energies guarantee the economic viability of this type of electrical power generation in many European countries. In Latin America, Brazil has become the pioneer state for renewable energy with the implementation of the PROINFA programme that supports, among other sources, wind power development of 1100 MW. This article presents an overview of the differences between the German and Brazilian wind power promotion policies with a special focus on how PROINFA can be adapted to the unstable macroeconomic situation of Brazil. The document specifically examines the adaptation of wind power promotion policies to large inflation and interest rates in Brazil. (author)

  15. Adaptations of renewable energy policies to unstable macroeconomic situations-Case study: Wind power in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, Johannes M. [Department of Renewable Energies, Institute for Energy and Control Technology, Technical University Berlin (TUB), Sec. EM 4, Einsteinufer 11, D-10587 Berlin (Germany) and Federal University of Rio de Janeiro (UFRJ-COPPE), Programme for Energy Planning, Rio de Janeiro-RJ (Brazil) and World Council for Renewable Energy-Latin America - WCRE LA, c/o Rio Solar Ltda./PML, Av. Rio Branco, 25/18o andar, 20093-900 Rio de Janeiro-RJ (Brazil)]. E-mail: jo.kissel@gmx.net; Krauter, Stefan C.W. [Department of Renewable Energies, Institute for Energy and Control Technology, Technical University Berlin (TUB), Sec. EM 4, Einsteinufer 11, D-10587 Berlin (Germany) and World Council for Renewable Energy-Latin America (WCRE LA), c/o Rio Solar Ltda./PML, Av. Rio Branco, 25/18o andar, 20093-900 Rio de Janeiro-RJ (Brazil) and Department of Physics, State University of Ceara - UECE, Alternative Energy Group, Av. Paranjana 1700, Campus do Itaperi, Fortaleza 60740-000 CE (Brazil)]. E-mail: krauter@uece.br

    2006-12-15

    Despite the massive cost reduction in the last decade, wind power generation is generally still more expensive than conventional energy sources which benefit from the exclusion of externality costs in the price structure. Support policies for renewable energies guarantee the economic viability of this type of electrical power generation in many European countries. In Latin America, Brazil has become the pioneer state for renewable energy with the implementation of the PROINFA programme that supports, among other sources, wind power development of 1100 MW. This article presents an overview of the differences between the German and Brazilian wind power promotion policies with a special focus on how PROINFA can be adapted to the unstable macroeconomic situation of Brazil. The document specifically examines the adaptation of wind power promotion policies to large inflation and interest rates in Brazil.

  16. Adaptations of renewable energy policies to unstable macroeconomic situations-Case study: Wind power in Brazil

    International Nuclear Information System (INIS)

    Kissel, Johannes M.; Krauter, Stefan C.W.

    2006-01-01

    Despite the massive cost reduction in the last decade, wind power generation is generally still more expensive than conventional energy sources which benefit from the exclusion of externality costs in the price structure. Support policies for renewable energies guarantee the economic viability of this type of electrical power generation in many European countries. In Latin America, Brazil has become the pioneer state for renewable energy with the implementation of the PROINFA programme that supports, among other sources, wind power development of 1100 MW. This article presents an overview of the differences between the German and Brazilian wind power promotion policies with a special focus on how PROINFA can be adapted to the unstable macroeconomic situation of Brazil. The document specifically examines the adaptation of wind power promotion policies to large inflation and interest rates in Brazil

  17. The Wind Energy programme - SFOE Research Programme 2000 - 2003; Programm Wind. Konzept BFE-Forschungsprogramm 'Wind' 2000 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2001-07-01

    This document, issued by the Swiss Federal Office of Energy (SFOE) describes the concept behind the Swiss wind energy programme. The first part of the report discusses the origins and development of the wind energy programme in Switzerland, discussing the importance of wind energy and policy matters associated with its promotion. The experience gained during the previous research programmes is reviewed. The degree to which targets were reached, promotional activities, the central government's own wind energy activities and the results of a programme evaluation are discussed. Lists of projects that have been realised and activities that have been carried out are presented and positive and negative influences on development are noted. A second part is dedicated to the goals of the wind energy programme in terms of target figures for the year 2010 and the strategies chosen to reach these goals, including pilot and demonstration projects (P and D) and promotional activities. Details of the P and D programme including lists of wind-power projects to be supported, the priorities that have been set and information and further education that is to be provided, are given. New activities in the wind power area such as the development of new type of wind turbine especially suited to alpine conditions are discussed. The role of the Swiss Association for Wind Energy 'Suisse Eole' as a network-partner in the wind energy programme is discussed. An appendix provides details of wind energy projects in Switzerland, market partners and customers. The results of a survey made of wind energy activities at Swiss institutes of higher education are presented.

  18. WindScanner.eu - a new Remote Sensing Research Infrastructure for On- and Offshore Wind Energy

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Siggaard Knudsen, Søren; Sjöholm, Mikael

    2012-01-01

    will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D Wind......A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology......Scanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind...

  19. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada

    International Nuclear Information System (INIS)

    Li Meishen; Li Xianguo

    2005-01-01

    Wind energy becomes more and more attractive as one of the clean renewable energy resources. Knowledge of the wind characteristics is of great importance in the exploitation of wind energy resources for a site. It is essential in designing or selecting a wind energy conversion system for any application. This study examines the wind characteristics for the Waterloo region in Canada based on a data source measured at an elevation 10 m above the ground level over a 5-year period (1999-2003) with the emphasis on the suitability for wind energy technology applications. Characteristics such as annual, seasonal, monthly and diurnal wind speed variations and wind direction variations are examined. Wind speed data reveal that the windy months in Waterloo are from November to April, defined as the Cold Season in this study, with February being the windiest month. It is helpful that the high heating demand in the Cold Season coincides with the windy season. Analysis shows that the day time is the windy time, with 2 p.m. in the afternoon being the windiest moment. Moreover, a model derived from the maximum entropy principle (MEP) is applied to determine the diurnal, monthly, seasonal and yearly wind speed frequency distributions, and the corresponding Lagrangian parameters are determined. Based on these wind speed distributions, this study quantifies the available wind energy potential to provide practical information for the application of wind energy in this area. The yearly average wind power density is 105 W/m 2 . The day and night time wind power density in the Cold Season is 180 and 111 W/m 2 , respectively

  20. Contribution to the chapter on wind power in: Energy technology perspectives 2008, IEA

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.; Clausen, Niels-Erik; Hjuler Jensen, P.

    2009-01-15

    Over the last 5 years the growth rate in wind energy has been as high as 30% an on average nearly 25% in all continents, and a considerable number of countries have very ambitious goals concerning their wind energy development, therefore it could be likely to cover as much as 20% of the world's electricity consumption by wind in 2030 and 35% in 2050, although on the shorter term growth is expected to take place mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power are being developed and better planning tools as well as other frameworks, which benefit the market for installation of wind turbines, are being implemented across all wind energy countries. The cost of wind-generated electricity has fallen steadily for the last two decades, driven largely by technological advances, increased production levels and the use of larger turbines. Between 1985 and 2005, production costs energy from of wind turbines decreased by nearly 100% in 2006 prices. The price rises seen in last three years due to capacity problems in the industry are expected to stop, once supply system constraints are overcome. Onshore wind is considered commercial at sites with good wind resources and grid access. Cost reductions in both turbines and infrastructure are expected to bring investment costs to 0.88 mill. Euro/MW in 2030 and 0.8 mill. Euro/MW in 2050. On the other hand, offshore wind is in pre-commercial development phase. Considerable costs improvements are expected in all areas making costs go down to 1. 4 mill. Euro/MW in 2030 and 1.3 mill. Euro/MW in 2050. Priority RD and D areas to foster continued growth in wind power are to increase the value and reduce uncertainties. This will mean further cost reductions on longer terms, enabling large-scale use by improved grid integration and storage facilities and minimizing environmental impact. (au)

  1. Indian offshore wind energy policy - lessons from Europe

    Energy Technology Data Exchange (ETDEWEB)

    Mani, S.; Dhingra, T. [Univ. of Petroleum and Energy Studies (UPES), Dehradun (India)

    2012-07-01

    Indian Economy is growing at 8% for the past few years and is expected to continue this momentum into the foreseeable future. To sustain this growth, power sector needs to build additional generation capacity at an unprecedented pace. However, continued dependence on fossil fuels (especially Coal and Oil) to power the growth of electricity generation capacity, is hardly sustainable in the long run. The reasons are well known - Environmental concerns, depleting fossil fuel resources, excessive dependency on Oil imports - that it hardly merits repetition. Renewable Energy source forms a miniscule portion (25 GW, {approx} 12%) of India's overall Energy consumption today (202 GW). The share of wind energy (17 GW) is 67% of the total renewable energy basket. But the contribution from offshore wind farms is non-existent, as all the wind energy generated in India is only through onshore Wind farms. India needs a policy framework to encourage the development of offshore wind farms. Several European countries, most notably the UK, Germany and Denmark, have effective offshore wind energy policies that have helped them to accelerate the growth of their offshore wind energy sector. This paper does an exhaustive study to identify the building blocks of a successful offshore wind energy policy initiative adopted by selected European countries, which can be leveraged by India to articulate its own offshore wind energy policy. This paper also suggests a model to predict the log-odds of growth of offshore wind energy sector in India. (Author)

  2. Financing of wind energy projects

    International Nuclear Information System (INIS)

    Harland, S.

    1991-01-01

    This paper looks at what banks need to know to enable them to consider a wind energy project. The major experiences of banks in financing wind energy have been in the US where governmentally inspired long term sales contracts (PURPA Contracts) have given a security to sponsors and banks not available elsewhere. (Author)

  3. Wind energy development in China - reality and market forces

    International Nuclear Information System (INIS)

    Yinghua Han

    1999-01-01

    Economic reforms in China started in 1978, which led to profound changes as a result of a consistent structural adjustment and stabilisation policy. The national economy is now characterised with high growth and low inflation. In 1997, GDP was US$ 767 billion and foreign exchange reached US$ 140 billion. This paper examines the outstanding contribution of rural industries to rapid growth of national economy and the consequences of increase of energy consumption and its environmental impact. It also emphasises the necessity and benefit of using renewable energy and wind energy in particular. The paper also addresses the issue of joint venture in farm development in line with Chinese market economy. (Author)

  4. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects, National Research Council

    2007-01-01

    .... Although the use of wind energy to generate electricity is increasing rapidly in the United States, government guidance to help communities and developers evaluate and plan proposed wind-energy projects is lacking...

  5. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  6. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  7. Vertical-axial component wind turbine with a high coefficient using for wind energy

    International Nuclear Information System (INIS)

    Yersin, Ch. Sh.; Manatbev, R.K.; Yersina, A. K.; Tulepbergenov, A. K.

    2012-01-01

    The report presents the results of research and development on of promising wind units carousel type with a high ratio utilization of wind energy. This devices use a well-known invention – the wind turbine Darrieus. The rotation of the turbine is due to the action of ascensional power to aerodynamic well-streamlined symmetrical about the chord wing profiles of NASA, which are working wind turbine blades. The shaft rotation can be connected with the working blades of one of two ways: using the “swings” or the way “troposkino”. Darrieus turbine has a ratio utilization of wind energy xmax=045. Despite the fact that this is a good indicator of the efficiency of the turbine working, the proposed option allows us to significantly increase the value of this coefficient. The bases methodology of this research is a method of technical and technological research and development design of prospective wind energy construction (WES). Key words: wind turbine, the blade, coefficient utilization of wind energy

  8. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  9. Indian Wind Energy Outlook 2011

    International Nuclear Information System (INIS)

    Shukla, Shruti; Kharul, Rajendra; Sawyer, Steve; Patel, Narendra; Pullen, Angelika; Gorate, Devanand; Raghu, V.

    2011-12-01

    This report is a valuable tool for members of the wind industry and policy makers alike to learn about the market opportunities and the legal and regulatory framework in India. In addition, it gives us insights into the challenges going forward and offers suggestions for overcoming remaining hurdles for wind power development. According to the outlook 65.2 GW of wind power could be installed in Indian by 2020, up from 13.1 GW at the end of 2010. This would attract around USD 10.4bn of annual investment to the sector, and create 170,000 'green collar' jobs in manufacturing, project development, installation, operation, maintenance, consulting etc. At the same time, it would save 174 tons of CO2 every year. By 2030, the installed capacity could reach as much as 160.7 GW. In order to fully exploit the indigenous energy source at its doorstep, the Indian government needs to address several challenges and barriers that are holding back development. This includes a national renewable energy law, incentives for repowering, and rapid up-scaling of grid infrastructure to transport increasing amounts of wind power to the demand centres. It highlights the key role wind power could play in fueling India's growing energy demand, by delivering substantial amounts of clean energy.

  10. Conference on 'How to finance wind energy?'

    International Nuclear Information System (INIS)

    Metzler, Vincent; Weiler, Sibylle; Mous, Dirk; Hodges, Charlie; Talagrand, Romain; Soerensen, Hans Chr.; Feddersen, Hans; Dosdall, Bjoern; Jourdain, Pierre; Duval, Jocelyn

    2010-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on wind energy financing. In the framework of this French-German exchange of experience, more than 150 participants exchanged views on the existing financing solutions for wind energy projects in France, Germany, UK and Denmark. This document brings together the available presentations (slides) made during this event: 1 - How to go on with wind energy projects financing? What evolution of the senior wind energy debt? (Vincent Metzler); 2 - Financing of wind energy projects - Legal aspects (Sibylle Weiler); 3 - Current and future trends in offshore wind financing in Germany (Dirk Mous); 4 - Financing offshore wind: a UK perspective (Charlie Hodges); 5 - Financing the UK Offshore Wind Sector - Transverse analysis of French and European Offshore Wind energy financing (Romain Talagrand); 6 - Cooperative ownership of Danish Wind Turbines (Hans Chr. Soerensen); 7 - Development and financing of a citizen's wind farm - Buergerwindpark (Hans Feddersen); 8 - Citizens' wind farms in Germany - as seen by a project developer (Bjoern Dosdall); 9 - Wind turbines in Vilaine region - A cooperative and pedagogical wind farm: a unique experience in France (Pierre Jourdain); 10 - Status of French participative models (Jocelyn Duval)

  11. Understanding the environmental implications of energy transitions. A case study for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Arvesen, Anders

    2013-03-01

    of recycling benefits in analyses, lack of detailed considerations of installation and use phases, and lack of future-oriented assessments. The scenario-based LCA is an initial attempt to integrate global energy scenario analysis and LCA in order to assess the economy-wide environmental costs and benefits of wind power. The study estimates aggregated global emissions caused by wind power toward 2050, following the International Energy Agency#Right Single Quotation Mark#s BLUE scenarios. It takes into account replacement at end-of-life and changing electricity mix in manufacturing, and distinguishes emissions occurring prior to, during and after the useful life of wind turbines. Results indicate emissions of 2.3 (3.5) gigatonnes Co2 from wind power in 2007-50 in a scenario with 12% (22%) share of wind in electricity supply in 2050. A second key element of the analysis is that life cycle inventories for fossil fuel-based electricity are used to evaluate emissions savings from wind power; the evaluation is performed on the assumption that additional wind electricity, compared with a baseline, displaces fossil fuel electricity. Results suggest that emissions savings grossly exceed emissions caused by wind power, and thus confirm emission benefits of wind power. Uncertainty and limitations in scope of analysis need to be borne in mind when interpreting results. The LCA of an offshore wind farm places special emphasis on marine vessel activities and supply of spare parts. The proposed Havsul I wind farm, Norway is used as a model. Total carbon footprint is estimated to 34 grams Co2 per kWh. Results indicate greater contributions from vessels and spare parts than has previously been thought: Offshore activities during installation and use phases contribute 25-35% to totals for several impact categories (e.g., climate change, acidification) and 43% for photochemical oxidant formation. Supply of spare parts causes 7% of climate impacts and 13% of freshwater ecotoxicity

  12. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  13. Wind energy in electric power production. Preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Lento, R; Peltola, E

    1984-01-15

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics also estimates on the available wind energy were made. 800 wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics include is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions causes extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of a plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  14. Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.

    Energy Technology Data Exchange (ETDEWEB)

    Houchens, Brent C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blaylock, Myra L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-01

    The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, with numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.

  15. Wind Powering America FY07 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  16. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  17. Current Status and Challenges in Wind Energy Assessment

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Badger, Jake; Hahmann, Andrea N.

    2014-01-01

    Here we discuss the status and challenges in the development of atlases for the assessment of the regional and global wind resources. The text more specifically describes a methodology that is under development at DTU Wind Energy in Denmark. As the wind assessment is based on mesoscale modelling,......, some of the specific challenges in mesoscale modelling for wind energy purposes are discussed such as wind profiles and long-term statistics of the wind speed time series. Solutions to these challenges will help secure an economic and effective deployment of wind energy....

  18. Wind energy and aviation interests - interim guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The impact on aviation of increasing the number of wind farms in the United Kingdom is discussed by the Wind Energy, Defence and Civil Aviation Interests Working Group, comprising the Department of Trade and Industry, the Civil Aviation Authority, the Ministry of Defence, and the British Wind Energy Association. The report offers guidance to wind farm developers, local authorities and statutory consultees within the aviation community: the main thrust of the guidelines is to support the UK Government's wind energy targets. Although the document does not contain in-depth technical discussions, it does provide references to such information.

  19. Federal Wind Energy Program. Program summary. [USA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of the Federal Wind Energy Program is to accelerate the development of reliable and economically viable wind energy systems and enable the earliest possible commercialization of wind power. To achieve this objective for small and large wind systems requires advancing the technology, developing a sound industrial technology base, and addressing the non-technological issues which could deter the use of wind energy. This summary report outlines the projects being supported by the program through FY 1977 toward the achievement of these goals. It also outlines the program's general organization and specific program elements.

  20. The economics of wind energy in South Africa

    International Nuclear Information System (INIS)

    Linde, H.A. van der; Sayigh, A.A.M.

    1999-01-01

    Battery charging and water pumping has been the only applications for wind energy in South Africa till now. A conservative estimate of the wind resource indicates that approximately 5% to 6% of the South African energy demands can be supplied from wind. However the low cost of electricity due to the abundance of cheap coal has made it difficult to justify the use of grid connected wind turbines. As with other countries where wind energy is now a part of the total energy package, South Africa will also have to go through a process of wind energy having to prove itself as a viable option while at the same time have a cost disadvantage. (Author)

  1. Wind energy in the Netherlands

    International Nuclear Information System (INIS)

    Bruijne, R. de

    1990-01-01

    Wind energy is a 'winning reality' in the Netherlands. This is apparent from the results by researchers, industry and the market. During recent years the market has acquired confidence in wind energy. At the start of 1987 there was about 15 MW of installed wind power in the Netherlands. Halfway through 1990 this has almost quadrupled, with 45 MW in operation and 35 MW under construction. The power companies have specific capital expenditure plans for further growth to approximately 400 MW by 1995. This investment scheme will consist of existing turbines (< 600 kW). (Author)

  2. Wind power - energy from air

    International Nuclear Information System (INIS)

    Alakangas, E.

    1998-01-01

    The wind conditions for wind power generation are favourable on the coast, in the archipelagos and in the fell areas of Finland. About 7 MW of wind power has been constructed in Finland, with the investment support of the Ministry of Trade and Industry. In 1995 about 11 GWh were produced by wind energy. A number of wind power plants are under design on the coasts of the Gulf of Finland and the Gulf of Bothnia as well as on the Aaland Islands. The first arctic wind park was constructed in Lapland in September 1996

  3. An Experiment on Wind Energy

    Science.gov (United States)

    Lombardo, Vincenzo; Fiordilino, Emilio; Gallitto, Aurelio Agliolo; Aglieco, Pasquale

    2012-01-01

    We discuss an experiment on wind energy performed with home-made apparatus. The experiment reproduces a laboratory windmill, which can pump water from a lower level to a higher one. By measuring the gain of the gravitational potential energy of the pumped water, one can determine the power extracted from the wind. The activity was carried out with…

  4. Proceedings wind energy R and D contractor meeting

    International Nuclear Information System (INIS)

    Caratti, G.

    1991-01-01

    This books contains a collection of progress reports from the participating contractors in the wind energy R and D sub-programme within the JOULE (Joint Opportunities for Unconventional or Long term Energy supply) programme on non-nuclear energy and rational use of energy. The current wind energy programme consists of 25 multi-partner projects which are closely interrelated and cover a broad spectrum of topics. These are grouped within the following research areas: A: Wind measuring and modelling; B: Wind turbine experiments and utilisation; C: Development of components and models; D: Stand-Alone and offshore; E: Large-wind turbines

  5. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  6. Canadian tax policy and renewable energy : are the benefits illusory : a comparison of Canadian and US approaches

    International Nuclear Information System (INIS)

    Chant, A.

    2008-01-01

    Tax policies for targeted activities such as wind energy need to be efficient and effective in promoting activities that may not otherwise take place. An efficient tax policy will not have unintended consequences that may lead to tax leakage or benefits outside the targeted activity, and will be consistent with other incentives promoting the target activity. This presentation discussed Canadian tax policies related to wind power and then compared them to tax policies in the United States directed at promoting wind energy development. Benefits and subsidies available to Canadian wind energy producers include the ecoEnergy program, the Canadian Renewable and Conservation Expense (CRCE) program; and Class 43.2 directed at high efficiency and renewable energy generation equipment. The Canadian valuation methodology considers capacity factors; capital costs; leverage; interest rates; corporate tax rates; and required equity. While the ecoEnergy program is valuable as it removes the tax risk for the recipient, the CRCE may be more valuable as it does not expire and is not subject to limitations on amounts deductible. Class 43.2 is valuable but constrained by the limitations of a project's income. The United States has a production tax credit (PTC) for wind developers based on a tax credit of $15 per MWh subject to adjustment, and is available for a 10-year period, is transferable to taxable investors, and has a current value of $20. It was concluded that while Canadian subsidies are the equivalent of $7.15, US subsidies are the equivalent of $17. tabs., figs

  7. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  8. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  9. Financing wind energy projects

    International Nuclear Information System (INIS)

    Blom, P.

    1996-01-01

    Triodos Bank has more than 10 years of experience with developing and financing wind projects in the Netherlands. Over 50 Megawatt has been installed with direct involvement of the bank. The experience is both as a bank and as a venture capital fund. In this contribution the perspective will be more from a venture capital point of view than as a bank. The bank's activities in the wind energy sector started in 1986 by forming a joint venture with an engineering bureau, experienced i wind energy but not yet in developing wind projects. From 1989 onwards the joint venture started to build wind farms, both as a private company and in a joint venture with utilities. The European Investment Bank became involved with a long-term debt finance facility (15 years, fixed interest loan). The main difficulties were long-term commitments from landowners (Dike authorities) and utilities with regard to power contracts. The development got really stuck when utilities refused to pay a fair price anymore. Also, site development became more and more difficult. Even the poor technical performance improved drastically and did not frighten developers and banks too much. (author)

  10. The International Energy Agency collaboration in wind energy

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.; Pershagen, B.

    1991-07-01

    The International Energy Agency (IEA) wind energy agreements have provided a useful framework for international cooperative efforts during more than thirteen years. Nine comprehensive research Tasks have been successfully completed and three Tasks are currently in progress. The sharing of research and information has clearly contributed to the development of wind technology, has eliminated unnecessary redundancy in national programmes, has encouraged utilization of the most efficient approaches to solve common problems, and has created a cooperative spirit among the professional groups that seems to be unique. After a brief introduction on the activities of the IEA on wind energy an overview is given of the ongoing tasks and other current activities with regard to the subject. 1 fig., 5 tabs., 9 refs

  11. In Brief: Impacts of wind energy assessed

    Science.gov (United States)

    Zielinski, Sarah

    2007-05-01

    By 2020, greater use of wind energy could reduce carbon dioxide emissions by the U.S. energy sector by about 4.5%. However, greater effort is needed to address potentially negative impacts of this growing energy source, according to a new report from a committee of the U.S. National Research Council. Potential impacts of wind energy projects include deaths of birds and bats, reduced value of property located near a turbine, and habitat loss and fragmentation. However, because these are generally local projects, there is little information available to determine the cumulative effects of wind turbines over a whole region. The report makes several recommendations on how to improve regulation at the local, state, and federal levels. The report also sets out a guide for evaluating wind-energy projects, which includes questions about potential environmental, economic, cultural, and aesthetic impacts. The report, ``Environmental Impacts of Wind-Energy Projects,'' is available at http://books.nap.edu/catalog.php?record_id=11935

  12. Wind energy handbook

    CERN Document Server

    Burton, Tony; Sharpe, David; Bossanyi, Ervin

    2011-01-01

    Named as one of Choice's Outstanding Academic Titles of 2012Every year, Choice subject editors recognise the most significant print and electronic works reviewed in Choice during the previous calendar year. Appearing annually inChoice's January issue, this prestigious list of publications reflects the best in scholarly titles and attracts extraordinary attention from the academic library community. The authoritative reference on wind energy, now fully revised and updated to include offshore wind power<

  13. Distributed Wind Energy in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, John [Boise State Univ., ID (United States); Johnson, Kathryn [Colorado School of Mines, Golden, CO (United States); Haynes, Todd [Boise State Univ., ID (United States); Seifert, Gary [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  14. Characteristics for wind energy and wind turbines by considering vertical wind shear

    Institute of Scientific and Technical Information of China (English)

    郑玉巧; 赵荣珍

    2015-01-01

    The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.

  15. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...

  16. Exploiting Synergies in European Wind and Hydrogen Sectors: A Cost-benefit Assessment

    OpenAIRE

    SHAW SUZANNE; PETEVES ESTATHIOS

    2007-01-01

    This article outlines an assessment of the perspectives for exploiting synergies between European wind and hydrogen energy sectors, where wind energy conversion to hydrogen is used as a common strategy for reducing network management costs in high wind energy penetration situations, and for production of renewable hydrogen. The attractiveness of this approach, referred to here as a ¿¿wind-hydrogen strategy¿¿, is analysed using a costbenefit approach to evaluate the final impact...

  17. Offshore wind energy. Innovators talking; Wind op zee. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on offshore wind energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar wind op zee.

  18. Offshore wind energy. Innovators talking; Wind op zee. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on offshore wind energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar wind op zee.

  19. The wind energy scam / The wind energy scam: the pillage of France - Synthesis, File

    International Nuclear Information System (INIS)

    Gay, Michel; Antraigues, J.

    2014-01-01

    This document proposes three more or less long versions of an article in which the author states that justifying wind energy by the reduction of greenhouse gas emissions is nothing but a rip-off, that stating that wind energy is a major stake to phase out nuclear is another rip-off as only thermal energy could allow phasing out nuclear. He outlines the particularly high cost for France, and states that this development is negative in any respect for France, but will probably not be put into question again. He outlines that this operation is extremely profitable for investors. Then, he outlines the role of the European Commission and of the French Government in this affair, as well as that of media in smoking out public opinion. He indicates that the wind energy sector is facing a crisis in western countries, and that the worst is still to happen, but is maybe not certain

  20. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-25

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  1. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  2. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  3. Indian Wind Energy Outlook 2011

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shruti; Kharul, Rajendra; Sawyer, Steve; Patel, Narendra; Pullen, Angelika; Gorate, Devanand; Raghu, V. (eds.)

    2011-12-15

    This report is a valuable tool for members of the wind industry and policy makers alike to learn about the market opportunities and the legal and regulatory framework in India. In addition, it gives us insights into the challenges going forward and offers suggestions for overcoming remaining hurdles for wind power development. According to the outlook 65.2 GW of wind power could be installed in Indian by 2020, up from 13.1 GW at the end of 2010. This would attract around USD 10.4bn of annual investment to the sector, and create 170,000 'green collar' jobs in manufacturing, project development, installation, operation, maintenance, consulting etc. At the same time, it would save 174 tons of CO2 every year. By 2030, the installed capacity could reach as much as 160.7 GW. In order to fully exploit the indigenous energy source at its doorstep, the Indian government needs to address several challenges and barriers that are holding back development. This includes a national renewable energy law, incentives for repowering, and rapid up-scaling of grid infrastructure to transport increasing amounts of wind power to the demand centres. It highlights the key role wind power could play in fueling India's growing energy demand, by delivering substantial amounts of clean energy.

  4. Optimization of airborne wind energy generators

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2012-01-01

    This paper presents novel results related to an innovative airborne wind energy technology, named Kitenergy, for the conversion of high-altitude wind energy into electricity. The research activities carried out in the last five years, including theoretical analyses, numerical simulations, and

  5. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  6. IEA Wind Energy Annual Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

  7. Stochastic Analysis of Wind Energy for Wind Pump Irrigation in Coastal Andhra Pradesh, India

    Science.gov (United States)

    Raju, M. M.; Kumar, A.; Bisht, D.; Rao, D. B.

    2014-09-01

    The rapid escalation in the prices of oil and gas as well as increasing demand for energy has attracted the attention of scientists and researchers to explore the possibility of generating and utilizing the alternative and renewable sources of wind energy in the long coastal belt of India with considerable wind energy resources. A detailed analysis of wind potential is a prerequisite to harvest the wind energy resources efficiently. Keeping this in view, the present study was undertaken to analyze the wind energy potential to assess feasibility of the wind-pump operated irrigation system in the coastal region of Andhra Pradesh, India, where high ground water table conditions are available. The stochastic analysis of wind speed data were tested to fit a probability distribution, which describes the wind energy potential in the region. The normal and Weibull probability distributions were tested; and on the basis of Chi square test, the Weibull distribution gave better results. Hence, it was concluded that the Weibull probability distribution may be used to stochastically describe the annual wind speed data of coastal Andhra Pradesh with better accuracy. The size as well as the complete irrigation system with mass curve analysis was determined to satisfy various daily irrigation demands at different risk levels.

  8. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  9. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  10. Emissions and temperature benefits: The role of wind power in China.

    Science.gov (United States)

    Duan, Hongbo

    2017-01-01

    As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  12. Wind energy resource atlas. Volume 9. The Southwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  13. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  14. Use of wind energy in the Netherlands, part 2. The multi-annual programme for wind energy 1996-2000 TWIN-2

    International Nuclear Information System (INIS)

    Bouwmeester, H.; De Jong, I.

    1996-08-01

    The Dutch government would like to achieve a cleaner energy supply in the Netherlands. The target of the government is 10% saving of fossil fuels in 2020. How this can be realized is formulated in the Third White Paper on Energy Policy, published in December 1995. The use of renewable energy sources, including wind energy, plays an important part in this national policy. For the use of wind energy the government aims at a growth of the wind turbine capacity by an average of 100 MW per year, to be realized by installing wind turbines both on land and (in the longer term) offshore. This should result into a fuel saving of 33 PJ in 2007 and 45 PJ in 2020. To stimulate the use of wind energy Novem carried out the Use of Wind Energy in the Netherlands programme (TWIN) from 1991 to 1995. This programme has given a considerable impulse to the growth of wind turbine capacity in the Netherlands. Market parties have been able to complete around 250 MW up to 1996. The programme has unfortunately not resulted in an autonomous market, so the government has ordered the implementation of the TWIN-2 follow-up programme. This follow-up programme runs from 1996 to 2000 and provides a framework for the operations which Novem will be carrying out over this period in the field of wind energy. In this brochure the main elements of the programme are outlined. Also a state-of-the-art is given since the end of 1995, as well as an overview of developments in the wind energy market, and the mission, aim and targets of the TWIN-2 programme. 12 refs

  15. Danish wind energy co-operatives

    International Nuclear Information System (INIS)

    Tranaes, Flemming

    1993-01-01

    An outline is given of the historical development of Danish wind energy cooperatives. Topics covered include wind turbine owners and their relations with parliament and public authorities, the power station companies and the wind turbine industry. Interest in the environment and support of popular cooperative activities in the local community are essential to success. (UK)

  16. Unleashing business opportunities for wind energy

    International Nuclear Information System (INIS)

    Abrutat, R.

    2001-01-01

    Internationally successful models for the implementation of wind energy are presented and suggested for the Australian electricity supply systems. With Perth being the congress host and Western Australia's known good wind resource, particular emphasis is given to the WA South West Interconnected System (SWIS). In the current framework, energy legislation is State Government's responsibility. In the light of the Kyoto Protocol the carbon dioxide emissions of the SWIS are indicated, the associated external cost are estimated and the Greenhouse Gas emissions offset potential from wind power is outlined. The socioeconomic advantages of wind energy are depicted. Recommendations are made on how these sustainable advantages might be utilised to unleash business opportunities for the private sector, which is the cornerstone of free enterprise economies. (author)

  17. Effects of wind-energy facilities on grassland bird distributions

    Science.gov (United States)

    Shaffer, Jill A.; Buhl, Deb

    2016-01-01

    The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003–2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2–5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species-specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land-use scenarios.

  18. Wind Energy literature survey no. 20

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2011-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers. The list is limited exclusively...... to journals not specifi cally devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fi t several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  19. Wind Energy Literature Survey No. 16

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  20. Wind Energy literature survey no. 24

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so on. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. For the reader to be assisted, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note...

  1. Wind energy literature survey no. 10

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2008-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  2. Wind Energy literature survey no. 19

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2011-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifi cally devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fi t several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  3. Wind Energy Literature Survey No. 14

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2009-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  4. Wind Energy Literature Survey No. 13

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2009-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering & Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems, along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  5. Wind energy literature survey no. 8

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2008-01-01

    To keep readers up-to-date in the field, each issue of Wind Energy will contain a list of relevant published articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Also note that the inclusion in the list...

  6. Wind energy literature survey no. 18

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  7. Wind energy literature survey no. 17

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  8. Wind energy literature survey no. 11

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2009-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  9. Wind Energy literature survey no. 21

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers and others. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion...

  10. Wind Energy literature survey no. 22

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers and others. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion...

  11. Wind Energy Literature Survey No. 15

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  12. Wind Energy literature survey no. 30

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2013-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  13. Wind Energy literature survey no. 29

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2013-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion...

  14. Wind Energy literature survey no. 23

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so on. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. For the reader to be assisted, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note...

  15. Wind Energy literature survey no. 25

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers and so on. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  16. Wind Energy literature survey no. 28

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2013-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant papers drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  17. Wind Energy literature survey no. 27

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2013-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant papers drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  18. Wind Energy literature survey no. 12

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2009-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant papers drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  19. Wind Energy literature survey no. 26

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant papers drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  20. Constructing China’s wind energy innovation system

    International Nuclear Information System (INIS)

    Klagge, Britta; Liu Zhigao; Campos Silva, Pedro

    2012-01-01

    The rapid rise of China as the largest wind energy market worldwide with several global leaders in turbine manufacturing received much attention from both scholarly and policy-analytical work. However, little attention has been given to the innovation activities of the Chinese wind industry. In our paper, we aim to address this gap, based on second-hand sources and over 50 personal interviews with wind energy-related experts. We argue that China’s wind industry has made great progress in terms of manufacturing and installing, but is confronted with various challenges and problems regarding the development of its indigenous innovation capabilities. Using innovation systems approaches as an analytical tool and focusing on institutions, actors, technology and their interaction in supporting innovation activities, we decompose the elements of China’s wind energy innovation system and their role in developing the domestic wind industry. Against this backdrop we identify and discuss challenges and obstacles in the development of an innovation-driven wind industry in China. The paper strongly argues that more attention should be paid to improve the coordination and cooperation among the various actors of the wind energy innovation system, to the build-up of a market-oriented education and training system as well as to intellectual property protection. - Highlights: ► Innovation systems concepts as analytical tool to understand wind energy in China. ► Focus on institutions, actor constellations and technology development in China. ► Analysis of success in manufacturing and the rapid rise of China’s wind industry. ► Identification of challenges and problems regarding innovation activities. ► Recommendation to (better) integrate innovation policy and wind industry policy.

  1. Qualitative and Quantitative Analysis of Off-Shore Wind Energy Project’s Risks

    Directory of Open Access Journals (Sweden)

    Sayed Amir Hamzeh Mirkheshti

    2017-01-01

    Full Text Available The benefits of wind power can solve the issue of growing power consumption with insufficient distribution facilities. Based on an extensive research on more than 20 studies, this study explores the risks associated with off-shore wind energy in Persian Gulf in Iran. This paper tries to identify the risks in related off-shore wind energy project, in order to specify which variables have the most impact on project by qualitative analysis through application of the impact and the possibility of every risk. A survey was conducted in order to determine the relative importance of variables and risks. Certain key components in completion of the project should be taken into account such as technology, research team, expert teams (personnel that have a good knowledge of this industry, and choosing the right spot where the wind farms will be located. The objective of this paper is to present the variables encountered in wind power project and to highlight the risks that must be controlled by the project developers, project team, supply chain actors, manufacturers, and all the stockholders involved in successful completion of a project.

  2. About wind energy in Senegal

    International Nuclear Information System (INIS)

    Sall, M.

    1991-01-01

    In Senegal 80% of the energy consumption is still in the form of wood. Therefore, a large reforestation programme is initiated for which water is necessary. Besides using water of wind pumps for tree plantations and vegetable growing projects, the windmills are used for domestic uses and drinking water for animals. Women are the best users of wind pumps. The main problem regarding the use of wind pumps is maintenance. During several years one organization was in charge of maintenance. But as distances (also between wind pumps) are very large and it formerly was a governmental organization, it did not have the power to survive. Also, many farmers did not have the money to pay this organization properly for the maintenance. The most important aspect however, is that donors only support the windpump: its installation and maintenance are excluded. In some cases it appeared that installation of wind pumps was only executed for political reasons, which resulted in no maintenance and therefore in a bad promotion of wind energy. 4 refs

  3. Development of Data Acquisition System for Wind Energy Applications

    OpenAIRE

    西本,澄

    1992-01-01

    A Data acquisiton system developed for wind energy applications will be described in this paper. This system is composed of an anemometer with two blades downwind and a computer which processes wind data. Wind energy calculated from an average wind speed is inaccurate, since wind power increases with the cube of wind velocity. To decide the design and the site for a wind turbine system, it is very important to consider wind data on a long term basis, that is the total wind energy and distribu...

  4. Selecting optimum locations for co-located wave and wind energy farms. Part II: A case study

    International Nuclear Information System (INIS)

    Astariz, S.; Iglesias, G.

    2016-01-01

    Highlights: • The benefits of wave and wind combined systems relative to independent farms are analysed. • This purpose is carried out through a case study off the Danish coast. • The power production, power smoothing and shadow effect are analysed. • Hindcast and measured wave and wind data from 2005 to 2015 are used. • Third-generation models of winds and waves (WAsP and SWAN) are used. - Abstract: Combined energy systems present an opportunity to enhance the competitiveness of renewables and overcome other challenges of these novel renewables by realising the synergies between them. Among the different possibilities for combined systems, this work focuses on wave and wind co-located farms with the aim of assessing their benefits relative to standalone wind farms. To this end we estimate the energy production, investigate the power smoothing and shadow effect, and quantify the reduction in downtime achieved by the co-located farm through a case study off the Danish coast – a promising area for co-located farms based on the available resource and other considerations including technical constraints. The analysis is carried out based on hindcast data and observations extending from 2005 to 2015, and by means of state-of-the-art numerical models of the wind and wave fields – WAsP and SWAN, respectively. It is found that the energy yield per unit area with the combined wave-wind farm increases by 3.4% relative to a standalone wind farm, the downtime periods decrease by 58% and the power output variability reduces by 12.5%. Moreover, the capital and operational expenditures (CAPEX and OPEX, respectively) would also be significantly reduced thanks to the synergies realised through the combination of wind and wave power.

  5. The economics of wind energy. Collection of papers for discussions

    Energy Technology Data Exchange (ETDEWEB)

    Vihriaelae, H [ed.

    1996-12-31

    This publication contains the proceedings of EWEA Special Topic Conference `95 on the economics of wind energy, held in Helsinki, Finland, on 5-7 September, 1995. The programme consisted of panel discussions and poster presentations on National Programmes and Operational Experience of Wind Energy, Grid Issues and Avoided Direct Costs of Wind Energy, Avoided External Costs of Wind Energy, The Role of Wind Energy in Future Energy Supply and Technical Innovations of Wind Energy

  6. The economics of wind energy. Collection of papers for discussions

    International Nuclear Information System (INIS)

    Vihriaelae, H.

    1995-01-01

    This publication contains the proceedings of EWEA Special Topic Conference '95 on the economics of wind energy, held in Helsinki, Finland, on 5-7 September, 1995. The programme consisted of panel discussions and poster presentations on National Programmes and Operational Experience of Wind Energy, Grid Issues and Avoided Direct Costs of Wind Energy, Avoided External Costs of Wind Energy, The Role of Wind Energy in Future Energy Supply and Technical Innovations of Wind Energy

  7. The economics of wind energy. Collection of papers for discussions

    Energy Technology Data Exchange (ETDEWEB)

    Vihriaelae, H. [ed.

    1995-12-31

    This publication contains the proceedings of EWEA Special Topic Conference `95 on the economics of wind energy, held in Helsinki, Finland, on 5-7 September, 1995. The programme consisted of panel discussions and poster presentations on National Programmes and Operational Experience of Wind Energy, Grid Issues and Avoided Direct Costs of Wind Energy, Avoided External Costs of Wind Energy, The Role of Wind Energy in Future Energy Supply and Technical Innovations of Wind Energy

  8. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  9. Overview of Existing Wind Energy Ordinances

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  10. New developments in the Danish Wind Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J. [Danish Energy Agency, Copenhagen (Denmark)

    1996-12-31

    Wind energy resources in Denmark are among the best in Europe. In recent years there has been a rapid growth in number of wind turbines connected to the grid in Denmark. By the end of 1995 more than 3800 wind turbines were installed on-shore with a capacity of over 600 MW. The total production of electricity from these turbines in 1995 was more than 1200 GWh, corresponding to approximately 3.6 % of the Danish electricity consumption. For several years Denmark has pursued an energy policy with an increasing weight on environmental aspects and new and renewable energy sources like wind energy. Therefore wind energy already plays an important part as supplement to the traditional sources of fuel in the electricity production, and the share of wind energy and other renewables is expected to increase significantly in the years to come. 1 ref., 9 figs.

  11. Thermodynamic performance assessment of wind energy systems: An application

    International Nuclear Information System (INIS)

    Redha, Adel Mohammed; Dincer, Ibrahim; Gadalla, Mohamed

    2011-01-01

    In this paper, the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. The thermodynamic characteristics of wind through energy and exergy analyses are considered and both energetic and exergetic efficiencies are studied. Wind speed is affected by air temperature and pressure and has a subsequent effect on wind turbine performance based on wind reference temperature and Bernoulli's equation. VESTAS V52 wind turbine is selected for (Sharjah/UAE). Energy and exergy efficiency equations for wind energy systems are further developed for practical applications. The results show that there are noticeable differences between energy and exergy efficiencies and that exergetic efficiency reflects the right/actual performance. Finally, exergy analysis has been proven to be the right tool used in design, simulation, and performance evaluation of all renewable energy systems. -- Highlights: → In this research the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. → Energy and exergy equations for wind energy systems are further developed for practical applications. → Thermodynamic characteristics of wind turbine systems through energetic and exergetic efficiencies are evaluated from January till March 2010. → Exergy efficiency describes the system irreversibility and the minimum irreversibility exists when the wind speed reaches 11 m/s. → The power production during March was about 17% higher than the month of February and 66% higher than January.

  12. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  13. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D [Windpower Monthly, Knebel (Denmark)

    1996-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  14. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D. [Windpower Monthly, Knebel (Denmark)

    1995-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  15. Energy costs form European wind farms

    International Nuclear Information System (INIS)

    Milborrow, D.

    1995-01-01

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  16. Project appraisal for small and medium size wind energy installation: The Italian wind energy policy effects

    International Nuclear Information System (INIS)

    Fera, M.; Iannone, R.; Macchiaroli, R.; Miranda, S.; Schiraldi, M.M.

    2014-01-01

    In the last few years, the distributed energy production from small wind turbines (i.e.<200 kWp) has developed into a relevant business opportunity for different investors in Italy. The market, especially in Italy, has rapidly grown, achieving 9 MWp only in 2011, with an increase from 1.5 MW in 2009 to 13.3 MW at the end of 2011. This paper reports the results of a case study on the installation of several small wind turbines. It aims to provide an analysis of the conditions in Italy that make it possible to install these machines and offer a reliable reference for designing, planning, and controlling small wind turbine projects while focusing on the strategic variables of time, cost, and quality used by typical enterprises in the investment projects. The results are relevant to investors as well as engineering, procurement, and construction companies involved in this new sector, which must understand Italy’s renewable energy policy and its effects in practice. Moreover, certain national energy policy conclusions are reported and discussed in this paper. To properly study the sector, the data on time, cost and quality are analysed using typical project management tools. - Highlights: • Focus on the Italian wind energy sector. • Analysis of Italian policy effects. • Focus on small/medium size wind energy machines

  17. Wind energy harvesting with a piezoelectric harvester

    International Nuclear Information System (INIS)

    Wu, Nan; Wang, Quan; Xie, Xiangdong

    2013-01-01

    An energy harvester comprising a cantilever attached to piezoelectric patches and a proof mass is developed for wind energy harvesting, from a cross wind-induced vibration of the cantilever, by the electromechanical coupling effect of piezoelectric materials. The vibration of the cantilever under the cross wind is induced by the air pressure owing to a vortex shedding phenomenon that occurs on the leeward side of the cantilever. To describe the energy harvesting process, a theoretical model considering the cross wind-induced vibration on the piezoelectric coupled cantilever energy harvester is developed, to calculate the charge and the voltage from the harvester. The influences of the length and location of the piezoelectric patches as well as the proof mass on the generated electric power are investigated. Results show that the total generated electric power can be as high as 2 W when the resonant frequency of the cantilever harvester is close to the vortex shedding frequency. Moreover, a value of total generated electric power up to 1.02 W can be practically realized for a cross wind with a variable wind velocity of 9–10 m s −1 by a harvester with a length of 1.2 m. This research facilitates an effective and compact wind energy harvesting device. (paper)

  18. Smooth feeding-in of wind energy via hydrogen

    International Nuclear Information System (INIS)

    Lehmann, J.; Sponholz, C.; Luschtinetz, O.U.T.; Miege, A.; Sandlass, H.

    2006-01-01

    For the northern part of Germany the harvest of wind energy became characteristic. 1,018 GW have been installed by 2004. A higher electricity production with re-powered wind parks on shore and new off shore parks is planned. The estimated production could reach 50 GW by 2020. On the other hand, more than 20 30 % discontinuous electricity related to the demand could bring instabilities of the net. Unfortunately the demand in North-Germany is a relatively small one and the net is weak. There are three possibilities to protect the net: 1. Reconstruction of the net, especially net extension 2. Improvement of the prognosis of wind and electricity consumption as well 3. A net management, which shuts up wind parks during less demand periods Point 2 and 3 are related with the stand by of back-up power, power delivered by conventional power stations or storage power stations (for example storage by water pumping). The proposal is as follows: Wind parks should be connected with a loop from electrolysis, gas storage and reconversion of hydrogen into electricity. In this way a park will be able to feed electricity into the net according to the actual demand and controlled by the demand. Going into detail a wind farm can run according to four scenarios. The first one is the conventional wind park, which causes the problems mentioned above. The electrical energy output follows the natural wind yield and the grid has to be adapted to the wind power feed-in. One solution for a temporal decoupling of wind yield and electricity output is a combination of windmills with a storage loop as shown in scenario II and IV. The system of scenario II de-couples the fluctuating input (wind) and the constant output (electricity). The advantage of this system is that the electrical output is constant and independent of the actual wind speed. For this reason this wind park acts as a constant power plant within the grid. Scenario Ill, the grid adapted feed-in, extends the former scenario with a

  19. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented...

  20. Wind energy aggregation: A coalitional game approach

    KAUST Repository

    Baeyens, E.

    2011-12-01

    In this paper we explore the extent to which a group of N wind power producers can exploit the statistical benefits of aggregation and quantity risk sharing by forming a willing coalition to pool their variable power to jointly offer their aggregate power output as single entity into a forward energy market. We prove that wind power generators will always improve their expected profit when they aggregate their generated power and use tools from coalitional game theory to design fair sharing mechanisms to allocate the payoff among the coalition participants. We show that the corresponding coalitional game is super-additive and has a nonempty core. Hence, there always exists a mechanism for profit-sharing that makes the coalition stable. However, the game is not convex and the celebrated Shapley value may not belong to the core of the game. An allocation mechanism that minimizes the worst-case dissatisfaction is proposed. © 2011 IEEE.

  1. Ten questions to Gilbert Ruelle: the wind energy, an energy for the 21. century

    International Nuclear Information System (INIS)

    2009-01-01

    The author gives explanations and answers and comments data on issues related to wind energy. He discusses why this energy which is one of the oldest, emerges in the 21. century again, what is its share in electricity production and what it may become, how to compare KWh costs (wind and other sources), what are the other consequences of wind intermittence, whether wind energy is actually a promising way to reduce greenhouse gas emissions, where this energy is growing the fastest, what are the best wind sites, what is the potential of offshore wind facilities, what are the other limits of the wind energy development, whether wind energy has a different behaviour than other generators with respect to network disturbances, what are the selling condition, what is the role of the European Union in the development of solar energy in France

  2. 2011 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  3. Socio-economic overview of wind energy conversion systems

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1992-01-01

    A social scientist's perspective is presented on the socio-economic impacts of wind energy conversion systems (WECS) in Ontario. The main organization for delivering electricity in Ontario is Ontario Hydro. This utility has two WECS, an experimental 3.5 kW generator and a hybrid wind/diesel facility at a remote northern community. Ontario Hydro is reviewing its supply options and anticipates wind power would likely be used in niche applications involving off-grid hybrid systems where the cost of displaced generation is high. On-grid applications would likely be in the form of dispersed non-utility generation. The potential contribution of wind power to Ontario's electricity supply mix could be as little as 1 MW by the year 2000 or as high as 40 MW by the year 2014, depending on costs and technological developments. Socio-economic criteria used by the utility for assessing individual supply options include job creation, regional economic development, local community impacts, social acceptance, and distribution of risks and benefits. Initial observations of potential effects of WECS are discussed, including site selection, manufacturing, construction, and operation. Barriers to implementation of WECS in Ontario include the limited number of good wind sites, the intermittent nature of WECS power, and the currently uneconomic nature of WECS for bulk electricity systems. However, WECS have environmentally attractive features and are socially acceptable. 10 refs., 3 figs

  4. Wind energy: energy and equipments have the wind in their sails

    International Nuclear Information System (INIS)

    2005-10-01

    This document presents in a first part the renewable energies with the political and regulation context, as the technological aspects. The wind energy market is then discussed in the framework of the german collaboration and the tourism sector. Examples of installations, micro economical aspects and technical innovations are detailed. (A.L.B.)

  5. Large scale wind energy conversion system (WECS) design and installation as affected by site wind energy characteristics, grouping arrangement, and social acceptance. [Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ljungstrom, O

    1977-01-01

    The Swedish wind energy prospecting program includes special features of determining site wind characteristics and design of WECS group stations, which are described briefly, such as applications of normalized WDP-Wind Duration Profiles, WHP-Wind Height Profiles and how these are affected by site location and terrain roughness. A set of WEC-Wind Energy Classes (1 to 4) is introduced as an aid in territorial wind energy surveys. A survey of Sweden's WEPA-Wind Energy Producing Areas--with associated distribution over WEC-2-4 is presented. In order to determine the corresponding wind energy production capacity, the problem of optimizing WECS group station design for cost effective energy production per land usage must be solved. Here, the effects of WECS unit size and spacing on specific annual energy production, TWh/km/sup 2/, yr, are analyzed with the use of specific group station models in the 40 to 100 MW capacity range, applying WECS unit sizes 50kW, 1 MW and 5 MW, studying the energy balance for typical group stations. By applying the specific productivity data for 1 to 5 MW systems, a survey of the WEPA-associated wind energy production capacity in Sweden is presented.

  6. Optimal wind energy penetration in power systems: An approach based on spatial distribution of wind speed

    International Nuclear Information System (INIS)

    Zolfaghari, Saeed; Riahy, Gholam H.; Abedi, Mehrdad; Golshannavaz, Sajjad

    2016-01-01

    Highlights: • Chronological wind speeds at distinct locations of the wind farm are not the same. • Spatial distribution of wind speed affects wind farm’s output power expectation. • Neglecting wind speed’s spatial doubt leads to mistake in wind energy penetration. • Scenario-based method can be used for effective wind capacity penetration level. - Abstract: Contributing in power system expansions, the present study establishes an efficient scheme for optimal integration of wind energy resources. The proposed approach highly concerns the spatial distribution of wind speed at different points of a wind farm. In mathematical statements, a suitable probability distribution function (PDF) is well-designed for representing such uncertainties. In such conditions, it is likely to have dissimilar output powers for individual and identical wind turbines. Thus, the overall aggregated PDF of a wind farm remarkably influences the critical parameters including the expected power and energy, capacity factor, and the reliability metrics such as loss of load expectation (LOLE) and expected energy not supplied (EENS). Furthermore, the proposed approach is deployed for optimal allocation of wind energy in bulk power systems. Hence, two typical test systems are numerically analyzed to interrogate the performance of the proposed approach. The conducted survey discloses an over/underestimation of harvestable wind energy in the case of overlooking spatial distributions. Thus, inaccurate amounts of wind farm’s capacity factor, output power, energy and reliability indices might be estimated. Meanwhile, the number of wind turbines may be misjudged to be installed. However, the proposed approach yields in a fair judgment regarding the overall performance of the wind farm. Consequently, a reliable penetration level of wind energy to the power system is assured. Extra discussions are provided to deeply assess the promising merits of the founded approach.

  7. Wind energy literature survey no. 9

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2008-01-01

    To keep readers up-to-date in the field, each issue of Wind Energy will contain a list of relevant published articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers (IEEE), etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Also note that the inclusion in the list...

  8. Determination of recoverable wind energy for electricity generation ...

    African Journals Online (AJOL)

    Utilization of renewable energy source, essentially the wind energy, has been growing rapidly in the whole world due to environmental pollution, consumption of the limited fossil fuels and global warming. Moreover, wind resource determination is a fundamental step in planning a wind energy project and exhaustive ...

  9. Aleutian Pribilof Islands Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski

  10. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h...... were estimated from modelled data. The results show that the effect of the forest gaps with diameters smaller than 55h on wind energy captured by the assumed wind turbine and located in the centre of round low-roughness gap is practically insignificant. The high level of spatial variation of considered......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...

  11. Wind Energy Department. Annual progress report 2001

    International Nuclear Information System (INIS)

    Skrumsager, B.; Larsen, S.; Hauge Madsen, P.

    2002-10-01

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  12. Wind Energy Department. Annual progress report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Skrumsager, B.; Larsen, S.; Hauge Madsen, P. (eds.)

    2002-10-01

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  13. A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Landry

    2012-10-01

    Full Text Available The objective of this work was to assess the accuracy of various coupled mesoscale-microscale wind flow modeling methodologies for wind energy applications. This is achieved by examining and comparing mean wind speeds from several wind flow modeling methodologies with observational measurements from several 50 m met towers distributed across the study area. At the mesoscale level, with a 5 km resolution, two scenarios are examined based on the Mesoscale Compressible Community Model (MC2 model: the Canadian Wind Energy Atlas (CWEA scenario, which is based on standard input data, and the CWEA High Definition (CWEAHD scenario where high resolution land cover input data is used. A downscaling of the obtained mesoscale wind climate to the microscale level is then performed, where two linear microscale models, i.e., MsMicro and the Wind Atlas Analysis and Application Program (WAsP, are evaluated following three downscaling scenarios: CWEA-WAsP, CWEA-MsMicro and CWEAHD-MsMicro. Results show that, for the territory studied, with a modeling approach based on the MC2 and MsMicro models, also known as Wind Energy Simulation Toolkit (WEST, the use of high resolution land cover and topography data at the mesoscale level helps reduce modeling errors for both the mesoscale and microscale models, albeit only marginally. At the microscale level, results show that the MC2-WAsP modeling approach gave substantially better results than both MC2 and MsMicro modeling approaches due to tweaked meso-micro coupling.

  14. Developing wind energy in Ireland - consequences for our biodiversity and ecosystem services

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, David; Stout, Jane

    2011-07-01

    Full text: In response to climate change, the EU has set a target to achieve 20% of energy from renewable sources by 2020 (Directive 2009/28/EC). Consequently, Ireland has set targets of 40, 10 and 12% of energy coming from renewable sources for electricity, transport and heat, respectively, by 2020. Wind energy is expected to contribute significantly to achieving these targets given Ireland.s large onshore and offshore wind potential. However, the potential impacts of these wind farm developments on Ireland.s biodiversity remain largely un quantified. The SIMBIOSYS (www.SIMBIOSYS.ie) project was set up to investigate the impacts of a range of sectors on biodiversity and ecosystem services, with part of the project.s focus on those measures that may help mitigate the effects of climate change. In this paper we aim to assess the potential positive and negative impacts of wind farms on Ireland.s marine and terrestrial biodiversity, highlighting potential conflicts concerning the spatial distribution of our wind and biodiversity resources. To help make these assessments an extensive review of the national and international scientific literature is used to highlight the potential positive and negative impacts of wind farm developments on biodiversity to date. Using GIS, spatial analyses are then used to quantify the extent to which wind resources and current and future wind farm developments overlap with biodiversity, using indicators such as Natura 2000 sites and Red Data List Plants. The outputs of these analyses are combined to help make recommendations on the sustainable future planning and management of wind farms in Ireland. Appropriate impact assessment and careful spatial planning will help ensure the direct benefits of green house gas emission reduction are maximised without compromising the protection of biodiversity in Ireland. (Author)

  15. Directory of Wind Power and Renewable Marine Energy Industry in France - 2015-2016

    International Nuclear Information System (INIS)

    Macron, Emmanuel; Bal, Jean-Louis

    2015-11-01

    The wind power industry is a dynamic sector that continues to grow, year after year. In 2014 there was a significant increase in wind power both in France and the rest of the world, with installed capacity rising to over 1,000 MW and 51,000 MW respectively. These figures demonstrate the economic importance of the sector, which now sees 75 billion euros invested annually worldwide. France's wind energy industry has everything it needs to become a world-leader in the sector, thanks to its skill and expertise in the fields of mechanics, electrical engineering and civil engineering. To help our businesses grasp the opportunities offered by the wind power market, the Windustry France 2.0 programme aims to strengthen the French subcontracting base, which primarily comprises specialised SMEs and middle-market companies that export their products. So far the programme's steering committee has identified fifty companies, over forty of which have already benefited from the specialist knowledge and expertise, specific to their particular core business, that can help them move into the wind energy industry. For ten of them, the Windustry France 2.0 initiative has already resulted in effective diversification into these sectors, and the opening up of new markets. The recent decision to extend the Windustry France 2.0 industrial structuring programme until October 2016 means that an extra 20 companies will now benefit from the programme, taking the total to 70. It also bears witness to the government's intention to make the sector one of the pillars of New Industrial France. More and more companies are realising that the wind energy sector represents a pathway for strategic growth - our aim is to enable them to enter the sector as quickly and effectively as possible. In the longer term, we will also need to start looking at wind farm maintenance and operation - here too it is vitally important for us to develop a competent French industry in the sector

  16. Improved diagnostic model for estimating wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  17. Wind energy centre at Gujarat State, India. Business plan

    International Nuclear Information System (INIS)

    Van Hulle, F.; Jansen, J.C.; Prasad, N.S.; Suresh, R.

    1997-07-01

    The report describes the business plan for the establishment of a Wind Energy Centre in Gujarat. This Wind Energy Center has to provide a reliable delivery of a range of development and technical quality assurance services to the wind energy industry in northern India on the basis of sustained operations and recovery of all operating costs and - contingent on the way the Centre is financed - at least part of the initial investment costs. Core activities of the Wind Energy Centre are: Research and development supporting activities for the wind energy sector; Testing and certification of wind energy equipment; Consultancy, monitoring and information services; and Training courses on wind energy technology and implementation. The wind energy centre aims with its services at a number of customers: the manufacturing industry, wind farm developers and governmental authorities. An exploration of the market for the services of the envisaged wind energy centre shows that the concept is financially viable. A set of assumptions has been made about the growth rate of the installed wind power capacity in Northern India and about the number of wind turbine manufacturing companies in the target area of the centre. From these assumptions the total number of new wind turbine types coming on the Indian market annually is derived for a period of ten years. These figures have served as a basis for the determination of the required manpower and facilities of the centre for design and development support activities, feasibility and siting studies, testing and certification. Furthermore a projection has been made for providing expert manpower capacity for carrying out R and D, consultancy and other services. 14 tabs., 1 ref

  18. Optimal Locations for Siting Wind Energy Projects: Technical Challenges, Economics, and Public Preferences

    Science.gov (United States)

    Lamy, Julian V.

    Increasing the percentage of wind power in the United States electricity generation mix would facilitate the transition towards a more sustainable, low-pollution, and environmentally-conscious electricity grid. However, this effort is not without cost. Wind power generation is time-variable and typically not synchronized with electricity demand (i.e., load). In addition, the highest-output wind resources are often located in remote locations, necessitating transmission investment between generation sites and load. Furthermore, negative public perceptions of wind projects could prevent widespread wind development, especially for projects close to densely-populated communities. The work presented in my dissertation seeks to understand where it's best to locate wind energy projects while considering these various factors. First, in Chapter 2, I examine whether energy storage technologies, such as grid-scale batteries, could help reduce the transmission upgrade costs incurred when siting wind projects in distant locations. For a case study of a hypothetical 200 MW wind project in North Dakota that delivers power to Illinois, I present an optimization model that estimates the optimal size of transmission and energy storage capacity that yields the lowest average cost of generation and transmission (/MWh). I find that for this application of storage to be economical, energy storage costs would have to be 100/kWh or lower, which is well below current costs for available technologies. I conclude that there are likely better ways to use energy storage than for accessing distant wind projects. Following from this work, in Chapter 3, I present an optimization model to estimate the economics of accessing high quality wind resources in remote areas to comply with renewable energy policy targets. I include temporal aspects of wind power (variability costs and correlation to market prices) as well as total wind power produced from different farms. I assess the goal of providing

  19. EWEA 2012: conference on the legal framework of wind energy

    International Nuclear Information System (INIS)

    Froeding, Veronique; Iuga, Dorina; Lintker, Stephanus; Edlich, Sophie

    2012-01-01

    At the occasion of 2012 Europe Wind energy event (EWEA), the French-German office for Renewable energies (OFAEnR) organised a conference on the legal framework of wind energy. In the framework of this French-German exchange of experience, participants exchanged views on the French and German respective regulations and administrative procedures for wind energy projects. This document brings together the available presentations (slides) made during this event: 1 - Synthesis note of the wind turbines French regulation (Veronique Froeding); 2 - Wind Barriers Presentation - Administrative and Grid access barriers (Dorina Iuga); 3 - Wind energy in France - Legal framework: what's new? (Veronique Froeding); 4 - North Rhine-Westphalia and the Wind energy Decree from July 2011: NRW Pioneer in Wind energy in Germany (Stephanus Lintker); 5 - Duration and development costs of wind energy projects in France and in Germany (Sophie Edlich)

  20. Studying Wind Energy/Bird Interactions: A Guidance Document

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [California Energy Commission (US); Morrison, M. [California State Univ., Sacramento, CA (US); Sinclair, K. [Dept. of Energy/National Renewable Energy Lab. (US); Strickland, D. [WEST, Inc. (US)

    1999-12-01

    This guidance document is a product of the Avian Subcommittee of the National Wind Coordinating Committee (NWCC). The NWCC was formed to better understand and promote responsible, credible, and comparable avian/wind energy interaction studies. Bird mortality is a concern and wind power is a potential clean and green source of electricity, making study of wind energy/bird interactions essential. This document provides an overview for regulators and stakeholders concerned with wind energy/bird interactions, as well as a more technical discussion of the basic concepts and tools for studying such interactions.

  1. Global sensitivity analysis in wind energy assessment

    Science.gov (United States)

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present

  2. The wind power has a fair wind; L'energie eolienne dans le vent

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After a presentation of the state of the art concerning the world energy consumption, regulation and the renewable energies situation in the french market, this document details the wind power: this energy origin, the operating and the implementation, the wind energy cost, the environmental effects and impacts, the compatibility with the agriculture, the wind power industry and market and the long-dated evolution perspectives. (A.L.B.)

  3. A review on global wind energy policy

    International Nuclear Information System (INIS)

    Saidur, R.; Islam, M.R.; Rahim, N.A.; Solangi, K.H.

    2010-01-01

    With the increasing negative effects of fossil fuel combustion on the environment in addition to limited stock of fossil fuel have forced many countries to inquire into and change to environmentally friendly alternatives that are renewable to sustain the increasing energy demand. Energy policy plays a vital role to mitigate the impacts of global warming and crisis of energy availability. This paper explores the wind energy industry from the point of view of the wind energy policy. It is noticed that energy policy could help increasing wind power generation as well as stimulating the energy industry. It may be stated that without specific energy policy, a country would not be able to solve the acute problems like reducing greenhouse gases (GHGs) emission, scarcity of energy, etc. This paper discussed the existing successful energy policies for few selected countries. Based on literatures, it has been found that FIT, RPS, incentives, pricing law and Quota system are the most useful energy policies practiced by many countries around the world. Then, status of wind energy policy for Malaysia was investigated and compared with few selected countries around the world. (author)

  4. Dependability of wind energy generators with short-term energy storage.

    Science.gov (United States)

    Sørensen, B

    1976-11-26

    Power fluctuations and power duration curves for wind energy generators, including energy storage facilities of a certain capacity, are compared to those of typical nuclear reactors. A storage system capable of delivering the yearly average power output for about 10 hours already makes the dependability of the wind energy system comparable to that of a typical nuclear plant.

  5. Review of European wind energy programmes

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.; Lalas, D.

    1993-03-01

    Based on papers from Norway, Sweden, Spain and Denmark, submitted to the ECWEC'93 conference in Travemuende, Germany, and the draft 1992 annual report of the IEA R+D Wind Programme, a general review is given of national wind energy programmes in European countries. First, tendencies of the past wind energy programmes are described and linked to the present developments. Not only the separate aspects are reviewed (R+D, wind turbine development, market stimulation, utility involvement, regulatory issues and operational experiences), but also the synergetic aspects of their integration is addressed. The main conclusion is that the integration of R+D, industrial development and market stimulation works. 3 tabs

  6. Wind energy in the Mediterranean countries

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1992-01-01

    This paper reviews the main findings relative to the European Communities OPET (Organization for the Promotion of Energy Technology) June 1992 conference on the potential for small and medium size wind energy applications in the Mediterranean countries and gives a panoramic look at progress being made by these countries in the development and use of wind energy turbines. One system which appears to be promising is the Danish 100 kW 'Bonus' wind turbine (23 m rotor, 30 m tower height) which has seen successful applications at a seaside resort and at a remote radio station in terms of performance, environmental compatibility and public acceptance

  7. Wind Powering America FY06 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  8. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  9. WindScanner.eu - a new remote sensing research infrastructure for on- and offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Torben; Knudsen, Soeren; Sjoeholm, M.; Angeloua, N.; Tegtmeier, A. [Technical Univ. og Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)

    2012-07-01

    A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment studies on- and off shore of the future. Today, hub heights on +5 MW wind turbines exceed the 100 m mark. At the Danish DTU test site Oesterild testing is ongoing with a Siemens turbine with hub height 120 meters and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky. The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane. The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind lidar measurement of turbulence in complex terrain within an internal boundary layer developing behind an escarpment. Also measurements of wind speed and direction profiles

  10. McCabe wind energy system

    International Nuclear Information System (INIS)

    Norton, R.; McCabe, F.; MacMichael, G.

    1995-01-01

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  11. McCabe wind energy system

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R [Wyndmoor (United States); McCabe, F [Levr/Air, Inc., Doylestown (United States); MacMichael, G [Regional Technical College, Galway (Iran, Islamic Republic of)

    1996-12-31

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  12. McCabe wind energy system

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R. [Wyndmoor (United States); McCabe, F. [Levr/Air, Inc., Doylestown (United States); MacMichael, G. [Regional Technical College, Galway (Iran, Islamic Republic of)

    1995-12-31

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  13. Reliability of Wind Speed Data from Satellite Altimeter to Support Wind Turbine Energy

    Science.gov (United States)

    Uti, M. N.; Din, A. H. M.; Omar, A. H.

    2017-10-01

    Satellite altimeter has proven itself to be one of the important tool to provide good quality information in oceanographic study. Nowadays, most countries in the world have begun in implementation the wind energy as one of their renewable energy for electric power generation. Many wind speed studies conducted in Malaysia using conventional method and scientific technique such as anemometer and volunteer observing ships (VOS) in order to obtain the wind speed data to support the development of renewable energy. However, there are some limitations regarding to this conventional method such as less coverage for both spatial and temporal and less continuity in data sharing by VOS members. Thus, the aim of this research is to determine the reliability of wind speed data by using multi-mission satellite altimeter to support wind energy potential in Malaysia seas. Therefore, the wind speed data are derived from nine types of satellite altimeter starting from year 1993 until 2016. Then, to validate the reliability of wind speed data from satellite altimeter, a comparison of wind speed data form ground-truth buoy that located at Sabah and Sarawak is conducted. The validation is carried out in terms of the correlation, the root mean square error (RMSE) calculation and satellite track analysis. As a result, both techniques showing a good correlation with value positive 0.7976 and 0.6148 for point located at Sabah and Sarawak Sea, respectively. It can be concluded that a step towards the reliability of wind speed data by using multi-mission satellite altimeter can be achieved to support renewable energy.

  14. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  15. The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case of Kuwait”

    OpenAIRE

    Abdelkarim J.Ibreik; Humoud A. Alqatta

    2015-01-01

    The demand ofsustainable energy is increased daily by expanding our cities and creating new cities and suburbswith huge towers besides increasing in population,moreover the environment and human life is threatening by the pollutions resulted from energy generation. For this reason the researchersattracted todevelop renewable energy and explore its large benefits and unit capacity. Wind power is one of the clean renewable energy resources.Therefore the importance of implementing th...

  16. Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E.; Daroca, F. [Grupo Eolicas Riojanas, Carretera de Laguardia, 91-93, 26006 Logrono, La Rioja (Spain); Sanz, F.; Blanco, J. [Department of Mechanical Engineering, University of La Rioja, Logrono, La Rioja (Spain); Jimenez, E. [Department of Electrical Engineering, University of La Rioja, Logrono, La Rioja (Spain)

    2008-08-15

    Presently, renewable energies and especially wind energy are gaining a special relevance in the electrical market worldwide. This current rate of growth brings with it the need for the various wind farms to not limit themselves to producing energy but also provide stability to the network within its capabilities. So, the actual objective is to adapt the installations that produce wind energy in such a way that they give a maximum amount of support in any given moment to the electrical network. For this purpose, there are governing techno-economic parameters that influence the economic behavior of commercial wind farms. A complete cost-benefit analysis model is developed, focused on incorporating automatic capacitor banks into wind farms for the compensation of reactive power. This economic analysis is about doubly fed induction generator (DFIG) wind turbines. Although this kind of wind turbines have a certain capability in terms of modulating reactive power, this capacity is not enough to achieve the new requirements of reactive power regulation in Spain and it is necessary to invest in systems of external compensation. In this paper, we have studied the case of DFIG wind turbine and capacitor banks, although the used methodology can be applied to other technologies as well by simply amplifying the algorithms according to the specific characteristics of the option elected. Following this premise, a detailed analysis of the specific needs of a wind farm has been carried out, as well as a search for the optimum performance for the compensation of reactive power. (author)

  17. Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy

    International Nuclear Information System (INIS)

    Martinez, E.; Daroca, F.; Sanz, F.; Blanco, J.; Jimenez, E.

    2008-01-01

    Presently, renewable energies and especially wind energy are gaining a special relevance in the electrical market worldwide. This current rate of growth brings with it the need for the various wind farms to not limit themselves to producing energy but also provide stability to the network within its capabilities. So, the actual objective is to adapt the installations that produce wind energy in such a way that they give a maximum amount of support in any given moment to the electrical network. For this purpose, there are governing techno-economic parameters that influence the economic behavior of commercial wind farms. A complete cost-benefit analysis model is developed, focused on incorporating automatic capacitor banks into wind farms for the compensation of reactive power. This economic analysis is about doubly fed induction generator (DFIG) wind turbines. Although this kind of wind turbines have a certain capability in terms of modulating reactive power, this capacity is not enough to achieve the new requirements of reactive power regulation in Spain and it is necessary to invest in systems of external compensation. In this paper, we have studied the case of DFIG wind turbine and capacitor banks, although the used methodology can be applied to other technologies as well by simply amplifying the algorithms according to the specific characteristics of the option elected. Following this premise, a detailed analysis of the specific needs of a wind farm has been carried out, as well as a search for the optimum performance for the compensation of reactive power. (author)

  18. The current state of wind energy development in Tanzania

    International Nuclear Information System (INIS)

    Kainkwa, R.M.

    2007-01-01

    Wind Energy is one of the renewable power sources that is currently used in a commercial scale for various end-uses such as pumping water deep wells and electricity generation. A precise knowledge of wind speed characteristics is an essential for the efficient planning and implementation of any wind energy project. In Tanzania the use of wind energy in generating electricity has not yet taken place due to lack of knowledge on prospective sites with high wind energy potential. The main objective of this paper is to review some attempts that have been made to explore the wind energy potential in Tanzania and the corresponding prospective sites that have been earmarked so far. (author)

  19. Addressing Social and Institutional Barriers for Wind Energy Installations

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, L; Gonzalez, R; Varela, M [Ciemat. Madrid (Spain); Ramirez, I; Vicente, F [Consejeria de Medio Ambiente, Agricultura y Agua. Comunidad Autonoma de Murcia (Spain)

    2000-07-01

    This project has been jointly financed by the European Commission and developed within the Programme Thermie-B. The main tasks to carried out are: Revision of institutional and legal framework. The revision of institutional and legal framework of different participating countries, i. e. their comparison with the rest of the countries with a relevant role in the field of wind energy. Opinion poll carried out on the wind energy. By means of this means, one wants to test public opinion with respect to wind energy. So for such purpose, there are interviews carried out in the municipalities with wind parks, as well as in those where these are in the process of being installed or the project is in its due course. Simulation of wind parks installation. The Wind Park Wandered software tool is a Design and Visualisation tool developed by CINAR, which allows the preview of potential wind parks, evaluating their visual and audio impact. Production and distribution of information on wind energy. For such purpose, we can include the present publication with which one could summarise the main aspects associated with wind energy from its origin, the study of energy source (wind), and the machines that make use of it or the most relevant social and environmental contexts. Organizing informative seminars on the design possibilities of wind parks. At these seminar, one could assess the present wind energy situation in the European context and in each one of the participating countries. And possibilities of presenting WPW software as a design tool for wind parks. (Author) 12 refs.

  20. Addressing Social and Institutional Barriers for Wind Energy Installations

    International Nuclear Information System (INIS)

    Ramirez, L.; Gonzalez, R.; Varela, M.; Saez, R.; Ramirez, I.; Vicente, F.

    2000-01-01

    This project has been jointly financed by the European Commission and developed within the Programme Thermie- B. The main tasks to carried out are: Revision of institutional and legal framework. The revision of institutional and legal framework of different participating countries, i.e. their comparison with the rest of the countries with a relevant role in the field of wind energy. Opinion poli carried out on the wind energy. By means of this means, one wants to test public opinion with respect to wind energy. So for such purpose, there are interviews carried out in the municipalities with wind parks, as well as in those where these are in the process of being installed or the project is in its due course. Simulation of wind parks installation. The Wind Park Wandered software tool is a Design and Visualisation tool developed by CINAR, which allows the preview of potential wind parks, evaluating their visual and audio impact. Production and distribution of information on wind energy. For such purpose, we can include the present publication with which one could summarise the main aspects associated with wind energy from its origin, the study of energy source (wind), and the machines that make use of it or the most relevant social and environmental contexts. Organising informative seminars on the design possibilities of wind parks. At these seminars, one could assess the present wind energy situation in the European context and in each one of the participating countries. And possibilities of presenting WPW software as a design tool for wind parks. (Author) 12 refs

  1. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  2. Proceedings of the wind energy industry conference : develop, innovate, export : held in conjunction with Quebec's first wind energy industry gala

    International Nuclear Information System (INIS)

    2008-01-01

    This conference was dedicated to the wind energy industry and business opportunities in Quebec, the rest of Canada and abroad. It was held in conjunction with Quebec's first wind energy industry gala which highlighted the organizations and individuals that have made outstanding contributions to the wind power sector in Quebec over the past three years. The entire conference focused on current and future requests for proposals in Quebec, innovation, and exports. Some fifteen reputed speakers shared their knowledge and experience regarding technological development and technical support available in Quebec. It was intended to clarify current and future issues affecting the wind power industry and to build key relations with leading wind energy players. The sessions of the conference were entitled: the wind energy industry in Quebec and Canada; issues surrounding requests for proposals; the players involved in the request for proposals; visual impacts of wind farms; data transmission during wind farm construction; innovating to move ahead of the crowd; innovation in practice; exporting as a means of development; and, exports in practice. A tour of the Baie-des-Sable wind farm was also provided. The conference featured 24 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  3. Wind energy mission analysis. Executive summary. [USA

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-18

    The principal objectives of this study were (1) to assess the potential for wind energy conversion systems on a national scale, (2) identify high-potential applications for WECS, (3) define functional, performance, operational, and cost goals for WECS, (4) evaluate the impact of the wide-scale deployment of WECS on energy users, and (5) identify the institutional and non-technical problems associated with the acceptance of wind energy systems. The study concentrated on broad applications of WECS over large geographic areas encompassing the entire United States. Emphasis was placed on identifying and exploring high-aggregate energy users who have significant potential to utilize wind energy in place of other alternatives.

  4. Evaluation of wind energy potential in the south-south geopolitical ...

    African Journals Online (AJOL)

    South geopolitical zone of Nigeria using 10 year wind data obtained at a height of 10m as a possible location for energy generation from wind. The obtained ... Keywords: Mean wind speed, Wind power density, Wind energy, Renewable energy ...

  5. Wind energy in Canada: an action plan to 2000

    International Nuclear Information System (INIS)

    1996-02-01

    The role of the CanWEA (Canadian Wind Energy Association) is to promote the development and application of wind energy technology, products and services. CanWEA has established targets with regard to the future development of wind energy. Present targets include (1) the installation of 500 MW of wind generated electric capacity by the year 2000, and at least 5,000 MW by the year 2010, (2) the installation or export of 15,000 wind powered water pumping systems by the year 2000, (3) the installation of 2,500 micro-wind systems by the year 2000, and (4) the development of a Canadian wind energy industry which generates $200 million in annual sales by the year 2000

  6. Wind energy market study Eastern Europe. Poland

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.

    1994-04-01

    The main objective of the THERMIE Associated Measure WE05 is to study market conditions and estimate the market for wind power in Eastern Europe. This report describes the results of a study of the conditions in Poland, which has been concentrated on the following areas: wind energy potential in Poland; data concerning the present structure of the power production system including costs; payback prices, subsidies, etc. with relation to renewable energy sources, especially wind power; information on existing wine turbines and their production in Poland; possibilities for co-production of wind turbines by Polish and EC factories, and rules and legislation pertaining to the establishment of wind turbines and to power production by wind, eg regulations related to grid connection, safety and environment. According to existing data there are possibilities for using the wind potential in certain parts of poland. The wind data have to be improved if particular sites are considered for wind parks. The current official plans concerning the energy system have taken renewable sources into consideration, including wind power that is estimated to contribute ∼ 1 GWh by 2005-2010. Wind turbines may be connected to the public grid with due regard to the strength of the line. Presently, the owner has to pay all the costs, however, new rules are under consideration. The conditions for the connection and operation of wind turbines have to be discussed with the particular utility on an an-hoc basis. (EG)

  7. The wind energy, a clean and renewable energy; L'energie eolienne, une energie propre et renouvelable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Facing the context of greenhouse gases reduction, the France began a national program of fight against the climatic change, in which the development of the renewable energies plays a major part. Among the renewable energy sources, the wind energy is the only one which is cheap and easily used. After a presentation of the leader of the wind energy in Europe (Germany, Spain and Denmark) and the position of the France, the document details the economical and environmental advantages of the wind energy, as the public opinion concerning this energy source. (A.L.B.)

  8. Wind energy and integration into the grid

    International Nuclear Information System (INIS)

    Fox, B.

    2009-01-01

    The development of wind power plants raises multiple challenges in terms of planning, exploitation and control of power systems. One characteristic of this energy source is its variability with time and its difficulty to be planned. This book takes stock of the theoretical and practical aspects of the question. It gives us a state-of-the-art of the existing solutions to integrate this energy source to the national grid beside other sources of different origin (nuclear, thermal..). In order to allow the reader to understand the stakes and the solutions, some basic notions of electrotechnics and wind technologies are presented first. Then it deals with the wind power impact on power system operation when the wind energy penetration reaches 10% of the whole power. The production/consumption balancing is analyzed and the problem of wind power unpredictability is approached. Beside the problems of voltage regulation of a wind farm and supply maintenance during voltage drop, the book allows to apprehend the operation of electricity markets and in particular those related to wind power (meteorology forecasts and anticipation of production). (J.S.)

  9. The economics of wind energy

    International Nuclear Information System (INIS)

    Blanco, Maria Isabel

    2009-01-01

    This article presents the outcomes of a recent study carried out among wind energy manufacturers and developers regarding the current generation costs of wind energy projects in Europe, the factors that most influence them, as well as the reasons behind their recent increase and their expected future evolution. The research finds that the generation costs of an onshore wind farm are between 4.5 and 8.7 EURcent/kWh; 6-11.1 EURcent/kWh when located offshore, with the number of full hours and the level of capital cost being the most influencing elements. Generation costs have increased by more than 20% over the last 3 years mainly due to a rise of the price of certain strategic raw materials at a time when the global demand has boomed. However, the competitive position of wind energy investments vis-a-vis other technologies has not been altered. In the long-term, one would expect production costs go down; whether this will be enough to offset the higher price of inputs will largely depend on the application of correct policies, like R and D in new materials, O and M with remote-control devices, offshore wind turbines and substructures; introduction of advanced siting and forecasting techniques; access to adequate funding; and long-term legal stability. (author)

  10. The economics of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel [Department of Economics, University of Alcala, Plaza de la Victoria, 3, 28002 Alcala de Henares, Madrid (Spain)

    2009-08-15

    This article presents the outcomes of a recent study carried out among wind energy manufacturers and developers regarding the current generation costs of wind energy projects in Europe, the factors that most influence them, as well as the reasons behind their recent increase and their expected future evolution. The research finds that the generation costs of an onshore wind farm are between 4.5 and 8.7 EURcent/kWh; 6-11.1 EURcent/kWh when located offshore, with the number of full hours and the level of capital cost being the most influencing elements. Generation costs have increased by more than 20% over the last 3 years mainly due to a rise of the price of certain strategic raw materials at a time when the global demand has boomed. However, the competitive position of wind energy investments vis-a-vis other technologies has not been altered. In the long-term, one would expect production costs go down; whether this will be enough to offset the higher price of inputs will largely depend on the application of correct policies, like R and D in new materials, O and M with remote-control devices, offshore wind turbines and substructures; introduction of advanced siting and forecasting techniques; access to adequate funding; and long-term legal stability. (author)

  11. On wind speed pattern and energy potential in Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Oyewola, O.M.

    2011-01-01

    The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. - Research Highlights: → Review of wind speed distribution and wind energy availability in Nigeria in presented. → The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. → The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified.

  12. Wind Energy Deployment Process and Siting Tools (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.

    2015-02-01

    Regardless of cost and performance, some wind projects cannot proceed to completion as a result of competing multiple uses or siting considerations. Wind energy siting issues must be better understood and quantified. DOE tasked NREL researchers with depicting the wind energy deployment process and researching development considerations. This presentation provides an overview of these findings and wind siting tools.

  13. Wind energy in China. Current scenario and future perspectives

    International Nuclear Information System (INIS)

    Changliang, Xia; Zhanfeng, Song

    2009-01-01

    Wind power in China registered a record level of expansion recently, and has doubled its total capacity every year since 2004. Many experts believe that China will be central to the future of the global wind energy market. Consequently, the growth pattern of wind power in China may be crucial to the further development of the global wind market. This paper firstly presented an overview of wind energy potential in China and reviewed the national wind power development course in detail. Based on the installed wind capacity in China over the past 18 years and the technical potential of wind energy resources, the growth pattern was modeled in this study for the purpose of prospect analysis, in order to obtain projections concerning the development potential. The future perspectives of wind energy development in China are predicted and analyzed. This study provides a comprehensive overview of the current status of wind power in China and some insights into the prospects of China's wind power market, which is emerging as a new superpower in the global wind industry. (author)

  14. A feasibility study on a wind energy investment fund

    International Nuclear Information System (INIS)

    Mitchell, R.; Vassall-Adams, G.; Lynch, M.; Coates, S.; Willcox, S.

    1994-01-01

    This study seeks to overcome an obstacle to greater use of wind energy in Britain - the difficulties experienced by developers of small wind farms in raising finance for their projects. This need for capital has provided the impetus for this investigation into the possibility of wind funds, which would enable investors to invest in wind energy and provide developers of small wind farms with the financial backing they need. The contents of this report reflect the issues which would be of interest to an organisation wishing to establish a wind fund. These include the environmental concerns which have spurred the development of sustainable energy technologies, the role of government in establishing the framework for wind energy generation in Britain and public concern about the impact of wind farms. (author)

  15. Wind and solar energy incentives in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Kazemi Karegar, H.

    2006-01-01

    Incentive have yet been viewed as a means of supporting technological developments until a new technology becomes cost competitive wind based electricity is not jet generally competitive with alternate sources of electricity such as fossil fuels. This paper presents the potential for wind and solar in Iran and shows how much electric energy is now produced by renewable power plants compared to steam and gas. The importance of renewable energy effects on Iran environment and economy is also discussed and the issue of the contribution of renewable energy for producing electricity in the future will be shown. Also this paper highlights the ability of Iran to manufacture the components of the wind turbine and solar system locally, and its effect on the price of wind turbine and solar energy

  16. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  17. Wind energy resource assessment in Madrid region

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Jimenez, Angel; Garcia, Javier; Manuel, Fernando [Laboratorio de Mecanica de Fluidos, Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2-28006, Madrid (Spain)

    2007-07-15

    The Comunidad Autonoma de Madrid (Autonomous Community of Madrid, in the following Madrid Region), is a region located at the geographical centre of the Iberian Peninsula. Its area is 8.028 km{sup 2}, and its population about five million people. The Department of Economy and Technological Innovation of the Madrid Region, together with some organizations dealing on energy saving and other research institutions have elaborated an Energy Plan for the 2004-12 period. As a part of this work, the Fluid Mechanics Laboratory of the Superior Technical School of Industrial Engineers of the Polytechnic University of Madrid has carried out the assessment of the wind energy resources [Crespo A, Migoya E, Gomez Elvira R. La energia eolica en Madrid. Potencialidad y prospectiva. Plan energetico de la Comunidad de Madrid, 2004-2012. Madrid: Comunidad Autonoma de Madrid; 2004]; using for this task the WAsP program (Wind Atlas Analysis and Application Program), and the own codes, UPMORO (code to study orography effects) and UPMPARK (code to study wake effects in wind parks). Different kinds of data have been collected about climate, topography, roughness of the land, environmentally protected areas, town and village distribution, population density, main facilities and electric power supply. The Spanish National Meteorological Institute has nine wind measurement stations in the region, but only four of them have good and reliable temporary wind data, with time measurement periods that are long enough to provide representative correlations among stations. The Observed Wind Climates of the valid meteorological stations have been made. The Wind Atlas and the resource grid have been calculated, especially in the high wind resource areas, selecting appropriate measurements stations and using criteria based on proximity, similarity and ruggedness index. Some areas cannot be used as a wind energy resource mainly because they have environmental regulation or, in some cases, are very close

  18. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  19. Description of the North Sea wind climate for wind energy applications

    NARCIS (Netherlands)

    Coelingh, J.P.; Wijk, A.J.M. van; Cleijne, J.W.; Pleune, R.

    1992-01-01

    In The Netherlands it is foreseen that wind turbines will be installed on offshore locations in the North Sea before the year 2010. Therefore adequate knowledge of the offshore wind climate should be obtained, both for the estimation of energy yields and for the determination of wind load

  20. Potentials and market prospects of wind energy in Vojvodina

    Directory of Open Access Journals (Sweden)

    Katić Vladimir A.

    2012-01-01

    Full Text Available The paper presents an overview of the wind energy potentials, technologies and market prospects in the Autonomous Province of Vojvodina, the region of Serbia with the most suitable location for exploitation of wind energy. The main characteristics of the region have been presented regarding wind energy and electric, road, railway and waterway infrastructure. The wind farm interconnection with the public grid is explained. The most suitable locations for the wind farms are presented, with present situation and future prospects of wind market in Vojvodina.

  1. Canadian Wind Energy Association small wind conference proceedings : small wind policy developments (turbines of 300 kW or less)

    International Nuclear Information System (INIS)

    2005-01-01

    The small wind session at the Canadian Wind Energy Association's (CanWEA) annual conference addressed policies affecting small wind, such as net metering, advanced renewable tariffs and interconnections. It also addressed CanWEA's efforts in promoting small wind turbines, particularly in remote northern communities, small businesses and within the residential sector. Small wind systems are typically installed in remote communities to offset utility supplied electricity at the retail price level. In certain circumstances, small wind and hybrid systems can produce electricity at less than half the cost of traditional electricity sources, which in remote communities is typically diesel generators. Small wind turbines require different materials and technologies than large wind turbines. They also involve different local installation requirements, different by-laws, tax treatment and environmental assessments. Small wind turbines are typically installed for a range of factors, including energy independence, energy price stability and to lower environmental impacts of traditional power generation. The small wind session at the conference featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  2. Innovation and the price of wind energy in the US

    International Nuclear Information System (INIS)

    Berry, David

    2009-01-01

    In the last ten years, the wind energy industry has experienced many innovations resulting in wider deployment of wind energy, larger wind energy projects, larger wind turbines, and greater capacity factors. Using regression analysis, this paper examines the effects of technological improvements and other factors on the price of wind energy charged under long-term contracts in the United States. For wind energy projects completed during the period 1999-2006, higher capacity factors and larger wind farms contributed to reductions in wind energy contract prices paid by regulated investor owned utilities in 2007. However, this effect was offset by rising construction costs. Turbine size (in MW) shows no clear relationship to contract prices, possibly because there may be opposing factors tending to decrease costs as turbine size increases and tending to increase costs as turbine size increases. Wind energy is generally a low-cost resource that is competitive with natural gas-fired power generation.

  3. Wind energy - The facts. Vol. 1: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, P.; Garrad, A.; Jamieson, P.; Snodin, H.; Tindal, A. (comps.) [Gerrad Hassan and partners (United Kingdom)

    2004-02-01

    The politics and economics of wind energy have played an important role in the development of the industry and contributed to its present success. Engineering is, however, pivotal. As the wind industry has become better established, the central place of engineering has become overshadowed by other issues. This is a tribute to the success of the engineers and their turbines. This volume addresses the key engineering Issues: 1) The turbines - their past achievements and future challenges - a remarkable tale of technical endeavour and entrepreneurship. 2) The wind - its characteristics and reliability - how can it be measured, quantified and harnessed? 3) The wind farms - an assembly of individual turbines into wind power stations or wind farms - their optimisation and development. 4) The grid - transporting the energy from remote locations with plentiful wind energy to the loads - the key technical and strategic challenges. This volume provides an historical overview of turbine development, describes the present status and considers future challenges. This is a remarkable story starting in the nineteenth century and then accelerating through the last two decades of the twentieth century on a course very similar to the early days of aeronautics. The story is far from finished but it has certainly started with a vengeance. Wind must be treated with great respect. The speed of the wind on a site has a very powerful effect on the economics of a wind farm; it provides both the fuel to generate electricity and the loads to destroy the turbine. This volume describes how it can be quantified, harnessed and put to work in an economic and predictable manner. The long-term behaviour of the wind is described as well as its short-term behaviour. The latter can be successfully forecast to allow wind energy to participate in electricity markets. In order for wind to live up to its raw potential promise, individual turbines must be assembled into wind farms or wind power stations

  4. Valorization of potentials of wind energy in Montenegro

    Directory of Open Access Journals (Sweden)

    Vujadinović Radoje V.

    2017-01-01

    Full Text Available Investments in energy sector are usually long term processes both in construction and exploitation phase, and therefore require many conditions to be satisfied, mostly from legislative and technical sector. While the legislative can change in accordance with economy activities in the country, technical data (on-site measurements which are the main base for energy facility design, need to be reliable as much as possible. Wind energy has a significant global potential which exceeds the world’s electrical energy consumptions. This paper presents the estimation of wind energy potentials in Montenegro, based on all previous available studies in this field. The wind energy potential in Montenegro is based on a combination of 3-D numerical simulations of wind fields on the entire territory, and comprehensive on-site measurements. The preliminary studies show that there is a potential of areas with high and mean values of a capacity factor about 400 MW, and annual production of 900 GWh of electric energy. The share of wind parks in the total installed power in Montenegro is planned to be about 8%, while an adequate ratio of wind parks in an annual production from renewable sources (large hydro power plants are included here is estimated to be 11.4%. The paper presents the current state of art in the field of building of wind parks in Montenegro. A particular attention was paid to the legislation framework and strategic documents in the energy area in Montenegro.

  5. Wind energy in Spain. 2000 MW in 2000

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Spain ranks third in terms of wind energy in Europe. Its wind power capacity has been soaring for the past five years and development of renewable energies is seen as a way to stimulate economy and employment. Two regions are at the forefront in this: Galicia and Navarra. Each autonomous region has its own way to develop wind energy. (A.L.B.)

  6. Questionnaire Study for The Use of Solar Energy and Wind Energy for The Generation of Electricity in Kuwait

    International Nuclear Information System (INIS)

    Tarawneh, Sultan; Rireh, Mohmd; Al-Razzi, Met'eb

    2015-01-01

    This research aims to study the acceptance of real management of designing electrical generation plants that work using solar energy and wind energy, to explain the benefits for the decision makers of the use of the solar energy and wind energy, and to define the most important obstacles that hinder the use of solar energy in generating electricity in spite of fulfilling the environmental conditions as clean energy and renewing energy contribute to sustainability of natural resources. The descriptive methodology was used by going back to reference material including books, and scientific journals and periodicals as well as scientific researches to identify the real management and design of electrical plant generation using solar energy and wind energy. A questionnaire was distributed among the study sample that was composed of the engineers working in energy field and electrical generation plants, the general institute for environment, Kuwait Institute for Scientific Research, and Kuwait Society of Engineers. 203 responses were received from the study sample. Results of the study showed the presence of obstacles and special problems related to the use of solar energy that face the decision makers with regard to the ability for acquiring important advanced technology and the huge financial support and the partnership of the private sector and training of unskilled human resources. And it was declared that there is a huge focus and attention in generation electrical energy from fossil fuel because of its presence and sustainability in investment in this field and the ability to fulfill the needs of the local market from energy.(author)

  7. Development actions of wind energy in Tunisia

    International Nuclear Information System (INIS)

    Esseghir, M.

    1991-01-01

    The actions undertaken in Tunisia during the last few years concern research, development and industrial processes and the creation of the National Energy Agency (Agence de Maitrise de l'Energie (AME)) interested in starting up national programs for energy planning, energy saving, and the use of alternative energy sources. This study is based on the most important wind applications realized in the last few years in Tunisia. Firstly the national energy situation is observed. Then attention is paid to the activities in the field of wind energy. After this follows a general description of wind availability per region in Tunisia. Two important applications, water pumping and rural electrification, are described. Finally the perspectives and the evolution of these applications for the future are dealt with. 3 figs., 3 tabs., 2 ills

  8. Quantifying system-wide financial costs and benefits of renewables (Wind and PV) in South Africa

    CSIR Research Space (South Africa)

    Bischof-Niemz, T

    2015-09-01

    Full Text Available In this study, the direct financial costs and benefits in South Africa from the wind and PV plants that came online in 2014 and all additional wind projects coming online in 2015 are quantified. In 2014, renewables created financial benefits of R5...

  9. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    OpenAIRE

    Bieniek Andrzej

    2017-01-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating index...

  10. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. of Technology, Chicago, IL (United States)

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  11. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Akpinar, S.

    2005-01-01

    This paper presents seasonal variations of the wind characteristics and wind turbine characteristics in the regions around Elazig, namely Maden, Agin and Keban. Mean wind speed data in measured hourly time series format is statistically analyzed for the six year period 1998-2003. The probability density distributions are derived from the time series data and their distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions on a seasonal basis. The wind energy characteristics of all the regions is studied based on the Weibull and Rayleigh distributions. Energy calculations and capacity factors for the wind turbine characteristics were determined for wind machines of different sizes between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind characteristics and wind turbine characteristics

  12. Possibilities for wind energy on the Kola peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, J; Rathmann, O; Lundsager, P [and others

    1999-03-01

    This paper presents an extensive feasibility study regarding the introduction of wind energy in the energy supply of the Kola peninsula in north-western Russia that was carried out during 1996-97. The study covers as well grid connected wind turbines as autonomous systems and a wind atlas was prepared. Special emphasis is put on non-technical activities and objectives like financing models, international funding and a sound politic support. The wind resources on the Kola peninsula are excellent and there are still no reasons to why wind energy installations couldn`t be carried out successfully. Recommendations for starting this development are presented. (au)

  13. Use of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' yeva, I G

    1982-01-01

    Programs on the use of wind energy have been adopted in over 12 countries. The WU of low power is manufactured by over 100 firms. One of the main trends for the use of wind energy currently is water pumping. The cost of operating water pumps with diesel and electric drive has increased and they have become not very accessible for a considerable part of the population in the developing countries. There are now about one million wind pump units (WPU) operating in the world, mainly in the United States, Australia and Argentina. The average power of the WPU is less than or equal to 0.5 kW. A trend is developing wind energy associated with the creation of wind heat units for heat supply of houses. When powerful experimental WEU are operating, the problem was revealed of their influence on the environment. The main difficulties are associated with creating WEU of electromagnetic interference, which in particular, influence the quality of television transmissions. This problem was encountered in operating the WEU P = 200 kW in the United States in Rhode Island. Normal operation of the television receivers was guaranteed with the help of cable network. A method was developed from calculating the zone of interferences which should be used in the future in setting up the WEU. A study was made of the noise from the operating of the WEU. The noise level of the WEU is in limits of permissible, however in direct proximity to the unit, intensive infrasonic fluctuations develop. The most important ecological consequence of building powerful WEU could be the death of nocturnal birds as a result of their colliding with the rotating blades. It is noted that this can be avoided by lighting the WEU.

  14. ewec 2007 - Europe's premier wind energy event

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, T. (ed.)

    2007-07-01

    This online collection of papers - the ewec 2007 proceedings - reflects the various sessions and lectures presented at the ewec wind-energy convention held in Milan in 2007. The first day's sessions looked at the following topics: Renewable Energy Roadmap, the changing structure of the wind industry, politics and programmes, aerodynamics and innovation in turbine design, wind resources and site characterisation (2 sessions), energy scenarios, harmonisation of incentive schemes, structural design and materials, forecasting, integration studies, integrating wind into electricity markets, wind-turbine electrical systems and components, as well as loads, noise and wakes. The second day included sessions on offshore: developments and prospects, extreme wind conditions and forecasting techniques, small wind turbines, distributed generation and autonomous systems cost effectiveness, cost effectiveness of wind energy, financing wind energy concepts, wind and turbulence, wind power plants and grid integration, offshore technology, global challenges and opportunities, aero-elasticity, loads and control, operations and maintenance, carbon trading and the emission trading schemes, investment strategies of power producers, wind power plants and grid integration, wind turbine electrical systems and components, and wakes. The third day offered sessions on environmental issues, condition monitoring, operation and maintenance, structural design and materials, the Up-Wind workshop, winning hearts and minds, offshore technology, advances in measuring methods and advancing drive-train reliability. In a closing session the conference was summarised, awards for poster contributions were made and the Poul la Cour Prize was presented.

  15. Wind Energy Department annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, B.D.; Riis, U. (eds.)

    2003-12-01

    Research and development activities of the Wind Energy Department range from boundary layer meteorology, fluid dynamics, and structural mechanics to power and control engineering as well as wind turbine loading and safety. The overall purpose of our work is to meet the needs for knowledge, methods and procedures from government, the scientific community, and the wind turbine industry in particular. Our assistance to the wind turbine manufacturers serve to pave the way for technological development and thus further the exploitation of wind energy worldwide. We do this by means of research and innovation, education, testing and consultancy. In providing services for the wind turbine industry, we are involved in technology development, design, testing, procedures for operation and maintenance, certification and international wind turbine projects s as well as the solution of problems encountered in the application of wind energy, e.g. grid connection. A major proportion of these activities are on a commercial basis, for instance consultancy, software development, accredited testing of wind turbines and blades as well as approval and certification in co-operation with Det Norske Veritas. The departments activities also include research into atmospheric physics and environmental issues related to the atmosphere. One example is the development of online warning systems for airborne bacteria and other harmful substances. The department is organized in programmes according to its main scientific and technical activities. Research programmes: 1) Aeroelastic Design, AED; 2) Atmospheric Phyrics, ATM; 3) Electrical DEsign and Control, EDS; 4) Wind Power Meteorology, VKM; 5) Wind Turbines, VIM; 6) Wind Turbine Diagnostics, VMD. Commercial programmes: 1) The Test Station for Large Wind Turbines, Hoevsoere, HOeV; 2) Risoe Wind Consult, INR; 3) Wind Turbine Testing; 4) Sparkaer Blade Test Centre.(au)

  16. 76 FR 78641 - Cedar Creek Wind Energy, LLC, Milford Wind Corridor Phase I, LLC; Notice of Filing

    Science.gov (United States)

    2011-12-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-002; Docket No. RC11-2-002] Cedar Creek Wind Energy, LLC, Milford Wind Corridor Phase I, LLC; Notice of Filing Take...) June 16, 2011 Order.\\1\\ \\1\\ Cedar Creek Wind Energy, LLC and Milford Wind Corridor Phase I, LLC, 135...

  17. Bird Killer, Industrial Intruder or Clean Energy? Perceiving Risks to Ecosystem Services Due to an Offshore Wind Farm

    KAUST Repository

    Klain, Sarah C.; Satterfield, Terre; Sinner, Jim; Ellis, Joanne; Chan, Kai M.A.

    2017-01-01

    Proposals to develop renewable energy technologies may threaten local values, which can generate opposition. Efforts to explain this opposition have focused on perceived negative aesthetic and environmental impact. Less attention has been paid to a fuller suite of the perceived risks and benefits associated with new energy technologies. This paper thus investigates impacts of an offshore wind farm pertaining to individual perceptions and judgments, and why risks to some ecosystem services might be cause for greater public concern than others. We find that this difference can be attributed to the affective and intuitive ways in which people perceive risk. Our mixed-methods design used interviews (n=27) that involved risk-benefit weighting tasks and an animated visualization to help people imagine an offshore wind farm in a familiar place. We found that affectively-loaded impacts (harm to charismatic wildlife and visual intrusion) were assigned greater weight than more easily quantifiable impacts (displacement of fishing, impact to tourism, cost of compliance with regulations). Interviewees identified increased regional energy self-sufficiency as the most valued potential benefit of an offshore wind farm. These results have implications for ecosystem service assessments generally and, more specifically, for our understanding of ‘affective’ dimensions of development proposals.

  18. Bird Killer, Industrial Intruder or Clean Energy? Perceiving Risks to Ecosystem Services Due to an Offshore Wind Farm

    KAUST Repository

    Klain, Sarah C.

    2017-07-19

    Proposals to develop renewable energy technologies may threaten local values, which can generate opposition. Efforts to explain this opposition have focused on perceived negative aesthetic and environmental impact. Less attention has been paid to a fuller suite of the perceived risks and benefits associated with new energy technologies. This paper thus investigates impacts of an offshore wind farm pertaining to individual perceptions and judgmen