WorldWideScience

Sample records for wind electron temperature

  1. Effects of electrons on the solar wind proton temperature anisotropy

    International Nuclear Information System (INIS)

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H.

    2014-01-01

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  2. Electron temperature anisotropy constraints in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Maksimovic, M.; Marsch, E.; Fazakerley, A.; Scime, E. E.

    2008-01-01

    Roč. 113, A3 /2008/ (2008), A03103/1-A03103/10 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420602 Grant - others:EU(XE) ESA-PECS project No. 98024 Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind electrons * temperature anisotropy * radial Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.147, year: 2008

  3. MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y.; Lazar, M.; Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Heverlee (Belgium); Viñas, A., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD 20771 (United States)

    2016-11-20

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  4. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  5. Shaping the solar wind electron temperature anisotropy by the interplay of core and suprathermal populations

    Science.gov (United States)

    Shaaban Hamd, S. M.; Lazar, M.; Poedts, S.; Pierrard, V.; Štverák

    2017-12-01

    We present the results of an advanced parametrization of the temperature anisotropy of electrons in the slow solar wind and the electromagnetic instabilities resulting from the interplay of their thermal core and suprathermal halo populations. A large set of observational data (from the Ulysses, Helios and Cluster missions) is used to parametrize these components and establish their correlations. Comparative analysis demonstrates for the first time a particular implication of the suprathermal electrons which are less dense but hotter than thermal electrons. The instabilities are significantly stimulated by the interplay of the core and halo populations, leading to lower thresholds which shape the observed limits of the temperature anisotropy for both the core and halo populations. This double agreement strongly suggests that the selfgenerated instabilities play the major role in constraining the electron anisotropy.

  6. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    Czech Academy of Sciences Publication Activity Database

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Štěpán; Maksimovic, M.; Trávníček, Pavel M.

    2016-01-01

    Roč. 291, č. 7 (2016), s. 2165-2179 ISSN 0038-0938 R&D Projects: GA ČR GA15-17490S Institutional support: RVO:67985815 Keywords : solar wind * electron velocity distributions * temperature anisotropy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.682, year: 2016

  7. The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations

    Czech Academy of Sciences Publication Activity Database

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Štěpán; Maksimovic, M.; Trávníček, Pavel M.

    2016-01-01

    Roč. 291, č. 7 (2016), s. 2165-2179 ISSN 0038-0938 Institutional support: RVO:68378289 Keywords : solar wind * electron velocity distributions * temperature anisotropy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.682, year: 2016 http://link.springer.com/article/10.1007/s11207-016-0961-7

  8. Analyses of experimental observations of electron temperatures in the near wake of a model in a laboratory-simulated solar wind plasma

    International Nuclear Information System (INIS)

    Intriligator, D.S.; Steele, G.R.

    1985-01-01

    Laboratory experiments have been performed that show the effect on the electron temperature of inserting a spherical conducting model, larger than the Debye length, into a free-streaming high-energy (1 kv) unmagnetized hydrogen plasma. These experiments are the first electron temperature experiments conducted at energies and compositions directly relevant to solar wind and astrophysical plasma phenomena. The incident plasma parameters were held constant. A large number of axial profiles of the electron temperature ratios T/sub e//sub in// T/sub e//sub out/ behind the model downstream in the model wake are presented. A rigorous statistical approach is used in the analysis of the electron temperature ratio data in both our experimental laboratory data and in our reanalysis of the published data of others. The following new results ae obtained: (1) In energetic plasma flow there is no overall temperature enhancement in the near wake since the best fit to the T/sub e//sub i/n/ T/sub e//sub out/ data is a horizontal straight line having a mean value of 1.05; (2) No statistically significant electron temperature enhancement peaks or depressions exist in the near-wake region behind a model at zero potential in a high-energy plasma even at distances less than or equal to Ma, where M is the acoustic Mach number and a is the model radius. This implies a ''filling in'' of electrons in the wake region which may be due to the higher mobility of these energetic electrons. This mechanism may permit the solar wind electrons to significantly contribute to the maintenance of the nightside ionosphere at Venus

  9. Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions

    Science.gov (United States)

    Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.

    2017-12-01

    Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.

  10. A quasilinear kinetic model for solar wind electrons and protons instabilities

    Science.gov (United States)

    Sarfraz, M.; Yoon, P. H.

    2017-12-01

    In situ measurements confirm the anisotropic behavior in temperatures of solar wind species. These anisotropies associated with charge particles are observed to be relaxed. In collionless limit, kinetic instabilities play a significant role to reshape particles distribution. The linear analysis results are encapsulated in inverse relationship between anisotropy and plasma beta based observations fittings techniques, simulations methods, or solution of linearized Vlasov equation. Here amacroscopic quasilinear technique is adopted to confirm inverse relationship through solutions of set of self-consistent kinetic equations. Firstly, for a homogeneous and non-collisional medium, quasilinear kinetic model is employed to display asymptotic variations of core and halo electrons temperatures and saturations of wave energy densities for electromagnetic electron cyclotron (EMEC) instability sourced by, T⊥}>T{∥ . It is shown that, in (β ∥ , T⊥}/T{∥ ) phase space, the saturations stages of anisotropies associated with core and halo electrons lined up on their respective marginal stability curves. Secondly, for case of electrons firehose instability ignited by excessive parallel temperature i.e T⊥}>T{∥ , both electrons and protons are allowed to dynamically evolve in time. It is also observed that, the trajectories of protons and electrons at saturation stages in phase space of anisotropy and plasma beta correspond to proton cyclotron and firehose marginal stability curves, respectively. Next, the outstanding issue that most of observed proton data resides in nearly isotropic state in phase space is interpreted. Here, in quasilinear frame-work of inhomogeneous solar wind system, a set of self-consistent quasilinear equations is formulated to show a dynamical variations of temperatures with spatial distributions. On choice of different initial parameters, it is shown that, interplay of electron and proton instabilities provides an counter-balancing force to slow

  11. Long-term solar wind electron variations between 1971 and 1978

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1979-01-01

    Imp solar wind electron data measured between 1971 and 1978 were studied with the aim of determining long-term variations near the earth. Two separate sets of parameter variations were observed: (1) in 1976--1977 the solar wind density, the electron temperature, and the interplanetary electrostatic potential were all enhanced, and (2) the halo density and associated electron parameters were all depressed during a 1 1/2-year period centered on the last 6 months of 1976. Although interpretation of these results in terms of corresponding coronal and interplanetary variations is not unique, it may be significant that measured solar wind parameters near the minimum of solar cycle 20 agree better with the Hartle-Sturrock model of the coronal expansion than they do during other epochs

  12. Kinetic Theory and Fast Wind Observations of the Electron Strahl

    Science.gov (United States)

    Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan

    2018-02-01

    We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centred on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature and the magnetic field strength decline as power laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with observations of the eVDF made by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 au, in particular by predicting how this width scales with particle energy and background density. We find that the strahl distribution is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 au; however, it then overestimates the strahl amplitude at larger heliocentric distances. This indicates that our model may be improved through the inclusion of additional physics, possibly through the introduction of 'anomalous diffusion' of the strahl electrons.

  13. A Review of Power Electronics for Wind Power

    Institute of Scientific and Technical Information of China (English)

    Zhe CHEN

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems.Main wind turbine systems with different generators and power electronic converters are described.The electrical topologies of wind farms with power electronic conversion are discussed.Power electronic applications for improving the performance of wind turbines and wind farms in power systems have been illustrated.

  14. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  15. An equatorial temperature and wind anomaly (ETWA)

    International Nuclear Information System (INIS)

    Raghavarao, R.; Wharton, L.E.; Mayr, H.G.; Brace, L.H.; Spencer, N.W.

    1991-01-01

    Data obtained from the WATS (Wind and Temperature Spectrometer) and LP (Langmuir Probe) experiments on board DE-2 (Dynamic Explorer) during high solar activity show evidence of anomalous latitudinal variations in the zonal winds and temperature at low latitudes. The zonal winds exhibit a broad maximum centered around the dip equator, flanked by minima on either side around 25 degrees; while the temperature exhibits a pronounced bowl-shaped minimum at the dip equator which is flanked by maxima. The two minima in the zonal winds and the corresponding maxima in the temperature are nearly collocated with the crests of the well known Equatorial Ionization Anomaly (EIA). The maximum in the zonal winds and the minimum in the gas temperature are collected with the trough of the EIA. The differences between the maxima and minima in temperature and zonal winds, on many occasions, are observed to exceed 100 K and 100 m/s, respectively. The characteristics of this new phenomenon have eluded present day empirical models of thermospheric temperature and winds. The connection among these variables can be understood from the ion-neutral drag effect on the motions of the neutrals that in turn affect their energy balance

  16. Theory of local and global processes which affect solar wind electrons. 2. Experimental support

    International Nuclear Information System (INIS)

    Scudder, J.D.; Olbert, S.

    1979-01-01

    We have extended the theoretical considerations of Scudder and Olbert (1979) (hereafter called paper 1) to show from the microscopic characteristics of the Coulomb cross section that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E 7kT/sub c/. We present experimental support from three experimental groups on three different spacecraft over a radial range in the interplanetary medium for the five interrelations projected in paper 1 between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compressions and rarefactions) in stream dynamics: (2) the extrathermal fraction of the ambient electron density should be anticorrelated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anticorrelated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anticorrelated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 Au. From first principles and the spatial inhomogeneity of the plasma we show that the velocity dependence of Coulomb collisions in the solar wind plasmaproduces a bifurcation in the solar wind electron distribution function at a transition energy E*. This energy is theoretically shown to scale with the local thermal temperature as E*(r) approx. =GAMMAkT/sub c/(r). This scaling is observationally supported over the radial range from 0.45 to 0.9 AU and at 1 AU. The extrathermals, defined on the basis of Coulomb collisions, are synonymous with the subpopulation previously labeled in the literature as the 'halo' or 'hot' component

  17. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  18. A theory of local and global processes which affect solar wind electrons. 2. Experimental support

    International Nuclear Information System (INIS)

    Scudder, J.D.; Olbert, S.

    1979-05-01

    The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals; the transthermals; and the extrathermals. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU

  19. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  20. Kinetic instabilities in the solar wind driven by temperature anisotropies

    Science.gov (United States)

    Yoon, Peter H.

    2017-12-01

    The present paper comprises a review of kinetic instabilities that may be operative in the solar wind, and how they influence the dynamics thereof. The review is limited to collective plasma instabilities driven by the temperature anisotropies. To limit the scope even further, the discussion is restricted to the temperature anisotropy-driven instabilities within the model of bi-Maxwellian plasma velocity distribution function. The effects of multiple particle species or the influence of field-aligned drift will not be included. The field-aligned drift or beam is particularly prominent for the solar wind electrons, and thus ignoring its effect leaves out a vast portion of important physics. Nevertheless, for the sake of limiting the scope, this effect will not be discussed. The exposition is within the context of linear and quasilinear Vlasov kinetic theories. The discussion does not cover either computer simulations or data analyses of observations, in any systematic manner, although references will be made to published works pertaining to these methods. The scientific rationale for the present analysis is that the anisotropic temperatures associated with charged particles are pervasively detected in the solar wind, and it is one of the key contemporary scientific research topics to correctly characterize how such anisotropies are generated, maintained, and regulated in the solar wind. The present article aims to provide an up-to-date theoretical development on this research topic, largely based on the author's own work.

  1. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  2. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    Science.gov (United States)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  3. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  4. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    Science.gov (United States)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  5. Solar wind temperature observations in the outer heliosphere

    Science.gov (United States)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.

  6. Non-hoop winding effect on bonding temperature of laser assisted tape winding process

    Science.gov (United States)

    Zaami, Amin; Baran, Ismet; Akkerman, Remko

    2018-05-01

    One of the advanced methods for production of thermoplastic composite methods is laser assisted tape winding (LATW). Predicting the temperature in LATW process is very important since the temperature at nip-point (bonding line through width) plays a pivotal role in a proper bonding and hence the mechanical performance. Despite the hoop-winding where the nip-point is the straight line, non-hoop winding includes a curved nip-point line. Hence, the non-hoop winding causes somewhat a different power input through laser-rays and-reflections and consequently generates unknown complex temperature profile on the curved nip-point line. Investigating the temperature at the nip-point line is the point of interest in this study. In order to understand this effect, a numerical model is proposed to capture the effect of laser-rays and their reflections on the nip-point temperature. To this end, a 3D optical model considering the objects in LATW process is considered. Then, the power distribution (absorption and reflection) from the optical analysis is used as an input (heat flux distribution) for the thermal analysis. The thermal analysis employs a fully-implicit advection-diffusion model to calculate the temperature on the surfaces. The results are examined to demonstrate the effect of winding direction on the curved nip-point line (tape width) which has not been considered in literature up to now. Furthermore, the results can be used for designing a better and more efficient setup in the LATW process.

  7. Power Electronics and Controls for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Chen, Zhe

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use power electronics to achieve high efficiency in power generation, transmission/distribution and utilization. This paper discuss trends of the most promising renewable energy sources, wind energy, which ,integrated with power...... electronics, is changing the future electrical infrastructure and also contributes steadily to non-carbon based electricity production. The paper’s focus is on the power electronics technologies used in wind turbine systems....

  8. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  9. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  10. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1997-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  11. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1998-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  12. Natural Ventilation Driven by Wind and Temperature Difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen

    Natural ventilation is a commonly used principle when buildings are being ventilated. It can be controlled by openings in the building envelope, which open or close depending on the need of air inside the building. It can also be the simple action of just opening a door or a window to let the fresh...... driving forces are still wind pressure and temperature differences as with cross-ventilation, but here the turbulence in the wind and the pulsating flow near the opening also affect the flow through the opening. From earlier work, some design expressions already exist, but none of these include...... the incidence angle of the wind, which is an important parameter in this type of ventilation. Several wind tunnel experiments are made and from the results of these, a new design expression is made which includes the wind pressure, temperature difference, incidence angle of the wind and the fluctuations...

  13. Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?

    International Nuclear Information System (INIS)

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.; Bame, S.J.; Luhmann, J.G.; Smith, E.J.

    1989-01-01

    Electron heat flux dropout events have been observed in the solar wind using the ISEE 3 plasma electron data set. These events manifest themselves as dropouts of the solar wind halo electrons which are normally found streaming outward along the local magnetic field. These dropouts leave nearly isotropic distributions of solar wind halo electrons, and consequently, the heat flux in these events is reduced to near the observational noise level. We have examined ISEE 3 data from shortly after launch (August 16, 1978) through the end of 1978 and identified 25 such events ranging in duration from 20 min to over 11 hours. Comparison with the ISEE 3 magnetometer data indicates that these intervals nearly always occur in conjunction with large rotations of the interplanetary magnetic field. Statistical analyses of the plasma and magnetic field data for the 25 dropout intervals indicate that heat flux dropouts generally occur in association with high plasma densities low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. A second set of 25 intervals chosen specifically to lie at large field rotations, but at times at which not heat flux dropouts were observed, do not show these characteristic plalsma variations. This suggests that the dropout intervals comprise a unique set of events. Since the hot halo electrons normally found streaming outward from the Sun along the interplanetary magnetic field (the solar wind electron heat flux) are a result of direct magnetic connection to the hot solar corona, heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the Sun and instead are connected to the outer heliosphere at both ends

  14. Effects of non-Maxwellian electron velocity distribution functions and nonspherical geometry on minor ions in the solar wind

    Science.gov (United States)

    Burgi, A.

    1987-01-01

    A previous model has shown that in order to account for the charge state distribution in the low-speed solar wind, a high coronal temperature is necessary and that this temperature peak goes together with a peak of nx/np in the corona. In the present paper, one of the assumptions made previously, i.e., that coronal electrons are Maxwellian, is relaxed, and a much cooler model is presented, which could account for the same oxygen charge states in the solar wind due to the inclusion of non-Maxwellian electrons. Also, due to a different choice of the coronal magnetic field geometry, this model would show no enhancement of the coronal nx/np. Results of the two models are then compared, and observational tests to distinguish between the two scenarios are proposed: comparison of directly measured coronal Te to charge state measurements in the solar wind, determination of the coronal nx/np measurement of ion speeds in the acceleration region of the solar wind, and measurement of the frozen-in silicon charge state distribution.

  15. Solar wind ∼0.1-1.5 keV electrons at quiet times

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jiawei; Wang, Linghua, E-mail: wanglhwang@gmail.com; Zong, Qiugang; He, Jiansen; Tu, Chuanyi [School of Earth and Space Science, Peking University, Beijing 100871 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Alabama 35899 (United States); Salem, Chadi S.; Bale, Stuart D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Wimmer-Schweingruber, Robert F. [Institute for Experimental and Applied Physics, University of Kiel (Germany)

    2016-03-25

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ∼0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature T{sub eff} and density n{sub 0}. We also integrate the the measurements over ∼0.1-1.5 keV to obtain the average electron energy E{sub avg} of the strahl and halo. We find a strong positive correlation between κ and T{sub eff} for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ∼68% have the halo κ smaller than the strahl κ, while ∼50% have the halo E{sub h} larger than the strahl E{sub s}.

  16. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  17. Solar wind velocity and temperature in the outer heliosphere

    Science.gov (United States)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  18. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    Science.gov (United States)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  19. A Review of the State of the Art of Power Electronics for Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Guerrero, Josep M.; Blaabjerg, Frede

    2009-01-01

    are summarized and the possible uses of power electronic converters with wind farms are shown. Finally, the possible methods of using the power electronic technology for improving wind turbine performance in power systems to meet the main grid connection requirements are discussed.......This paper reviews the power electronic applications for wind energy systems. Various wind turbine systems with different generators and power electronic converters are described, and different technical features are compared. The electrical topologies of wind farms with different wind turbines...

  20. Special Tests for the Power Electronic Converters of Wind Turbine Generators

    DEFF Research Database (Denmark)

    Helle, Lars; Senturk, Osman Selcuk; Teodorescu, Remus

    2011-01-01

    -level medium-voltage source converter topologies, of the 3L-ANPC-VSC and 3L-HB-VSC type, are considered in the paper. Both converters employ press-pack IGBT-diode pairs and interface a 6 MW wind turbine to a medium voltage grid. The power loss and thermal model data applicable for both grid and generator......Power electronic converters for wind turbines are characterized by high specific power density and high reliability. Special tests for such converters are performed in order to determine the power loss and thermal models, which are dependent of the load profile and converter structure. Two multi......-side VSCs is used to estimate the switch junction temperatures through the simulation of wind turbine grid interface operation. A discussion of the power density and reliability of the grid-side VSCs with respect to press-pack switches, gate driver, and cooling plate is included. A test set-up for a single...

  1. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  2. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  3. Colliding winds: Interaction regions with strong heat conduction

    International Nuclear Information System (INIS)

    Imamura, J.N.; Chevalier, R.A.

    1984-01-01

    The interaction of fast stellar wind with a slower wind from previous mass loss gives rise to a region of hot, shocked gas. We obtain self-similar solutions for the interaction region under the assumptions of constant mass loss rate and wind velocity for the two winds, conversion of energy in the shock region, and either isothermal electrons and adiabatic ions or isothermal electrons ad ions in the shocked region. The isothermal assumption is intended to show the effects of strog heat conduction. The solutions have no heat conduction through the shock waves and assume that the electron and ion temperatures are equilibriated in the shock waves. The one-temperature isothermal solutions have nearly constant density through the shocked region, while the two-temperature solutions are intermediate between the one-temperature adiabatic and isothermal solutions. In the two-temperature solutions, the ion temperature goes to zero at the point where the gas comoves with the shocked region and the density peaks at this point. The solution may qualitatively describe the effects of heat conduction on interaction regions in the solar wind. It will be important to determine whether the assumption of no thermal waves outside the shocked region applies to shock waves in the solar wind

  4. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  5. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  6. Future on Power Electronics for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2013-01-01

    networks and more and more wind power stations, acting as power plants, are connected directly to the transmission networks. As the grid penetration and power level of the wind turbines increase steadily, the wind power starts to have significant impacts to the power grid system. Therefore, more advanced...... generators, power electronic systems, and control solutions have to be introduced to improve the characteristics of the wind power plant and make it more suitable to be integrated into the power grid. Meanwhile, there are also some emerging technology challenges, which need to be further clarified......Wind power is still the most promising renewable energy in the year of 2013. The wind turbine system (WTS) started with a few tens of kilowatt power in the 1980s. Now, multimegawatt wind turbines are widely installed even up to 6-8 MW. There is a widespread use of wind turbines in the distribution...

  7. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    Science.gov (United States)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  8. Single-sided natural ventilation driven by wind pressure and temperature difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2008-01-01

    -scale wind tunnel experiments have been made with the aim of making a new expression for calculation of the airflow rate in single-sided natural ventilation. During the wind tunnel experiments it was found that the dominating driving force differs between wind speed and temperature difference depending......Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind...

  9. Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes

    Science.gov (United States)

    Dao, Tam; Otsuka, Yuichi; Shiokawa, Kazuo; Nishioka, Michi; Yamamoto, Mamoru; Buhari, Suhaila M.; Abdullah, Mardina; Husin, Asnawi

    2017-07-01

    We investigated a postmidnight field-aligned irregularity (FAI) event observed with the Equatorial Atmosphere Radar at Kototabang (0.2°S, 100.3°E, dip latitude 10.4°S) in Indonesia on the night of 9 July 2010 using a comprehensive data set of both neutral and plasma parameters. We examined the rate of total electron content change index (ROTI) obtained from GPS receivers in Southeast Asia, airglow images detected by an all-sky imager, and thermospheric neutral winds and temperatures obtained by a Fabry-Perot interferometer at Kototabang. Altitudes of the F layer (h'F) observed by ionosondes at Kototabang, Chiang Mai, and Chumphon were also surveyed. We found that the postmidnight FAIs occurred within plasma bubbles and coincided with kilometer-scale plasma density irregularities. We also observed an enhancement of the magnetically equatorward thermospheric neutral wind at the same time as the increase of h'F at low-latitude stations, but h'F at a station near the magnetic equator remained invariant. Simultaneously, a magnetically equatorward gradient of thermospheric temperature was identified at Kototabang. The convergence of equatorward neutral winds from the Northern and Southern Hemispheres could be associated with a midnight temperature maximum occurring around the magnetic equator. Equatorward neutral winds can uplift the F layer at low latitudes and increase the growth rate of Rayleigh-Taylor instabilities, causing more rapid extension of plasma bubbles. The equatorward winds in both hemispheres also intensify the eastward Pedersen current, so a large polarization electric field generated in the plasma bubble might play an important role in the generation of postmidnight FAIs.

  10. The detection of wind turbine shaft misalignment using temperature monitoring

    OpenAIRE

    Tonks, Oliver; Wang, Qing

    2016-01-01

    Temperature is a parameter increasingly monitored in wind turbine systems. This paper details a potential temperature monitoring technique for use on shaft couplings. Such condition monitoring methods aid fault detection in other areas of wind turbines. However, application to shaft couplings has not previously been widely researched. A novel temperature measurement technique is outlined, using an infra-red thermometer which can be applied to online condition monitoring. The method was va...

  11. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  12. Emissions and temperature benefits: The role of wind power in China.

    Science.gov (United States)

    Duan, Hongbo

    2017-01-01

    As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Temporal and radial variation of the solar wind temperature-speed relationship

    Science.gov (United States)

    Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.

    2012-09-01

    The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate

  14. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  15. QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; He, Jiansen; Tu, Chuanyi [School of Earth and Space Science, Peking University, Beijing 100871 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Alabama 35899 (United States); Salem, Chadi S.; Bale, Stuart D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institute for Experimental and Applied Physics, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2016-03-20

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl and halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)

  16. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  17. Voyager observations of solar wind proton temperature - 1-10 AU

    Science.gov (United States)

    Gazis, P. R.; Lazarus, A. J.

    1982-01-01

    Simultaneous measurements are made of the solar wind proton temperatures by the Voyager 1 and 2 spacecraft, far from earth, and the IMP 8 spacecraft in earth orbit. This technique permits a separation of radial and temporal variations of solar wind parameters. The average value of the proton temperature between 1 and 9 AU is observed to decrease as r (the heliocentric radius) to the -(0.7 + or - 0.2). This is slower than would be expected for adiabatic expansion. A detailed examination of the solar wind stream structure shows that considerable heating occurs at the interface between high and low speed streams.

  18. Electron heat flux instabilities in the solar wind

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.; Forslund, D.W.; Montgomery, M.D.

    1975-01-01

    There are at least three plasma instabilities associated with the electron heat flux in the solar wind. This letter reports the study of the unstable fast magnetosonic, Alfven and whistler modes via a computer code which solves the full electromagnetic, linear, Vlasov dispersion relation. Linear theory demonstrates that both the magnetosonic and Alfven instabilities are candidates for turbulent limitation of the heat flux in the solar wind at 1 A.U

  19. Emissions and temperature benefits: The role of wind power in China

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongbo, E-mail: hbduan@ucas.ac.cn

    2017-01-15

    Background: As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. Methods: We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Results: Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Conclusions: Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. - Highlights: • We assess the warming benefits associated with substitution of wind power for coal. • The effect of emission space limits on climate responses is deeply examined. • China is responsible for at most 21.76% of global warming given the 2-degree target. • Wind power alone may not be sufficient to face the challenge of climate change. • A fertile policy soil and an aggressive plan are necessary to boost renewables.

  20. Emissions and temperature benefits: The role of wind power in China

    International Nuclear Information System (INIS)

    Duan, Hongbo

    2017-01-01

    Background: As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. Methods: We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Results: Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Conclusions: Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. - Highlights: • We assess the warming benefits associated with substitution of wind power for coal. • The effect of emission space limits on climate responses is deeply examined. • China is responsible for at most 21.76% of global warming given the 2-degree target. • Wind power alone may not be sufficient to face the challenge of climate change. • A fertile policy soil and an aggressive plan are necessary to boost renewables.

  1. Musical Intonation of Wind Instruments and Temperature

    Science.gov (United States)

    Zendri, G.; Valdan, M.; Gratton, L. M.; Oss, S.

    2015-01-01

    Wind musical instruments are affected in their intonation by temperature. We show how to account for these effects in a simple experiment, and provide results in languages accessible to both physics and music professionals.

  2. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  3. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    Science.gov (United States)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  4. Diurnal experiment data report, 19-20 March 1974. [temperature and wind data

    Science.gov (United States)

    Schmidlin, F. J.; Yamasaki, Y.; Motta, A.; Brynsztein, S.

    1975-01-01

    Temperature and wind data are presented from 70 small meteorological sounding rockets launched from eight selected launch sites in the Western Hemisphere. Table 1 gives a complete listing of the launch sites involved and the altitude of temperature and wind observations successfully completed.

  5. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    Science.gov (United States)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  6. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    International Nuclear Information System (INIS)

    Smith, Craig M; Barthelmie, R J; Pryor, S C

    2013-01-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m. (letter)

  7. Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique

    Science.gov (United States)

    Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.

    2005-12-01

    Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds

  8. New results on equatorial thermospheric winds and the midnight temperature maximum

    Directory of Open Access Journals (Sweden)

    J. Meriwether

    2008-03-01

    Full Text Available Optical observations of thermospheric winds and temperatures determined with high resolution measurements of Doppler shifts and Doppler widths of the OI 630-nm equatorial nightglow emission have been made with improved accuracy at Arequipa, Peru (16.4° S, 71.4° W with an imaging Fabry-Perot interferometer. An observing procedure previously used at Arecibo Observatory was applied to achieve increased spatial and temporal sampling of the thermospheric wind and temperature with the selection of eight azimuthal directions, equally spaced from 0 to 360°, at a zenith angle of 60°. By assuming the equivalence of longitude and local time, the data obtained using this technique is analyzed to determine the mean neutral wind speeds and mean horizontal gradients of the wind field in the zonal and meridional directions. The new temperature measurements obtained with the improved instrumental accuracy clearly show the midnight temperature maximum (MTM peak with amplitudes of 25 to 200 K in all directions observed for most nights. The horizontal wind field maps calculated from the mean winds and gradients show the MTM peak is always preceded by an equatorward wind surge lasting 1–2 h. The results also show for winter events a meridional wind abatement seen after the MTM peak. On one occasion, near the September equinox, a reversal was observed during the poleward transit of the MTM over Arequipa. Analysis inferring vertical winds from the observed convergence yielded inconsistent results, calling into question the validity of this calculation for the MTM structure at equatorial latitudes during solar minimum. Comparison of the observations with the predictions of the NCAR general circulation model indicates that the model fails to reproduce the observed amplitude by a factor of 5 or more. This is attributed in part to the lack of adequate spatial resolution in the model as the MTM phenomenon takes place within a scale of 300–500 km and ~45 min in

  9. Arctic Strato-Mesospheric Temperature and Wind Variations

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  10. On the Origins of the Intercorrelations Between Solar Wind Variables

    Science.gov (United States)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  11. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  12. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  13. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    Science.gov (United States)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  14. On Electron-Scale Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.

    2016-01-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  15. Counterstreaming solar wind halo electron events on open field lines?

    Science.gov (United States)

    Gosling, J. T.; Mccomas, D. J.; Phillips, J. L.

    1992-01-01

    Counterstreaming solar wind halo electron events have been identified as a common 1 AU signature of coronal mass ejection events, and have generally been interpreted as indicative of closed magnetic field topologies, i.e., magnetic loops or flux ropes rooted at both ends in the Sun, or detached plasmoids. In this paper we examine the possibility that these events may instead occur preferentially on open field lines, and that counterstreaming results from reflection or injection behind interplanetary shocks or from mirroring from regions of compressed magnetic field farther out in the heliosphere. We conclude that neither of these suggested sources of counterstreaming electron beams is viable and that the best interpretation of observed counterstreaming electron events in the solar wind remains that of passage of closed field structures.

  16. The Radial Variation of the Solar Wind Temperature-Speed Relationship

    Science.gov (United States)

    Elliott, H. A.; McComas, D. J.

    2010-12-01

    Generally, the solar wind temperature (T) and speed (V) are well correlated except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We have shown that at 1 AU the speed-temperature relationship is often well represented by a linear fit for a speed range spanning both the slow and fast wind. By examining all of the ACE and OMNI measurements, we found that when coronal holes are large the fast wind can have a different T-V relationship than the slow wind. The best example of this was in 2003 when there was a very large and long-lived outward polarity coronal hole at low latitudes. The long-lived nature of the hole made it possible to clearly distinguish that large holes can have a different T-V relationship. We found it to be rare that holes are large enough and last long enough to have enough data points to clearly demonstrate this effect. In this study we compare the 2003 coronal hole observations from ACE with the Ulysses polar coronal hole measurements. In an even earlier ACE study we found that both the compressions and rarefactions curves are linear, but the compression curve is shifted to higher temperatures. In this presentation we use Helios, Ulysses, and ACE measurements to examine how the T-V relationship varies with distance. The dynamic evolution of the solar wind parameters is revealed when we first separate compressions and rarefactions and then determine the radial profiles of the solar wind parameters. We find that T-V relationship varies with distance and in particular beyond 3 AU the differences between the compressions and rarefactions are quite important and at such distances a simple linear fit does not represent the T-V distribution very well.

  17. Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    Roč. 33, č. 9 (2006), L09101/1-L09101/4 ISSN 0094-8276 R&D Projects: GA AV ČR(CZ) IAA3042403 Grant - others:ESA(XE) PECS 98024; NASA (US) NAG-10915 Institutional research plan: CEZ:AV0Z30420517 Keywords : proton temperature anisotropy * solar wind * in situ observations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.602, year: 2006

  18. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  19. Physics-based Tests to Identify the Accuracy of Solar Wind Ion Measurements: A Case Study with the Wind Faraday Cups

    Science.gov (United States)

    Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.

    2006-01-01

    We present techniques for comparing measurements of velocity, temperature, and density with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar Wind Experiment Faraday Cup instruments on the Wind spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar wind intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number densities are compared with the electron density inferred from observations of the local electron plasma frequency as a function of solar wind speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and density methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar wind where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar wind ion instrument.

  20. The solar wind control of electron fluxes in geostationary orbit during magnetic storms

    International Nuclear Information System (INIS)

    Popov, G.V.; Degtyarev, V.I.; Sheshukov, S.S.; Chudnenko, S.E.

    1999-01-01

    The dynamics of electron fluxes (with energies from 30 to 1360 keV) in geostationary orbit during magnetic storms was investigated on the basis of LANL spacecraft 1976-059 and 1977-007 data. Thirty-seven magnetic storms with distinct onsets from the time interval July 1976-December 1978 were used in the analysis. A treatment of experimental data involved the moving averaging and the overlapping epoch method. The smoothed component of electron fluxes represents mainly trapped electrons and shows their strong dependence on the solar wind velocity. The time lag between a smoothed electron flux and the solar wind velocity increases with electron energy reflecting dynamics of the inner magnetosphere filling with trapped energetic electrons originating from substorm injection regions located not far outside geostationary orbit

  1. Estimate of Hurricane Wind Speed from AMSR-E Low-Frequency Channel Brightness Temperature Data

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-01-01

    Full Text Available Two new parameters (W6H and W6V were defined that represent brightness temperature increments for different low-frequency channels due to ocean wind. We developed a new wind speed retrieval model inside hurricanes based on W6H and W6V using brightness temperature data from AMSR-E. The AMSR-E observations of 12 category 3–5 hurricanes from 2003 to 2011 and corresponding data from the H*wind analysis system were used to develop and validate the AMSR-E wind speed retrieval model. The results show that the mean bias and the overall root-mean-square (RMS difference of the AMSR-E retrieved wind speeds with respect to H*wind (HRD Real-time Hurricane Wind Analysis System analysis data were −0.01 m/s and 2.66 m/s, respectively. One case study showed that W6H and W6V were less sensitive to rain than the observed AMSR-E C-band and X-band brightness temperature data. The AMSR-E retrieval model was further validated by comparing the retrieved wind speeds against stepped-frequency microwave radiometer (SFMR measurements. The comparison showed an RMS difference of 3.41 m/s and a mean bias of 0.49 m/s.

  2. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    Directory of Open Access Journals (Sweden)

    John D. Sørensen

    2011-12-01

    Full Text Available Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is necessary to understand the physics of their failure and be able to develop reliability prediction models. Such a model is proposed in this paper for an IGBT power electronic module. IGBTs are critical components in wind turbine converter systems. These are multilayered devices where layers are soldered to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development and propagation processes is discussed. A statistical analysis is performed for appropriate model parameter selection. Based on the proposed model, a layout for component life prediction with crack movement is described in details.

  3. A Technique for Mitigating Thermal Stress and Extending Life Cycle of Power Electronic Converters Used for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2015-11-01

    Full Text Available Over the last two decades, various models have been developed to assess and improve the reliability of power electronic conversion systems (PECs with a focus on those used for wind turbines. However, only few studies have dealt with mitigating the PECs thermo-mechanical effects on their reliability taking into account variations in wind characteristics. This work critically investigates this issue and attempts to offer a mitigating technique by, first, developing realistic full scale (FS and partial scale (PS induction generator models combined with two level back-to-back PECs. Subsequently, deriving a driving algorithm, which reduces PEC’s operating temperature by controlling its switching patterns. The developed switching procedure ensures minimum temperature fluctuations by adapting the variable DC link and system’s frequency of operation. It was found for both FS and PS topologies, that the generator side converters have higher mean junction temperatures where the grid side ones have more fluctuations on their thermal profile. The FS and PS cycling temperatures were reduced by 12 °C and 5 °C, respectively. Moreover, this led to a significant improvement in stress; approximately 27 MPa stress reduction for the FS induction generator PEC.

  4. Does the recent warming hiatus exist over northern Asia for winter wind chill temperature?

    Science.gov (United States)

    Ma, Ying

    2017-04-01

    Wind chill temperature (WCT) describes the joint effect of wind velocity and air temperature on exposed body skin and could support policy makers in designing plans to reduce the risks of notably cold and windy weather. This study examined winter WCT over northern Asia during 1973-2013 by analyzing in situ station data. The winter WCT warming rate over the Tibetan Plateau slowed during 1999-2013 (-0.04 °C/decade) compared with that during 1973-1998 (0.67 °C/decade). The winter WCT warming hiatus has also been observed in the remainder of Northern Asia with trends of 1.11 °C/decade during 1973-1998 but -1.02 °C/decade during 1999-2013, except for the Far East of Russia (FE), where the winter WCT has continued to heat up during both the earlier period of 1973-1998 (0.54 °C/decade) and the recent period of 1999-2013 (0.75 °C/decade). The results indicate that the influence of temperature on winter WCT is greater than that of wind speed over northern Asia. Atmospheric circulation changes associated with air temperature and wind speed were analyzed to identify the causes for the warming hiatus of winter WCT over northern Asia. The distributions of sea level pressure and 500 hPa height anomalies during 1999-2013 transported cold air from the high latitudes to middle latitudes, resulting in low air temperature over Northern Asia except for the Far East of Russia. Over the Tibetan Plateau, the increase in wind speed offset the increase in air temperature during 1999-2013. For the Far East, the southerly wind from the Western Pacific drove the temperature up during the 1999-2013 period via warm advection.

  5. High Resolution Mapping of Wind Speed Using Active Distributed Temperature Sensing

    Science.gov (United States)

    Sayde, C.; Thomas, C. K.; Wagner, J.; Selker, J. S.

    2013-12-01

    We present a novel approach to continuously measure wind speed simultaneously at thousands of locations using actively heated fiber optics with a distributed temperature sensing system (DTS). Analogous to a hot-wire anemometer, this approach is based on the principal of velocity-dependent heat transfer from a heated surface: The temperature difference between the heated surface and ambient air is a function of the convective cooling of the air flowing past the surface. By knowing the thermal properties of the heated surface, the heating input, and ambient temperature, wind speed can be calculated. In our case, the heated surface consists of a thin stainless steel tube that can exceed several km in length. A fiber optic is enclosed within the stainless steel tube to report the heated tube temperature, which in this case was sampled every 0.125 m. Ambient temperature were measured by an independent fiber optic cable located proximally to the stainless steel tube. We will present the theoretical bases of measuring wind speed using heated fiber optic as well as validation of this method in the field. In the field testing, more than 5000 simultaneous wind speed measurements were obtained every 5.5 second at 3 elevations (2m, 1m, and 0.5 m) every 0.125 m along a 230 m transects located across a shallow gulley in Nunn, CO. This method, which provides both air temperature and wind speed spanning four orders of magnitude in spatial scale (0.1 - 1,000m) opens up many important opportunities for testing basic theories in micro-meteorology regarding spatial scales of turbulent length scales as a function of distance from the earth, development of internal boundary layers, applicability of Taylors hypothesis, etc. The equipment employed, including the heating system, which is available to all US scientists, was provided by CTEMPs.org thanks to the generous grant support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or

  6. Combined effects of air temperature, wind, and radiation on the resting metabolism of avian raptors

    International Nuclear Information System (INIS)

    Hayes, S.R.

    1978-01-01

    American kestrels, Falco sparverius; red-tailed hawks, Buteo jamaicensis; and golden eagles, Aquila chrysaetos, were perched in a wind tunnel and subjected to various combinations of air temperature, wind, and radiation. Oxygen consumption was measured under the various combinations of environmental variables, and multiple regression equations were developed to predict resting metabolism as a function of body mass, air temperature, wind speed, and radiation load

  7. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    NARCIS (Netherlands)

    Song, X.; Polinder, H.; Liu, D.; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen at

  8. On the upstream boundary of electron foreshocks in the solar wind

    Science.gov (United States)

    Zimbardo, G.; Veltri, P.

    1995-01-01

    The upstream boundary of electron foreshocks is defined as the path of the fastest electrons reflected by collisionless shocks and moving along the magnetic field in the solar wind. Considerable levels of magnetic fluctuations are found in these regions of the solar wind, and their effect is to create both a broadening and a fine structure of the electron foreshock boundary. The magnetic structure is studied by means of a 3-D numerical simulation of a turbulent magnetic field. Enhanced, anomalous diffusion is found, (Delta x(exp 2)) varies as s(sup alpha), where alpha is greater than 1 for typical values of the parameters (here, Delta x(exp 2) is the mean square width of the tangent magnetic surface and s is the field line length). This corresponds to a Levy flight regime for the magnetic field line random walk, and allows very efficient electron propagation perpendicular to the magnetic field. Implications on the observations of planetary foreshocks and of the termination shock foreshock are considered.

  9. Wind models for zeta Orionis

    International Nuclear Information System (INIS)

    Olson, G.L.

    1979-01-01

    Several models for the winds of O stars have been proposed to explain the unexpected presence of high ionization potential ions such as N +4 and O +5 . Lamers and Snow (1978) proposed that the winds of stars showing N V and O VI lines have elevated temperatures near 4 +- 2 x 10 5 K while cooler stars with anomalous Si IV lines have Tsub(e) approximately 7+-3 x 10 4 K. Alternately, Cassinelli and Olson (1978, CO) and Olson (1978) have explained the presence of these ions by showing that a thin corona at the base of a cool wind (Tsub(e) < approximately Tsub(eff)) can produce these ions by the Auger photoionization process where a single X-ray photon causes the ejection of two electrons. A third possibility is that the winds are at only slightly elevated temperatures (40 000 to 60 000K) and photoionization in an optically thick wind produces the unexpected ions. The present analysis tests the ability of these three wind models to fit the observations of zeta Orionis A 09.7 Ib. (Auth.)

  10. Determination of electron temperature and electron density in ...

    African Journals Online (AJOL)

    It is seen that the electron temperature increases from 5.8 × 102 oK to 7.83 × 104 oK as the pd is reduced from 130mm Hg × mm to 60 mm Hg × mm for argon. The electron densities increases from 2.8 × 1011/cm3 to 3.2 × 1011 /cm3 for the same variation of pds. For air the electron temperature increases from 3.6 × 104 oK to ...

  11. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  12. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  13. Centennial-Scale Relationship Between the Southern Hemisphere Westerly Winds and Temperature

    Science.gov (United States)

    Hodgson, D. A.; Perren, B.; Roberts, S. J.; Sime, L. C.; Verleyen, E.; Van Nieuwenhuyze, W.; Vyverman, W.

    2017-12-01

    Recent changes in the intensity and position of the Southern Hemisphere Westerly Winds (SHW) have been implicated in a number of important physical changes in the Southern High Latitudes. These include changes in the efficiency of the Southern Ocean CO2 sink through alterations in ocean circulation, the loss of Antarctic ice shelves through enhanced basal melting, changes in Antarctic sea ice extent, and warming of the Antarctic Peninsula. Many of these changes have far-reaching implications for global climate and sea level rise. Despite the importance of the SHW in global climate, our current understanding of the past and future behaviour of the westerly winds is limited by relatively few reconstructions and measurements of the SHW in their core belt over the Antarctic Circumpolar Current; the region most relevant to Southern Ocean air-sea gas exchange. The aim of this study was to reconstruct changes in the relative strength of the SHW at Marion Island, one of a small number of sub-Antarctic islands that lie in the core of the SHWs. We applied independent diatom- and geochemistry- based methods to track past changes in relative wind intensity. This mutiproxy approach provides a validation that the proxies are responding to the external forcing (the SHW) rather than local (e.g. precipitation ) or internal dynamics. Results show that that the strength of the SHW are intrinsically linked to extratropical temperatures over centennial timescales, with warmer temperatures driving stronger winds. Our findings also suggest that large variations in the path and intensity of the westerly winds are driven by relatively small variations in temperature over these timescales. This means that with continued climate warming, even in the absence of anthropogenic ozone-depletion, we should anticipate large shifts in the SHW, causing stronger, more poleward-intensified winds in the decades and centuries to come, with attendant impacts on ocean circulation, ice shelf stability, and

  14. Role of 'core' and 'halo' solar electrons in ionization of the interstellar medium

    International Nuclear Information System (INIS)

    Askew, S.D.; Kunc, J.A.; University of Southern California, Los Angeles

    1984-01-01

    The probability of the interstellar wind atoms (H and He) to survive ionization by solar wind electrons is presented. For the first time a dual temperature electron distribution is used to model the effects of ''core'' (10 eV) and ''halo'' (60 eV) solar electrons on the probabilities. Survival probability distributions as a function of heliocentric distance were calculated for variations in the electron temperature, solar radiation force, and the interstellar wind flow velocity. These probabilities are important in determining the radial density distributions of the interstellar atoms. It has been found that the interstellar wind has a distinctively higher probability of surviving ''halo'' rather than ''core'' electron ionization only at heliocentric distances, rho, smaller than about 0.5 a.u. For distances larger than 0.5 a.u., the probabilities of surviving ''halo'' electrons are close to the probabilities of surviving ''core'' electrons. Also, the probabilities for both ''core'' and ''halo'' electrons are relatively insensitive to changes in μsub(proportional to) (interstellar wind velocity at infinity), μ(the solar ratio of radiation to gravitational force) and α (a model parameter for solar electron temperature) for rho > 0.5. For distances smaller than that, the sensitivity increases significantly. (author)

  15. Longitudinal and Seasonal Variations of the Electron Temperature and Density in the Low-Latitude Topside Ionosphere Observed by KOMPSAT-1

    Directory of Open Access Journals (Sweden)

    Heejun Kim

    2002-06-01

    Full Text Available The electron density and temperature in the topside ionosphere are observed by the Ionosphere Measurement Sensor (IMS onboard the KOMPSAT-1, which has the sun-synchronous orbit of the altitude of 685 km and the orbital inclination of 98deg with a descending node at 22:50LT. Observations have been analyzed to determine the seasonal variations of the electron density and temperature in the low-latitude region. Only the night-time (22:50LT behavior on magnetically quiet days (Kp < 4 has been examined. Observations show a strong longitudinal and seasonal variation. Generally, in the dip equator the density increases and the temperature decreases. In equinox the latitudinal distributions of the electron density and temperature are quite symmetric about the dip equator. However, the local maximum of the density and the local minimum of the temperature shift toward the Northern hemisphere in summer solstice but the Southern hemisphere in winter solstice. Such variations are due to the influences of field-aligned plasma transport induced by F region neutral wind. Compared with the IRI95 model, the observed electron density and temperature show significant differences from those predicted by the IRI95 model.

  16. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  17. Comparison of Observed Temperature and Wind in Mountainous and Coastal Regions in Korea

    Science.gov (United States)

    Park, Y. S.

    2015-12-01

    For more than one year, temperature and wind are observed at several levels in three different environments in Korea. First site is located in a ski jump stadium in a mountain area and observations are performed at 5 heights. Second site is located in an agricultural land 1.4km inland from the seaside and the observing tower is 300m tall. Third site is located in the middle of sea 30km away from the seaside and the tower is 100m tall. The vertical gradients of air temperature are compared on the daily and seasonal bases. Not only the strengths of atmospheric stability are analyzed but also the times when the turnover of the signs of vertical gradients of temperature are occurred. The comparison is also applied to vertical gradients of wind speed and turning of wind direction due to surface slope and sea/land breeze. This study may suggest characteristics of local climate over different environments quantitatively.

  18. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  19. OGCM Simulations of Equatorial Pacific Current and Temperature to ERS-1, FSU and NMC Surface Winds and to Assimilation of Subsurface Temperature Data

    Science.gov (United States)

    Halpern, David

    1995-01-01

    The relative accuracies of three surface wind data products for the tropical Pacific Ocean during April 1992 to March 1994 were examined by analyzing temperature and current fields along the equator, which were simulated with an ocean general circulation model. Simulations were made with and without assimilation of surface and subsurface temperature data. Simulated currents were compared with observations at three sites (170oW, 140oW, 110oW) at the equator. Model-generated currents and temperatures indicated that the ERS-1 westward wind speeds were low compared to the FSU and NMC winds. With data assimilation, the agreement between simulated and observed currents was highest at 170oW and lowest at 110oW.

  20. Parallel electric fields from ionospheric winds

    International Nuclear Information System (INIS)

    Nakada, M.P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes

  1. Design study of high-temperature superconducting generators for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Maki, N [Technova Inc. 13th Fl. Imperial Hotel Tower, 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan)], E-mail: naokmaki@technova.co.jp

    2008-02-15

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown.

  2. Design study of high-temperature superconducting generators for wind power systems

    International Nuclear Information System (INIS)

    Maki, N

    2008-01-01

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown

  3. The Coincidence Tracker: Electronic Equipment for a Time-of-Flight Wind-Speed Measurement System

    DEFF Research Database (Denmark)

    Fog, Christian

    1982-01-01

    The electronic part of a laser-beam measuring system for wind velocity is described. Pulses of light scattered from aerosols are treated, first in a pair of adaptive filters, then in a tracker that calculates the wind velocity on-line while applying some knowledge about the velocity to be expected...

  4. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Science.gov (United States)

    Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David

    2017-12-01

    The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower

  5. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  6. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  7. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-01-01

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed

  8. Electron energetics in the expanding solar wind via Helios observations

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Hellinger, Petr

    2015-01-01

    Roč. 120, č. 10 (2015), s. 8177-8193 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GA15-17490S Institutional support: RVO:67985815 Keywords : solar wind * electrons energetics * transport processes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.318, year: 2015

  9. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  10. Remote sensing of temperature and wind using acoustic travel-time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Manuela; Fischer, Gabi; Raabe, Armin; Weisse, Frank [Leipzig Univ. (Germany). Inst. fuer Meteorologie; Ziemann, Astrid [Technische Univ. Dresden (Germany). Professur fuer Meteorologie

    2013-04-15

    A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre. (orig.)

  11. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    Science.gov (United States)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  12. Observation of electron plasma waves in plasma of two-temperature electrons

    International Nuclear Information System (INIS)

    Ikezawa, Shunjiro; Nakamura, Yoshiharu.

    1981-01-01

    Propagation of electron plasma waves in a large and unmagnetized plasma containing two Maxwellian distributions of electrons is studied experimentally. Two kinds of plasma sources which supply electrons of different temperature are used. The temperature ratio is about 3 and the density ratio of hot to cool electrons is varied from 0 to 0.5. A small contamination of hot electrons enhances the Landau damping of the principal mode known as the Bohm-Gross mode. When the density of hot electrons is larger than about 0.2, two modes are observed. The results agree with theoretical dispersion relations when excitation efficiencies of the modes are considered. (author)

  13. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The results presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  14. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  15. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  16. THE EFFECT OF ELECTRON THERMAL PRESSURE ON THE OBSERVED MAGNETIC HELICITY IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Markovskii, S. A.; Vasquez, Bernard J.; Smith, Charles W., E-mail: sergei.markovskii@unh.edu, E-mail: bernie.vasquez@unh.edu, E-mail: charles.smith@unh.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2016-12-20

    Statistical analysis of magnetic helicity spectra in the solar wind at 1 au is carried out. A large database of the solar wind intervals assembled from Wind spacecraft magnetic and plasma data is used. The effect of the electron thermal pressure on the wavenumber position of the helicity signature, i.e., the peak of the spectrum, is studied. The position shows a statistically significant dependence on both the electron and proton pressures. However, the strongest dependence is seen when the two pressures are summed. These findings confirm that the generation of the magnetic helicity is associated with an increasing compressibility of the turbulent fluctuations at smaller kinetic scales. It is argued that instrumental artifacts do not contribute to the helicity signature.

  17. Energy and temperature fluctuations in the single electron box

    International Nuclear Information System (INIS)

    Berg, Tineke L van den; Brange, Fredrik; Samuelsson, Peter

    2015-01-01

    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments, we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed. (paper)

  18. A 1290 MHZ profiler with RASS for monitoring wind and temperature in the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Engelbart, D. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Steinhagen, H. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Goersdorf, U. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Lippmann, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.

    1996-02-01

    A boundary layer wind profiler with RASS is described operating at 1290 MHz in a quasi-operational mode at the Meteorological Observatory Lindenberg of the German Weather Service (DWD). It provides vertical profiles of wind and temperature from the lower atmosphere with a height resolution of 50 m to 400 m and a time resolution of about 1 to 60 minutes. For an estimation of the system reliability, the availability of the measurements for all different height levels is analyzed. With regard to the data quality, a comparison of wind profiler/RASS and rawinsonde data is presented based on 856 wind and 451 temperature profiles. It reveals reasonable conformity of both sounding systems. Finally, case studies are shown, demonstrating the system ability to analyze some characteristic phenomena in the lower troposphere, which are unresolved temporally and spatially by the routine rawinsonde network. (orig.)

  19. Estimation of wind speeds inside Super Typhoon Nepartak from AMSR2 low-frequency brightness temperatures

    Science.gov (United States)

    Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing

    2018-04-01

    Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.

  20. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  1. A summary of high-temperature electronics research and development

    International Nuclear Information System (INIS)

    Thome, F.V.; King, D.B.

    1991-01-01

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab

  2. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2017-12-01

    Full Text Available The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8–70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET. Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE. A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports, with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range

  3. PWV, Temperature and Wind Statistics at Sites Suitable For mm and Sub-mm Wavelengths Astronomy

    Science.gov (United States)

    Otarola, Angel; Travouillon, Tony; De Breuck, Carlos; Radford, Simon; Matsushita, Satoki; Pérez-Beaupuits, Juan P.

    2018-01-01

    Atmospheric water vapor is the main limiting factor of atmospheric transparency in the mm and sub-mm wavelength spectral windows. Thus, dry sites are needed for the installation and successful operation of radio astronomy observatories exploiting those spectral windows. Other parameters that play an important role in the mechanical response of radio telescopes exposed to the environmental conditions are: temperature, and in particular temperature gradients that induce thermal deformation of mechanical structures, as well as wind magnitude that induce pointing jitter affecting this way the required accuracy in the ability to point to a cosmic source during the observations. Temperature and wind are variables of special consideration when planning the installation and operations of large aperture radio telescopes. This work summarizes the statistics of precipitable water vapor (PWV), temperature and wind monitored at sites by the costal mountain range, as well as on t he west slope of the Andes mountain range in the region of Antofagasta, Chile. This information could prove useful for the planning of the Atacama Large-Aperture Submm/mm Telescope (AtLast).

  4. Wind measurements with SODAR during strong temperature inversions near the ground

    International Nuclear Information System (INIS)

    Thomas, P.; Vogt, S.

    1989-08-01

    SODAR (Sound Detection and Ranging) equipment has been increasingly used to measure vertical wind profiles with little expenditure in terms of staff, continuously over time and with a good spatial resolution. These informations serve as input variables for atmospheric transport and dispersion models, environmental monitoring of industrial facilities and, generally, for investigating a broad spectrum of meteorological phenomena. The SODAR principle has proved its suitability since long provided that the data recorded with SODAR have served to establish wind statistics valid for extended periods of time. At industrial sites potentially releasing substances prejudicial to health, e.g., chemical plants, nuclear power plants, etc., a SODAR must, moreover, be capable of measuring reliable the wind conditions also during short periods of release. This would, e.g., be important during accidental releases. Especially interesting situations for pollutant dispersion are distinct temperature inversions. It will be examined in this paper whether a SODAR is capable of measuring reliably the wind conditions also during those inversions. The selection of the situations of inversion as well as the direct intercomparison of data supplied by SODAR and conventional wind measuring instruments (anemometer and wind vane) are possible at the 200 m meteorological tower erected at the Karlsruhe Nuclear Research Center. The comparison between SODAR and the meteorological tower has shown that a SODAR is able to measure reliably the wind data also in situations characterized by strong ground-based and elevated inversions, respectively. (orig./KW) [de

  5. Intra-seasonal Oscillations (ISO of zonal-mean meridional winds and temperatures as measured by UARS

    Directory of Open Access Journals (Sweden)

    F. T. Huang

    2005-06-01

    Full Text Available Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI on the UARS spacecraft in the upper mesosphere (95km, persistent and regular intra-seasonal oscillations (ISO with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here on an analysis of concurrent UARS temperature measurements, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55km, their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  6. A kinetic study of solar wind electrons

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oeystein; Leer, Egil

    1996-01-01

    The evolution of the distribution function for a test population of electrons in an isothermal electron-proton corona has been studied using a Fokker-Planck description. The aim is to investigate whether a suprathermal tail forms due to the energy dependence of the Coulomb cross section. We find that a Maxwellian test population, injected into this background close to the coronal base with a temperature equal to that of the background electrons, maintains its shape throughout the transition from collision-dominated to collisionless flow. No significant suprathermal tail in the electron distribution function is seen in the outer corona

  7. Internal plasma state of the high speed solar wind at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Abraham--Shrauner, B.; Asbridge, J.R.; Bame, S.J.

    1976-01-01

    The character of particle velocity distributions in the high speed solar wind is presented. It is found that electron distribution shapes differ from simple bi-Maxwellians in that a hot, strongly beamed, high energy electron component is always present and is observed to move relative to a distinct low energy electron component along the magnetic field direction, B, away from the sun. The velocity difference between hot and cold electron components appears, at times, to be strongly correlated with the local Alfven speed. This correlation suggests that the solar wind heat flux is being limited some of the time in the neighborhood of 1 AU. Proton velocity distributions are also best described in terms of two relatively convecting, unresolved components. The velocity of the lower density proton beam component is generally larger than that of the main component and the temperature of the main component perpendicular to B is typically 2 to 3 times larger than its parallel temperature. Alpha particles as a whole generally move faster than the protons along B and have a temperature which is, on the average, 6 times higher than the temperature of the total proton population. Evidence is presented which supports the idea that the two-component proton structure observed in high speed regions is intimately related to fine scale velocity variations at 1 AU, and hence by inference, to prominent spatial and/or temporal structures present throughout that part of the corona from which the solar wind evolves

  8. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  9. Analysis of electron cyclotron emission spectra of high electron temperature, supershot plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Arunasalam, V.; Efthimion, P.C.; Grek, B.

    1993-01-01

    A primary objective of the TFTR program since 1986 has been the study and optimization of deuterium Supershot plasmas. These plasmas are predominantly heated by 90-110 keV neutral deuterium beams (P NBI /P OH >30), central ion temperatures are ∝30 keV and central electron temperatures from ECE (T ECE ) often exceed 10 keV. Central electron temperature data measured with a TV Thomson scattering (TVTS) system (T TVTS ) during the period 1987-1990 have been compared with data from three different ECE instruments on TFTR. Although T ECE ∝T TVTS for temperatures below 6 keV, there is a systematically increasing disagreement at higher electron temperatures, with T ECE ∝1.2 T TVTS for T TVTS in the range 9-10 keV. Recent theoretical work on the ECE radiation temperature of non-equilibrium plasmas indicates that for a bi-Maxwellian electron velocity distribution with a ratio of tail to bulk electron density η, a bulk temperature T b , and a hot tail temperature T h , the perpendicular ECE radiation temperature is given by T ECE ∝T b {1+η(T h /T b )}, for η ECE would be enhanced over T TVTS by a factor which depends on η and T h . This paper investigates whether the discrepancy between T TVTS and T ECE seen in TFTR Supershots at high electron temperatures is due to the presence of a hot electron tail component. The extraordinary mode ECE spectrum at the second, third and fourth harmonics is measured on the horizontal midplane by an absolutely calibrated ECE Michelson interferometer. This ECE spectrum is compared with the output from a time-independent transport code with relativistic opacity which solves the three-dimensional ECE radiation transport in a toroidally symmetric, two-dimensional geometry and uses measured electron density and temperature profiles from the TVTS system. (orig.)

  10. Modeling and control of temperature of heat-calibration wind tunnel

    Directory of Open Access Journals (Sweden)

    Li Yunhua

    2012-01-01

    Full Text Available This paper investigates the temperature control of the heat air-flow wind tunnel for sensor temperature-calibration and heat strength experiment. Firstly, a mathematical model was established to describe the dynamic characteristics of the fuel supplying system based on a variable frequency driving pump. Then, based on the classical cascade control, an improved control law with the Smith predictive estimate and the fuzzy proportional-integral-derivative was proposed. The simulation result shows that the control effect of the proposed control strategy is better than the ordinary proportional-integral-derivative cascade control strategy.

  11. Martian Electron Temperatures in the Sub Solar Region.

    Science.gov (United States)

    Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.

    2017-12-01

    Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.

  12. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions. (author)

  13. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2008-01-01

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions

  14. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  15. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-02-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.

  16. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    International Nuclear Information System (INIS)

    Airapetian, Vladimir S.; Usmanov, Arcadi V.

    2016-01-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion

  17. Indoor ran don concentration. Temperature and wind effects

    International Nuclear Information System (INIS)

    Sesana, L.; Benigni, S.

    2000-01-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied [it

  18. Solar wind plasma structure near a 'HELIOS-Perihelion'

    International Nuclear Information System (INIS)

    Kikuchi, H.

    1979-01-01

    The purpose of this paper is to introduce a couple of preliminary but important results obtained from HELIOS observation concerning solar wind plasma structure near a ''HELIOS-Perihelion'' among the data analyses in progress, partly in relation to laboratory plasma. Idealized profiles of the bulk velocity, density and temperature of solar wind near 0.3 AU as deduced from HELIOS A data and correlated K-coronal contours were obtained. During 1974 - 1976, the sun was in the period of declining cycle, and the coronal holes expanded to lower latitudes from northern and southern holes. There is general tendency that the northern coronal hole is somewhat larger than the southern coronal hole. In regards to solar wind velocity, there are two fast stream regions with velocity as high as 800 Km/sec. An electron spectrum measured near a HELIOS-Perihelion (0.3 AU) approximately in the solar direction is shown. Three regions can be distinguished in velocity distribution. The density contours of solar wind electrons in velocity space exhibit a narrow beam of electrons in the magnetic field direction close to the plane of observation. (Kato, T.)

  19. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  20. Winding transitions at finite energy and temperature: An O(3) model

    International Nuclear Information System (INIS)

    Habib, S.; Mottola, E.; Tinyakov, P.

    1996-01-01

    Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society

  1. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Hao [The University of Texas at Austin; Hamilton, Mark F. [The University of Texas at Austin Applied Research Laboratories; Bhalla, Rajan [Science Applications International Corporation; Brown, Walter E. [The University of Texas at Austin Applied Research Laboratories; Hay, Todd A. [The University of Texas at Austin Applied Research Laboratories; Whitelonis, Nicholas J. [The University of Texas at Austin; Yang, Shang-Te [The University of Texas at Austin; Naqvi, Aale R. [The University of Texas at Austin

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  2. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  3. Investigation of the winds and electron concentration variability in the D region of the ionosphere by the partial-reflection radar technique

    International Nuclear Information System (INIS)

    Weiland, R.M.; Bowhill, S.A.

    1981-12-01

    The development and first observations of the partial-reflection drifts experiment at Urbana, Illinois (40 N) are described. The winds data from the drifts experiment are compared with electron concentration data obtained by the differential-absorption technique to study the possible meteorological causes of the winter anomaly in the mesosphere at midlatitudes. Winds data obtained by the meteor-radar experiment at Urbana are also compared with electron concentration data measured at Urban. A significant correlation is shown is both cases between southward winds and increasing electron concentration measured at the same location during winter. The possibility of stratospheric/mesospheric coupling is investigated by comparing satellite-measured 0.4 mbar geopotential data with mesospheric electron concentration data. No significant coupling was observed. The winds measured at Saskatoon, Saskatchewan (52 N) are compared with the electron concentrations measured at Urban, yielding constant fixed relationship, but significant correlations for short segments of the winter. A significant coherence is observed at discrete frequencies during segments of the winter

  4. Horizontal and vertical winds and temperatures in the equatorial thermosphere: measurements from Natal, Brazil during August-September 1982

    International Nuclear Information System (INIS)

    Biondi, M.A.

    1985-01-01

    Fabry-Perot interferometer measurements of Doppler shifts and widths of the 630.0 nm nightglow line have been used to determine the neutral winds and temperatures in the equatorial thermosphere over Natal, Brazil during August-September 1982. During this period, in the early night (2130 U.T.) the average value of the horizontal wind vector was 95 m s -1 at 100 0 azimuth, and the temperature varied from a low of 950 K during geomagnetically quiet conditions to a high of approx. 1400 K during a storm (6 September). The meridional winds were small, -1 , and the eastward zonal winds reached a maximum value 1-3 h after sunset, in qualitative agreement with TGCM predictions. On 26 August, an observed persistent convergence in the horizontal meridional flow was accompanied by a downward vertical velocity and an increase in the thermospheric temperature measured overhead. Oscillations with periods of 40-45 min in both the zonal and vertical wind velocities were observed during the geomagnetic storm of 6 September, suggesting gravity wave modulation of the equatorial thermospheric flow. (author)

  5. Precipitation, temperature and wind in Norway: dynamical downscaling of ERA40

    Energy Technology Data Exchange (ETDEWEB)

    Barstad, I.; Sorteberg, A.; Flatoey, F. [Bjerknes Centre for Climate Research, Bergen (Norway); Deque, M. [Meteo France, EAC/GMGEC/CNRM, Toulouse (France)

    2009-11-15

    A novel downscaling approach of the ERA40 (ECMWF 40-years reanalysis) data set has been taken and results for comparison with observations in Norway are shown. The method applies a nudging technique in a stretched global model, focused in the Norwegian Sea (67 N, 5 W). The effective resolution is three times the one of the ERA40, equivalent to about 30 km grid spacing in the area of focus. Longer waves (winds and precipitation. The comparison to observations incorporate numerous station data points of (1) precipitation (357), (2) temperature (98) and (3) wind (10), and for the period 1961-1990, the downscaled data set shows large improvements over ERA40. The daily precipitation shows considerable reduction in bias (from 50 to 11%), and twofold reduction at the 99.9 percentile (from -59 to -29%). The daily temperature showed a bias reduction of about a degree in most areas, and relative large RMSE reduction (from 7.5 to 5.0 C except winter). The wind comparison showed a slight improvement in bias, and significant improvements in RMSE. (orig.)

  6. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  7. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  8. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  9. Index Bioclimatic "Wind-Chill"

    Directory of Open Access Journals (Sweden)

    Teodoreanu Elena

    2015-05-01

    Full Text Available This paper presents an important bioclimatic index which shows the influence of wind on the human body thermoregulation. When the air temperature is high, the wind increases thermal comfort. But more important for the body is the wind when the air temperature is low. When the air temperature is lower and wind speed higher, the human body is threatening to freeze faster. Cold wind index is used in Canada, USA, Russia (temperature "equivalent" to the facial skin etc., in the weather forecast every day in the cold season. The index can be used and for bioclimatic regionalization, in the form of skin temperature index.

  10. Effects of the Relaxation of Upwelling-Favorable Winds on the Diurnal and Semidiurnal Water Temperature Fluctuations in the Santa Barbara Channel, California

    Science.gov (United States)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2017-10-01

    In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.

  11. Deriving the coronal hole electron temperature: electron density dependent ionization / recombination considerations

    International Nuclear Information System (INIS)

    Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf

    2010-01-01

    Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.

  12. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  13. On the electron-ion temperature ratio established by collisionless shocks

    Science.gov (United States)

    Vink, Jacco; Broersen, Sjors; Bykov, Andrei; Gabici, Stefano

    2015-07-01

    Astrophysical shocks are often collisionless shocks, in which the changes in plasma flow and temperatures across the shock are established not through Coulomb interactions, but through electric and magnetic fields. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature (non-equilibration of temperatures), or whether they quickly equilibrate in the shock region. Here we provide a simple, thermodynamic, relation for the minimum electron-ion temperature ratios that should be expected as a function of Mach number. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the shock, in order for the plasma to remain charge neutral. The only form of additional electron heating that we allow for is adiabatic heating, caused by the compression of the electron gas. These assumptions result in an analytic treatment of expected electron-ion temperature ratio that agrees with observations of collisionless shocks: at low sonic Mach numbers, Ms ≲ 2, the electron-ion temperature ratio is close to unity, whereas for Mach numbers above Ms ≈ 60 the electron-ion temperature ratio asymptotically approaches a temperature ratio of Te/Ti = me/ ⟨ mi ⟩. In the intermediate Mach number range the electron-ion temperature ratio scales as Te/Ti ∝ Ms-2. In addition, we calculate the electron-ion temperature ratios under the assumption of adiabatic heating of the electrons only, which results in a higher electron-ion temperature ratio, but preserves the Te/Ti ∝ Ms-2 scaling. We also show that for magnetised shocks the electron-ion temperature ratio approaches the asymptotic value Te/Ti = me/ ⟨ mi ⟩ for lower magnetosonic Mach numbers (Mms), mainly because for a strongly magnetised shock the sonic Mach number is larger than the magnetosonic Mach number (Mms ≤ Ms). The predicted scaling of the electron

  14. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  15. Effects of lower hybrid fast electron populations on electron temperature measurements at JET

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Bartlett, D.V.; Schunke, B.

    1993-01-01

    The Lower Hybrid Current Drive (LHCD) system on JET has to date achieved up to 1.5 MA of driven current. This current is carried by a fast electron population with energies more than ten times the electron temperature and density about 10 -4 of the bulk plasma. This paper discusses the effects of this fast electron population on our ability to make reliable temperature measurements using ECE and reviews the effects on other plasma diagnostics which rely on ECE temperature measurements for their interpretation. (orig.)

  16. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  17. Perception of temperature and wind by users of public outdoor spaces: relationships with weather parameters and personal characteristics.

    Science.gov (United States)

    Andrade, Henrique; Alcoforado, Maria-João; Oliveira, Sandra

    2011-09-01

    We aim to understand the relationship between people's declared bioclimatic comfort, their personal characteristics (age, origin, clothing, activity and motivation, etc.) and the atmospheric conditions. To attain this goal, questionnaire surveys were made concurrently with weather measurements (air temperature, relative humidity, solar and long-wave radiation and wind speed) in two open leisure areas of Lisbon (Portugal), during the years 2006 and 2007. We analysed the desire expressed by the interviewees to decrease, maintain or increase the values of air temperature and wind speed, in order to improve their level of comfort. Multiple logistic regression was used to analyse the quantitative relation between preference votes and environmental and personal parameters. The preference for a different temperature depends on the season and is strongly associated with wind speed. Furthermore, a general decrease of discomfort with increasing age was also found. Most people declared a preference for lower wind speed in all seasons; the perception of wind shows significant differences depending on gender, with women declaring a lower level of comfort with higher wind speed. It was also found that the tolerance of warmer conditions is higher than of cooler conditions, and that adaptive strategies are undertaken by people to improve their level of comfort outdoors.

  18. Electron microscopic observation at low temperature on superconductors

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Hashimoto, Hatsujiro; Yoshida, Hiroyuki.

    1991-01-01

    The authors have observed superconducting materials with a high resolution electron microscope at liquid helium temperature. First, observation was carried out on Nb system intermetallic compounds such as Nb 3 Al and Nb 3 Sn of Al 5 type and Nb 3 Ge of 11 type at extremely low temperature. Next, the observation of high temperature superconductive ceramics in the state of superconductivity was attempted. In this paper, first the development of the liquid helium sample holder for a 400 kV electron microscope to realize the observation is reported. Besides, the sample holder of Gatan Co. and an extremely low temperature, high resolution electron microscope with a superconducting lens are described. The purpose of carrying out the electron microscope observation of superconductors at low temperature is the direct observation of the crystalline lattice image in the state of superconductivity. Also the structural transformation from tetragonal crystals to rhombic crystals in Al 5 type superconductors can be observed. The results of observation are reported. (K.I.)

  19. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  20. Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence

    Science.gov (United States)

    Gary, S. P.

    2015-12-01

    The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.

  1. A Pole Pair Segment of a 2-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2017-01-01

    A 2-MW high-temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a full-size stationary experimental setup, which is one pole pair segment...... and the setup in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the setup is a good surrogate for these that would be used...

  2. A Pole Pair Segment of a 2 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2016-01-01

    A 2 MW high temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a fullsize stationary experimental set-up, which is one pole pair segment...... generator and the set-up in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the set-up is a good surrogate...

  3. Effect of two-temperature electrons distribution on an electrostatic plasma sheath

    International Nuclear Information System (INIS)

    Ou, Jing; Xiang, Nong; Gan, Chunyun; Yang, Jinhong

    2013-01-01

    A magnetized collisionless plasma sheath containing two-temperature electrons is studied using a one-dimensional model in which the low-temperature electrons are described by Maxwellian distribution (MD) and high-temperature electrons are described by truncated Maxwellian distribution (TMD). Based on the ion wave approach, a modified sheath criterion including effect of TMD caused by high-temperature electrons energy above the sheath potential energy is established theoretically. The model is also used to investigate numerically the sheath structure and energy flux to the wall for plasmas parameters of an open divertor tokamak-like. Our results show that the profiles of the sheath potential, two-temperature electrons and ions densities, high-temperature electrons and ions velocities as well as the energy flux to the wall depend on the high-temperature electrons concentration, temperature, and velocity distribution function associated with sheath potential. In addition, the results obtained in the high-temperature electrons with TMD as well as with MD sheaths are compared for the different sheath potential

  4. Modified electron-acoustic and lower-hybrid drift dissipative instability in a two-electron temperature plasma

    International Nuclear Information System (INIS)

    Bose, M.

    1989-01-01

    It is often found, in fusion devices as well as in the auroral ionosphere, that the electrons consist of two distinct group, viz., hot and cold. These two-temperature electron model is sometimes convenient for analytical purposes. Thus the authors have considered a two-temperature electron plasma. In this paper, they investigated analytically the drift dissipative instabilities of modified electron-acoustic and lower-hybrid wve in a two-electron temperature plasma. It is found that the modified electron-acoustic drift dissipative mode are strongly dependent on the number density of cold electrons. From the expression of the growth rate, it is clear that these cold electrons can control the growth of this mode as well

  5. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  6. WIND observations of coherent electrostatic waves in the solar wind

    Directory of Open Access Journals (Sweden)

    A. Mangeney

    1999-03-01

    Full Text Available The time domain sampler (TDS experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s. waves: coherent wave packets of Langmuir waves with frequencies f ~ fpe, coherent wave packets with frequencies in the ion acoustic range fpi < f < fpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ~ 25λD, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations. The type (wave packet or IES of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.Key words

  7. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    Science.gov (United States)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  8. Some atmospheric dispersion, wind and temperature statistics from Jervis Bay, Australian Capital Territory 1972 to 1974

    International Nuclear Information System (INIS)

    Clark, G.H.

    1985-07-01

    A meteorological study of winds, temperatures and Pasquill stability categories was conducted in the coastal conditions at Jervis Bay. Three Pasquill stability categorisation schemes were compared. These indicated a predominance of neutral to slightly unstable conditions. During the daytime, north bay breezes and north-east sea breezes were most common together with on-shore south-east winds. Off-shore south-west winds prevailed during winter and were observed most frequently at night

  9. Heating of Solar Wind Ions via Cyclotron Resonance

    Science.gov (United States)

    Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.

    2017-12-01

    Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.

  10. Estimations of Kappa parameter using quasi-thermal noise spectroscopy: Applications on Wind spacecraft

    Science.gov (United States)

    Martinović, M.

    2017-12-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.

  11. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  12. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    Science.gov (United States)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  13. Preliminary study of the offshore wind and temperature profiles at the North of the Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David; Ricalde-Cab, Lifter

    2011-01-01

    Highlights: → This is the first study that reports the properties of the vertical wind resources for the offshore conditions of the North coast of the Yucatan Peninsula. → A significant and detailed analysis of the thermal patterns has revealed a complex structure of the atmospheric boundary layer close to the shore. → The structure of the diurnal wind patterns was assessed to produce an important reference for the wind resource availability in the study region. → It was identified that the sea breeze blows in directions almost parallel to the shoreline of the North of the Yucatan Peninsula during the majority of the 24 h cycle. → The analysis of the offshore data revealed a persistent non-uniform surface boundary layer developed as result of the advection of a warn air over a cold sea. - Abstract: The stability conditions in the atmospheric boundary layer, the intensity of the wind speeds and consequently the energy potential available in offshore conditions are highly influenced by the distance from the coastline and the differences between the air and sea temperatures. This paper presents a preliminary research undertook to study the offshore wind and temperature vertical profiles at the North-West of the Yucatan Peninsula coast. Ten minute averages were recorded over approximately 2 years from sensors installed at two different heights on a communication tower located at 6.65 km from the coastline. The results have shown that the offshore wind is thermally driven by differential heating of land and sea producing breeze patterns which veer to blow parallel to the coast under the action of the Coriolis force. To investigate further, a dataset of hourly sea surface temperatures derived from GEOS Satellite thermal maps was combined with the onsite measured data to study its effect on the vertical temperature profile. The results suggested largely unstable conditions and the potentially development of a shallow Stable Internal Boundary Layer which occurs

  14. Electron temperature determination in LTE and non-LTE plasmas

    International Nuclear Information System (INIS)

    Eddy, T.L.

    1983-01-01

    This article discusses how most experimental investigations assume a type of ''thermal equilibrium'' in which the excited levels are assumed to be populated according to the electron kinetic temperature, in the determination of electron temperature in LTE and non-LTE plasmas. This is justified on the basis that electron collisions dominate the equilibration of adjacent excited levels as shown by Byron, Stabler and Boartz. The comparison of temperature values calculated by various common methods as a check for local thermodynamic equilibrium (LTDE) or local thermal equilibrium (LTE) of the upper excited levels and the free electrons has been shown to indicate the excitation temperature in all cases utilized. Thomas shows that the source function of the first excited level may be dominated by non-local radiation, which would usually result in a different population than local collisional excitation would provide. Ionization from upper levels is by collisional means. The result may yield different valued excitation and electron temperatures

  15. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    International Nuclear Information System (INIS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-01-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point

  16. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  17. Mesospheric Temperatures and Winds measured by a VHF Meteor Radar at King Sejong Station (62.2S, 58.8W), Antarctica

    Science.gov (United States)

    Kim, Yongha; Kim, Jeong-Han; Jee, Geonwha; Lee, Chang-Sup

    2010-05-01

    A VHF radar at King Sejong Station, Antarctica has been measuring meteor echoes since March 2007. Temperatures near the mesopause are derived from meteor decay times with an improved method of selecting meteor echo samples, and compared with airglow temperatures simultaneously observed by a spectral airglow temperature imager (SATI). The temperatures derived from meteor decay times are mostly consistent with the rotational temperatures of SATI OH(6-2) and O2(0-1) emissions from March through October. During southern summer when SATI cannot be operated due to brief night time, the meteor radar observation shows cold mesospheric temperatures, significantly lower than the CIRA86 model. The meteor radar observation also provides wind field information between 80 and 100 km of altitude. The measured meridional winds seem to follow the summer pole to winter pole circulation, and thus are correlated with the measured seasonal temperature change. However, the correlation between meridional winds and temperatures is not found in day by day base, as a previous study reported. Tidal characteristics of both zonal and meridional winds will also be compared with those of other Antarctic stations.

  18. Atmospheric pressure, density, temperature and wind variations between 50 and 200 km

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1972-01-01

    Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.

  19. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind

    International Nuclear Information System (INIS)

    Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.

    2010-01-01

    Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.

  20. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  1. Charge state evolution in the solar wind. III. Model comparison with observations

    International Nuclear Information System (INIS)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B.

    2014-01-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  2. Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM

    Science.gov (United States)

    Allen, Douglas R.; Hoppel, Karl W.; Kuhl, David D.

    2018-03-01

    Extraction of wind and temperature information from stratospheric ozone assimilation is examined within the context of the Navy Global Environmental Model (NAVGEM) hybrid 4-D variational assimilation (4D-Var) data assimilation (DA) system. Ozone can improve the wind and temperature through two different DA mechanisms: (1) through the flow-of-the-day ensemble background error covariance that is blended together with the static background error covariance and (2) via the ozone continuity equation in the tangent linear model and adjoint used for minimizing the cost function. All experiments assimilate actual conventional data in order to maintain a similar realistic troposphere. In the stratosphere, the experiments assimilate simulated ozone and/or radiance observations in various combinations. The simulated observations are constructed for a case study based on a 16-day cycling truth experiment (TE), which is an analysis with no stratospheric observations. The impact of ozone on the analysis is evaluated by comparing the experiments to the TE for the last 6 days, allowing for a 10-day spin-up. Ozone assimilation benefits the wind and temperature when data are of sufficient quality and frequency. For example, assimilation of perfect (no applied error) global hourly ozone data constrains the stratospheric wind and temperature to within ˜ 2 m s-1 and ˜ 1 K. This demonstrates that there is dynamical information in the ozone distribution that can potentially be used to improve the stratosphere. This is particularly important for the tropics, where radiance observations have difficulty constraining wind due to breakdown of geostrophic balance. Global ozone assimilation provides the largest benefit when the hybrid blending coefficient is an intermediate value (0.5 was used in this study), rather than 0.0 (no ensemble background error covariance) or 1.0 (no static background error covariance), which is consistent with other hybrid DA studies. When perfect global ozone is

  3. Adaptive Backstepping Control Based on Floating Offshore High Temperature Superconductor Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2014-01-01

    Full Text Available With the rapid development of offshore wind power, the doubly fed induction generator and permanent magnet synchronous generator cannot meet the increasing request of power capacity. Therefore, superconducting generator should be used instead of the traditional motor, which can improve generator efficiency, reduce the weight of wind turbines, and increase system reliability. This paper mainly focuses on nonlinear control in the offshore wind power system which is consisted of a wind turbine and a high temperature superconductor generator. The proposed control approach is based on the adaptive backstepping method. Its main purpose is to regulate the rotor speed and generator voltage, therefore, achieving the maximum power point tracking (MPPT, improving the efficiency of a wind turbine, and then enhancing the system’s stability and robustness under large disturbances. The control approach can ensure high precision of generator speed tracking, which is confirmed in both the theoretical analysis and numerical simulation.

  4. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  5. Latitudinal distribution of the solar wind properties in the low- and high-pressure regimes: Wind observations

    Directory of Open Access Journals (Sweden)

    C. Lacombe

    Full Text Available The solar wind properties depend on λ, the heliomagnetic latitude with respect to the heliospheric current sheet (HCS, more than on the heliographic latitude. We analyse the wind properties observed by Wind at 1 AU during about 2.5 solar rotations in 1995, a period close to the last minimum of solar activity. To determine λ, we use a model of the HCS which we fit to the magnetic sector boundary crossings observed by Wind. We find that the solar wind properties mainly depend on the modulus |λ|. But they also depend on a local parameter, the total pressure (magnetic pressure plus electron and proton thermal pressure. Furthermore, whatever the total pressure, we observe that the plasma properties also depend on the time: the latitudinal gradients of the wind speed and of the proton temperature are not the same before and after the closest HCS crossing. This is a consequence of the dynamical stream interactions. In the low pressure wind, at low |λ|, we find a clear maximum of the density, a clear minimum of the wind speed and of the proton temperature, a weak minimum of the average magnetic field strength, a weak maximum of the average thermal pressure, and a weak maximum of the average β factor. This overdense sheet is embedded in a density halo. The latitudinal thickness is about 5° for the overdense sheet, and 20° for the density halo. The HCS is thus wrapped in an overdense sheet surrounded by a halo, even in the non-compressed solar wind. In the high-pressure wind, the plasma properties are less well ordered as functions of the latitude than in the low-pressure wind; the minimum of the average speed is seen before the HCS crossing. The latitudinal thickness of the high-pressure region is about 20°. Our observations are qualitatively consistent with the numerical model of Pizzo for the deformation of the heliospheric current sheet and plasma sheet.

    Key words: Interplanetary physics (solar wind

  6. Electronic ceramics in high-temperature environments

    International Nuclear Information System (INIS)

    Searcy, A.W.; Meschi, D.J.

    1982-01-01

    Simple thermodynamic means are described for understanding and predicting the influence of temperature changes, in various environments, on electronic properties of ceramics. Thermal gradients, thermal cycling, and vacuum annealing are discussed, as well as the variations of ctivities and solubilities with temperature. 7 refs

  7. Ion emission from laser-produced plasmas with two electron temperatures

    International Nuclear Information System (INIS)

    Wickens, L.M.; Allen, J.E.; Rumsby, P.T.

    1978-01-01

    An analytic theory for the expansion of a laser-produced plasma with two electron temperatures is presented. It is shown that from the ion-emission velocity spectrum such relevant parameters as the hot- to -cold-electron density ratio, the absolute hot- and cold-electron temperatures, and a sensitive measure of hot- and cold-electron temperature ratio can be deduced. A comparison with experimental results is presented

  8. Development of electron temperature measuring system by silicon drift detector

    International Nuclear Information System (INIS)

    Song Xianying; Yang Jinwei; Liao Min

    2007-12-01

    Soft X-ray spectroscopy with two channels Silicon Drift Detector (SDD) are adopted for electron temperature measuring on HL-2A tokamak in 2005. The working principle, design and first operation of the SDD soft X-ray spectroscopy are introduced. The measuring results of electron temperature are also presented. The results show that the SDD is very good detector for electron temperature measuring on HL-2A tokamak. These will become a solid basic work to establish SDD array for electron temperature profiling. (authors)

  9. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  10. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-09-15

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/{+-}45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

  11. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    International Nuclear Information System (INIS)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang

    2012-01-01

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/±45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature

  12. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  13. Search for the sources of the solar wind in the 9.1 cm brightness temperature

    International Nuclear Information System (INIS)

    George, R.G.

    1975-01-01

    The sources of solar wind streams have been the object of intensive research for many years, but the various ideas of where and how streams originate on the sun are still incomplete and contradictory. The present study is an attempt to find the solar wind sources by mathematically approximating the 9.1 cm brightness temperature which would be expected at the foot of spacecraft-measured solar wind streams and by then comparing it with actual radio brightness temperature measurements. Several significant results were found from an analysis of the correlation results. Most plasma emanating from the sun was found to come from high solar latitudes and to deviate significantly from the normally expected east-west path in the low corona. Magnetic channelng causes correlation studies to fail when the sun's magnetic configuration is unstable. The travel time of the plasma from the sun's 9.1 cm emission level to the earth is often more than a month

  14. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  15. Effect of electron temperature on small-amplitude electron acoustic solitary waves in non-planar geometry

    Science.gov (United States)

    Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh

    2018-04-01

    Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.

  16. Weather and climate needs for Lidar observations from space and concepts for their realization. [wind, temperature, moisture, and pressure data needs

    Science.gov (United States)

    Atlas, D.; Korb, C. L.

    1980-01-01

    The spectrum of weather and climate needs for Lidar observations from space is discussed with emphasis on the requirements for wind, temperature, moisture, and pressure data. It is shown that winds are required to realistically depict all atmospheric scales in the tropics and the smaller scales at higher latitudes, where both temperature and wind profiles are necessary. The need for means to estimate air-sea exchanges of sensible and latent heat also is noted. A concept for achieving this through a combination of Lidar cloud top heights and IR cloud top temperatures of cloud streets formed during cold air outbreaks over the warmer ocean is outlined. Recent theoretical feasibility studies concerning the profiling of temperatures, pressure, and humidity by differential absorption Lidar (DIAL) from space and expected accuracies are reviewed. An alternative approach to Doppler Lidar wind measurements also is presented. The concept involves the measurement of the displacement of the aerosol backscatter pattern, at constant heights, between two successive scans of the same area, one ahead of the spacecraft and the other behind it a few minutes later. Finally, an integrated space Lidar system capable of measuring temperature, pressure, humidity, and winds which combines the DIAL methods with the aerosol pattern displacement concept is described.

  17. Observation of electron temperature profile in HL-1M tokamak

    International Nuclear Information System (INIS)

    Cao Jianyong; Xu Deming; Ding Xuantong

    2000-01-01

    The principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been described. Several results under different conditions on HL-1M tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre

  18. Temperature and Wind Measurements in Venus Lower Thermosphere between 2007 and 2015

    Science.gov (United States)

    Krause, Pia; Sornig, Manuela; Wischnewski, Carolin; Sonnabend, Guido; Stangier, Tobias; Herrmann, Maren; Kostiuk, Theodor; Livengood, Timothy A.; Pätzold, Martin

    2016-10-01

    The structure of Venus atmosphere and its thermal and dynamical behavior was intensely studied during the past decade by groundbased and the space mission Venus Express. A comprehensive understanding of the atmosphere, however, is still missing. Direct measurements of atmospheric parameters on various time scales and at different locations across the planet are essential for better understanding and to validate global circulation models. Line-resolved spectroscopy of infrared CO2 transitions provides a powerful tool to accomplish measurements of temperature and wind speed within the neutral atmosphere, using Doppler line-broadening and Doppler shift. Temperature is the motor to drive circulation, and wind speed is the result. Measuring both provides both the basis and an empirical test for circulation models. Non-LTE emission lines at 10 µm that originate from a pressure level of 1μbar, ~110 km altitude, probe the lower thermosphere and are measurable at high spectral resolution using the infrared heterodyne spectrometers THIS (University of Cologne), HIPWAC (NASA GSFC) and MILAHI (Tohoku University).Thermal and dynamical structures on the Venus day side are retrieved using a newly developed method that considers the influence of the spectrometer field-of-view (FoV) and the dispersion of spectral properties across the FoV. New conclusions from the ground-based observing campaigns between 2007 and 2015 will be presented based on this retrieval methodology. The spatial resolution on the planetary disk is different for each campaign, depending on the apparent diameter of the planet and the diffraction-limited FoV of the telescope. Previously, a comparison of the observing campaigns was limited due to the difference in spatial resolution. The new retrieval method enables comparing observations with different observing geometry. The observations yield a large quantity of temperature and wind measurements at different positions on the planetary disk, which supports

  19. Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM

    Directory of Open Access Journals (Sweden)

    D. R. Allen

    2018-03-01

    Full Text Available Extraction of wind and temperature information from stratospheric ozone assimilation is examined within the context of the Navy Global Environmental Model (NAVGEM hybrid 4-D variational assimilation (4D-Var data assimilation (DA system. Ozone can improve the wind and temperature through two different DA mechanisms: (1 through the flow-of-the-day ensemble background error covariance that is blended together with the static background error covariance and (2 via the ozone continuity equation in the tangent linear model and adjoint used for minimizing the cost function. All experiments assimilate actual conventional data in order to maintain a similar realistic troposphere. In the stratosphere, the experiments assimilate simulated ozone and/or radiance observations in various combinations. The simulated observations are constructed for a case study based on a 16-day cycling truth experiment (TE, which is an analysis with no stratospheric observations. The impact of ozone on the analysis is evaluated by comparing the experiments to the TE for the last 6 days, allowing for a 10-day spin-up. Ozone assimilation benefits the wind and temperature when data are of sufficient quality and frequency. For example, assimilation of perfect (no applied error global hourly ozone data constrains the stratospheric wind and temperature to within ∼ 2 m s−1 and ∼ 1 K. This demonstrates that there is dynamical information in the ozone distribution that can potentially be used to improve the stratosphere. This is particularly important for the tropics, where radiance observations have difficulty constraining wind due to breakdown of geostrophic balance. Global ozone assimilation provides the largest benefit when the hybrid blending coefficient is an intermediate value (0.5 was used in this study, rather than 0.0 (no ensemble background error covariance or 1.0 (no static background error covariance, which is consistent with other hybrid DA studies. When

  20. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  1. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    International Nuclear Information System (INIS)

    Shangguan Ming-Jia; Xia Hai-Yun; Dou Xian-Kang; Wang Chong; Qiu Jia-Wei; Zhang Yun-Peng; Shu Zhi-Feng; Xue Xiang-Hui

    2015-01-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. (paper)

  2. High Time-Resolved Kinetic Temperatures of Solar Wind Minor Ions Measured with SOHO/CELIAS/CTOF

    Science.gov (United States)

    Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Solar wind heavy ions with an atomic number Z > 2 are referred to as minor ions since they represent a fraction of less than one percent of all solar wind ions. They can be therefore regarded as test particles, only reacting to but not driving the dynamics of the solar wind plasma, which makes them a unique diagnostic tool for plasma wave phenomena both in the solar atmosphere and the extended heliosphere. In the past, several studies have investigated the kinetic temperatures of minor ions, but due to low counting statistics these studies are based on ion velocity distribution functions (VDFs) recorded over time periods of several hours. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) provides solar wind heavy ion 1D radial VDFs with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In our study, based on CTOF measurements at Langrangian point L1 between DOY 150 and DOY 220 in 1996, we investigate systematically the influence of the VDF time resolution on the derived kinetic temperatures for solar wind silicon and iron ions. The selected ion set spans a wide range of mass-per-charge from 3 amu/e heavy ions with ion-cyclotron waves.

  3. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    Science.gov (United States)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  4. WIND observations of coherent electrostatic waves in the solar wind

    Directory of Open Access Journals (Sweden)

    A. Mangeney

    Full Text Available The time domain sampler (TDS experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s. waves: coherent wave packets of Langmuir waves with frequencies f ~ fpe, coherent wave packets with frequencies in the ion acoustic range fpi < f < fpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ~ 25λD, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations. The type (wave packet or IES of the observed LF waves is mainly determined

  5. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion

    2015-01-01

    and exceed a power rating of 10 MW are discussed. The role of power electronics for improving the operation of wind turbines and ensuring compliance with power grid codes is analyzed with a view at producing fully controllable generation units suitable for tight integration into the power grid and large...

  6. Solvated electrons at elevated temperatures in different alcohols: Temperature and molecular structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Lin, Mingzhang [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.j [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Fu, Haiying; Muroya, Yusa [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)

    2010-12-15

    The absorption spectra of solvated electrons in pentanol, hexanol and octanol are measured from 22 to 200, 22 to 175 and 50 to150 {sup o}C, respectively, at a fixed pressure of 15 MPa, using nanosecond pulse radiolysis technique. The results show that the peak positions of the absorption spectra have a red-shift (shift to longer wavelengths) as temperature increases, similar to water and other alcohols. Including the above mentioned data, a compilation of currently available experimental data on the energy of absorption maximum (E{sub max}) of solvated electrons changed with temperature in monohydric alcohols, diols and triol is presented. E{sub max} of solvated electron is larger in those alcohols that have more OH groups at all the temperatures. The molecular structure effect, including OH numbers, OH position and carbon chain length, is investigated. For the primary alcohols with same OH group number and position, the temperature coefficient increases with increase in chain length. For the alcohols with same chain length and OH numbers, temperature coefficient is larger for the symmetric alcohols than the asymmetric ones.

  7. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  8. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  9. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    Science.gov (United States)

    Prasad, A. S. Guru; Sharath, U.; Nagarjun, V.; Hegde, G. M.; Asokan, S.

    2013-09-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.

  10. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  11. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  12. Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations

    Directory of Open Access Journals (Sweden)

    B. Lavraud

    2010-01-01

    Full Text Available Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs in the vicinity of corotating interaction regions (CIRs during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used, but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream, as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1 the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2 that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to

  13. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  14. High-Temperature Electronics: Status and Future Prospects in the 21st Century

    Directory of Open Access Journals (Sweden)

    F. Touati

    2006-12-01

    Full Text Available This paper reviews the state of current electronics and states the drive toward high-temperature electronics. The problems specific to high-temperature effects on conventional electronics and prospects of alternative technologies like silicon-on-insulator, silicon carbide, and diamond are discussed. Improving petroleum recovery from oil wells with hightemperature coverage of downhole electronics, making combustion processes more efficient utilizing embedded electronics, programs for More Electric Aircraft and Vehicles necessitating distributed control systems, and environmental protection issues stress the need to use and develop high-temperature electronics. This makes high-temperature electronics a key-enabling technology in the 21st century. Actual applications using high-temperature electronics are discussed in some details. Also information and guidelines are included about supporting electronics needed to make a complete high-temperature system. The technology has been making major advancements and is expected to account for 20% of the electronics market by 2010. However, many technical challenges have to be solved.

  15. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2011-01-01

    Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is nec......Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components...... to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development...

  16. MICROWAVE NOISE MEASUREMENT OF ELECTRON TEMPERATURES IN AFTERGLOW PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, Jr., C. C.; McBee, W. D.

    1963-10-15

    Transient electron temperatures in afterglow plasmas were determined for He (5 and 10 torr), Ne, and Ne plus or minus 5% Ar (2.4 and 24 torr) by combining measurements of plasma microwave noise power, and plasma reflectivity and absorptivity. Use of a low-noise parametric preamplifier permitted continuous detection during the afterglow of noise power at 5.5 Bc in a 1 Mc bandwidth. Electron temperature decays were a function of pressure and gas but were slower than predicted by electron energy loss mechanisms. The addition of argon altered the electron density decay in the neon afterglow but the electron temperature decay was not appreciably changed. Resonances in detected noise power vs time in the afterglow were observed for two of the three plasma waveguide geometries studied. These resonances correlate with observed resonances in absorptivity and occur over the same range of electron densities for a given geometry independent of gas type and pressure. (auth)

  17. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  18. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  19. Ulysses solar wind plasma observations at high southerly latitudes.

    Science.gov (United States)

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  20. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  1. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  2. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  3. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    Science.gov (United States)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  4. Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales

    Science.gov (United States)

    Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.

    2017-12-01

    At electron scales, the power spectrum of solar-wind magnetic fluctuations can be highly variable and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar wind interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.

  5. Thermoluminescence in KBr:D electron irradiated at room temperature

    International Nuclear Information System (INIS)

    Paredes Campoy, J.C.; Lopez Carranza, E.

    1991-07-01

    The thermoluminescence of KBr:D samples electron irradiated at room temperature after thermal annealing at 673 K for 1 hour have been studied in the temperature range 360-730 K. The experimental TL-curve was discomposed by computer analysis in seven overlapping TL peaks, giving for them the order of the kinetics of thermal stimulation, the activation energy, the frequency factor, the relative values of the electronic concentration in traps at the initial heating temperature and the temperature at the maximum of the peak. (author). 18 refs, 1 fig., 3 tabs

  6. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    International Nuclear Information System (INIS)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120 0 C, and was found to be approximately five times greater at -120 0 C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane

  7. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    International Nuclear Information System (INIS)

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-01-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3

  8. Granger causality estimate of information flow in temperature fields is consistent with wind direction

    Czech Academy of Sciences Publication Activity Database

    Jajcay, Nikola; Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2014-01-01

    Roč. 16, - (2014), EGU2014-12768 ISSN 1607-7962. [EGU General Assembly /11./. 27.04.2014-02.05.2014, Vienna] Institutional support: RVO:67985807 Keywords : Granger causality * climate * information flow * surface air temperature * wind Subject RIV: BB - Applied Statistics, Operational Research

  9. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  10. Ion acoustic waves and related plasma observations in the solar wind

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    This paper presents an investigation of solar wind ion acoustic waves and their relationship to the macroscopic and microscopic characteristics of the solar wind plasma. Comparisons with the overall solar wind corotational structure show that the most intense ion acoustic waves usually occur in the low-velocity regions ahead of high-speed solar wind streams. Of the detailed plasma parameters investigated, the ion acoustic wave intensities are found to be most closely correlated with the electron to proton temperature ratio T/sub e//T/sub p/ and with the electron heat flux. Investigations of the detailed electron and proton distribution functions also show that the ion acoustic waves usually occur in regions with highly non-Maxwellian distributions characteristic of double-proton streams. The distribution functions for the double-proton streams are usually not resolved into two clearly defined peaks, but rather they appear as a broad shoulder on the main proton distribution. Two main mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. Both mechanisms have favorable and unfavorable features. The electron heat flux mechanism can account for the observed waves at moderate to large ratios of T/sub e//T/sub p/ but has problems when T/sub e//T/sub p/ is small, as sometimes occurs. The ion beam instability appears to provide more flexibility on the T/sub e//T/sub p/ ratio; however detailed comparisons using observed distribution functions indicate that the ion beam mode is usually stable. Possible resolutions of these difficulties are discussed

  11. Sheath and heat flow of a two-electron-temperature plasma in the presence of electron emission

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-01-01

    The electrostatic sheath and the heat flow of a two-electron-temperature plasma in the presence of electron emission are investigated analytically. It is shown that the energy flux is markedly enhanced to a value near the electron free-flow energy flux as a result of considerable reduction of the sheath potential due to electron emission if the fraction of hot electrons at the sheath edge is much smaller than one. If the hot- to cold-electron temperature ratio is of the order of ten and the hot electron density is comparable to the cold electron density, the action of the sheath as a thermal insulator is improved as a result of suppression of electron emission due to the space-charge effect of hot electrons. (author)

  12. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline.

    Science.gov (United States)

    Baig, M N; Tranquillini, W

    1980-01-01

    The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms -1 ) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.

  13. Production of a large diameter ECR plasma with low electron temperature

    International Nuclear Information System (INIS)

    Koga, Mayuko; Hishikawa, Yasuhiro; Tsuchiya, Hayato; Kawai, Yoshinobu

    2006-01-01

    A large diameter plasma over 300 mm in diameter is produced by electron cyclotron resonance (ECR) discharges using a cylindrical vacuum chamber of 400 mm in inner diameter. It is found that the plasma uniformity is improved by adding the nitrogen gas to pure Ar plasma. The electron temperature is decreased by adding the nitrogen gas. It is considered that the electron energy is absorbed in the vibrational energy of nitrogen molecules and the electron temperature decreases. Therefore, the adjunction of the nitrogen gas is considered to be effective for producing uniform and low electron temperature plasma

  14. SPECTROSCOPIC DIAGNOSIS IN ELECTRONIC TEMPERATURE OF PHOTOIONISE PLASMAS

    Directory of Open Access Journals (Sweden)

    A. K. Ferouani

    2015-08-01

    Full Text Available In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, which have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited levels 1s2l towards the fundamental level 1s2 1S0, like appropriate lines. More precisely, the line of resonance w due to the transition 1s2p 1P1 --- 1s2 1 S0, the line of intercombinaison (x,y 1s2p 3 P2,1 --- 1s2 1 S0  as well as prohibited line z due to the transition 1s2 3 S1 --- 1s2 1 S0. These lines appear clearly in the spectra of astrophysical plasmas. As helium-like ion, we chose two, the oxygen O6+ (Z=8 and neon Ne8+ (Z=10. We carried out calculations of the ration of lines intensity G=(z+x+y/w of O6+ and Ne8+  according to the electronic temperature in the range going from 105 to 107 K. We will see that, like it was shown by Gabriel and Jordan in 1969 [1], this intensity ration can be very sensitive to the temperature electronic and practically independent of the electronic density. Consequently, the ration G can be used to determine in a reliable way the electronic temperature of plasma observed [2].

  15. Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions

    NARCIS (Netherlands)

    Su, H.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2004-01-01

    The effects of temperature (5 to 25degreesC), relative humidity (81 to 100%), wind speed (0 to 1.0 in s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P <0.0001) by

  16. Wolte 5. low temperature electronics

    International Nuclear Information System (INIS)

    Balestra, F.; Dieudonne, F.; Jomaah, J.

    2002-01-01

    This book present the latest research and development results in advanced materials, technologies, devices, circuits and systems for low temperature electronics. The main themes of the papers are ranging from physics and fundamental aspects, modeling and simulation, to device and circuit design. The topics include advanced process and characterization, novel devices and cryogenic instrumentation. The papers are divided into nine sections, reflecting the main research efforts in different areas: i) deep submicron silicon MOSFETs, ii) alternative MOSFETs (SOI, innovating device architectures), iii) III-V devices, iv) other semiconductor devices (Ge devices, p-n junctions, IR sensors, semiconductor microcrystals), v) emerging devices and phenomena (nano Si-based devices, conduction and fluctuations mechanisms), vi) superconducting materials, vii) superconducting detectors, viii) superconducting devices and circuits (RSFQ, SIS mixers, metal-superconducting-semiconductor structures), ix) low temperature electronics for space applications. Six invited papers presented by internationally recognized authors, and 39 contributed papers are presented. The invited papers provide an excellent overview of today's status and progress, as well as tomorrow's challenges and trends in this important discipline for many cryogenic applications. (authors)

  17. Analysis of counter flow of corona wind for heat transfer enhancement

    Science.gov (United States)

    Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo

    2018-03-01

    A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.

  18. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  19. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  20. Temperature gradient driven electron transport in NSTX and Tore Supra

    International Nuclear Information System (INIS)

    Horton, W.; Wong, H.V.; Morrison, P.J.; Wurm, A.; Kim, J.H.; Perez, J.C.; Pratt, J.; Hoang, G.T.; LeBlanc, B.P.; Ball, R.

    2005-01-01

    Electron thermal fluxes are derived from the power balance for Tore Supra (TS) and NSTX discharges with centrally deposited fast wave electron heating. Measurements of the electron temperature and density profiles, combined with ray tracing computations of the power absorption profiles, allow detailed interpretation of the thermal flux versus temperature gradient. Evidence supporting the occurrence of electron temperature gradient turbulent transport in the two confinement devices is found. With control of the magnetic rotational transform profile and the heating power, internal transport barriers are created in TS and NSTX discharges. These partial transport barriers are argued to be a universal feature of transport equations in the presence of invariant tori that are intrinsic to non-monotonic rotational transforms in dynamical systems

  1. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  2. Spiral field inhibition of thermal conduction in two-fluid solar wind models

    International Nuclear Information System (INIS)

    Nerney, S.; Barnes, A.

    1978-01-01

    The two-fluid solar wind equations, including inhibition of heat conduction by the spiral magnetic field, have been solved for steady radial flow, and the results are compared with those of our previous study of two-fluid models with straight interplanetary field lines. The main effects of the spiral field conduction cutoff are to bottle up electron heat inside 1 AU and to produce adiabatic electron (an proton) temperature profiles at large heliocentric distances. Otherwise, the spiral field models are nearly identical with straight field models with the same temperatures and velocity at 1 AU, except for models associated with very low coronal base densities (n 0 approx.10 6 cm -3 at 1R/sub s/). Low base density spiral models give a nearly isothermal electron temperature profile over 50--100 AU together with high velocities and temperatures at 1 AU. In general, high-velocity models do not agree well with observed high-velocity streams: lower-velocity states can be represented reasonably well at 1 AU, but only for very high proton temperatures (T/sub p/approx.2T/sub e/) at the coronal base. For spherically symmetric base conditions the straight field and spiral field models can be regarded, in lowest order, as approximations to the polar and equatorial three-dimensional flows, respectively. This viewpoint suggests a pole to equator electron temperature gradient in the region 1-10 AU, which would be associated with a meridional velocity of approx.0.5-1.0 km/s, diverging away from the equatorial plane. The formalism developed in this paper shows rather stringent limits to the mass loss rate for conductively driven winds and, in particular, illustrates that putative T Tauri outflows could not be conductively driven

  3. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature and Brucellosis in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Yousefali Abedini

    2016-06-01

    Full Text Available Background: Brucellosis (Malta fever is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and wind were compared to brucellosis distribution maps. Results: Correlation test showed no relationship between the mean number of patients with brucellosis and any of the four meteorological parameters. Conclusion: It seems that in Zanjan province there is no correlation between brucellosis and meteorological parameters.

  4. Wind generator with electronic variable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    David, A.; Buchheit, N.; Jakobsen, H.

    1996-12-31

    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  5. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    Room temperature Compton profiles of momentum distribution of conduction electrons in -Ga metal are calculated in band model. For this purpose, the conduction electron wave functions are determined in a temperature-dependent non-local model potential. The profiles calculated along the crystallographic directions, ...

  6. Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    NARCIS (Netherlands)

    Pllumbi, E.; Tamborra, I.; Wanajo, S.; Janka, H.-T.; Hüdepohl, L.

    2015-01-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of

  7. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  8. Determining coronal electron temperatures from observations with UVCS/SOHO

    Science.gov (United States)

    Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.

    1995-01-01

    The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.

  9. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    Science.gov (United States)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  10. The « 3-D donut » electrostatic analyzer for millisecond timescale electron measurements in the solar wind

    Science.gov (United States)

    Berthomier, M.; Techer, J. D.

    2017-12-01

    Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.

  11. Quantifying the effects of LUCCs on local temperatures, precipitation, and wind using the WRF model.

    Science.gov (United States)

    Lian, Lishu; Li, Baofu; Chen, Yaning; Chu, Cuicui; Qin, Yanhua

    2017-09-11

    Land use/cover changes (LUCCs) are an important cause of regional climate changes, but the contribution of LUCCs to regional climate changes is not clear. In this study, the Weather Research and Forecasting (WRF) model and statistical methods were used to investigate changes in meteorologic variables in January, April, July, and October 2013 due to local LUCCs from 1990 to 2010 in southern Shandong province, China. The results indicate that the WRF model simulates temperatures in the region well, with high correlation coefficients (0.86-0.97, p wind speed and direction substantially during these four months: average wind speeds increased by 0.02 and 0.01 m/s in January and October, respectively, and decreased by 0.02 and 0.05 m/s in April and July, respectively. Overall, The LUCCs affected spring temperatures the least and summer precipitation the most.

  12. Experimental study of water absorption of electronic components and internal local temperature and humidity into electronic enclosure

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in large spans of temperature and humidity during day and night shifts. Corrosion failures are still seen due to the effects of temperature, humidity......, differential humidity, and temperature effects simulating day/night, and the use of desiccants....

  13. Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm - Monte Carlo Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe

    2010-01-01

    determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....

  14. ELECTRON ENERGY DECAY IN HELIUM AFTERGLOW PLASMAS AT CRYOGENIC TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Goldan, P. D.; Cahn, J. H.; Goldstein, L.

    1963-10-15

    Studies of decaying afterglow plasmas in helium were ined near 4 deg K by immersion in a liquid helium bath. By means of a Maser Radiometer System, the electron temperature was followed below 200 deg K. Guided microwave propagation and wave interaction techniques premit determination of election number density and collision frequencies for momentum transfer. Electron temperature decay rates of the order of 150 mu sec/p(mm Hg alpha 4.2 deg K) were found. Since thermal relaxation by elastic collisions should be some two orders of magnitude faster than this, the electrons appear to be in quasiequilibrium with a slowly decaying internal heating source. Correlation of the expected decay rates of singlet metastable helium atoms with the electron temperature decay gives good agreement with the present experiment. (auth)

  15. Calculating the electron temperature in the lightning channel by continuous spectrum

    Science.gov (United States)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  16. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  17. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    International Nuclear Information System (INIS)

    Averous, Nurhan Rizqy; Berthold, Anica; Monti, Antonello; De Doncker, Rik W.; Schneider, Alexander; Schwimmbeck, Franz

    2016-01-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids. (paper)

  18. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    Science.gov (United States)

    Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.

    2016-09-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.

  19. Electron precipitation control of the Mars nightside ionosphere

    Science.gov (United States)

    Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.

    2017-12-01

    The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.

  20. Electronically commutated serial-parallel switching for motor windings

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2012-03-27

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  1. Electron temperature measurement in Z-pinch

    International Nuclear Information System (INIS)

    Gerusov, A.V.; Orlov, M.M.; Terent'ev, A.R.; Khrabrov, V.A.

    1987-01-01

    Measurement of temperature of emitting plasma sheath in noncylindrical Z-pinch in neon at the stage of convergence to the axis, based on comparing the intensity of spectral lines belonging to Ne1, Ne2, is performed. Line intensity relation dependence was determined using calculations according to emitting-collision model. Spectra were recorded by electron-optical converter and relative intensity was determined by subsequent photometry of photolayer. Cylindric symmetrical MHD-calculations during which temperature and the observed line intensity relation were determined, are conducted

  2. Statistical modeling of temperature, humidity and wind fields in the atmospheric boundary layer over the Siberian region

    Science.gov (United States)

    Lomakina, N. Ya.

    2017-11-01

    The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.

  3. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  4. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...... genetic algorithm with local optimization search based on on/off sensitivity analysis. The results show an optimal HTS coil distribution, achieving compact designs with a maximum of approximately 22% of the available space for the field winding occupied with HTS tape. In addition, this paper describes...... potential HTS savings, which could be achieved using multiple power supplies for the excitation of the machine. Using the TO approach combined with two excitation currents, an additional HTS saving of 9.1% can be achieved....

  5. High-Temperature Electronics: Status and Future Prospects in the 21st Century

    OpenAIRE

    F. Touati; F. Mnif; A. Lawati

    2006-01-01

    This paper reviews the state of current electronics and states the drive toward high-temperature electronics. The problems specific to high-temperature effects on conventional electronics and prospects of alternative technologies like silicon-on-insulator, silicon carbide, and diamond are discussed. Improving petroleum recovery from oil wells with hightemperature coverage of downhole electronics, making combustion processes more efficient utilizing embedded electronics, programs for More Elec...

  6. Electron temperature measurement of tungsten inert gas arcs

    International Nuclear Information System (INIS)

    Tanaka, Manabu; Tashiro, Shinichi

    2008-01-01

    In order to make clear the physical grounds of deviations from LTE (Local Thermodynamic Equilibrium) in the atmospheric helium TIG arcs electron temperature and LTE temperature obtained from electron number density were measured by using of line-profile analysis of the laser scattering method without an assumption of LTE. The experimental results showed that in comparison with the argon TIG arcs, the region where a deviation from LTE occurs tends to expand in higher arc current because the plasma reaches the similar state to LTE within shorter distance from the cathode due to the slower cathode jet velocity

  7. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    International Nuclear Information System (INIS)

    Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.

    1996-01-01

    We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.37 AU Ulysses encountered seven intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning ±60 deg. from the sunward field-aligned direction. All events occurred between the forward and reverse shocks or waves bounding corotating interaction regions (CIRs). The observations support a scenario in which the sunward-moving electrons result from reflection of the prevailing antisunward field-aligned beam at magnetic field compressions downstream from the spacecraft, with wide loss cones caused by the relatively weak mirror ratio. This hypothesis requires that the field magnitude within the CIRs actually increased locally with increasing field-aligned distance from the Sun

  8. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  9. Effect of re-heating on the hot electron temperature

    International Nuclear Information System (INIS)

    Estabrook, K.; Rosen, M.

    1980-01-01

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density [10 21 (1.06 μm/lambda 0 ) 2 cm -3 ]. The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e/ 0 25 ([I(W/cm 2 )/10 16 ](lambda 0 /1.06 μm) 2 ) 0 4 . This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not

  10. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation

    Science.gov (United States)

    Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette

    2016-04-01

    The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m-3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.

  11. Temperature dependence of electron mean free path in molybdenum from ultrasonic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Almond, D P; Detwiler, D A; Rayne, J A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-09-08

    The temperature dependence of the electronic mean free path in molybdenum has been obtained from ultrasonic attenuation measurements.For temperature up to 30 K a T/sup -2/ law is followed suggesting the importance of electron-electron scattering in the attenuation mechanism.

  12. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    Science.gov (United States)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  13. Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO2 films

    Science.gov (United States)

    Lang, Wen-Jing; Li, Zhi-Qing

    2014-07-01

    Both the semi-classical and quantum transport properties of F-doped SnO2 thick films (˜1 μm) were investigated experimentally. We found that the resistivity caused by the thermal phonons obeys Bloch-Grüneisen law from ˜90 to 300 K, while only the diffusive thermopower, which varies linearly with temperature from 300 down to 10 K, can be observed. The phonon-drag thermopower is completely suppressed due to the long electron-phonon relaxation time in the compound. These observations, together with the fact that the carrier concentration has negligible temperature dependence, indicate that the conduction electrons in F-doped SnO2 films possess free-electron-like characteristics. At low temperatures, the electron-electron scattering dominates over the electron-phonon scattering and governs the inelastic scattering process. The theoretical predications of scattering rates of large- and small-energy-transfer electron-electron scattering processes, which are negligibly weak in three-dimensional disordered conventional conductors, are quantitatively tested in this lower carrier concentration and free-electron-like highly degenerate semiconductor.

  14. Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO2 films

    International Nuclear Information System (INIS)

    Lang, Wen-Jing; Li, Zhi-Qing

    2014-01-01

    Both the semi-classical and quantum transport properties of F-doped SnO 2 thick films (∼1 μm) were investigated experimentally. We found that the resistivity caused by the thermal phonons obeys Bloch-Grüneisen law from ∼90 to 300 K, while only the diffusive thermopower, which varies linearly with temperature from 300 down to 10 K, can be observed. The phonon-drag thermopower is completely suppressed due to the long electron-phonon relaxation time in the compound. These observations, together with the fact that the carrier concentration has negligible temperature dependence, indicate that the conduction electrons in F-doped SnO 2 films possess free-electron-like characteristics. At low temperatures, the electron-electron scattering dominates over the electron-phonon scattering and governs the inelastic scattering process. The theoretical predications of scattering rates of large- and small-energy-transfer electron-electron scattering processes, which are negligibly weak in three-dimensional disordered conventional conductors, are quantitatively tested in this lower carrier concentration and free-electron-like highly degenerate semiconductor.

  15. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature is dec...

  16. Empirical models for predicting wind potential for wind energy applications in rural locations of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Odo, F.C. [National Centre for Energy Research and Development, University of Nigeria, Nsukka (Nigeria); Department of Physics and Astronomy, University of Nigeria, Nsukka (Nigeria); Akubue, G.U.; Offiah, S.U.; Ugwuoke, P.E. [National Centre for Energy Research and Development, University of Nigeria, Nsukka (Nigeria)

    2013-07-01

    In this paper, we use the correlation between the average wind speed and ambient temperature to develop models for predicting wind potentials for two Nigerian locations. Assuming that the troposphere is a typical heterogeneous mixture of ideal gases, we find that for the studied locations, wind speed clearly correlates with ambient temperature in a simple polynomial of 3rd degree. The coefficient of determination and root-mean-square error of the models are 0.81; 0.0024 and 0.56; 0.0041, respectively, for Enugu (6.40N; 7.50E) and Owerri (5.50N; 7.00E). These results suggest that the temperature-based model can be used, with acceptable accuracy, in predicting wind potentials needed for preliminary design assessment of wind energy conversion devices for the locations and others with similar meteorological conditions.

  17. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  18. Wind Penetration with different wind turbine technologies in a weak grid

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernandez, Miguel A.; Martínez García, Antonio

    2012-01-01

    The insertion of wind energy into electric network may provoke stability problems due to stochastic character of wind. The variation in the wind causes voltage variation in the Point of Common Coupling (PCC). In a weakest system that variation is high. Another important factor is wind turbine technology. The use of grid-connected fixed speed wind generator introduces a great consumption of reactive power that can be compensated using different devices as capacitors bank or static var compensator (SVC or STATCOM). In the other hand the variable speed wind turbine have an electronic converter to control the reactive consumption to maintain the PCC voltage more stable. In this paper a comparison between the different types of wind turbines technology is show. It's analyzing the impact in wind power limit for different wind turbine technologies in a weak system. (author)

  19. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G.; Poedts, Stefaan [Centre for Mathematical Plasma Astrophysics, KU Leuven, B-3001 Leuven (Belgium); Viñas, Adolfo F.; Moya, Pablo S.; Wicks, Robert T., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-11-20

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-β fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω{sub p}, Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles.

  20. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.; Moya, Pablo S.; Wicks, Robert T.

    2015-01-01

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-β fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω p , Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles

  1. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    Directory of Open Access Journals (Sweden)

    M. Usman Malik

    2018-05-01

    Full Text Available The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  2. Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons

    Science.gov (United States)

    2014-01-30

    mechanical through resonant energy transfer. The average electron temperature (Tel) during τ2 evolves as energy is lost through optical and acoustic ...through ballistic collisions and acoustic phonons. The large difference in heat capacities between electrons and the substrate leads to negligible...temperature pyrometer indicated only a ~30oC temperature gradient between the thermocouple location and the topside of the sample which faced the

  3. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tokuzawa, T.

    2006-10-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma. (author)

  4. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tanaka, K.; Michael, C.; Tokuzawa, T.; Shimozuma, T.; Kubo, S.; Sakamoto, R.; Ida, K.; Itoh, K.; Kalinina, D.; Sudo, S.; Nagayama, Y.; Kawahata, K.; Komori, A.

    2007-01-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the large helical device (LHD) show a significant rise in core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport dominates. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay in the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase both in the collisionality in the core plasma and the electron temperature gradient scale length in the outer region of the plasma

  5. Electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  6. 12th International Workshop on Low Temperature Electronics

    International Nuclear Information System (INIS)

    2017-01-01

    The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 12th International Workshop on Low Temperature Electronics held in Tempe, Arizona, USA from September 18-21, 2016. The conference was organized by the School of Earth and Space Exploration at Arizona State University.The International Workshop on Low Temperature Electronics (WOLTE) is a biennial conference devoted to the presentation and exchange of the most recent advances in the field of low temperature electronics and its applications. This international forum is open to everyone in the field.The technical program included oral presentations and posters on fundamental properties of cryogenic materials, cryogenic transistors, quantum devices and systems, astronomy and physics instrumentation, and fabrication of cryogenic devices. More than 50 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, and the Americas attended the conference.We would like to thank all speakers for their presentations and all attendees for their participation. We would also like to express our sincerest gratitude to our sponsors: Lake Shore Cryotronics, ASU NewSpace, ASU School of Earth and Space Exploration, and IRA A. Fulton Schools of Engineering for making this conference possible. (paper)

  7. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    Science.gov (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  8. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  9. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  10. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...

  11. Instability and transport driven by an electron temperature gradient close to critical

    International Nuclear Information System (INIS)

    Dong, J.Q.; Jian, G.D.; Wang, A.K.; Sanuki, H.; Itoh, K.

    2003-01-01

    Electron temperature gradient (ETG) driven instability in toroidal plasmas is studied with gyrokinetic theory. The full electron kinetics is considered. The upgraded numerical scheme for solving the integral eigenvalue equations allows the study of both growing and damping modes, and thus direct calculation of critical gradient. Algebraic formulas for the critical gradient with respect to ratio of electron temperature over ion temperature and to toroidicity are given. An estimation for turbulence induced transport is presented. (author)

  12. Defining Data Access Pathways for Atmosphere to Electrons Wind Energy Data

    Science.gov (United States)

    Macduff, M.; Sivaraman, C.

    2016-12-01

    Atmosphere to Electrons (A2e), is a U.S. Department of Energy (DOE) Wind Program research initiative designed to optimize the performance of wind power plants by lowering the levelized cost of energy (LCOE). The Data Archive and Portal (DAP), managed by PNNL and hosted on Amazon Web Services, is a key capability of the A2e initiative. The DAP is used to collect, store, catalog, preserve and disseminate results from the experimental and computational studies representing a diverse user community requiring both open and proprietary data archival solutions(http://a2e.pnnl.gov). To enable consumer access to the data in DAP it is being built on a set of API's that are publically accessible. This includes persistent references for key meta-data objects as well as authenticated access to the data itself. The goal is to make the DAP catalog visible through a variety of data access paths bringing the data and metadata closer to the consumer. By providing persistent metadata records we hope to be able to build services that capture consumer utility and make referencing datasets easier.

  13. Evaluating the impact of electrical grid connection on the wind turbine performance for Hofa wind farm scheme in Jordan

    International Nuclear Information System (INIS)

    Abderrazzaq, M.H.; Aloquili, O.

    2008-01-01

    The growth of wind energy is attributed to the development of turbine size and the increase in number of units in each wind farm. The current modern design of large wind turbines (WT) is directed towards producing efficient, sensitive and reliable units. To achieve this goal, modern turbines are equipped with several devices which are operated with highly advanced electronic circuits. Sensing instruments, measuring devices and control processes of major systems and subsystems are based on various types of electronic apparatus and boards. These boards are very sensitive to the voltage variations caused by abnormal conditions in both the turbine itself and the electric grid to which the wind farm is connected. This paper evaluates wind farm records and proposes a number of methods to overcome such obstacles associated with the design of large wind turbines. Several cases of grid abnormality such as sudden feeder interruption due to the short circuit, network disconnection, voltage variation and circuit breaker opening affecting wind turbines operation and availability are classified and presented. The weight of such impact is determined for each type of disturbances associated with electronic problems in the wind turbine. Wind turbine performance at Hofa wind farm scheme in Jordan is taken as a case study

  14. Temperature impact on the primary radiolysis yields concerning the hydrous electron

    International Nuclear Information System (INIS)

    Baldacchino, G.; Vigneron, G.; Pommeret, St.

    2005-01-01

    We have studied the impact of temperature on the water radiolysis formation rate of the hydrous electron in presence of selenate di-anion SeO 4 2+ . We have used a high temperature (up to 500 Celsius degrees) optical cell coupled to the electron accelerator Alienor. It appears that the capture of the hydrous electron by selenate follows an Arrhenius law till the sub-critical range, beyond this range the kinetics of the reaction seems more erratic. We have also studied the capture of the hydrous electron by methyl-viologen (MV 2+ ) at 20 and 380 Celsius degrees. It seems that at high temperature more hydrous electrons are produced, it might be interpreted as a consequence of the shift toward the right of the following equilibrium reaction: OH - + H . ↔ e - (aq) + H 2 O. All these results need to be confirmed. (A.C.)

  15. Incorporating geostrophic wind information for improved space–time short-term wind speed forecasting

    KAUST Repository

    Zhu, Xinxin

    2014-09-01

    Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric pressure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal (TDD) model. This paper proposes to incorporate the geostrophic wind as a new predictor in the TDD model. The geostrophic wind captures the physical relationship between wind and pressure through the observed approximate balance between the pressure gradient force and the Coriolis acceleration due to the Earth’s rotation. Based on our numerical experiments with data from West Texas, our new method produces more accurate forecasts than does the TDD model using air pressure and temperature for 1to 6-hour-ahead forecasts based on three different evaluation criteria. Furthermore, forecasting errors can be further reduced by using moving average hourly wind speeds to fit the diurnal pattern. For example, our new method obtains between 13.9% and 22.4% overall mean absolute error reduction relative to persistence in 2-hour-ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous space-time methods in this setting.

  16. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  17. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2012-09-01

    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  18. Saturation mechanism of decaying ion temperature gradient driven turbulence with kinetic electrons

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro

    2016-01-01

    We present full-f gyrokinetic simulations of the ion temperature gradient driven (ITG) turbulence including kinetic electrons. By comparing decaying ITG turbulence simulations with adiabatic and kinetic electron models, an impact of kinetic electrons on the ITG turbulence is investigated. It is found that significant electron transport occurs even in the ITG turbulence, and both ion and electron temperature profiles are relaxed. In steady states, both cases show upshifts of nonlinear critical ion temperature gradients from linear ones, while their saturation mechanisms are qualitatively different. In the adiabatic electron case, the ITG mode is stabilized by turbulence driven zonal flows. On the other hand, in the kinetic electron case, passing electrons transport shows fine resonant structures at mode rational surfaces, which generate corrugated density profiles. Such corrugated density profiles lead to fine radial electric fields following the neoclassical force balance relation. The resulting E × B shearing rate greatly exceeds the linear growth rate of the ITG mode. (author)

  19. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature) and Brucellosis in Zanjan Province

    OpenAIRE

    Yousefali Abedini; Nahideh Mohammadi; Koorosh Kamali; Mohsen Ahadnejad; Mehdi Azari

    2016-01-01

    Background: Brucellosis (Malta fever) is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind) and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW) and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and win...

  20. Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.

    2011-01-01

    A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.

  1. Characterization of electron temperature by simulating a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Yeong Heum [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Lee, Jong Chul; Mohamed Gad, Khaled Mohamed [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Namgoong, Ho [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Chai, Jong Seo, E-mail: jschai@skku.edu [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of)

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  2. Excess electron mobility in ethane. Density, temperature, and electric field effects

    International Nuclear Information System (INIS)

    Doeldissen, W.; Schmidt, W.F.; Bakale, G.

    1980-01-01

    The excess electron mobility in liquid ethane was measured under orthobaric conditions as a function of temperature and electric field strength up to the critical temperature at 305.33 K. The low field mobility was found to rise strongly with temperature and exhibits a maximum value of 44 cm 2 V -1 s -1 at 2 0 below the critical temperature. At temperatures above 260 K the electron drift velocity shows a sublinear field dependence at high values of the electric field strength. These observations lead to the supposition that in liquid ethane a transition from transport via localized states to transport in extended states occurs. Measurements were also performed in fluid ethane at densities from 2.4 to 12.45 mol L -1 and temperatures from 290 to 340 K. On isochores in the vicinity of the critical density, an increase of the low field mobility with temperature was observed. This effect was found to disappear both at low (rho = 2.4 mol L -1 ) and high densities (rho greater than or equal to 9.2 mol L -1 ). In this density range, a sublinear field dependence of the drift velocities at high field strengths was noted. The critical velocity associated with the appearance of hot electrons was observed to decrease with higher densities indicating a smaller fractional energy transfer in electron molecule collisions. A compilation of electron mobilities in gaseous and liquid ethane shows that, up to densitiesof rho = 9.5 mol L -1 , μ proportional to n -1 is fulfilled if temperature effects are ignored. At intermediate densities, 9 mol L -1 -1 , a density dependence of μ proportional to rho -5 is found followed by a stronger mobility decrease toward the triple point. Positive ion mobilities measured under orthobaric conditions followed Walden's rule

  3. Anomaly in the Kumakhov radiation temperature dependence at axial channeling of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, F.F.; Telegin, V.I.; Khokonov, M.Kh.

    1983-01-01

    The results of numerical solution of a kinetic equation for distribution function of axially channelled electrons obtained by Belostritsky and Kumakhov at different temperatures of crystals and calculated for the determined electron distributions spectral density of radiation are given. Analysis of the obtained dependence of the number of channelled 5 GeV electrons in tungsten along the <111> axis on depth Z has revealed that 2% of incidence beam electrons have anomalously large depths of dechannelling. Ratio of electrons with large by modulus cross section energies grows at decreasing crystal temperature from 293 to 40 K and, therefore, radiation intensity increases. Two-fold increase of radiation intensity can be attained at axial channelling of 1 GeV electrons in tungsten <111> at the temperatures of the crystal equal to 40 and 293 K and its thickness equal to 220 ..mu..m.

  4. High temperature electrons exhausted from rf plasma sources along a magnetic nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Akahoshi, Hikaru; Charles, Christine; Boswell, Rod W.; Ando, Akira

    2017-08-01

    Two dimensional profiles of electron temperature are measured inside and downstream of a radiofrequency plasma thruster source having a magnetic nozzle and being immersed in vacuum. The temperature is estimated from the slope of the fully swept I-V characteristics of a Langmuir probe acquired at each spatial position and with the assumption of a Maxwellian distribution. The results show that the peripheral high temperature electrons in the magnetic nozzle originate from the upstream antenna location and are transported along the "connecting" magnetic field lines. Two-dimensional measurements of electron energy probability functions are also carried out in a second simplified laboratory device consisting of the source contiguously connected to the diffusion chamber: again the high temperature electrons are detected along the magnetic field lines intersecting the wall at the antenna location, even when the antenna location is shifted along the main axis. These results demonstrate that the peripheral energetic electrons in the magnetic nozzle mirror those created in the source tube.

  5. Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Landi, S.; Hellinger, Petr; Pantellini, F.; Maksimovic, M.; Velli, M.; Goldstein, B. E.; Marsch, E.

    2007-01-01

    Roč. 34, č. 20 (2007), L20105/1-L20105/5 ISSN 0094-8276 Grant - others:ASI(IT) I/015/07/0 Institutional research plan: CEZ:AV0Z30420517 Keywords : Proton temperature anisotropy * solar wind * radial evolution * observations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  6. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    Science.gov (United States)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  7. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  8. Non-monotonic behavior of electron temperature in argon inductively coupled plasma and its analysis via novel electron mean energy equation

    Science.gov (United States)

    Zhao, Shu-Xia

    2018-03-01

    In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.

  9. The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005

    Science.gov (United States)

    Li, L. Y.; Wang, Z. Q.

    2018-01-01

    After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.

  10. A Thermal Performance Analysis and Comparison of Fiber Coils with the D-CYL Winding and QAD Winding Methods

    Directory of Open Access Journals (Sweden)

    Xuyou Li

    2016-06-01

    Full Text Available The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL and quadrupolar (QAD winding methods is comparatively analyzed. Simulation by the finite element method (FEM is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs.

  11. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    . The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  12. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-03-15

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty.

  13. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    International Nuclear Information System (INIS)

    Robben, F.

    1968-03-01

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty

  14. Using Three-Body Recombination to Extract Electron Temperatures of Ultracold Plasmas

    International Nuclear Information System (INIS)

    Fletcher, R. S.; Zhang, X. L.; Rolston, S. L.

    2007-01-01

    Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T e -9/2 . We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly coupled plasmas) and our measured rates, we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K

  15. Criteria governing electron plasma waves in a two-temperature plasma

    International Nuclear Information System (INIS)

    Dell, M.P.; Gledhill, I.M.A.; Hellberg, M.A.

    1987-01-01

    Using a technique based on the saddle-points of the dielectric function, criteria are found which govern the behaviour of electron plasma waves in plasmas with two electron populations having different temperatures. (orig.)

  16. Dynamic Analysis of Wind Power Turbine's Tower under the Combined Action of Winds and Waves

    Institute of Scientific and Technical Information of China (English)

    CHENG You-liang; QU Jiang-man; XUE Zhan-pu; JIANG Yan

    2017-01-01

    To deal with the dynamic response problem of offshore wind power tower under the combined action of winds and waves,finite element method is used to analyze the structure and flow field around the outside flange of the segmentation part.The changes of pressure distribution and vorticity about the outside flange are obtained.Focused on the analysis on the change of hydrostatic pressure and temperature of the tower cut surface,contour lines under the combined action of winds and waves are depicted.Results show that the surface of the offshore wind turbine tower presents instable temperature field when it suffers the action of winds and waves loads,the static pressure increases nonlinearly with the increase of altitude,the fluid vorticity around the outside flange follows an parabolic curve approximately.Results provide a reference for the actual monitoring data of the offshore wind turbine tower under the combined action of winds and waves,so as to ensure the normal operation of tower.

  17. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  18. To the problem of electron temperature control in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Galechyan, G.A. [Institute of Applied Problem of Physics, Yerevan (Armenia); Anna, P.R. [Raritan Valley Community College, Somerville, NJ (United States)

    1995-12-31

    One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2} laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.

  19. To the problem of electron temperature control in plasma

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Anna, P.R.

    1995-01-01

    One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO 2 laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall

  20. Wind Program Newsletter, May 2016 Edition

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    The U.S. Department of Energy Wind Program Newsletter provides wind industry stakeholders and the public with information about the Wind Program R&D efforts funded by the Wind and Water Power Technologies Office. The newsletter comes out twice a year and is sent electronically to subscribers and distributed in hard copy to conference attendees.

  1. No-insulation multi-width winding technique for high temperature superconducting magnet.

    Science.gov (United States)

    Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P; Bascuñán, Juan; Iwasa, Yukikazu

    2013-10-21

    We present a No-Insulation ( NI ) Multi-Width ( MW ) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique.

  2. Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Maksimovic, M.; Trávníček, Pavel M.; Marsch, E.; Fazakerley, A. N.; Scime, E. E.

    2009-01-01

    Roč. 114, - (2009), A05104/1-A05104/15 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : solar wind * radial evolution * non- thermal electron properties Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009

  3. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    International Nuclear Information System (INIS)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-01-01

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  4. Power electronic solutions for interfacing offshore wind turbine generators to medium voltage DC collection grids

    Science.gov (United States)

    Daniel, Michael T.

    Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing

  5. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  6. Electronic Monitoring Of Storage And Transport Temperatures Of ...

    African Journals Online (AJOL)

    Electronic Monitoring Of Storage And Transport Temperatures Of Thermostable Newcastle ... 22) were monitored during storage and transport from vaccine production laboratory in Temeke, Dar es ... EMAIL FULL TEXT EMAIL FULL TEXT

  7. Solar wind electron densities from Viking dual-frequency radio measurements

    International Nuclear Information System (INIS)

    Muhleman, D.O.; Anderson, J.D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the Earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii (R/sub sun/) to 200 R/sub sun/. The measurements were made during a period of solar activity minimum (1976--1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r/sup -2.7/ and r/sup -2.04/. However, the more rapidly falling term quickly disappears at moderate latitudes (approx.20 0 ), leaving only the inverse-square behavior

  8. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    Science.gov (United States)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  9. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  10. Hotspot electron temperature from x-ray continuum measurements on the NIF

    International Nuclear Information System (INIS)

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.

    2016-01-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  11. Hotspot electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  12. Hotspot electron temperature from x-ray continuum measurements on the NIF.

    Science.gov (United States)

    Jarrott, L C; Benedetti, L R; Chen, H; Izumi, N; Khan, S F; Ma, T; Nagel, S R; Landen, O L; Pak, A; Patel, P K; Schneider, M; Scott, H A

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  13. Hotspot electron temperature from x-ray continuum measurements on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Jarrott, L. C., E-mail: jarrott1@llnl.gov; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  14. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  15. Effective temperature of an ultracold electron source based on near-threshold photoionization

    NARCIS (Netherlands)

    Engelen, W.J.; Smakman, E.P.; Bakker, D.J.; Luiten, O.J.; Vredenbregt, E.J.D.

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an

  16. Active silicon x-ray for measuring electron temperature

    International Nuclear Information System (INIS)

    Snider, R.T.

    1994-07-01

    Silicon diodes are commonly used for x-ray measurements in the soft x-ray region between a few hundred ev and 20 keV. Recent work by Cho has shown that the charge collecting region in an underbiased silicon detector is the depletion depth plus some contribution from a region near the depleted region due to charge-diffusion. The depletion depth can be fully characterized as a function of the applied bias voltage and is roughly proportional to the squart root of the bias voltage. We propose a technique to exploit this effect to use the silicon within the detector as an actively controlled x-ray filter. With reasonable silicon manufacturing methods, a silicon diode detector can be constructed in which the sensitivity of the collected charge to the impinging photon energy spectrum can be changed dynamically in the visible to above the 20 keV range. This type of detector could be used to measure the electron temperature in, for example, a tokamak plasma by sweeping the applied bias voltage during a plasma discharge. The detector samples different parts of the energy spectrum during the bias sweep, and the data collected contains enough information to determine the electron temperature. Benefits and limitations of this technique will be discussed along with comparisons to similar methods for measuring electron temperature and other applications of an active silicon x-ray filter

  17. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  18. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  19. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    Science.gov (United States)

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  20. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Gevorgian, V.; Wallen, R.

    2014-01-01

    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory’s (NREL’s) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine...... generator (WTG) installed in NREL’s new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced...

  1. Electro-thermal Modeling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    Reliability is a critical criterion for multi-MW wind turbines, which are being employed with increasing numbers in wind power plants, since they operate under harsh conditions and have high maintenance cost due to their remote locations. In this study, the wind turbine grid-side converter...... reliability is investigated regarding IGBT lifetime based on junction temperature cycling for the grid-side press-pack IGBT 3L-NPC-VSC, which is a state-of-the art high reliability solution. In order to acquire IGBT junction temperatures for given wind power profiles and to use them in IGBT lifetime...... prediction, the converter electro-thermal model including electrical, power loss, and dynamical thermal models is developed with the main focus on the thermal modeling regarding converter topology, switch technology, and physical structure. Moreover, these models are simplified for their practical...

  2. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  3. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    Science.gov (United States)

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  4. Kinetic instabilities in the solar wind: A short review

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, Lorenzo, E-mail: l.matteini@imperial.ac.uk [Imperial College London, London SW7 2AZ (United Kingdom)

    2016-03-25

    We know from in situ measurements that solar wind plasma is far from thermal equilibrium. Distribution functions of its main constituents -electrons, protons, and alpha particles-show several departures from Maxwellian, including temperature anisotropy, relative drifts and secondary populations streaming along the local magnetic field. We present a short review of recent solar wind observations of these non-thermal features and associated signatures of wave-particle interactions. Several kinetic instabilities are expected to be at work in the solar wind during its expansion, playing a role in the continuous shaping of particle distributions with distance, and regulating the macroscopic behavior of the plasma. Over the past years, modeling of these processes by means of numerical simulations has been successful in reproducing and explaining the observations; these include the evolution of the plasma due to radial expansion and the response of individual species to different kinetic instabilities. Finally, the impact of local inhomogeneities, like current sheets and turbulence, on the development of kinetic instabilities is also discussed.

  5. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  6. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  7. Efficiency and reliability improvement in wind turbine converters by grid converter adaptive control

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Abrahamsen, Flemming

    2013-01-01

    This paper presents a control method that reduces the losses in wind turbine converters adaptively controlling the grid converter. The dc-link voltage adapts its reference based on the system state and therefore reduces the stored energy, and is therefore kept at the minimum necessary for the grid...... and generator side. Operating in this way, the electrical and thermal stress factors are decreased on the power electronic devices, increasing their lifetime. The simulation results using this method show efficiency increase and devices temperature cycles slightly decreased. Experimental results on a wind...... turbine power stack shows efficiency increase in the high power region....

  8. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  9. A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.

  10. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  11. Electron temperature measurement by a helium line intensity ratio method in helicon plasmas

    International Nuclear Information System (INIS)

    Boivin, R.F.; Kline, J.L.; Scime, E.E.

    2001-01-01

    Electron temperature measurements in helicon plasmas are difficult. The presence of intense rf fields in the plasma complicates the interpretation of Langmuir probe measurements. Furthermore, the non-negligible ion temperature in the plasma considerably shortens the lifetime of conventional Langmuir probes. A spectroscopic technique based on the relative intensities of neutral helium lines is used to measure the electron temperature in the HELIX (Hot hELicon eXperiment) plasma [P. A. Keiter et al., Phys. Plasmas 4, 2741 (1997)]. This nonintrusive diagnostic is based on the fact that electron impact excitation rate coefficients for helium singlet and triplet states differ as a function of the electron temperature. The different aspects related to the validity of this technique to measure the electron temperature in rf generated plasmas are discussed in this paper. At low plasma density (n e ≤10 11 cm -3 ), this diagnostic is believed to be very reliable since the population of the emitting level can be easily estimated with reasonable accuracy by assuming that all excitation originates from the ground state (steady-state corona model). At higher density, secondary processes (excitation transfer, excitation from metastable, cascading) become more important and a more complex collisional radiative model must be used to predict the electron temperature. In this work, different helium transitions are examined and a suitable transition pair is identified. For an electron temperature of 10 eV, the line ratio is measured as a function of plasma density and compared to values predicted by models. The measured line ratio function is in good agreement with theory and the data suggest that the excitation transfer is the dominant secondary process in high-density plasmas

  12. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    Science.gov (United States)

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  13. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  14. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    The SST–wind relation is analyzed using data both from the buoy and satellite. As a result, the low- SST is associated with low-wind condition (positive slope) in the northern part of the Bay of Bengal (BoB), while low SST values are associated with high wind conditions (negative slope) over the southern BoB. Moreover, the ...

  15. Numerical modeling of the equatorial ionization anomaly (EIA), equatorial temperature and wind anomaly (ETWA) and equatorial electron temperature anomaly (EETA) on the basis of the GSM TIP

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    On the basis of Global Self-consistent Model of Thermosphere Ionosphere and Protonosphere GSM TIP developed in WD IZMIRAN the calculations of the behavior of thermosphere F-region and upper ionosphere parameters at middle and low geomagnetic latitudes are carried out The calculations were carried out with use the new block of the calculation of electric fields in the ionosphere in which the decision of the three-dimensional equation describing the law of the conservation of the full current density in the ionosphere of the Earth is realized by adduction it to the two-dimensional by integration on the thickness of the current conductive layer of the ionosphere along equipotential geomagnetic field lines The calculations of the neutral atmosphere composition and temperature were executed with use of the MSIS model The quite geomagnetic conditions of the equinox were considered in the minimum of the solar activity There are presented the calculated global distributions of the critical frequency of the F2-layer of ionosphere for the different moments UT the latitudinal course of the N e and T e in the F-region and upper ionosphere in the vicinity of geomagnetic equator and unrolling on UT of the calculated velocities of zonal component of the thermospheric wind and ion temperature in the F-region of ionosphere as well as critical frequency and height of the F2-layer maximum of the ionosphere at three longitude chains of the stations Brazilian -- Fortaleza 4 0 r S 38 0 r W Jicamarca 11 9 r S 76 0 r W Cachoeira

  16. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  17. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  18. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  19. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  20. Novel Power Electronics Systems for Wind Energy Applications: Final Report; Period of Performance: August 24, 1999 -- November 30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.; Angkititrakul, S.; Al-Naseem, O.; Lujan, G.

    2004-10-01

    The objective of this work was to develop new approaches to the power electronics of variable-speed wind power systems, with the goal of improving the associated cost of energy. Of particular importance is the converter efficiency at low-wind operating points. Developing converter approaches that maintain high efficiency at partial power, without sacrificing performance at maximum power, is desirable, as is demonstrating an approach that can use emerging power component technologies to attain these performance goals with low projected capital costs. In this report, we show that multilevel conversion is an approach that can meet these performance requirements. In the wind power application, multilevel conversion proves superior to conventional converter technologies because it is callable to high power and higher voltage levels, it extends the range of high converter efficiency to lower wind speeds, and it allows superior low-voltage fast-switching semiconductor devices to be used in high-voltage high-power applications.

  1. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  2. New Temperature-Insensitive Electronically-Tunable Grounded Capacitor Simulator

    OpenAIRE

    Abuelma'atti, Muhammad Taher; Khan, Muhammad Haroon

    1996-01-01

    A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.

  3. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  4. Electronic Power Transformer Control Strategy in Wind Energy Conversion Systems for Low Voltage Ride-through Capability Enhancement of Directly Driven Wind Turbines with Permanent Magnet Synchronous Generators (D-PMSGs

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2014-11-01

    Full Text Available This paper investigates the use of an Electronic Power Transformer (EPT incorporated with an energy storage system to smooth the wind power fluctuations and enhance the low voltage ride-through (LVRT capability of directly driven wind turbines with permanent magnet synchronous generators (D-PMSGs. The decoupled control schemes of the system, including the grid side converter control scheme, generator side converter control scheme and the control scheme of the energy storage system, are presented in detail. Under normal operating conditions, the energy storage system absorbs the high frequency component of the D-PMSG output power to smooth the wind power fluctuations. Under grid fault conditions, the energy storage system absorbs the redundant power, which could not be transferred to the grid by the EPT, to help the D-PMSG to ride through low voltage conditions. This coordinated control strategy is validated by simulation studies using MATLAB/Simulink. With the proposed control strategy, the output wind power quality is improved and the D-PMSG can ride through severe grid fault conditions.

  5. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Gylling Mortensen, N [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U S [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  6. Preliminary Performance Data on Westinghouse Electronic Power Regulator Operating on J34-WE-32 Turbojet Engine in Altitude Wind Tunnel

    Science.gov (United States)

    Ketchum, James R.; Blivas, Darnold; Pack, George J.

    1950-01-01

    The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.

  7. Electron temperature in the E-region of the ionosphere

    International Nuclear Information System (INIS)

    Zalpuri, K.S.; Oyama, K.-I.

    1991-06-01

    Various heating and cooling mechanisms which are operative in the lower E-region are discussed and their relative importance in different altitude range is shown. These heating and cooling rates are then used to derive the electron temperature T e . The calculated values of electron temperature are found to be higher than neutral temperature through out the altitude range 100 ∼ 150 km, with the difference increasing with increase in altitude. However, compared to observed values of T e , the calculated values are still smaller below about 130 km. Above this altitude, the calculated values become larger. Estimation of T e for different, suggested values of heating efficiency due to dissociative recombination, show that T e profile obtained even be assuming a constant value of 1.3 eV is in fairly good agreement with those derived based on variable values of this parameter. (author)

  8. Collisional drift waves in a plasma with electron temperature inhomogeneity

    International Nuclear Information System (INIS)

    Drake, J.F.; Hassam, A.B.

    1981-01-01

    A fluid theory of collisional electrostatic drift waves in a plasma slab with magnetic shear is presented. Both electron temperature and density gradients are included. The equations are solved analytically in all relevant regions of the parameter space defined by the magnetic shear strength and the perpendicular wavelength and explicit expressions for the growth rates are given. For shear strengths appropriate for present-day tokamak discharges the temperature gradient produces potential wells which localize the mode in the electron resistive region, well inside the ion sound turning points. Mode stability arises from a competition between the destabilizing influence of the time dependent thermal force and the stabilizing influence of electron energy dissipation. Convective energy loss is not important for shear parameters of present-day fusion devices

  9. Temperature--pressure compensation for a linear accelerator electron beam dosimeter

    International Nuclear Information System (INIS)

    Hrejsa, A.F.; Soen, J.; Jankowiak, P.

    1985-01-01

    Routine weekly calibration of a Siemens Mevatron 20 linear accelerator with 3-, 5-, 7-, 10-, 12-, 15-, and 18-MeV electron energies demonstrated fluctuations in dose/monitor unit for the electron beam on the order of 3%--6%. Evaluations and study of the problem demonstrated that the electron chamber, which is open to atmosphere, was undergoing significant temperature changes during the course of a treatment day. The inability of the chamber to compensate for these changes in temperature and pressure led to the addition of a compensating circuit by the manufacturer. The results of the addition of this circuit were evaluated for several extended periods throughout the year, and it was found that the changes in dose/monitor were reduced to approximately +- 0.5%

  10. The relationship between ionospheric temperature, electron density and solar activity

    International Nuclear Information System (INIS)

    McDonald, J.N.; Williams, P.J.S.

    1980-01-01

    In studying the F-region of the ionosphere several authors have concluded that the difference between the electron temperature Tsub(e) and the ion temperature Tsub(i) is related to the electron density N. It was later noted that solar activity (S) was involved and an empirical relationship of the following form was established: Tsub(e)-Tsub(i) = A-BN+CS. The present paper extends this work using day-time data over a four year period. The results are given and discussed. A modified form of the empirical relation is proposed. (U.K.)

  11. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  12. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  13. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  14. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  15. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  16. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented

  17. Electron Energetics in the Martian Dayside Ionosphere: Model Comparisons with MAVEN Data

    Science.gov (United States)

    Sakai, Shotaro; Andersson, Laila; Cravens, Thomas E.; Mitchell, David L.; Mazelle, Christian; Rahmati, Ali; Fowler, Christopher M.; Bougher, Stephen W.; Thiemann, Edward M. B.; Epavier, Francis G.; hide

    2016-01-01

    This paper presents a study of the energetics of the dayside ionosphere of Mars using models and data from several instruments on board the Mars Atmosphere and Volatile EvolutioN spacecraft. In particular, calculated photoelectron fluxes are compared with suprathermal electron fluxes measured by the Solar Wind Electron Analyzer, and calculated electron temperatures are compared with temperatures measured by the Langmuir Probe and Waves experiment. The major heat source for the thermal electrons is Coulomb heating from the suprathermal electron population, and cooling due to collisional rotational and vibrational CO2 dominates the energy loss. The models used in this study were largely able to reproduce the observed high topside ionosphere electron temperatures (e.g., 3000 K at 300 km altitude) without using a topside heat flux when magnetic field topologies consistent with the measured magnetic field were adopted. Magnetic topology affects both suprathermal electron transport and thermal electron heat conduction. The effects of using two different solar irradiance models were also investigated. In particular, photoelectron fluxes and electron temperatures found using the Heliospheric Environment Solar Spectrum Radiation irradiance were higher than those with the Flare Irradiance Spectrum Model-Mars. The electron temperature is shown to affect the O2(+) dissociative recombination rate coefficient, which in turn affects photochemical escape of oxygen from Mars.

  18. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  19. Ferromagnetism and temperature-dependent electronic structure in metallic films

    International Nuclear Information System (INIS)

    Herrmann, T.

    1999-01-01

    In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin

  20. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  1. Effective temperature of an ultracold electron source based on near-threshold photoionization.

    Science.gov (United States)

    Engelen, W J; Smakman, E P; Bakker, D J; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 14 ± 3 K were found; for femtosecond photoionization, 30 ± 5 K is possible. With a typical source size of 25 μm, this results in electron bunches with a relative transverse coherence length in the 10⁻⁴ range and an emittance of a few nm rad. © 2013 Elsevier B.V. All rights reserved.

  2. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2015-01-01

    We extend the definition of the electronic chemical potential (μ e ) and chemical hardness (η e ) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ e . Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness

  3. Power quality improvements of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soebrink, Kent H. [Eltra (Denmark); Stoeber, Ralf; Schettler, Frank; Bergmann, Klaus [Siemens (Germany); Jenkins, Nicholas; Ekanayake, Janaka; Saad-Saoud, Zouhir; Liboa, Maria Luiza; Strbac, Goran [UMIST (United Kingdom); Kaas Pedersen, Joergen; Helgesen Pedersen, Knud Ole [Technical Univ. of Denmark (Denmark)

    1998-06-01

    The main objective of the project was to investigate how the power quality of the electrical output of wind farms could be improved by the use of modern high power electronic technology. Although the research is of direct application to wind energy it will also be relevant to many other types of small-scale generation embedded in utility distribution networks. The operation of wind turbines with asynchronous generators requires reactive power which, if supplied form the network, leads to low voltages and increased losses. In order to improve the power factor of the generation, fixed capacitors are usually used to provide reactive power. However, if they are sized for the full requirement of the wind farm, they can cause self-excitation and potentially damaging and hazardous overvoltages if the wind turbines` connection with the network is interrupted and they become islanded. An advanced Static VAr Compensator (ASVC) uses a power electronic converter to generate or absorb reactive power. They can be used to provide reactive power with rapid control and with only modestly sized passive components (i.e. small capacitors and reactors). The objective of the project was to combine research and development of this novel form of electronic equipment with its application to increase the use of renewable energy, and wind power in particular, in the European Union. (EG) 19 refs.

  4. Viking 2 electron observations at Mars

    Science.gov (United States)

    Johnson, Francis S.; Hanson, William B.

    1992-01-01

    An analysis of the electron mode sweeps made in Viking 2 above the ionosphere is presented. An observation of the electron energy spectrum over the range 0 to 78 eV was recorded in 1 s and observations were made at intervals of 4 or 8 s. The concentrations and temperatures were highly variable in the altitude range 14,000 to 9000 km. Evidence for two Maxwellian components were present in most of the records. The general trend of concentration and temperature for the predominant component was from 2/cu cm and 100,000 K at 15,600 km to 5/cu cm at 220,000 K and 900 km, in good agreement with the Mars 3 observations of Gringauz et al. (1974). The higher-temperature component was generally characterized by a temperature near 400,000 K and concentrations near 0.1/cu cm. The electron plasma pressures near 800 km were about a factor of 20 lower than those obtained from Viking 1, the difference being much greater than expected from the normal distribution around the stagnation point in the shocked solar wind.

  5. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    Science.gov (United States)

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  6. Thick-Film and LTCC Passive Components for High-Temperature Electronics

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2013-04-01

    Full Text Available At this very moment an increasing interest in the field of high-temperature electronics is observed. This is a result of development in the area of wide-band semiconductors’ engineering but this also generates needs for passives with appropriate characteristics. This paper presents fabrication as well as electrical and stability properties of passive components (resistors, capacitors, inductors made in thick-film or Low-Temperature Co-fired Ceramics (LTCC technologies fulfilling demands of high-temperature electronics. Passives with standard dimensions usually are prepared by screen-printing whereas combination of standard screen-printing with photolithography or laser shaping are recommenced for fabrication of micropassives. Attainment of proper characteristics versus temperature as well as satisfactory long-term high-temperature stability of micropassives is more difficult than for structures with typical dimensions for thick-film and LTCC technologies because of increase of interfacial processes’ importance. However it is shown that proper selection of thick-film inks together with proper deposition method permit to prepare thick-film micropassives (microresistors, air-cored microinductors and interdigital microcapacitors suitable for the temperature range between 150°C and 400°C.

  7. Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.

    Science.gov (United States)

    Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2015-09-01

    The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma.

  8. Grid-connected wind and photovoltaic system

    Science.gov (United States)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  9. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period

  10. High temperature, radiation hardened electronics for application to nuclear power plants

    International Nuclear Information System (INIS)

    Gover, J.E.

    1980-01-01

    Electronic circuits were developed and built at Sandia for many aerospace and energy systems applications. Among recent developments were high temperature electronics for geothermal well logging and radiation hardened electronics for a variety of aerospace applications. Sandia has also been active in technology transfer to commercial industry in both of these areas

  11. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2008-05-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

  12. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 3 -- October 2007 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2007-10-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 3 features an interview with Andrew Dzykewicz, Commissioner of the Rhode Island Office of Energy Resources.

  13. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  14. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  15. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  16. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    Science.gov (United States)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  17. Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations

    Science.gov (United States)

    Sittler, E. C.; Burlaga, L. F.

    1998-08-01

    We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.

  18. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    68

    characteristics and variable features where the wind circulation pattern is ..... is extended to understand the quality of AMSR-2 wind speed in a constructive ...... New Disclosures (potential conflicts of interest, funding, acknowledgements):.

  19. Nonlocal effects in a bounded low-temperature plasma with fast electrons

    International Nuclear Information System (INIS)

    DeJoseph, C. A. Jr.; Demidov, V. I.; Kudryavtsev, A. A.

    2007-01-01

    Effects associated with nonlocality of the electron energy distribution function (EEDF) in a bounded, low-temperature plasma containing fast electrons, can lead to a significant increase in the near-wall potential drop, leading to self-trapping of fast electrons in the plasma volume, even if the density of this group is only a small fraction (∼0.001%) of the total electron density. If self-trapping occurs, the fast electrons can substantially increase the rate of stepwise excitation, supply additional heating to slow electrons, and reduce their rate of diffusion cooling. Altering the source terms of these fast electrons will, therefore, alter the near-wall sheath and, through modification of the EEDF, a number of plasma parameters. Self-trapping of fast electrons is important in a variety of plasmas, including hollow-cathode discharges and capacitive rf discharges, and is especially pronounced in an afterglow plasma, which is a key phase of any pulse-modulated discharge. In the afterglow, the electron temperature is less than a few tenths of an electron volt, and the fast electrons will have energies typically greater than an electron volt. It is shown that in the afterglow plasma of noble gases, fast electrons, arising from Penning ionization of metastable atoms, can lead to the above condition and significantly change the plasma and sheath properties. Similar effects can be important in technologically relevant electronegative gas plasmas, where fast electrons can arise due to electron detachment in collisions of negative ions with atomic species. Both experimental and modeling results are presented to illustrate these effects

  20. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  1. Spectral measurements of electron temperature in nonequilibrium highly ionized He plasma

    International Nuclear Information System (INIS)

    Korshunov, O V; Chinnov, V F; Kavyrshin, D I; Ageev, A G

    2016-01-01

    It has been experimentally shown that highly ionized He arc plasma does not achieve local thermodynamic equilibrium expected for plasmas with electron concentrations above 1 × 10 16 cm -3 like argon plasma. We have found that the reason for this deviation is strong nonisotropy of plasma. Triple electron recombination with temperatures of 2.5-3 eV is almost absent. Charged particles move from the arc ( r = 1 mm) to chamber walls due to ambipolar diffusion creating ionization nonequilibrium over the excited states rendering Boltzmann distribution and Saha equation inapplicable for determining electron temperature. A method for determining electron temperature is suggested that is based on using the relative intensities of the atomic and ion lines. Its advantage lies in an energy gap between these lines’ states over 50 eV that reduces the influence of nonequilibrium on the result. This influence can be taken into account if the ionization energies of emitting states of atom and ion have close values. The suggested method can be expanded for any media including those with dimensional nonisotropy that have both atomic and ion lines in their emission spectra. (paper)

  2. An induction/synchronous motor with high temperature superconductor/normal conductor hybrid double-cage rotor windings

    International Nuclear Information System (INIS)

    Nakamura, T; Nagao, K; Nishimura, T; Matsumura, K

    2009-01-01

    We propose hybrid double-cage rotor windings that consist of a high temperature superconductor (HTS) and a normal conductor, which are introduced into an HTS induction/synchronous motor (HTS-ISM). The motor rotates as a conventional induction motor when the operating temperature of the hybrid rotor is above the critical temperature of the HTS bars, i.e., in the normal conducting state. On the other hand, the HTS-ISM rotates as a synchronous motor when the temperature is below the critical temperature, i.e., in the superconducting (zero resistance) state. In other words, we do not always need to take care of the cooling conditions, if the HTS-ISM is automatically, as well as appropriately, controlled, depending upon the rotation mode. Namely, the above-mentioned hybrid double-cage HTS-ISM is possibly a breakthrough in solving the cooling problems of HTS rotating machines, especially for industrial applications. The experimental results of the aforementioned motor are reported. An example of an operation flowchart of the motor is also presented and discussed.

  3. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  4. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  5. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  6. Ion acoustic waves in the solar wind

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Frank, L.A.

    1978-01-01

    Plasma wave measurements on the Helios I and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are short-wavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered

  7. Wind energy handbook

    CERN Document Server

    Burton, Tony; Sharpe, David; Bossanyi, Ervin

    2011-01-01

    Named as one of Choice's Outstanding Academic Titles of 2012Every year, Choice subject editors recognise the most significant print and electronic works reviewed in Choice during the previous calendar year. Appearing annually inChoice's January issue, this prestigious list of publications reflects the best in scholarly titles and attracts extraordinary attention from the academic library community. The authoritative reference on wind energy, now fully revised and updated to include offshore wind power<

  8. Atmospheric diffusion wind tunnel with automatic measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maki, S; Sakai, J; Murata, E

    1974-01-01

    A wind tunnel which permits estimates of atmospheric diffusion is described. Smoke from power plant smoke stacks, for example, can be simulated and traced to determine the manner of diffusion in the air as well as the grade of dilution. The wind tunnel is also capable of temperature controlled diffusion tests in which temperature distribution inside the wind tunnel is controlled. A minimum wind velocity of 10 cm can be obtained with accuracy within plus or minus 0.05 percent using a controlled direct current motor; diffusion tests are often made at low wind velocity. Fully automatic measurements can be obtained by using a minicomputer so that the operation and reading of the measuring instruments can be remotely controlled from the measuring chamber. (Air Pollut. Abstr.)

  9. Electronic Modeling and Design for Extreme Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  10. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    International Nuclear Information System (INIS)

    Zaheer, S.; Yoon, P. H.

    2013-01-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f e ∼ v –α is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α average ∼ 6.69, according to observation

  11. Investigation of wind characteristics and wind energy assessment in Sao Joao do Cariri (SJC) - Paraiba, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Laerte; Filho, Celso

    2010-09-15

    In this study wind characterization and wind energy assessment of the Sao Joao do Cariri (SJC) in Paraiba state situated in Brazilian northeast. The average wind speed and temperature for 25 and 50 m were found 4,74m/s, 24,46C and 5,31m/s 24,25C with wind speed predominate direction of SSE (165 degrees). Weibull shape, scale ,Weibull fit wind speed and Power wind density found 2,54, 5,4m/s, 4,76m/s and 103W/m2 for 25m wind height measurements and 2,59, 6,0m/s, 5,36m/s and 145W/m2 for 50m wind height measurements.

  12. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  13. Temperature dependence of electron concentration in cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Blom, F.A.P.

    1979-01-01

    From measurements of the temperature dependence of the electron concentration in Cd 3 As 2 , we found values for the conduction-band parameters that are in good agreement with those recently reported by Aubin, Caron, and Jay-Gerin. However, in contrast with these authors we found no small overlap,

  14. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Directory of Open Access Journals (Sweden)

    Sungeun Lee

    2009-12-01

    Full Text Available Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1 High speed stream, (2 Pc5 ULF wave activity, (3 Southward IMF Bz, (4 substorm occurrence, (5 Whistler mode chorus wave, and (6 Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  15. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    International Nuclear Information System (INIS)

    Panwar, A.; Ryu, C. M.; Bains, A. S.

    2014-01-01

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c ,κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω ci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present

  16. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  17. Time-dependent theoretical model of the polar wind: Preliminary results

    International Nuclear Information System (INIS)

    Gombosi, T.I.; Cravens, T.E.; Nagy, A.F.

    1985-01-01

    The coupled time dependent continuity, momentum and energy equations of a two ion (O + and H + ) quasineutral plasma were solved in order to extend our understanding of polar wind behavior. This numerical code allows studies of the time dependent behavior of polar wind-type flows into and out of the ionosphere. Initial studies indicate that the typical time constants for electron and ion temperature changes are of the order of minutes and tens of minutes, respectively. The response time of the minor high altitude ion O + is less than an hour, whereas that of the major ion, H + , is many hours. The initial test runs also demonstrate the fact that temporary supersonic flows of both O + and H + are possible, especially in the presence of significant ion heating

  18. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  19. Electron-temperature-gradient-driven drift waves and anomalous electron energy transport

    International Nuclear Information System (INIS)

    Shukla, P.K.; Murtaza, G.; Weiland, J.

    1990-01-01

    By means of a kinetic description for ions and Braginskii's fluid model for electrons, three coupled nonlinear equations governing the dynamics of low-frequency short-wavelength electrostatic waves in the presence of equilibrium density temperature and magnetic-field gradients in a two-component magnetized plasma are derived. In the linear limit a dispersion relation that admits new instabilities of drift waves is presented. An estimate of the anomalous electron energy transport due to non-thermal drift waves is obtained by making use of the saturated wave potential, which is deduced from the mixing-length hypothesis. Stationary solutions of the nonlinear equations governing the interaction of linearly unstable drift waves are also presented. The relevance of this investigation to wave phenomena in space and laboratory plasmas is pointed out. (author)

  20. Plasma electron signature of magnetic connection to the earth's bow shock: ISEE 3

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.

    1982-01-01

    Enhanced fluxes of low-energy electrons backstreaming from the earth's bow shock have been identified at ISEE 3. When present, these fluxes modify ambient solar wind electron velocity distributions f(v) in characteristic ways that depends on whether ISEE 3 is near the edge, or within the interior of the earth's electron foreshock. Near the edge, energy peaks in f(v) are observed. Such distributions should be locally unstable to electron plasma oscillations. Well within the interior of the foreshock, enhanced fluxes of electrons with energies up to the maximum detected by the Los Alamos electron analyzer (approx.1 keV) are observed over the full backward hemisphere. These electrons can be modelled with an asymptotic power law distribution having index in the range 4< or approx. =p/sub b/s< or approx. =6. At intermediate energies (approx.20--50 eV), twin angular peaks are observed centered on the magnetic field direction B. Also observed at these times are depressions in f(v) at energies less than approx.20 eV that are centered on B. Such distributions having a perpendicular temperature greater than their parallel temperature may be locally unstable to the generation of whistler waves. Analysis of a particularly clean example of connection to the bow shock is consistent with the possiblility that the observed electron fluxes emerge from the forward foot of the electron heating region within bow shock where the electron density and temperature are larger than that of the uperturbed upstream solar wind by a factor of approx.1.2. This analysis also indicates that the electrostatic potential within the forward foot of the shock is between approx.5 and 50 V more positive than that within plasma far upstream at ISEE 3. However, these interpretations depend on the assumption of nearly scatter-free propagation, which may not hold

  1. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  2. Initial Studies of Low Temperature Ablation in a Helium Hypersonic Wind Tunnel. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Kohlman, D. L.; Elias, L.; Orlik-Ruckemann, K.

    1969-06-15

    A study of the feasibility of investigating the effects of ablation in a helium hypersonic wind tunnel was performed. Exploratory experiments were carried out at Mach 16.4 and at 600 psi stagnation pressure using (a) metal models at room temperature, (b) models with copper inserts, cooled to -140 deg C, and (c) models with carbon dioxide inserts. All models were flat plates at zero incidence, with a sharp leading edge in front of the insert. Surface temperature, surface recession rates and pitot pressure profiles were determined at several longitudinal stations. Suitable model fabrication and experimental techniques have been developed. A simple theoretical method of predicting recession rates and surface temperatures has been proposed. It has been demonstrated that the ablation of carbon dioxide into an unheated Mach 16.4 helium flow at 600 psi stagnation pressure is significant enough to result in measurable flat plate recession rates and measurable changes in pitot pressure profiles. In addition, it has been shown that it is possible to distinguish between the effects on pitot pressure of reduction in surface temperature and of mass addition through sublimation of carbon dioxide. It was also found that the first order theoretical analysis predicts proper trends and correct approximate magnitude of sublimation rates.

  3. [Dust storms trend in the Capital Circle of China over the past 50 years and its correlation with temperature, precipitation and wind].

    Science.gov (United States)

    Chen, Yu-fu; Tang, Hai-ping

    2005-01-01

    The trends of number of dust storm days of the selected 11 meteorological stations from their established year to 2000 as well as their correlations with temperature, precipitation and wind are revealed. The number of dust storm days of the Capital Circle of China is distinctly variable in space and time. The numbers of dust storm days of the western area are far more than those of the eastern area. The interannual variability of number of dust storm days is remarkable. The number of dust storm days of the following 7 stations, Erlianhaote, Abaga, Xilinhaote, Fengning, Zhangjiakou, Huailai and Beijing, declined along the past decades, but those of the other four stations had no significant upward or downward trends. There is a marked seasonality of the number of dust storm days, and the maximum was in April. The correlation between number of dust storm days and number of days of mean wind velocity > 5 m/s, which is critical wind velocity to entrain sand into the air, was strongest among the three climatic factor. There were significant positive correlations between the number of dust storm days and number of days of mean wind velocity > 5 m/s in 6 stations. The second strongest climatic factor correlated with the number of dust storm days is temperature. There are significant negative correlations between the number of dust storm days and mean annual temperature, mean winter temperature, mean spring temperature in 3 or 4 stations. The correlation between the number of dust storm days and precipitation is weakest. Only one station, Zhurihe, showes significant negative correlation between the number of dust storm days and spring rainfall. There are 4 stations whose number of dust storm days don't significantly correlate with the climate. In the end, the spatial-temporal variability of dust storms and its relation with climate in the Capital Circle of China were discussed thoroughly.

  4. A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M.; Manchester, W. B.; Van der Holst, B.; Gruesbeck, J. R.; Frazin, R. A.; Landi, E.; Toth, G.; Gombosi, T. I. [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, A. M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina); Lamy, P. L.; Llebaria, A.; Fedorov, A., E-mail: jinmeng@umich.edu [Laboratoire d' Astrophysique de Marseille, Universite de Provence, Marseille (France)

    2012-01-20

    The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfven-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.

  5. Role of temperature on static correlational properties in a spin-polarized electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in [Department of Physics, Kurukshetra University, Kurukshetra – 136 119 (India); Kumar, Krishan [S. D. College (Lahore), Ambala Cantt. - 133001 (India)

    2016-05-06

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  6. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  7. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  8. Electron spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Knupfer, M.

    1994-01-01

    In the last two classes of materials have been discovered which distinguish themselves due to a transition into the superconducting state at relatively high temperatures. These are the cuprate superconductors and the alkali metal doped fullerenes. In this work the electronic structure of representatives of these materials, undoped and Ca-doped YBa 2 Cu 4 O 8 and A 3 C 60 (A=K, Rb), has been investigated using electron energy-loss spectroscopy and photoemission spectroscopy. (orig.) [de

  9. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  10. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    International Nuclear Information System (INIS)

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.

    2011-01-01

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn.

  11. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2011-04-15

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (author)

  12. Ultra-violet recombination continuum electron temperature measurements in a non-equilibrium atmospheric argon plasma

    International Nuclear Information System (INIS)

    Gordon, M.H.; Kruger, C.H.

    1991-01-01

    Emission measurements of temperature and electron density have been made downstream of a 50 kW induction plasma torch at temperatures and electron densities ranging between 6000 K and 8500 K and 10 to the 20th and 10 to the 21st/cu cm, respectively. Absolute and relative atomic line intensities, and absolute recombination continuum in both the visible and the UV were separately interpreted in order to characterize a recombining atmospheric argon plasma. Continuum measurements made in the UV at 270 nm were used to directly determine the kinetic electron temperature, independent of a Boltzmann equilibrium, assuming only that the electron velocity distribution is Maxwellian. The data indicate that a nonequilibrium condition exists in which the bound-excited and free electrons are nearly in mutual equilibrium down to the 4P level for electron densities as low as 2 x 10 to the 20th/cu m but that both are overpopulated with respect to the ground state due to finite recombination rates. 13 refs

  13. The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons

    International Nuclear Information System (INIS)

    Bezuglyi, A.I.; Shklovskii, V.A.

    1997-01-01

    The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by 'hot' electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate

  14. Power Electronics

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  15. Survey of potential electronic applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Hammond, R.B.; Bourne, L.C.

    1991-01-01

    In this paper the authors present a survey of the potential electronic applications of high temperature superconductor (HTSC) thin films. During the past four years there has been substantial speculation on this topic. The authors will cover only a small fraction of the potential electronic applications that have been identified. Their treatment is influenced by the developments over the past few years in materials and device development and in market analysis. They present their view of the most promising potential applications. Superconductors have two important properties that make them attractive for electronic applications. These are (a) low surface resistance at high frequencies, and (b) the Josephson effect

  16. Development of Ultra Low-Temperature Electronics for the AEgIS Experiment

    CERN Document Server

    Kaltenbacher, Thomas; Kellerbauer, Alban; Doser, Michael; Caspers, Friedhelm

    This thesis presents the development of electronics for operation at cryogenic temperatures, with particular emphasis on the cryogenic electronics required for the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment at the European Organisation for Nuclear Research (CERN). The research is focused on a highly sensitive charged particle detection system for a Penning trap, on cryogenic low-pass filters and on a low-loss DC-contact RF switch. The detection system consists of a high quality factor tuned circuit including a superconducting coil, and a low-noise amplifier. Since the experimental setup of the AEgIS experiment requires it, the developed electronics must reliably operate at 4.2 K (~269C) and in high constant magnetic field of more than 1 Tesla. Therefore, the performance of the cryogenic electronic designs were carefully evaluated at low-temperature/high magnetic field, the result of which have important implications for the AEgIS experiment. Moreover, a new possibility of ...

  17. Temporal evolutions of electron temperature and density with edge localized mode in the JT-60U divertor plasma

    International Nuclear Information System (INIS)

    Nakano, T; Kubo, H; Asakura, N

    2010-01-01

    From the intensity ratios of the three He I lines measured at 20 kHz, the temporal evolutions of the electron temperature and density during and after the power and the particle flow into the divertor plasma caused by edge localized modes are determined. The electron temperature increases from 70 eV to 80 eV with increasing D α intensity. Then, at the peak of D α intensity, the electron temperature starts decreasing down to 60 eV. The electron density increases from 0.1 x 10 19 m -3 to 0.3 x 10 19 m -3 with increasing D α intensity, and then starts to decrease more gradually compared with the electron temperature after the peak of D α intensity. It is interpreted that the increase of the electron temperature is ascribed to the power and the particle flow into the divertor plasma, and that the decrease of the electron temperature and the increase of the electron density are ascribed to the ionization of the recycled neutrals, which consumes the electron energy and produces electrons.

  18. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Nicolaou, G., E-mail: helliott@swri.edu [Swedish Institute of Space Physics, Box 812, SE-98128, Kiruna (Sweden)

    2016-04-15

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.

  19. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    International Nuclear Information System (INIS)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G.; Nicolaou, G.

    2016-01-01

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun

  20. Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Broiles, Thomas W.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Eriksson, A.; Fuselier, S. A.; Frahm, R. A.; Gasc, S.; Goldstein, R.; Henri, P.; Koenders, C.; Livadiotis, G.; Mandt, K. E.; Mokashi, P.; Nemeth, Z.; Odelstad, E.; Rubin, M.; Samara, M.

    2016-11-01

    We use observations from the Ion and Electron Sensor (IES) on board the Rosetta spacecraft to study the relationship between the cometary suprathermal electrons and the drivers that affect their density and temperature. We fit the IES electron observations with the summation of two kappa distributions, which we characterize as a dense and warm population (˜10 cm-3 and ˜16 eV) and a rarefied and hot population (˜0.01 cm-3 and ˜43 eV). The parameters of our fitting technique determine the populations' density, temperature, and invariant kappa index. We focus our analysis on the warm population to determine its origin by comparing the density and temperature with the neutral density and magnetic field strength. We find that the warm electron population is actually two separate sub-populations: electron distributions with temperatures above 8.6 eV and electron distributions with temperatures below 8.6 eV. The two sub-populations have different relationships between their density and temperature. Moreover, the two sub-populations are affected by different drivers. The hotter sub-population temperature is strongly correlated with neutral density, while the cooler sub-population is unaffected by neutral density and is only weakly correlated with magnetic field strength. We suggest that the population with temperatures above 8.6 eV is being heated by lower hybrid waves driven by counterstreaming solar wind protons and newly formed, cometary ions created in localized, dense neutral streams. To the best of our knowledge, this represents the first observations of cometary electrons heated through wave-particle interactions.

  1. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    (Technical Report, Danish Technical press, 1970) and by Abild (Technical Report R-522 (EN), Riso National Laboratory, 1994). A short discussion of the wind storm on the 3rd of December 1999 is included. It is demonstrated how the data can be applied to non-standard situations where the roughness length......Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50 yr wind speed (10 min averages) under standard conditions, i.e., 10 m over a homogeneous terrain with the roughness length 0.05 m, The sites are Skjern (15 yr......), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide...

  2. Electron-trapping probability in natural dosemeters as a function of irradiation temperature

    DEFF Research Database (Denmark)

    Wallinga, J.; Murray, A.S.; Wintle, A.G.

    2002-01-01

    The electron-trapping probability in OSL traps as a function of irradiation temperature is investigated for sedimentary quartz and feldspar. A dependency was found for both minerals; this phenomenon could give rise to errors in dose estimation when the irradiation temperature used in laboratory...... procedures is different from that in the natural environment. No evidence was found for the existence of shallow trap saturation effects that Could give rise to a dose-rate dependency of electron trapping....

  3. Temperature and energy effects on secondary electron emission from SiC ceramics induced by Xe17+ ions.

    Science.gov (United States)

    Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng

    2017-07-25

    Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.

  4. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  5. Modelling, Analysis and Control of DC-connected Wind Farms to Grid

    DEFF Research Database (Denmark)

    Iov, Florin; Sørensen, Poul; Hansen, Anca Daniela

    2006-01-01

    wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements...... are fulfilled.  However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid have less control capabilities. These wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection...... of the active stall wind farms to the grid can provide these features and also maximize the produced power especially at low wind speeds by using variable voltage/frequency for the wind farm. The focus in this paper is in studying the variable speed operation for the active stall wind farms using a voltage...

  6. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  7. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); D’Onghia, Elena, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  8. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    Science.gov (United States)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  9. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  10. Time-dependent electron temperature diagnostics for high-power aluminum z-pinch plasmas

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Mock, R.C.

    1996-08-01

    Time-resolved x-ray pinhole photographs and time-integrated radially-resolved x-ray crystal-spectrometer measurements of azimuthally-symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a 1-D Radiation-Hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of a kilovolt in the core to below a kilovolt in the surrounding plasma halo

  11. Electron-dislocation interaction at low temperatures. Progress report

    International Nuclear Information System (INIS)

    1978-01-01

    The interaction of mobile dislocations with electrons in copper and copper alloys has shown that dislocation motion in copper, at low temperature, can be treated as an analog of an underdamped oscillator. We have also shown that the viscous drag on mobile dislocations in type II superconductors can be treated as an acoustic attenuation of an elastic wave

  12. A comparison of the reduced and approximate systems for the time dependent computation of the polar wind and multiconstituent stellar winds

    International Nuclear Information System (INIS)

    Browning, G.L.; Holzer, T.E.

    1992-01-01

    The reduced system of equations commonly used to describe the time evolution of the polar wind and multiconstituent stellar winds is derived from the equations for a multispecies plasma with known temperature profiles by assuming that the electron thermal speed approaches infinity. The reduced system is proved to have unbounded growth near the sonic point of the protons for many of the standard parameter cases. For the same parameter cases, however, the unmodified system (from which the reduced system is derived) exhibits growth in some of the Fourier modes, but this growth is bounded. An alternate system (the approximate system) in which the electron thermal speed is slowed down is introduced. The approximate system retains the mathematical behavior of the unmodified system and can be shown to accurately describe the smooth solutions of the unmodified system. The approximate system has a number of other advantages over the reduced system becomes inaccurate. Also, for three-dimensional flows the correct reduced system requires the solution of an elliptic equation, while the approximate system is hyperbolic and only requires a time step approximately 1 order of magnitude less than the reduced system. Numerical solutions from models based on the two systems are compared with each other to illustrate these points

  13. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    International Nuclear Information System (INIS)

    Lin Mingzhang; Mostafavi, M.; Lampre, I.; Muroya, Y.; Katsumura, Y.

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol -1 ·m 2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures. (authors)

  14. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  15. State of the art of High Temperature Power Electronics

    OpenAIRE

    Buttay , Cyril; Planson , Dominique; Allard , Bruno; Bergogne , Dominique; Bevilacqua , Pascal; Joubert , Charles; Lazar , Mihai; Martin , Christian; Morel , Hervé; Tournier , Dominique; Raynaud , Christophe

    2009-01-01

    International audience; High temperature power electronics has become possible with the recent availability of silicon carbide devices. This material, as other wide-bandgap semiconductors, can operate at temperatures above 500°C, whereas silicon is limited to 150-200°C. Applications such as transportation or deep oil and gas wells drilling can benefit. A few converters operating above 200°C have been demonstrated, but work is still ongoing to design and build a power system able to operate in...

  16. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  17. A Low-Temperature Electron Microscopy and Electron Diffraction Study of La1.84Sr0.16CuO4

    Science.gov (United States)

    Onozuka, Takashi; Omori, Mamoru; Hirabayashi, Makoto; Syono, Yasuhiko

    1987-10-01

    A high-Tc superconducting compound, La1.84Sr0.16CuO4, has been investigated by electron microscopy and electron diffraction in the range from 10 K to ambient temperature. The tetragonal K2NiF4-type structure undergoes an orthorhombic distortion below about 130 K. In the low-temperature phase, extra diffraction spots and twin lamellae are observed reversibly on cooling and heating in situ. Based on the observed results, a plausible structure model with orthorhombic distortion is proposed.

  18. Oxide-cathode activation and surface temperature calculation of electron cooler

    International Nuclear Information System (INIS)

    Li Jie; Yang Xiaodong; Mao Lijun; Li Guohong; Yuan Youjin; Liu Zhanwen; Zhang Junhui; Yang Xiaotian; Ma Xiaoming; Yan Tailai

    2011-01-01

    The pollution on electron gun ceramic insulation of electron cooler restricted the operation of electron cooler at HIRFL-CSR main ring. To cool and accumulate ion beam well, the pollution was cleared and a new oxide-coated cathode was assembled. The processes of cathode replacement,vacuum chamber baking-out, and thermal decomposition of coating binders and alkaline earth metal carbonates, and cathode activation are presented. The electron gun perveance of 10.6 μA/V 1.5 was attained under the heating power of 60 W. The typical surface temperature of oxide-coated cathode that is calculated through grey-body radiation is 1 108 K which shows a comparable result to the experimental measurement 1 078 K. The perveance growth of electron gun during the electron cooler operation is also explained by partial activation of the cathode. (authors)

  19. Analysis of ISEE-3/ICE solar wind data

    Science.gov (United States)

    Coplan, Michael A.

    1989-01-01

    Under the grant that ended November 11, 1988 work was accomplished in a number of areas, as follows: (1) Analysis of solar wind data; (2) Analysis of Giacobini/Zinner encounter data; (3) Investigation of solar wind and magnetospheric electron velocity distributions; and (4) Experimental investigation of the electronic structure of clusters. Reprints and preprints of publications resulting from this work are included in the appendices.

  20. A Deeper Understanding of Stability in the Solar Wind: Applying Nyquist's Instability Criterion to Wind Faraday Cup Data

    Science.gov (United States)

    Alterman, B. L.; Klein, K. G.; Verscharen, D.; Stevens, M. L.; Kasper, J. C.

    2017-12-01

    Long duration, in situ data sets enable large-scale statistical analysis of free-energy-driven instabilities in the solar wind. The plasma beta and temperature anisotropy plane provides a well-defined parameter space in which a single-fluid plasma's stability can be represented. Because this reduced parameter space can only represent instability thresholds due to the free energy of one ion species - typically the bulk protons - the true impact of instabilities on the solar wind is under estimated. Nyquist's instability criterion allows us to systematically account for other sources of free energy including beams, drifts, and additional temperature anisotropies. Utilizing over 20 years of Wind Faraday cup and magnetic field observations, we have resolved the bulk parameters for three ion populations: the bulk protons, beam protons, and alpha particles. Applying Nyquist's criterion, we calculate the number of linearly growing modes supported by each spectrum and provide a more nuanced consideration of solar wind stability. Using collisional age measurements, we predict the stability of the solar wind close to the sun. Accounting for the free-energy from the three most common ion populations in the solar wind, our approach provides a more complete characterization of solar wind stability.

  1. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  2. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  3. Modeling and Identification of Harmonic Instability Problems In Wind Farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    In power electronics based power systems like wind farms, the interactions between the inner control systems of the power converters and the passive components may lead to high frequency oscillations, which can be called harmonic instability. In this paper, a simple methodology is presented...... to identify harmonic instability problems in wind farms, where many wind turbines, cables, transformers, capacitor banks, shunt reactors, etc, typically are located. This methodology introduces the wind farm as a Multi-Input Multi-Outpur (MIMO) control system, where the linearized models of fast inner control....../EMTDC software environment for a 400-MW wind farm. The proposed analytical analysis method and time-domain simulation results show that both dynamics of the power electronic converter and the parameters of the passive component can effect on the wind farm stability....

  4. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  5. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university.

    Science.gov (United States)

    Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  6. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    Science.gov (United States)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  7. Reactive power control methods for improved reliability of wind power inverters under wind speed variations

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    method to relieve the thermal cycling of power switching devices under severe wind speed variations, by circulating reactive power among the parallel power converters in a WTS or among the WTS's in a wind park. The amount of reactive power is adjusted to limit the junction temperature fluctuation...

  8. Measurements of electron density and temperature profiles in a gas blanket experiment

    International Nuclear Information System (INIS)

    Kuthy, A.

    1979-02-01

    Radial profiles of electron density, temperature and H sub(β) intensity are presented for the rotating plasma device F-1. The hydrogen filling pressure, the average magnetic field strength at the midplane, and the power input to the discharge have been varied in the ranges 10-100 mTorr, 0.25-0.5 Tesla, and 0.1 to 1.5 MW, respectively. These experiments have been performed with the main purpose of studying the gas blanket (cold-mantle) state of the plasma. It is shown, that a simple spectroscopic method can be used to derive the radial distribution of the electron temperature in such plasmas. The observed peak temperatures and densities are in agreement with earlier theoretical estimates. (author)

  9. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also......This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...

  10. Electronic temperature control and measurements reactor fuel rig circuits

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC).

  11. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    Science.gov (United States)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important

  12. A low-temperature electron microscopy and electron diffraction study of La1.84Sr0.16CuO4

    International Nuclear Information System (INIS)

    Onozuka, Takashi; Omori, Mamoru; Hirabayashi, Makoto; Syono, Yasuhiko

    1987-01-01

    A high-T c superconducting compound, La 1.84 Sr 0.16 CuO 4 , has been investigated by electron microscopy and electron diffraction in the range from 10 K to ambient temperature. The tetragonal K 2 NiF 4 -type structure undergoes an orthorhombic distortion below about 130 K. In the low-temperature phase, extra diffraction spots and twin lamellae are observed reversibly on cooling and heating in situ. Based on the observed results, a plausible structure model with orthorhombic distortion is proposed. (author)

  13. Reducing Harmonic Instability and Resonance Problems in PMSG Based Wind Farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2018-01-01

    Unlike conventional power systems where harmonic resonances are coming from passive inductive and capacitive elements, large-scale power electronic systems like wind farms present a more complex system, where the fast dynamics of the power electronic converters may present an inductive or capacit......Unlike conventional power systems where harmonic resonances are coming from passive inductive and capacitive elements, large-scale power electronic systems like wind farms present a more complex system, where the fast dynamics of the power electronic converters may present an inductive...... or capacitive behavior. Therefore, the interactions between the fast controllers of the power converters and the passive elements may lead to harmonic instability and new resonances at various frequencies. This paper presents an optimum design technique for the Wind Turbine (WT) inner controllers in a PMSG...... based wind farm in order to reduce the number of resonances and to mitigate harmonic instability. In the approach, a PMSG based wind farm is modeled as a Multi-Input Multi-Output (MIMO) dynamic system by modeling the high bandwidth control loops of the power converters. Resonance frequencies...

  14. Low latitude electron temperature observed by the CHAMP satellite

    DEFF Research Database (Denmark)

    Stolle, Claudia; Truhlik, V.; Richards, P.

    2012-01-01

    Te morning overshoot (MO). Both, data and model revealed an anti-correlation between the equatorial MO amplitude and solar EUV flux at these altitudes. The CHAMP observations also reveal a post sunset electron temperature anomaly in analogy to the equatorial ionisation anomaly at altitudes below 400...

  15. Electronic structure of the high-temperature oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1989-01-01

    Since the discovery of superconductivity above 30 K by Bednorz and Mueller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa 2 Cu 3 O 7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections (''correlations'') are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials

  16. Potentialities in electronics of new high critical temperature superconductors

    International Nuclear Information System (INIS)

    Hartemann, P.

    1989-01-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed [fr

  17. Winter nightime ion temperatures and energetic electrons from 0go 6 plasma measurements

    International Nuclear Information System (INIS)

    Sanatani, S.; Breig, E.L.

    1981-01-01

    This paper presents and discusses ion temperature and suprathermal electron flux data acquired with the retarding potential analyzer on board the ogo 6 satellite when it was in solar eclipse. Attention is directed to measurements in the 400- to 800-km height interval between midnight and predawn in the northern winter nonpolar ionosphere. Statistical analysis of data recorded during a 1-month time span permits a decoupling of horizontal and altitude effects. A distinct longitudinal variation is observed for ion temperature above 500 km, with a significant relative enhancement over the western North Altantic Altitude distributions of ion temperature are compatible with Millstone Hill profiles within the common region of this enhancement. Large fluxes of energetic electrons are observed and extend to mush lower geomagnetic latitudes in the same longitude sector. Both a direct correlation in magnitude and a strong similarity in spatial extent are demonstrated for these ion temperature and electron flux data. The location of the limiting low-altitude boundary for observation of the electron fluxes is variable, dependent on local time and season as well as longitude. Variations in this boundary are found to be consistent with a calculated conjugate solar zenith angle of 99 0 +- 2 0 describing photoproduction of energetic electrons in the southern hemisphere. The ogo 6 data are considered to be indicative of an energy source originating in the sunlit summer hemisphere and providing heat via transport of photoelectrons to a broad but preferential segment of the winter nighttime mid-latitude ionosphere. Ions at other longitudes are without access to this energy source and cool to near the neutral temperature at heights to above 800 km inthe predawn hours

  18. The influence of solar wind variability on magnetospheric ULF wave power

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2015-06-01

    Full Text Available Magnetospheric ultra-low frequency (ULF oscillations in the Pc 4–5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind–IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996–2004 of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature, plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind–magnetosphere coupling.

  19. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  20. Effect of power quality on windings temperature of marine induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)], E-mail: piotrg@am.gdynia.pl

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system.

  1. Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces

    Directory of Open Access Journals (Sweden)

    Sajad M.R. Khani

    2017-06-01

    Full Text Available Wind towers or wind catchers, as passive cooling systems, can provide natural ventilation in buildings located in hot, arid regions. These natural cooling systems can provide thermal comfort for the building inhabitants throughout the warm months. In this paper, a modular design of a wind tower is introduced. The design, called a modular wind tower with wetted surfaces, was investigated experimentally and analytically. To determine the performance of the wind tower, air temperature, relative humidity (RH and air velocity were measured at different points. Measurements were carried out when the wind speed was zero. The experimental results were compared with the analytical ones. The results illustrated that the modular wind tower can decrease the air temperature significantly and increase the relative humidity of airflow into the building. The average differences for air temperature and air relative humidity between ambient air and air exiting from the wind tower were approximately 10 °C and 40%, respectively. The main advantage of the proposed wind tower is that it is a modular design that can reduce the cost of wind tower construction.

  2. Solar-wind minor ions: recent observations

    International Nuclear Information System (INIS)

    Bame, S.J.

    1982-01-01

    During the years following the Solar Wind Four Conference at Burghausen our knowledge of the solar wind ion composition and dynamics has grown. There have been some surprises, and our understanding of the evolution of the solar wind has been improved. Systematic studies have shown that the minor ions generally travel with a common bulk speed and have temperatures roughly proportional to their masses. It has been determined that the 3 He ++ content varies greatly; 3 He ++ / 4 He ++ ranges from as high as 10 2 values to below 2 x 10 - 4 . In some solar wind flows which can be related to energetic coronal events, the minor ions are found in unusual ionization states containing Fe 16 + as a prominent ion, showing that the states were formed at unusually high temperatures. Unexpectedly, in a few flows substantial quantities of 4 He + have been detected, sometimes with ions identifiable as O 2 + and O 3 + . Surprisingly, in some of these examples the ionization state is mixed showing that part of the plasma escaped the corona without attaining the usual million-degree temperatures while other parts were heated more nearly in the normal manner. Additionally, detailed studies of the minor ions have increased our understanding of the coronal expansion. For example, such studies have contributed to identifying near equatorial coronal streamers as the source of solar wind flows between high speed streams

  3. SOLAR WIND PROTONS AT 1 AU: TRENDS AND BOUNDS, CONSTRAINTS AND CORRELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz [Astronomical Institute, AS CR, Bocni II/1401,CZ-14100 Prague (Czech Republic)

    2014-03-20

    The proton temperature anisotropy in the solar wind exhibits apparent bounds which are compatible with the theoretical constraints imposed by temperature-anisotropy-driven kinetic instabilities. Recent statistical analyses based on conditional averaging indicate that near these theoretical constraints the solar wind protons typically have enhanced temperatures and a weaker collisionality. Here we carefully analyze the solar wind data and show that these results are a consequence of superposition of multiple correlations in the solar wind, namely, they mostly result from the correlation between the proton temperature and the solar wind velocity and from the superimposed anti-correlation between the proton temperature anisotropy and the proton parallel beta in the fast solar wind. Colder and more collisional data are distributed around temperature isotropy whereas hotter and less collisional data have a wider range of the temperature anisotropy anti-correlated with the proton parallel beta with signatures of constraints owing to the temperature-anisotropy-driven instabilities. However, most of the hot and weakly collisional data, including the hottest and least collisional ones, lies far from the marginal stability regions. Consequently, we conclude that there is no clear relation between the enhanced temperatures and instability constraints and that the conditional averaging used for these analyses must be used carefully and need to be well tested.

  4. Heating power at the substrate, electron temperature, and electron density in 2.45 GHz low-pressure microwave plasma

    Science.gov (United States)

    Kais, A.; Lo, J.; Thérèse, L.; Guillot, Ph.

    2018-01-01

    To control the temperature during a plasma treatment, an understanding of the link between the plasma parameters and the fundamental process responsible for the heating is required. In this work, the power supplied by the plasma onto the surface of a glass substrate is measured using the calorimetric method. It has been shown that the powers deposited by ions and electrons, and their recombination at the surface are the main contributions to the heating power. Each contribution is estimated according to the theory commonly used in the literature. Using the corona balance, the Modified Boltzmann Plot (MBP) is employed to determine the electron temperature. A correlation between the power deposited by the plasma and the results of the MBP has been established. This correlation has been used to estimate the electron number density independent of the Langmuir probe in considered conditions.

  5. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  6. Measurements of plasma temperature and electron density in laser

    Indian Academy of Sciences (India)

    The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time window of 300–2000 ns. An echelle spectrograph coupled with a gated intensified charge coupled detector is used to record the plasma emissions.

  7. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2013-01-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. - Highlights: • A new property of superconducting particles is predicted. • Electron holography will show an apparent increase in thickness at low temperatures. • This will result from a predicted increase in the mean inner potential. • This will originate in expulsion of electrons from the interior to the surface. • This is not predicted by the conventional BCS theory of superconductivity

  8. Characterization and Aging Test Methodology for Power Electronic Devices at High Temperature

    International Nuclear Information System (INIS)

    Ibrahim, A.; Khatir, Z.; Dupont, L.

    2011-01-01

    Power electronic modules are key elements in the chain of power conversion. The application areas include aerospace, aviation, railway, electrical distribution, automotive, home automation, oil industry ... But the use of power electronics in high temperature environments is a major strategic issue in the coming years especially in transport. However, the active components based on silico