WorldWideScience

Sample records for wind direction shear

  1. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  2. Turbulence generation by mountain wave breaking in flows with directional wind shear

    Science.gov (United States)

    Vittoria Guarino, Maria; Teixeira, Miguel A. C.

    2016-04-01

    In this study, wave breaking, and the potential for the generation of turbulence in the atmosphere, is investigated using high-resolution numerical simulations of idealized atmospheric flows with directional wind shear over a three-dimensional isolated mountain. These simulations, which use the WRF-ARW model, differ in degree of flow non-linearity and directional wind shear intensity, quantified through the dimensionless mountain height and the Richardson number of the incoming flow. The aim is to predict wave breaking occurrence based on large-scale variables. The simulation results have been used to produce a regime diagram representing a description of wave breaking behavior in parameter space. By selecting flow overturning occurrence as a discriminating factor, it was possible to split the regime diagram in two sub-regions representing: a non-wave breaking regime and a wave breaking regime. The regime diagram shows that in the presence of directional shear wave breaking may occur over lower mountains that in a constant-wind case. When mountain waves break, the associated convective instability can lead to turbulence generation (known as Clear Air Turbulence or CAT in a non-cloudy atmosphere), thus, regions within the simulation domain where wave breaking and potential development of CAT are expected have been identified. The extent of these regions is variable and increases with the background shear intensity. In contrast with constant-wind flows, where wave breaking occurs in the stream-wise direction aligned with the mountain, for the helical wind profiles considered in this study as prototypes of flows with directional wind shear, flow overturning regions have a more three-dimensional geometry. The analysis of the model outputs, supported by theoretical arguments, suggest the existence of a link between wave breaking and the relative orientation of the incoming wind vector and the horizontal velocity perturbation vector. In particular, in a wave breaking

  3. Perspectives on wind shear flight

    Science.gov (United States)

    Miele, A.; Wang, T.; Wu, G. D.

    1991-01-01

    Wind shears originating from downbursts have been the cause of many aircraft accidents in the past two decades. In turn, this has led to considerable research on wind shear avoidance systems and wind shear recovery systems. This paper reviews recent advances in wind shear recovery systems. It summarizes the work done at Rice University on trajectory optimization and trajectory guidance for two basic flight conditions: takeoff and abort landing. It appears that, in the relatively near future, an advanced wind shear control system can be developed, that is, capable of functioning in different wind models and covering the spectrum of flight conditions having interest in a wind shear encounter.

  4. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  5. Robust Kalman filter design for predictive wind shear detection

    Science.gov (United States)

    Stratton, Alexander D.; Stengel, Robert F.

    1991-01-01

    Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.

  6. Wind shear procedures and the instrumentation

    Science.gov (United States)

    Melvin, W. W.

    1990-01-01

    The effect of pitch rate on abort landing caused by wind shear encounters is discussed. Optimal trajectories, airspeed, and wind shear warning systems are briefly discussed. The bulk of the presentation is in viewgraph form.

  7. Design of wind shear filters

    Science.gov (United States)

    Joerck, H.

    1984-01-01

    A number of aircraft accidents are caused by the effects of wind shear. In connection with efforts to eliminate or reduce hazards leading to such accidents, the possibility was considered to improve aircraft control systems. However, the effective implementation of the considered approaches will only be possible if suitable filters can be designed for a separation of gusts, which involve higher frequencies from low-frequency wind shear components. Filters of appropriate design should be suited for an employment in connection with all flight conditions. Feasible approaches for obtaining such filters are discussed. A survey is provided regarding the order of magnitude of the improvements which can be achieved, taking into account the performance characteristics of the A300 controller.

  8. Directional Shear in the Nocturnal Atmospheric Surface Layer

    Science.gov (United States)

    Mahrt, L.

    2017-10-01

    We examine the potential importance of wind-directional shear in the surface layer of the stable nocturnal boundary layer by analyzing two tower datasets with eddy-correlation measurements at multiple levels. Directional shear is a major contributor to the total vector shear for weak winds due primarily to frequent shallow drainage flows at one site and due primarily to non-stationary modes at the second site. For weak winds, the turbulence intensity is more related to the wind-directional shear than to the wind speed or stratification, at least for these two datasets.

  9. Prescribed wind shear modelling with the actuator line technique

    DEFF Research Database (Denmark)

    Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær; Troldborg, Niels

    2007-01-01

    A method for prescribing arbitrary steady atmospheric wind shear profiles combined with CFD is presented. The method is furthermore combined with the actuator line technique governing the aerodynamic loads on a wind turbine. Computation are carried out on a wind turbine exposed to a representative...... steady atmospheric wind shear profile with and without wind direction changes up through the atmospheric boundary layer. Results show that the main impact on the turbine is captured by the model. Analysis of the wake behind the wind turbine, reveal the formation of a skewed wake geometry interacting...

  10. Continuous wave laser for wind shear detection

    Science.gov (United States)

    Nelson, Loren

    1991-01-01

    Details of the design and development of a continuous-wave heterodyne carbon dioxide laser which has wind shear detection capabilities are given in viewgraph form. The goal of the development was to investigate the lower cost CW (rather than pulsed) lidar option for look-ahead wind shear detection from aircraft. The device has potential utility for ground based wind shear detection at secondary airports where the high cost of a Terminal Doppler Weather Radar system is not justifiable.

  11. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case...... of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly......, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we...

  12. Impact of Vertical Wind Shear on Tropical Cyclone Rainfall

    Science.gov (United States)

    Cecil, Dan; Marchok, Tim

    2014-01-01

    While tropical cyclone rainfall has a large axisymmetric component, previous observational and theoretical studies have shown that environmental vertical wind shear leads to an asymmetric component of the vertical motion and precipitation fields. Composites consistently depict a precipitation enhancement downshear and also cyclonically downwind from the downshear direction. For consistence with much of the literature and with Northern Hemisphere observations, this is subsequently referred to as "Downshear-Left". Stronger shear magnitudes are associated with greater amplitude precipitation asymmetries. Recent work has reinforced the prior findings, and explored details of the response of the precipitation and kinematic fields to environmental vertical wind shear. Much of this research has focused on tropical cyclones away from land, to limit the influence of other processes that might distort the signal related to vertical wind shear. Recent evidence does suggest vertical wind shear can also play a major role in precipitation asymmetries during and after landfall.

  13. Flight in low-level wind shear

    Science.gov (United States)

    Frost, W.

    1983-01-01

    Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.

  14. Wind shear and turbulence simulation

    Science.gov (United States)

    Bowles, Roland L.

    1987-01-01

    The aviation community is increasing its reliance on flight simulators. This is true both in pilot training and in research and development. In moving research concepts through the development pipeline, there is a sequence of events which take place: analysis, ground based simulation, inflight simulation, and flight testing. Increasing fidelity as progress toward the flight testing arena is accompanied by increasing cost. The question that seems to be posed in relation to the meteorological aspects of flight simulation is, How much fidelity is enough and can it be quantified. As a part of the Langley Simulation Technology Program, there are three principal areas of focus, one being improved simulation of weather hazards. A close liaison with the JAWS project was established because of the Langley Simulation Technology interests regarding reliable simulation of severe convective weather phenomena and their impact on aviation systems. Simulation offers the only feasible approach for examining the utility of new technology and new procedures for coping with severe convective weather phenomena such as wind shear. These simulation concepts are discussed in detail.

  15. Wind shear measuring on board an airliner

    Science.gov (United States)

    Krauspe, P.

    1984-01-01

    A measurement technique which continuously determines the wind vector on board an airliner during takeoff and landing is introduced. Its implementation is intended to deliver sufficient statistical background concerning low frequency wind changes in the atmospheric boundary layer and extended knowledge about deterministic wind shear modeling. The wind measurement scheme is described and the adaptation of apparatus onboard an A300 airbus is shown. Preliminary measurements made during level flight demonstrate the validity of the method.

  16. Pulsed laser Doppler measurements of wind shear

    Science.gov (United States)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  17. Wind shear related research at Princeton University

    Science.gov (United States)

    Stengel, Robert

    1992-01-01

    The topics addressed are: (1) real-time decision aiding-aircraft guidance for wind shear avoidance; (2) reducing the thrust-manual recovery strategies; and (3) dynamic behaviour of and aircraft encountering a single axis vortex.

  18. A Study of Wind Shear Effects on Aircraft Operations and Safety in Australia,

    Science.gov (United States)

    1981-03-01

    journals: ’Wind shear is defined as a change in wind direction and/or velocity in a short distance, either vertically or horizontally.’ ( Sport Aviation...recognition of and coping with a wind shear that the aircraft is currently encountering. They are not forewarning devices. 3. QUESTIONAIRE SURVEY 3.1...A218, February 1966. 8. Walker, F. W. Education through error. Sport Aviation, 25(6), 21, June 1976. 9. Anon. Wind shear: informing the pilot. Flight

  19. Wind shear extremes at possible offshore wind turbine locations

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2003-01-01

    Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.windda...... seems to be rather conservative for an offshore location, compared to the estimated values based on measurements....

  20. Integration of the TDWR and LLWAS wind shear detection system

    Science.gov (United States)

    Cornman, Larry

    1991-01-01

    Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for integrating ground and airborne wind shear detection systems are briefly examined.

  1. Infrared low-level wind shear work

    Science.gov (United States)

    Adamson, Pat

    1988-01-01

    Results of field experiments for the detection of clear air disturbance and low level wind shear utilizing an infrared airborne system are given in vugraph form. The hits, misses and nuisance alarms scores are given. Information is given on the infrared spatial resolution technique. The popular index of aircraft hazard (F= WX over g - VN over AS) is developed for a remote temperature sensor.

  2. Progress on Intelligent Guidance and Control for Wind Shear Encounter

    Science.gov (United States)

    Stratton, D. Alexander

    1990-01-01

    Low altitude wind shear poses a serious threat to air safety. Avoiding severe wind shear challenges the ability of flight crews, as it involves assessing risk from uncertain evidence. A computerized intelligent cockpit aid can increase flight crew awareness of wind shear, improving avoidance decisions. The primary functions of a cockpit advisory expert system for wind shear avoidance are discussed. Also introduced are computational techniques being implemented to enable these primary functions.

  3. Wind shear training applications for 91/135

    Science.gov (United States)

    Arbon, ED

    1991-01-01

    The requirement for wind shear training of all pilots has been demonstrated too often by the accident statistics of past years. Documents were developed to train airline crews on specific aircraft and to teach recognition of the meteorological conditions that are conducive to wind shear and microburst formation. A Wind Shear Training Aid program is discussed.

  4. Profiler measurements of turbulence and wind shear in a snowstorm

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Leblanc, S.G. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Cohn, S.A. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Ecklund, W.L. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences; Carter, D.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; Wilson, J.S. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

    1996-02-01

    Observations of a large and vigorous snowstorm with a UHF wind profiler were used to investigate the intensity of atmospheric turbulence and its relation to the vertical wind shear. Turbulence was estimated from the spread of the Doppler spectrum in the vertical beam of the profiler, after correcting for the contribution of the horizontal wind speed to the spread. Wind shear was computed directly from the measured wind profiles. Over the 24 h duration of the storm, shear values exceeding 0.02 s{sup -1} existed nearly continuously in the lowest few hundred meters of the atmosphere and in a broad elevated layer that slowly descended from 4 km to 2 km. The pattern of Doppler spread in time-height coordinates closely resembled the pattern of wind shear, though a detailed, point-by-point comparison of these two quantities by linear regression yielded a correlation coefficient of only 0.4. Focusing on just the observations in the lowest few hundred meters gave a higher correlation coefficient. The Richardson number as a function of height and time was computed by combining the measured wind shear values with temperature profiles generated by a mesoscale numerical model. We found evidence of weak turbulence even in regions with Ri>1, but a value close to the theoretical threshold of Ri=1/4 separates the more intense turbulence from the weaker. Estimates of the turbulent energy dissipation rate, {epsilon}, based on the Doppler spread, range as high as 500 cm{sup 2} s{sup -3}, the largest values being near the ground. (orig.)

  5. Velocity shear generation of solar wind turbulence

    Science.gov (United States)

    Roberts, D. A.; Goldstein, Melvyn L.; Matthaeus, William H.; Ghosh, Sanjoy

    1992-01-01

    A two-dimensional incompressible MHD spectral code is used to show that shear-driven turbulence is a possible means for producing many observed properties of the evolution of the magnetic and velocity fluctuations in the solar wind and, in particular, the evolution of the cross helicity ('Alfvenicity') at small scales. It is shown that large-scale shear can nonlinearly produce a cascade to smaller scale fluctuations even when the linear Kelvin-Helmholtz mode is stable, and that a roughly power law inertial range is established by this process. The evolution found is similar to that seen in some other simulations of MHD turbulence.

  6. Wind shear predictive detector technology study status

    Science.gov (United States)

    Gandolfi, C.

    1990-01-01

    Among the different elements to be investigated when considering the Wind Shear hazard, the Aeronautical Navigation Technical Service (STNA/3E), whose task is to participate in the development of new technologies and equipments, focused its effort on airborne and ground sensors for the detection of low-level wind shear. The first task, initiated in 1986, consists in the evaluation of three candidate techniques for forward-looking sensors: lidar, sodar, and radar. No development is presently foreseen for an infrared based air turbulence advance warning system although some flight experiments took place in the 70's. A Thomson infrared radiometer was then installed on an Air France Boeing 707 to evaluate its capability of detecting clear air turbulence. The conclusion showed that this technique was apparently able to detect cloud layers but that additional experiments were needed; on the other hand, the rarity of the phenomenon and the difficulty in operating on a commercial aircraft were also mentioned.

  7. Flight simulation for wind shear encounter

    Science.gov (United States)

    Mulgund, Sandeep S.

    1990-01-01

    A real-time piloted flight simulator is under development in the Laboratory for Control and Automation at Princeton University. This facility will be used to study piloted flight through a simulated wind shear. It will also provide a testbed for real-time flight guidance laws. The hardware configuration and aerodynamic model used are discussed. The microburst model to be incorporated into the simulation is introduced, and some proposed cockpit display concepts are described.

  8. An expert system for wind shear avoidance

    Science.gov (United States)

    Stengel, Robert F.; Stratton, D. Alexander

    1990-01-01

    The principal objectives are to develop methods for assessing the likelihood of wind shear encounter (based on real-time information in the cockpit), for deciding what flight path to pursue (e.g., takeoff abort, landing go-around, or normal climbout or glide slope), and for using the aircraft's full potential for combating wind shear. This study requires the definition of both deterministic and statistical techniques for fusing internal and external information, for making go/no-go decisions, and for generating commands to the aircraft's autopilot and flight directors for both automatic and manually controlled flight. The expert system for pilot aiding is based on the results of the FAA Windshear Training Aids Program, a two-volume manual that presents an overview, pilot guide, training program, and substantiating data that provides guidelines for this initial development. The Windshear Safety Advisor expert system currently contains over 140 rules and is coded in the LISP programming language for implementation on a Symbolics 3670 LISP Machine.

  9. Cockpit display of hazardous wind shear information

    Science.gov (United States)

    Wanke, Craig; Hansman, R. John, Jr.

    1990-01-01

    Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels.

  10. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  11. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...... on turbine blades. Although the influence of wind shear on extreme loads was found to be negligible, the IEC 61400-1 wind shear definition was found to result in non-conservative estimates of the 50 year extreme blade deflection toward the tower, especially under extreme turbulence conditions. Copyright...... proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...

  12. Airborne in situ computation of the wind shear hazard index

    Science.gov (United States)

    Oseguera, Rosa M.; Bowles, Roland L.; Robinson, Paul A.

    1992-01-01

    An algorithm for airborne in situ computation of the wind shear hazard index (F-factor) was developed and evaluated in simulation and verified in flight. The algorithm was implemented on NASA's B-737-100 airplane, and tested under severe maneuvering, nonhazardous wind conditions, and normal takeoffs and landings. The airplane was flown through actual microburst conditions in Orlando, FL, where the algorithm produced wind shear measurements which were confirmed by an independent, ground-based radar measurement. Flight test results indicated that the in situ F-factor algorithm correctly measured the effect of the wind environment on the airplane's performance, and produced no nuisance alerts.

  13. An experimental cockpit display for TDWR wind shear alerts

    Science.gov (United States)

    Campbell, Steven D.; Daly, Peter M.; Demillo, Robert J.

    1991-01-01

    The first successful ground-to-air data link and cockpit display of terminal Doppler weather radar (TDWR) wind shear warnings in real-time are reported. During the summer of 1990, wind shear warnings generated by the TDWR testbed radar at Orlando, Florida, were transmitted in real-time to a research aircraft performing microburst penetrations. Automatic delivery of TDWR wind shear warnings potentially result in decreased controller workload and improved pilot information. Pilot responses indicate that the information provided by the cockpit displays was useful in visualizing the location of wind shear hazards. The graphical display of microburst hazards provided better information than that currently provided by ATC verbal messages and pilot reports. This information was useful in assessing the microburst hazard, deciding whether to continue the approach, and planning escape maneuvers.

  14. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    OpenAIRE

    Corscadden, Kenneth W.; Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty ...

  15. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects.

    Science.gov (United States)

    Corscadden, Kenneth W; Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement.

  16. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    Science.gov (United States)

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  17. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations......, superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large-eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully...... developed stage in the domain. The performance of the method is verified by comparing the turbulence intensity and spectral distribution of the turbulent energy to the spectral distribution of turbulence generated by the IEC suggested Mann model. Second, the synthetic turbulence and wind shear is used...

  18. Scaling effects in direct shear tests

    Science.gov (United States)

    Orlando, A.D.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.

  19. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Science.gov (United States)

    Wen, Binrong; Wei, Sha; Wei, Kexiang; Yang, Wenxian; Peng, Zhike; Chu, Fulei

    2017-09-01

    The magnitude and stability of power output are two key indices of wind turbines. This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine. First, wind speed models, particularly the wind shear model and the tower shadow model, are described in detail. The widely accepted tower shadow model is modified in view of the cone-shaped towers of modern large-scale wind turbines. Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory. Results indicate that power fluctuation is mainly caused by tower shadow, whereas power loss is primarily induced by wind shear. Under steady wind conditions, power loss can be divided into wind farm loss and rotor loss. Wind farm loss is constant at 3 α(3 α-1) R 2/(8 H 2). By contrast, rotor loss is strongly influenced by the wind turbine control strategies and wind speed. That is, when the wind speed is measured in a region where a variable-speed controller works, the rotor loss stabilizes around zero, but when the wind speed is measured in a region where the blade pitch controller works, the rotor loss increases as the wind speed intensifies. The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  20. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Courtney, Michael; Parmentier, R.

    2008-01-01

    The 10-minute average horizontal wind speeds sensed with lidar and mast mounted cup anemometers, at 60 to 116 meters altitude at Hovsore, are compared. The lidar deviation from the cup value as a function of wind velocity and wind shear is studied in a 2-parametric regression analysis which reveals...... an altitude dependent relation between the lidar error and the wind shear. A likely explanation for this relation is an error in the intended sensing altitude. At most this error is estimated to 9 in which induced errors in the horizontal wind velocity of up to 0.5 m/s as compared to a cup at the intended...... for wind velocity and wind shear dependent errors are discussed. The 2-parametric regression analysis described in this paper is proven to be a better approach when acceptance testing and calibrating lidars....

  1. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  2. Temperature lapse rate as an adjunct to wind shear detection

    Science.gov (United States)

    Zweifil, Terry

    1991-01-01

    Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.

  3. Hourly wind profiler observations of the jet stream - Wind shear and pilot reports of turbulence

    Science.gov (United States)

    Syrett, William J.

    1991-01-01

    Hourly wind profiler observations of the jet stream are reported on the basis of over 400 hr of wind and temperature data taken during two prolonged jet stream passages over western and central Pennsylvania during mid-November 1986 and mid-January 1987. The mean wind speed profile with error bars for the 79 hr that the Crown radar was determined to be 'under' the jet stream is shown. A mean speed of 83 m/s for the period was found. A plot of wind shear for the hours of interest is given. Typically, the shear was at a maximum from 3 to 4 km below the level of maximum wind. Thus, an aircraft would have to fly through potentially rough air to reach the fuel savings and relative smoothness of flight at the jet stream level. A good correlation between pilot reports of turbulence and wind shear was found.

  4. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.

    Science.gov (United States)

    Martin, Raleigh L; Kok, Jasper F

    2017-06-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.

  5. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  6. Doppler weather radar with predictive wind shear detection capabilities

    Science.gov (United States)

    Kuntman, Daryal

    1991-01-01

    The status of Bendix research on Doppler weather radar with predictive wind shear detection capability is given in viewgraph form. Information is given on the RDR-4A, a fully coherent, solid state transmitter having Doppler turbulence capability. Frequency generation data, plans, modifications, system characteristics and certification requirements are covered.

  7. EFFECTS OF WIND SHEAR ON POLLUTION DISPERSION. (R827929)

    Science.gov (United States)

    Using an accurate numerical method for simulating the advection and diffusion of pollution puffs, it is demonstrated that point releases of pollution grow into a shape reflecting the vertical wind shear profile experienced by the puff within a time scale less than 4 h. Fo...

  8. Status of NASA's IR wind shear detection research

    Science.gov (United States)

    Mckissick, Burnell

    1991-01-01

    The status of NASA's wind shear detection research is reported in viewgraph form. Information is given on early experience, FLIR detectors, quantities measured by Airborne Warning and Avoidance System 1 (AWAS 1), the time series model for Flight 551, conclusions from NASA 737 flights, conclusions on Orlando 7-7-90, and AWAS 3 mnemonics.

  9. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    .6 Results input into satellite maps The nature of the offshore vertical wind shear is investigated using acquired data from the NORSEWInD network of mast and wind lidar stations. The importance of the knowledge of the vertical wind speed profile and wind shear is first illustrated for the evaluation...... of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......-term vertical wind speed profile. Observed vertical wind shears are illustrated for all NORSEWInD wind lidar and meteorological stations in terms of wind shear roses, distributions, and diurnal and monthly evolutions. A multi-variational correlation analysis is performed to study the vertical wind shear...

  10. The relationship of an integral wind shear hazard to aircraft performance limitations

    Science.gov (United States)

    Lewis, M. S.; Robinson, P. A.; Hinton, D. A.; Bowles, R. L.

    1994-01-01

    The development and certification of airborne forward-looking wind shear detection systems has required a hazard definition stated in terms of sensor observable wind field characteristics. This paper outlines the definition of the F-factor wind shear hazard index and an average F-factor quantity, calculated over a specified averaging interval, which may be used to judge an aircraft's potential performance loss due to a given wind shear field. A technique for estimating airplane energy changes during a wind shear encounter is presented and used to determine the wind shear intensity, as a function of the averaging interval, that presents significant hazard to transport category airplanes. The wind shear hazard levels are compared to averaged F-factor values at various averaging intervals for four actual wind shear encounters. Results indicate that averaging intervals of about one kilometer could be used in a simple method to discern hazardous shears.

  11. Response of wind shear warning systems to turbulence with implication of nuisance alerts

    Science.gov (United States)

    Bowles, Roland L.

    1988-01-01

    The objective was to predict the inherent turbulence response characteristics of candidate wind shear warning system concepts and to assess the potential for nuisance alerts. Information on the detection system and associated signal processing, physical and mathematical models, wind shear factor root mean square turbulence response and the standard deviation of the wind shear factor due to turbulence is given in vugraph form.

  12. The classification of wind shears from the point of view of aerodynamics and flight mechanics

    Science.gov (United States)

    Seidler, Fritz; Hensel, Gunter

    1987-01-01

    A study of international statistical data shows that in about three quarters of all serious accidents which occurred with jet propelled airliners wind shear was either one of the main causes of the accident or represented a major contributory cause. Wind shear related problems are examined. The necessity of a use of different concepts, definitions, and divisions is explained, and the concepts and definitions required for the division of wind and wind shear into different categories is discussed. A description of the context between meteorological and aerodynamics-flight mechanics concepts, definitions, and divisions is also provided. Attention is given to wind and wind components, general characteristics of wind shear and the meteorological terms, the basic types of wind shear for aerodynamics-flight mechanics investigations, special types of wind shear for aerodynamics-flight mechanics investigations, and possibilities regarding a change of the wind component.

  13. Air/ground wind shear information integration: Flight test results

    Science.gov (United States)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  14. Wind-shear endurance capability for powered-lift aircraft

    Science.gov (United States)

    Bando, Toshio; Tanaka, Keiji; Hynes, Charles S.; Hardy, Gordon H.

    1993-01-01

    The present treatment of safety margin considerations for powered-lift (upper wing surface blowing) STOL aircraft emphasizes wind shear endurance, in order to establish safety margin criteria for such aircraft that are equivalent to those of conventional transport aircraft. The simulation results obtained show that a 6.6 deg climb gradient at V(app) for STOL aircraft is required for equivalent shear endurance in approaching a long STOL airport runway, if the STOL aircraft is equipped with an elaborate control/display system and is permitted a change in configuration.

  15. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data at Horns Rev and three different joint distributions are obtained, which all fit the measurement data...

  16. Real-time decision aiding - Aircraft guidance for wind shear avoidance

    Science.gov (United States)

    Stratton, D. A.; Stengel, Robert F.

    1992-01-01

    Modern control theory and artificial intelligence technology are applied to the Wind Shear Safety Advisor, a conceptual airborne advisory system to help flight crews avoid or survive encounter with hazardous low-altitude wind shear. Numerical and symbolic processes of the system fuse diverse, time-varying data from ground-based and airborne measurements. Simulated wind-shear-encounter scenarios illustrate the need to consider a variety of factors for optimal decision reliability. The wind-shear-encounter simulations show the Wind Shear Safety Advisor's potential for effectively integrating the available information, highlighting the benefits of the computational techniques employed.

  17. Wind Shear/Turbulence Inputs to Flight Simulation and Systems Certification

    Science.gov (United States)

    Bowles, Roland L. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to provide a forum for industry, universities, and government to assess current status and likely future requirements for application of flight simulators to aviation safety concerns and system certification issues associated with wind shear and atmospheric turbulence. Research findings presented included characterization of wind shear and turbulence hazards based on modeling efforts and quantitative results obtained from field measurement programs. Future research thrusts needed to maximally exploit flight simulators for aviation safety application involving wind shear and turbulence were identified. The conference contained sessions on: Existing wind shear data and simulator implementation initiatives; Invited papers regarding wind shear and turbulence simulation requirements; and Committee working session reports.

  18. Jet transport performance in thunderstorm wind shear conditions

    Science.gov (United States)

    Mccarthy, J.; Blick, E. F.; Bensch, R. R.

    1979-01-01

    Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results.

  19. Wind shear and turbulence on Titan: Huygens analysis

    Science.gov (United States)

    Lorenz, Ralph D.

    2017-10-01

    Wind shear measured by Doppler tracking of the Huygens probe is evaluated, and found to be within the range anticipated by pre-flight assessments (namely less than two times the Brunt-Väisälä frequency). The strongest large-scale shear encountered was ∼5 m/s/km, a level associated with 'Light' turbulence in terrestrial aviation. Near-surface winds (below 4 km) have small-scale fluctuations of ∼0.1 m/s on 1 s timescales, indicated both by probe tilt and Doppler tracking, and the characteristics of the fluctuation, of interest for future missions to Titan, can be reproduced with a simple autoregressive (AR(1)) model. The turbulent dissipation rate at an altitude of ∼500 m is found to be ∼0.2 cm2/s3, which may be a useful benchmark for atmospheric circulation models.

  20. Wind shear detection. Forward-looking sensor technology

    Science.gov (United States)

    Bracalente, E. M. (Compiler); Delnore, V. E. (Compiler)

    1987-01-01

    A meeting took place at NASA Langley Research Center in February 1987 to discuss the development and eventual use of forward-looking remote sensors for the detection and avoidance of wind shear by aircraft. The participants represented industry, academia, and government. The meeting was structured to provide first a review of the current FAA and NASA wind shear programs, then to define what really happens to the airplane, and finally to give technology updates on the various types of forward-looking sensors. This document is intended to informally record the essence of the technology updates (represented here through unedited duplication of the vugraphs used), and the floor discussion following each presentation. Also given are key issues remaining unresolved.

  1. Coherent Doppler lidar signal covariance including wind shear and wind turbulence

    Science.gov (United States)

    Frehlich, R. G.

    1993-01-01

    The performance of coherent Doppler lidar is determined by the statistics of the coherent Doppler signal. The derivation and calculation of the covariance of the Doppler lidar signal is presented for random atmospheric wind fields with wind shear. The random component is described by a Kolmogorov turbulence spectrum. The signal parameters are clarified for a general coherent Doppler lidar system. There are two distinct physical regimes: one where the transmitted pulse determines the signal statistics and the other where the wind field dominates the signal statistics. The Doppler shift of the signal is identified in terms of the wind field and system parameters.

  2. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  3. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    Directory of Open Access Journals (Sweden)

    Ju Feng

    2015-04-01

    Full Text Available Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data at Horns Rev and three different joint distributions are obtained, which all fit the measurement data quite well in terms of the coefficient of determination . Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented.

  4. A problem formulation for glideslope tracking in wind shear using advanced robust control techniques

    Science.gov (United States)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1992-01-01

    A formulation of the longitudinal glideslope tracking of a transport-class aircraft in severe wind shear and turbulence for application to robust control system design is presented. Mathematical wind shear models are incorporated into the vehicle mathematical model, and wind turbulence is modeled as an input disturbance signal. For this problem formulation, the horizontal and vertical wind shear gradients are treated as real uncertain parameters that vary over an entire wind shear profile. The primary objective is to examine the formulation of this problem into an appropriate design format for use in m-synthesis control system design.

  5. Effects of wind shear and temperature inversion on sound propagation from wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Haan, Henk de [Golder Associates (Canada)], email: Henk_deHaan@golder.com

    2011-07-01

    Noise impact assessment of wind turbines usually takes into account sound speed and propagation at ground level, and those are influenced by wind shear and atmospheric temperature changes. This paper focuses on a week-long monitoring study and presents the observed and anticipated effects of wind shear and temperature on the level of ground sound emitted from a 65m high wind turbine. Working with anemometers at ground level and turbine height, it is shown that wind shear can influence sound propagation, and that atmospheric stability must be taken into account for accurate wind speed calculations to be made. Temperature must also be addressed and the heating of the earth by solar radiation and the re-radiation of that heat in a day-night cycle, resulting in temperature inversion in the atmosphere, must be taken into account. Observations of temperature changes over a week can then yield sound speed and sound power levels with respect to altitude, and show that sound power levels are higher at ground levels during the night.

  6. Flight guidance research for recovery from microburst wind shear

    Science.gov (United States)

    Hinton, David A.

    1990-01-01

    Research is in progress to develop flight strategy concepts for avoidance and recovery from microburst wind shears. The objectives of this study are to evaluate the performance of various strategies for recovery from wind shear encountered during the approach-to-landing, examine the associated piloting factors, and evaluate the payoff of forward-look sensing. Both batch and piloted simulations are utilized. The industry-recommended manual recovery technique is used as a baseline strategy. Two advanced strategies were selected for the piloted tests. The first strategy emulates the recovery characteristics shown by prior optimal trajectory analysis, by initially tracking the glideslope, then commanding a shallow climb. The second strategy generates a flight path angle schedule that is a function of airplane energy state and the instantaneous shear strength. All three strategies are tested with reactive sensing only and with forward-look sensing. Piloted simulation tests are in progress. Tentative results indicate that, using only reactive alerts, there appears to be little difference in performance between the various strategies. With forward-look alerts, the advanced guidance strategies appear to have advantages over the baseline strategy. Relatively short forward-look alert times, on the order of 10 or 15 seconds, produce a far greater recovery benefit than optimizing a recovery from a reactive alert.

  7. Analysis of vertical wind direction and speed gradients for data from the met. mast at Hoevsoere

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, N.; Wagner, R.; Gottschall, J.

    2010-05-15

    The task of this project has been to study the vertical gradient of the wind direction from experimental data obtained with different measurement instruments at the Hoevsoere test site, located at the west coast of Denmark. The major part of the study was based on data measured by wind vanes mounted at a meteorological (met.) mast. These measurements enabled us to make an analysis of the variation of the direction with altitude, i.e. the wind direction shear. For this purpose, four years of wind direction measurements at two heights (60 m and 100 m) were analysed with special respect to the diurnal and seasonal variations of the direction gradient. The location of the test site close to the sea allowed for an investigation of specific trends for offshore and onshore winds, dependent on the considered wind direction sector. Furthermore, a comparison to lidar measurements showed the existence of an offset between the two vanes used for the analysis, which has to be considered for evaluating the significance and uncertainty of the results. Finally, the direction shear was analysed as function of wind speed and compared to the corresponding relation for the wind speed shear. Our observation from this is that the direction shear does not necessarily increase with the speed shear. (author)

  8. NASA wind shear model: Summary of model analyses

    Science.gov (United States)

    Proctor, Fred

    1988-01-01

    A summary of an analysis of a wind shear model is presented in the form of vugraphs. Information is given on the Terminal Area Simulation System, two dimensional axisymmetric simulations, precipitation, ambient temperature and humidity profiles over Denver, and the structure of microbursts. It was concluded that the intensity of microbursts depends upon the environment temperature and humidity profile, the diameter of the microburst downdraft, the type of precipitation and the precipitation rate. The depth of the outflow layer depends primarily upon the diameter of the downdraft. Dry microbursts are more likely to be produced by precipitation initially falling as snow.

  9. Comparison of simulated and actual wind shear radar data products

    Science.gov (United States)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  10. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    The existence of vertical wind shear in the atmosphere close to the ground requires that wind resource assessment and prediction with numerical weather prediction (NWP) models use wind forecasts at levels within the full rotor span of modern large wind turbines. The performance of NWP models...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...... with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...

  11. AWSM. Ground and wind shear effects in aerodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2010-02-15

    In order to design more advanced and efficient wind turbines, more accurate results coming from numerical predictions are mandatory. This need became more and more important in the last years due to the growth of wind turbines, especially for offshore scenarios. The diameter of a modern MW class wind turbine can easily be greater than 100m, on which the effect of wind shear and incoherent atmospheric structures on blade loads play a much more significant role. Most of the available codes are based on Blade Element Momentum (BEM) theory. The main advantage of this class of codes is the fact that they are very fast to calculate the loads and performance of a wind turbine. This makes BEM codes very convenient especially in the very extensive wind turbine design and load calculations, but due to all the hypotheses of the theory, there are several restrictions for BEM codes usage. By using full Navier-Stokes based codes, for example, there are no limitations about the geometry and no restrictive hypotheses related with the aerodynamics, so it is possible to perform both detailed fluid-dynamics studies and general performance-oriented analyses in very general conditions. The drawback is the big demand in terms of computational resources, computational time and expertise. A code, named Aerodynamic Windturbine Simulation Module (AWSM), has been developed at Energy research Centre of the Netherlands (ECN). The main scope was to keep the advantages of BEM codes in terms of calculation time and ease of use, but to obtain a superior quality, especially concerning wake and time dependent wake-related phenomena. The presence of the ground during the analyses, as well as the presence of a nonuniform wind introduce sensitive effects in the numerical predictions. These effects regard both the response of the blade and the evolution of the wake. During UpWind project, part of the research was focused on these two effects and their inclusion in the calculations. The aim of the

  12. Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear

    Science.gov (United States)

    Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor

    2010-05-01

    Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by

  13. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear...... condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter...... ways of accounting for the turbulence were tested with the experimental data: an adaptation of the equivalent wind speed so that it also accounts for the turbulence intensity and the combination of the equivalent wind speed accounting for the wind shear only with the turbulence normalising method...

  14. Optimal nonlinear estimation for aircraft flight control in wind shear

    Science.gov (United States)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  15. Algorithms for airborne Doppler radar wind shear detection

    Science.gov (United States)

    Gillberg, Jeff; Pockrandt, Mitch; Symosek, Peter; Benser, Earl T.

    1992-01-01

    Honeywell has developed algorithms for the detection of wind shear/microburst using airborne Doppler radar. The Honeywell algorithms use three dimensional pattern recognition techniques and the selection of an associated scanning pattern forward of the aircraft. This 'volumetric scan' approach acquires reflectivity, velocity, and spectral width from a three dimensional volume as opposed to the conventional use of a two dimensional azimuthal slice of data at a fixed elevation. The algorithm approach is based on detection and classification of velocity patterns which are indicative of microburst phenomenon while minimizing the false alarms due to ground clutter return. Simulation studies of microburst phenomenon and x-band radar interaction with the microburst have been performed and results of that study are presented. Algorithm performance indetection of both 'wet' and 'dry' microbursts is presented.

  16. Microalga propels along vorticity direction in a shear flow

    Science.gov (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  17. An analytical study of the longitudinal response of airplanes to positive wind shear

    Science.gov (United States)

    Sherman, W. L.

    1981-01-01

    The longitudinal response of jet transport aircraft to vertical variation of the horizontal winds is analyzed. Specific reference is given to the role of the speed (u) stability derivatives in the interaction of the airplane and its environment. The relative importance of the u stability derivatives is determined. The wind shear tolerance factor is found which can be used to determine, in a qualitative manner, the stability (tolerance) of an airplane to wind shear. A further study of the control problem shows that the criteria for good control could be reduced from two to one automatic control systems. Only a speed control system is necessary for good control in wind shear.

  18. Direct measurement of shear properties of microfibers

    Science.gov (United States)

    Behlow, H.; Saini, D.; Oliveira, L.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.

    2014-09-01

    As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar® 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

  19. Direct measurement of shear properties of microfibers

    Energy Technology Data Exchange (ETDEWEB)

    Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Skove, M. J.; Rao, A. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Oliveira, L. [School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Serkiz, S. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2014-09-15

    As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar{sup ®} 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

  20. Acute shear stress direction dictates adherent cell remodeling and verifies shear profile of spinning disk assays.

    Science.gov (United States)

    Fuhrmann, Alexander; Engler, Adam J

    2015-01-26

    Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or 'spinning disk' in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling.

  1. Large-scale direct shear testing of municipal solid waste.

    Science.gov (United States)

    Zekkos, Dimitrios; Athanasopoulos, George A; Bray, Jonathan D; Grizi, Athena; Theodoratos, Andreas

    2010-01-01

    Large direct shear testing (300 mm x 300 mm box) of municipal solid waste (MSW) collected from a landfill located in the San Francisco Bay area was performed to gain insight on the shear response of MSW. The study investigated the effects of waste composition, confining stress, unit weight, and loading rate on the stress-displacement response and shear strength of MSW. The amount and orientation of the fibrous waste materials in the MSW were found to play a critical role. The fibrous material had little effect on the MSW's strength when it was oriented parallel to the shear surface, as is typically the case when waste material is compressed vertically and then tested in a direct shear apparatus. Tests in which the fibrous material was oriented perpendicular to the horizontal shear surface produced significantly stronger MSW specimens. The test results indicate that confining stress and loading rate are also important factors. Based on 109 large-scale direct shear tests, the shear strength of MSW at low moisture contents is best characterized by cohesion=15 kPa, friction angle=36 degrees at a normal stress of 1 atmosphere, and a decrease in the friction angle of 5 degrees for every log-cycle increase in normal stress. 2010 Elsevier Ltd. All rights reserved.

  2. Effect of Wind Direction on ENVISAT ASAR Wind Speed Retrieval

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2010-01-01

    This paper presents an evaluation of effects of wind directions (NCEP, MANAL, QuickSCAT and WRF) on the sea surface wind speed retrieval from 75 ENVISAT ASAR images with four C-band Geophysical model functions, CMOD4, CMOD_IFR2, CMOD5 and CMOD5N at two target areas, Hiratsuka and Shirahama...

  3. The Structure of Vertical Wind Shear in Tropical Cyclone Environments: Implications for Forecasting and Predictability

    Science.gov (United States)

    Finocchio, Peter M.

    The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for

  4. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.

    2012-01-01

    Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and

  5. Polarized digital shearography for simultaneous dual shearing directions measurements

    Science.gov (United States)

    Xie, Xin; Lee, Cheok Peng; Li, Junrui; Zhang, Boyang; Yang, Lianxiang

    2016-08-01

    The selection of the direction of sensitivity for digital shearography is determined by its shearing direction. As a result, directionally shaped defects could be missed in non-destructive testing using a digital shearography system with only one shearing direction. This paper reports a polarized digital shearography system based on two Mach-Zehnder interferometers, which can create two orthogonal shearing directions and record shearograms in the two orthogonal directions simultaneously. The two shearograms are separated from each other by proper polarization design so that no cross interference occurs. The phase maps of the shearograms are generated by spatial phase shift methods through the introduction of different carrier frequencies in the two orthogonal shearograms and use of the Fourier transform method. This enabled simultaneous dual directional non-destructive testing during continuous loading. Theory derivation, spectrum analysis, and non-destructive testing application results are shown in detail.

  6. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang

    2017-10-25

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  7. Directional distribution of chilling winds in Estonia

    Science.gov (United States)

    Saue, Triin

    2016-08-01

    Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning.

  8. Direct Shear Behavior of Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2018-01-01

    Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory

  9. Estimating atmospheric stability from observations and correcting wind shear models accordingly

    NARCIS (Netherlands)

    Holtslag, M.C.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2014-01-01

    Atmospheric stability strongly influences wind shear and thus has to be considered when performing load calculations for wind turbine design. Numerous methods exist however for obtaining stability in terms of the Obukhov length L as well as for correcting the logarithmic wind profile. It is

  10. Predicting wind shear effects: A study of Minnesota wind data collected at heights up to 70 meters

    Energy Technology Data Exchange (ETDEWEB)

    Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)

    1997-12-31

    The Minnesota Department of Public Service (DPS) collects wind data at carefully selected sites around the state and analyzes the data to determine Minnesota`s wind power potential. DPS recently installed advanced new monitoring equipment at these sites and began to collect wind data at 30, 50, and 70 meters above ground level, with two anemometers at each level. Previously, the Department had not collected data at heights above ground level higher than 30 meters. DPS also, with the U.S. Department of Energy (DOE), installed four sophisticated monitoring sites as part of a Tall Tower Wind Shear Study that is assessing the effects of wind shear on wind power potential. At these sites, wind data are being collected at the 10, 30, 40, 50, 60, and 70 meter heights. This paper presents the preliminary results of the analysis of wind data from all sites. These preliminary results indicate that the traditional 1/7 power law does not effectively predict wind shear in Minnesota, and the result is an underestimation of Minnesota`s wind power potential at higher heights. Using a power factor of 1/5 or 1/4 may be more accurate and provide sound justification for installing wind turbines on taller towers in Minnesota.

  11. A method of wind shear detection for powered-lift STOL aircraft

    Science.gov (United States)

    Funabiki, Kohei; Bando, Toshio; Tanaka, Keiji; Hynes, Charles S.; Hardy, Gordon H.

    1993-01-01

    A new wind shear warning system for powered-lift STOL aircraft was evaluated by using a flight simulator. Wind shear warning systems for CTOL aircraft have been designed to detect horizontal shear only. Because the approach air speed of STOL aircraft is lower than that for CTOL aircraft, STOL aircraft are more vulnerable to vertical wind due to (1) a gradient of horizontal shear that is smaller for STOL than for CTOL aircraft because of slower airspeed; (2) STOL aircraft spend longer time in a downdraft; and (3) vertical wind causes a more radical change in the STOL aircraft's flight path because of its lower airspeed. In order to detect the vertical wind, the wind shear warning system proposed calculates the difference between potential flight path measured on-board during shear traversal and trimmed flight path estimated from aircraft status. The most characteristic feature of this new system is that it utilizes only inertial information and pitot-static airspeed data; this yields a convenient means of on-board implementation. Simulation test results confirm that the new system can detect the vertical shear.

  12. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power...

  13. Hourly observations of the jet stream - Wind shear, Richardson number and pilot reports of turbulence

    Science.gov (United States)

    Syrett, William J.

    1991-01-01

    Results are presented of observations of the jet stream made on the basis of over 400 hr of wind and temperature data taken during two prolonged jet stream passages above western and central Pennsylvania during mid-November 1986 and mid-January 1987. Wind profilers are found to be far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability forecasts of turbulence based on wind profiler-derived shear values appears possible. A good correlation between pilot reports and turbulence and wind shear is found.

  14. Roles of Wind Shear at Different Vertical Levels, Part I: Cloud System Organization and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.; Gustafson, William I.; Berg, Larry K.

    2015-07-07

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We find that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical

  15. NASA experimental airborne doppler radar and real time processor for wind shear detection

    Science.gov (United States)

    Schaffner, Philip H.; Richards, Mark A.; Jones, William R.; Crittenden, Lucille H.

    1992-01-01

    The topics are presented in viewgraph form and include the following: experimental radar system capabilities; an experimental radar system block diagram; wind shear radar signal and data processor (WRSDP); WRSDP hardware architecture; WRSDP system design goals; DSP software development tools; OS-9 software development tools; WRSDP digital signal processing; WRSDP display operational modes; WRSDP division of functions; structure of WRSDP signal and data processing algorithms; and the wind shear radar flight experiment.

  16. Direct Interval Forecasting of Wind Power

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2013-01-01

    This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness, wit......, without the prior knowledge of forecasting errors. The proposed approach has been proved to be highly efficient and reliable through preliminary case studies using real-world wind farm data, indicating a high potential of practical application.......This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness...

  17. The detection and measurement of microburst wind shear by an airborne lidar system

    Science.gov (United States)

    Robinson, Paul A.; Bowles, Roland L.; Targ, Russell

    1993-01-01

    The NASA Lockheed Missiles and Space Company (LMSC) Coherent Lidar Airborne Shear Sensor (CLASS) employs coherent lidar technology as a basis for a forward-looking predictive wind shear detection system. Line of sight wind velocities measured ahead of the aircraft are combined with aircraft state parameters to relate the measured wind change (or shear) ahead of an aircraft to its performance loss or gain. In this way the system can predict whether a shear detected ahead of the aircraft poses a significant threat to the aircraft and provide an advance warning to the flight crew. Installed aboard NASA's Boeing 737 research aircraft, the CLASS system is flown through convective microburst wind shears in Denver, Co., and Orlando, Fl. Some preliminary flight test results are presented. It is seen that the system was able to detect and measure wind shears ahead of the aircraft in the relatively dry Denver environment, but its performance was degraded in the high humidity and heavy rain in Orlando.

  18. Improved prediction of the turbulence-shear contribution to wind noise pressure spectra.

    Science.gov (United States)

    Yu, Jiao; Raspet, Richard; Webster, Jeremy; Abbott, JohnPaul

    2011-12-01

    In previous research [Raspet et al., J. Acoust. Soc. Am. 123(3), 1260-1269 (2008)], predictions of the low frequency turbulence-turbulence and turbulence-mean shear interaction pressure spectra measured by a large wind screen were developed and compared to the spectra measured using large spherical wind screens in the flow. The predictions and measurements agreed well except at very low frequencies where the turbulence-mean shear contribution dominated the turbulence-turbulence interaction pressure. In this region the predicted turbulence-mean shear interaction pressure did not show consistent agreement with microphone measurements. The predicted levels were often much larger than the measured results. This paper applies methods developed to predict the turbulence-shear interaction pressure measured at the ground [Yu et al., J. Acoust. Soc. Am. 129(2), 622-632 (2011)] to improve the prediction of the turbulence-shear interaction pressure above the ground surface by incorporating a realistic wind velocity profile and realistic turbulence anisotropy. The revised prediction of the turbulence-shear interaction pressure spectra compares favorably with wind-screen microphone measurements in large wind screens at low frequency. © 2011 Acoustical Society of America

  19. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  20. Uncertainty in vertical extrapolation of wind statistics: shear-exponent and WAsP/EWA methods

    DEFF Research Database (Denmark)

    Kelly, Mark C.

    for uncertainties inherent in determination of (wind) shear exponents, and subsequent vertical extrapolation of wind speeds. The report further outlines application of the theory and results of Kelly & Troen (2014-6) for gauging the uncertainty inherent in use of the European Wind Atlas (EWA) / WAsP method......This report provides formulations for estimation of uncertainties involved in vertical extrapolation of winds, as well as the total uncertainty incurred when winds observed at one height are extrapolated to turbine hub height for wind resource assessment. This includes new derivations....../푧obs); for larger extrapolations, WAsP-based extrapolation leads to smaller estimated uncertainties than the shear-extrapolation method.A primary motivation for—and part of—this work is the creation of a standard for uncertainty estimation and reporting, which is known as the IEC61400-15. The author is actively...

  1. A shear sensitive monomer-polymer liquid crystal system for wind tunnel applications

    Science.gov (United States)

    Parmar, D. S.; Singh, Jag J.; Eftekhari, Abe

    1992-01-01

    Characteristics of a liquid crystal system, comprised of a shear-sensitive cholesteric-monomer liquid crystal thin-film coated on a liquid-crystal polymer substrate, are described. The system provides stable Grandjean texture, a desirable feature for shear-stress measurements using selective reflection from the monomer liquid-crystal helix structure. Impingement of gas or air flow on the monomer liquid-crystal free surface changes the wavelength of the selective reflection for an incident white light from red toward blue with increase in the rate of gas flow. The contrast of the selectively reflected light improves considerably by providing a thin black coating of about 5 microns at the monomer-polymer interface. The coating thickness is such that the steric interactions are still sufficiently strong to maintain Grandjean texture. For a small angle of incidence of a monochromatic light, the measurement of the reflected light intensity normal to the monomer-polymer liquid-crystal interface enables the determination of the wavelength for selective reflection as a function of the gas-flow differential pressure applied in the plane of the interface. The variation of the wavelength with the pressure is linear with a slope of about 2 nm/mmHg. Furthermore, the shear-stress effects are reversible unlike for monomer liquid crystal-metal systems used for flow visualization on wind-tunnel model surfaces. The present system offers a suitable method for direct on-line measurement of shear stress field from measurements of the wavelength for selective reflection for an incident white light.

  2. Restoring DIC microscopy images from multiple shear directions.

    Science.gov (United States)

    Yin, Zhaozheng; Ker, Dai Fei Elmer; Kanade, Takeo

    2011-01-01

    Differential Interference Contrast (DIC) microscopy is a nondestructive imaging modality that has been widely used by biologists to capture microscopy images of live biological specimens. However, as a qualitative technique, DIC microscopy records specimen's physical properties in an indirect way by mapping the gradient of specimen's optical path length (OPL) into the image intensity. In this paper, we propose to restore DIC microscopy images by quantitatively estimating specimen's OPL from a collection of DIC images captured from multiple shear directions. We acquire the DIC images by rotating the specimen dish on the microscope stage and design an Iterative Closest Point algorithm to register the images. The shear directions of the image dataset are automatically estimated by our coarse-to-fine grid search algorithm. We develop a direct solver on a regularized quadratic cost function to restore DIC microscopy images. The restoration from multiple shear directions decreases the ambiguity among different individual restorations. The restored DIC images are directly proportional to specimen's physical measurements, which is very amenable for microscopy image analysis such as cell segmentation.

  3. Lidar-Assisted Feedforward Individual Pitch Control to Compensate Wind Shear and Yawed Inflow

    Science.gov (United States)

    Wortmann, Svenja; Geisler, Jens; Konigorski, Ulrich

    2016-09-01

    Lidar-assisted individual pitch control (IPC) has been investigated occasionally in recent years, focusing on the compensation of (vertical) wind shear as the main disturbance. Since yawed inflow might cause significant load fluctuations too, it is worth to compensate. Load patterns caused by yawed inflow significantly differ from those caused by wind shear, requiring a more sophisticated control algorithm. In this paper a lidar-assisted cyclic pitch feedforward control to compensate wind shear and yawed inflow is presented. The main objective is the analysis of the load patterns through a simplified aerodynamic model, which among other things focuses on a reasonable representation of the skewed wake effect. Establishing a suitable structure of the feedforward controller follows. The paper concludes with a comparison of fatigue load reductions achieved by three different controllers. Firstly, a well-known feedback individual pitch control; secondly, a feedforward controller for pure wind shear compensation and thirdly, this new feedforward controller to compensate wind shear and yawed inflow. The last two controllers use ideal lidar measurement chains.

  4. A Monte Carlo simulation technique for low-altitude, wind-shear turbulence

    Science.gov (United States)

    Bowles, Roland L.; Laituri, Tony R.; Trevino, George

    1990-01-01

    A case is made for including anisotropy in a Monte Carlo flight simulation scheme of low-altitude wind-shear turbulence by means of power spectral density. This study attempts to eliminate all flight simulation-induced deficiencies in the basic turbulence model. A full-scale low-altitude wind-shear turbulence simulation scheme is proposed with particular emphasis on low cost and practicality for near-ground flight. The power spectral density statistic is used to highlight the need for realistic estimates of energy transfer associated with low-altitude wind-shear turbulence. The simulation of a particular anisotropic turbulence model is shown to be a relatively simple extension from that of traditional isotropic (Dryden) turbulence.

  5. A microcomputer-based data acquisition and control system for the direct shear, ring shear, triaxial shear, and consolidation tests

    Science.gov (United States)

    Powers, Philip S.

    1983-01-01

    This report is intended to provide internal documentation for the U.S. Geological Survey laboratory's automatic data acquisition system. The operating procedures for each type of test are designed to independently lead a first-time user through the various stages of using the computer to control the test. Continuing advances in computer technology and the availability of desktop microcomputers with a wide variety of peripheral equipment at a reasonable cost can create an efficient automated geotechnical testing environment. A geotechnical testing environment is shown in figure 1. Using an automatic data acquisition system, laboratory test data from a variety of sensors can be collected, and manually or automatically recorded on a magnetic device at the same apparent time. The responses of a test can be displayed graphically on a CRT in a matter of seconds, giving the investigator an opportunity to evaluate the test data, and to make timely, informed decisions on such matters as whether to continue testing, abandon a test, or modify procedures. Data can be retrieved and results reported in tabular form, or graphic plots, suitable for publication. Thermistors, thermocouples, load cells, pressure transducers, and linear variable differential transformers are typical sensors which are incorporated in automated systems. The geotechnical tests which are most practical to automate are the long-term tests which often require readings to be recorded outside normal work hours and on weekends. Automation applications include incremental load consolidation tests, constant-rate-of-strain consolidation tests, direct shear tests, ring shear tests, and triaxial shear tests.

  6. Accounting for the speed shear in wind turbine power performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.

    2010-04-15

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and therefore of the power output, cannot be ignored any longer. Primary effects on the power performance are from the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were considered both resulting in the reduction of the scatter in the power curve. As a lidar wind profiler can measure the wind speed at several heights within the rotor span, the wind speed profile is described with more accuracy than with the power law model. The equivalent wind speed derived from measurements, including at least one measurement above hub height, resulted in a smaller scatter in the power curve than the equivalent wind speed derived from profiles extrapolated from measurements

  7. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Liu, D.; Polinder, H.; Abrahamsen, Asger Bech; Ferreira, J.A.

    2017-01-01

    This paper aims at assessing the potential of partially superconducting generators for 10 MW direct-drive wind turbines by investigating their performance for a very wide range of excitation currents. Performance indicators such as shear stress and efficiency and other generator characteristics are

  8. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  9. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    itself depends on the wind speed profile, especially for large turbines. Therefore, it is important to characterize the wind profile in front of the turbine, and this should be preferably achieved by measuring the wind speed over the vertical range between lower and higher rotor tips. In this paper, we...... describe an experiment in which wind speed profiles were measured in front of a multimegawatt turbine using a ground–based pulsed lidar. Ignoring the vertical shear was shown to overestimate the kinetic energy flux of these profiles, in particular for those deviating significantly from a power law profile....... As a consequence, the power curve obtained for these deviant profiles was different from that obtained for the ‘near power law’ profiles. An equivalent wind speed based on the kinetic energy derived from the measured wind speed profile was then used to plot the performance curves. The curves obtained for the two...

  10. Automatic detection of low altitude wind shear due to gust fronts in the terminal Doppler weather radar operational demonstration

    Science.gov (United States)

    Klingle-Wilson, Diana

    1990-01-01

    A gust front is the leading edge of the cold air outflow from a thunderstorm. Wind shears and turbulence along the gust front may produce potentially hazardous conditions for an aircraft on takeoff or landing such that runway operations are significantly impacted. The Federal Aviation Administration (FAA) has therefore determined that the detection of gust fronts in the terminal environment be an integral part of the Terminal Doppler Weather Radar (TDWR) system. Detection of these shears by the Gust Front Algorithm permits the generation of warnings that can be issued to pilots on approach and departure. In addition to the detection capability, the algorithm provides an estimate of the wind speed and direction following the gust front (termed wind shift) and the forecasted location of the gust front up to 20 minutes before it impacts terminal operations. This has shown utility as a runway management tool, alerting runway supervisors to approaching wind shifts and the possible need to change runway configurations. The formation and characteristics of gust fronts and their signatures in Doppler radar data are discussed. A brief description of the algorithm and its products for use by Air Traffic Control (ATC), along with an assessment of the algorithm's performance during the 1988 Operational Test and Evaluation, is presented.

  11. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    Science.gov (United States)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  13. Gusts and Shear Within Hurricane Eyewalls Can Exceed Offshore Wind-Turbine Design Standards

    CERN Document Server

    Worsnop, Rochelle P; Bryan, George H; Damiani, Rick; Musial, Walt

    2016-01-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than a Category 2. We examine the most turbulent portion of a hurricane (the eyewall) using large-eddy simulations with Cloud Model 1 (CM1). Gusts and mean wind speeds near the eyewall exceed the current design threshold of 50 m s-1 mean wind and 70 m s-1 gusts for Class I turbines. Gust factors are greatest at the eye-eyewall interface. Further, shifts in wind direction at wind turbine hub height suggest turbines must rotate into the wind faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50 deg) suggest that veer should be considered in design standards.

  14. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  15. First observation of mesospheric wind shear as high as 330 m s−1 km−1

    Directory of Open Access Journals (Sweden)

    D. Offermann

    Full Text Available Mesospheric wind profiles with an altitude resolution of 25 m have been obtained by means of radar tracking of foil chaff clouds. Such experiments were performed during winter 1990 at Biscarrosse, France (44°N, 1°W. On one flight, a wind shear as high as 330 m s–1 km–1 at 87.4 km and a region of dynamical instability between 86 and 88 km was measured. This wind shear is believed to be the largest value ever measured in the mesosphere. The region of dynamical instability results from a superposition of two wave motions, and is found to link well with enhanced turbulence and small-scale wave activity.

  16. Assessment of Wind Shear and Wind Energy Potential in the Baltic Sea Region of Latvia

    Science.gov (United States)

    Bezrukovs, V.; Bezrukovs, Vl.; Zacepins, A.; Komashilovs, V.

    2015-04-01

    The paper is devoted to the investigation into the wind energy potential based on long-term observations of the wind speed and energy density fluctuations at heights from 10 to 160 m on the Baltic Sea coast of Latvia. During the observations (2004 - 2013), the wind speed and direction values were measured, and the statistical database was accumulated using a LOGGER 9200 Symphonie measuring systems mounted on 60 m masts - one on the western coast and another on the north-east of Latvia. From June 2011 to May 2012, these measurements were complemented with the data for the heights from 40 to 160 m obtained by means of a ZephIR lidar and with the metrological data provided by "Latvian Environment, Geology and Meteorology Centre" for the same period. The graphs of seasonal fluctuations in the wind speed were obtained for the heights up to 160 m by measurements over the period of 2007 - 2013. The results of the research on the wind speed distribution up to 200 m are promising for evaluation of the wind energy potential of Latvia and will be helpful in assessment of prospective sites for construction of WPPs. Zinātniskais raksts ir veltīts pētījumam par vēja enerģijas potenciālu Latvijas teritorijā, Baltijas jūras piekrastē, balstoties uz ilgtermiņa vēja ātruma un vēja enerģijas blīvuma svārstību novērojumiem no 10 līdz 160 metriem augstumā. Vēja ātruma un vēja virziena mērījumu dati tika iegūti un apkopoti statistiskajā datubāzē laika periodā no 2004 līdz 2013. gadam, izmantojot mērīšanas sistēmu LOGGER 9200 Symphonie, kas bija ierīkotā uz 60 metru augsta masta - viena rietumu piekrastē un otra Latvijas ziemeļu-austrumos. No 2011. gada jūnija līdz 2012. gada maijam mērījumu datubāze tika papildināta ar datiem, kas tika iegūti ar lidaruZephIR augstumos no 40 līdz 160 metriem, un datiem no "Latvijas Vides, ģeoloģijas un meteoroloģijas centra" tam pašam laika periodam. Analizējot mērījumus 2007. g.-2013. g., grafiki ar

  17. First wind shear observation in PMSE with the tristatic EISCAT VHF radar

    Science.gov (United States)

    Mann, I.; Häggström, I.; Tjulin, A.; Rostami, S.; Anyairo, C. C.; Dalin, P.

    2016-11-01

    The Polar Summer Mesosphere has the lowest temperatures that occur in the entire Earth system. Water ice particles below the optically observable size range participate there in the formation of strong radar echoes (Polar Mesospheric Summer Echoes, PMSE). To study PMSE we carried out observations with the European Incoherent Scatter (EISCAT) VHF and EISCAT UHF radar simultaneously from a site near Tromsø (69.58°N, 19.2272°E) and observed VHF backscattering also with the EISCAT receivers in Kiruna (67.86°N, 20.44°E) and Sodankylä (67.36°N, 26.63°E). This is one of the first tristatic measurements with EISCAT VHF, and we therefore describe the observations and geometry in detail. We present observations made on 26 June 2013 from 7:00 to 13:00 h UT where we found similar PMSE patterns with all three VHF receivers and found signs of wind shear in PMSE. The observations suggest that the PMSE contains sublayers that move in different directions horizontally, and this points to Kelvin-Helmholtz instability possibly playing a role in PMSE formation. We find no signs of PMSE in the UHF data. The electron densities that we derive from observed incoherent scatter at UHF are at PMSE altitudes close to the noise level but possibly indicate reduced electron densities directly above the PMSE.

  18. Solid-state coherent laser radar wind shear measuring systems

    Science.gov (United States)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  19. directional considerations for extreme wind climatic events in the ...

    African Journals Online (AJOL)

    Dr Obe

    analysis is performed, taking into account directional wind information, as described in krishnasamy [2]. Wind speed data obtained from the meteorological section of the. Nigerian Civil Aviation Lagos were used for analysis. 5. DESIGN OF THE LINE SPAN. In order to obtain a reasonably accurate estimate of wind directions, ...

  20. Turbulent structure above wind-sheared air-water interface

    Science.gov (United States)

    Siddiqui, Kamran; Uddin, Nasir

    2006-11-01

    The flow dynamics immediately above and below the air-water interface in the presence of wind and waves is very challenging. The understanding of flow dynamics in near-interfacial regions is vital to improve our knowledge of the physical mechanisms responsible for the heat, mass and momentum transport across the interface. The measurement of airside velocity field close to the fluctuating water surface in the presence of waves is very challenging. The difficulty arises in the region between the wave crest and trough, where any particular spatial location lies sometimes in water and sometimes in air, which is the main obstacle in using point measurement techniques in this region. We report on a series of laboratory experiments conducted to investigate the airflow structure above the wavy water surface using PIV. The results have shown that the flow characteristics in the crest-trough region above the waves are significantly different from that at greater heights. The results showing the turbulent structure in this region will be presented and discussed.

  1. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    Science.gov (United States)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  2. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    Science.gov (United States)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  3. Comparison of NWP wind speeds and directions to measured wind speeds and directions

    DEFF Research Database (Denmark)

    Astrup, Poul; Mikkelsen, Torben

    Numerical Weather Predictions (NWP) of wind speed and direction has been compared to measurements for seven German sites for nuclear power plants, and for Risø, the site of the Danish nuclear research reactors now being decommissioned . For the German sites the data cover approximately three month...

  4. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    Science.gov (United States)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  5. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    Science.gov (United States)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  6. An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm

    Science.gov (United States)

    Evans, Joni K.

    2013-01-01

    The focal point of the study reported here was the definition and examination of turbulence, wind shear and thunderstorm in relation to aviation accidents. NASA project management desired this information regarding distinct subgroups of atmospheric hazards, in order to better focus their research portfolio. A seven category expansion of Kaplan's turbulence categories was developed, which included wake turbulence, mountain wave turbulence, clear air turbulence, cloud turbulence, convective turbulence, thunderstorm without mention of turbulence, and low altitude wind shear, microburst or turbulence (with no mention of thunderstorms).More than 800 accidents from flights based in the United States during 1987-2008 were selected from a National Transportation Safety Board (NTSB) database. Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor in the accident report, and each accident was assigned to only one hazard category. This report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time of the accident.

  7. Doppler radar spectral width broadening due to beamwidth and wind shear

    Directory of Open Access Journals (Sweden)

    G. D. Nastrom

    1997-06-01

    Full Text Available The spectral width observed by Doppler radars can be due to several effects including the atmospheric turbulence within the radar sample volume plus effects associated with the background flow and the radar geometry and configuration. This study re-examines simple models for the effects due to finite beamwidth and vertical shear of the horizontal wind. Analytic solutions of 1- and 2-dimensional models are presented. Comparisons of the simple 2-dimensional model with numerical integrations of a 3-dimensional model with a symmetrical Gaussian beam show that the 2-dimensional model is usually adequate. The solution of the 2-dimensional model gives a formula that can be applied easily to large data sets. Analysis of the analytic solutions of the 2-dimensional model for off-vertical beams reveals a term that has not been included in mathematical formulas for spectral broadening in the past. This term arises from the simultaneous effects of the changing geometry due to curvature within a finite beamwidth and the vertical wind shear. The magnitude of this effect can be comparable to that of the well-known effects of beam-broadening and wind shear, and since it can have either algebraic sign, it can significantly reduce (or increase the expected spectral broadening, although under typical conditions it is smaller than the beam-broadening effect. The predictions of this simple model are found to be consistent with observations from the VHF radar at White Sands Missile Range, NM.

  8. Doppler radar spectral width broadening due to beamwidth and wind shear

    Directory of Open Access Journals (Sweden)

    G. D. Nastrom

    Full Text Available The spectral width observed by Doppler radars can be due to several effects including the atmospheric turbulence within the radar sample volume plus effects associated with the background flow and the radar geometry and configuration. This study re-examines simple models for the effects due to finite beamwidth and vertical shear of the horizontal wind. Analytic solutions of 1- and 2-dimensional models are presented. Comparisons of the simple 2-dimensional model with numerical integrations of a 3-dimensional model with a symmetrical Gaussian beam show that the 2-dimensional model is usually adequate. The solution of the 2-dimensional model gives a formula that can be applied easily to large data sets. Analysis of the analytic solutions of the 2-dimensional model for off-vertical beams reveals a term that has not been included in mathematical formulas for spectral broadening in the past. This term arises from the simultaneous effects of the changing geometry due to curvature within a finite beamwidth and the vertical wind shear. The magnitude of this effect can be comparable to that of the well-known effects of beam-broadening and wind shear, and since it can have either algebraic sign, it can significantly reduce (or increase the expected spectral broadening, although under typical conditions it is smaller than the beam-broadening effect. The predictions of this simple model are found to be consistent with observations from the VHF radar at White Sands Missile Range, NM.

  9. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region

    Directory of Open Access Journals (Sweden)

    Svenja E. Bierstedt

    2015-10-01

    Full Text Available It is not clear to what extent the variations of seasonal mean winds and seasonal extreme winds are related. We investigate this relationship for the Baltic Sea area by analysing two regional climate gridded data sets, coastDat2 and HiResAFF, for the periods 1948–2009 and 1850–2009, respectively. Both data sets are based on regional climate simulations incorporating information from observations with the aim of reproducing the observed trajectory of climate variables. We compare the wind direction distribution of mean and extreme wind events by analysing seasonal wind roses. Mean wind directions display a more isotropic distribution, with a seasonally varying maximum. Extreme winds are much more constrained to south-westerly and westerly directions. The co-variability in time between the wind speed along the dominant directions of seasonal mean and the seasonal extreme winds was investigated using a complex correlation coefficient. This coefficient enables the simultaneous investigation of the co-variability of two-dimensional variables, for example wind. This coefficient is small for all seasons, indicating a very weak co-variance in time between seasonal mean and seasonal extremes. Hence, deviations in the direction of the mean wind are not a good indicator for deviations in the direction of extreme winds. We also assess the spatial structure and temporal variability of mean and extreme wind statistics using a principal component analysis. The principal components exhibit no significant long-term trends over the simulation periods, although multidecadal trends are detected for some periods and seasons. In recent decades, wintertime mean and extremes shifted to a more south-westerly direction. In the other seasons, no trends in wind directions are detected. We also investigate the possibility that seasonal patterns of extreme winds might persist over several adjacent seasons. No such persistent patterns can be identified, and hence extreme

  10. Estimating a wind shear detection range for different altitude levels in the troposphere

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available A so-called wind shear (a vector difference of wind speeds in two points of the space referred to the distance between them is of essential practical interest to air force. The wind shear is a hidden and cliffhanging phenomenon. The growth of aircraft incidents at their taking off and landing have drawn attention to this phenomenon.Laser methods are one of the advanced remote techniques to measure a speed and detect a wind shear. Remote laser methods of wind speed measurement are divided into Doppler and correlation ones. More simple (and, respectively, demanding less expensive equipment are correlation methods and near to them non-Doppler techniques.Today almost all existing wind correlation lidars run in the visible range. However, in terms of safety for an eye, other ranges: near infrared (IK and ultra-violet (UF ones are also of interest.The work assesses a sounding range of the aircraft lidar in UF, visible, and near IK spectral ranges to solve a problem of wind shear detection for different altitude levels in the troposphere.Results of calculations show that the sounding ranges decrease with increasing flight altitude (at lidar parameters used in calculations to be in range from ~ 2.7-3.3 km (the lowest atmospheric layer height ~ 0 to ~ 200 - 300 m (a flight altitude of 10 km. And the main reduction of the sounding range vs height is within the range of heights of 5-10 km. Such dependence is caused by the strong reduction of aerosol extinction and atmosphere scattering with the altitude increase in this altitude range.In a ground layer of the terrestrial atmosphere (height ~ 0 the greatest sounding range is realized for a wave length of 0.532 microns. With increasing flight altitude a difference in sounding ranges for the wave lengths of 0.355; 9.532 and 1.54 microns decreases, and at big heights the greatest range of sounding is realized for a wave length of 1.54 microns.

  11. The Crucial Records Number to Retrieve Offshore Directional Wind Distribution

    Science.gov (United States)

    Zhu, X.; Li, Z.; Yang, X.

    2017-02-01

    The wind energy production estimates are very important to a wind power project. And, the remote sensing technique has been widely used to obtain the offshore wind speed and direction which could be used to calculate the wind energy of potential wind farm. However, the directional wind energy distributions are rarely studied, which also play important roles in analysis of wind farms’ potential power. In this article, the minimum number of records to obtain offshore directional wind distribution is stated by simulation experiment on In-situ dataset. The NDBC buoy dataset is randomly and multiply sampled to build new dataset under different numbers of observation records, which vary from 21 to 800. The resample under the same number of observation is repeated for 100 times to build dataset group. The directional wind distribution of new dataset is compared with the one of original buoy dataset, and errors made by dataset with fewer records are calculated. Besides, the 10th largest error in the sampled dataset group, which have the same number of observation records, is regarded as the error bound for those dataset. The change rule of the error bound is shown by fitted curves. Based on the fitted curves, minimum number of records is calculated. By this simulation experiment, the minimum number of records to represent wind direction frequency is 350, and 800 for annual direction distributions of wind energy density. To reduce the number of records needed in retrieval, some methods are discussed and tested.

  12. Full scale experimental analysis of wind direction changes (EOD)

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    the magnitudes of a joint gust event defined by a simultaneously wind speed- and direction change in order to obtain an indication of the validity of the magnitudes specified in the IEC code. The analysis relates to pre-specified recurrence periods and is based on full-scale wind field measurements. The wind...

  13. Structural Flexibility of Large Direct Drive Generators for Wind Turbines

    NARCIS (Netherlands)

    Shrestha, G.

    2013-01-01

    The trend in wind energy is towards large offshore wind farms. This trend has led to the demand for high reliability and large single unit wind turbines. Different energy conversion topologies such as multiple stage geared generators, single stage geared generators and gearless (direct drive)

  14. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...... directions: the meso‐analysis of the Japan Meteorological Agency (MANAL), the SeaWinds microwave scatterometer on QuikSCAT and the National Center for Environmental Prediction final operational global analysis data (NCEP FNL). In comparison with the errors of the SAR‐retrieved wind speeds obtained using...

  15. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  16. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    Science.gov (United States)

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  17. First observation of mesospheric wind shear as high as 330 m s-1 km-1

    Science.gov (United States)

    Wu, Yong-Fu; Widdel, H.-U.; Offermann, D.

    1995-09-01

    Mesospheric wind profiles with an altitude resolution of 25 m have been obtained by means of radar tracking of foil chaff clouds. Such experiments were performed during winter 1990 at Biscarrosse, France (44°N, 1°W). On one flight, a wind shear as high as 330 m s-1 km-1 at 87.4 km and a region of dynamical instability between 86 and 88 km was measured. This wind shear is believed to be the largest value ever measured in the mesosphere. The region of dynamical instability results from a superposition of two wave motions, and is found to link well with enhanced turbulence and small-scale wave activity. Acknowledgements. I thank D. R. McDiarmid of the Herzberg Institute of Astrophysics, National Research Council, Canada, for important ideas and discussions during the development of this work. I thank the referees for useful comments which have improved the paper. I also thank E.M. Poulter of NIWA for helpful suggestions, and for reading the manuscript and making useful comments. The work was supported by contract CO1309 of the New Zealand Foundation for Research, Science and Technology. Topical Editor C.-G. Fälthammar thanks K. Mursula and W. J. Hughes for their help in evaluating this paper.--> Correspondence to: W. Allan-->

  18. Wave-induced bottom shear stress estimation in shallow water exemplified by using deep water wind statistics

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    2017-04-01

    Full Text Available The paper provides a simple and analytical method which can be used to give estimates of the wave-induced bottom shear stress for very rough beds and mud beds in shallow water based on wind statistics in deep water. This is exemplified by using long-term wind statistics from the northern North Sea, and by providing examples representing realistic field conditions. Based on, for example, global wind statistics, the present results can be used to make estimates of the bottom shear stress in shallow water.

  19. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    Science.gov (United States)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  20. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    Science.gov (United States)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  1. Convectively generated stratospheric gravity waves - The role of mean wind shear

    Science.gov (United States)

    Holton, J. R.; Durran, D.

    1993-01-01

    A two-dimensional numerical simulation of mid-latitude squall lines is used to study the properties of storm-induced stratospheric gravity waves. Owing to the tendency for convective cells to form at the forward edge of a squall line, and then propagate toward the rear, the simulated storms preferentially generate gravity waves that propagate toward the rear of the storm. This anisotropy in gravity wave generation leads to a net vertical transfer of momentum into the stratosphere. Cases with and without stratospheric mean wind shear are compared. In the latter case Doppler shifting of the waves to lower frequencies leads to wave breaking and enhanced wave - mean-flow interaction.

  2. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    Science.gov (United States)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  3. Passively cooled direct drive wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  4. Climatology of Wind Direction Fluctuations at Risø

    DEFF Research Database (Denmark)

    Kristensen, Leif; Panofsky, H. A.

    1976-01-01

    Standard deviations of wind direction fluctuations at 76 m at Risø for the first half year of 1975 have been analyzed as functions of wind speed and temperature lapse rate, either measured near the surface or near the level of the azimuth variations. Between 31 and 37% of the variance...... of the standard deviations (σA) is accounted for by the predictors. For strong winds, σA approaches a constant, about 3.5°. This is consistent with the value expected for overwater trajectories. For lower speeds, σA generally increases with decreasing hydrostatic stability. Largest values are found with weakest...... winds. In unstable air, σA always decreases with increasing wind speed. In stable air, there is a minimum σA for a particular wind speed. These properties are compared with a new theory of fluctuations of horizontal wind components. An analysis of independent data (July–October, 1975) showed the same...

  5. Wind Shear, Gust, and Yaw-Induced Dynamic Stall on Wind-Turbine Blades

    Science.gov (United States)

    laBastide, B. P.; Wong, J. G.; Rival, D. E.

    2016-09-01

    This study examined the effect of a spanwise angle of attack gradient on the growth and stability of a dynamic stall vortex on a rotating blade. It was found that a spanwise angle of attack gradient induces a corresponding spanwise vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the blade. Specifically, when replicating the angle of attack gradient experienced by a wind turbine at the 30% span position during a gust event, the spanwise vorticity gradient was aligned such that circulation was transported from areas of high circulation to areas of low circulation. This in turn increased the local dynamic stall vortex growth rate, which corresponds to an increase in the lift coefficient, and a decrease in the local vortex stability at this point. Reversing the relative alignment of the spanwise vorticity gradient and spanwise flow results in circulation transport from towards areas of high circulation generation, which acted to reduce local circulation and thereby stabilize the vortex. This circulation redistribution behaviour describes a mechanism by which the fluctuating loads on a wind turbine are magnified, which is detrimental to turbine lifetime and performance.

  6. The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear

    Science.gov (United States)

    Ritchie, Elizabeth A.

    2003-01-01

    The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.

  7. The Orlando TDWR testbed and airborne wind shear date comparison results

    Science.gov (United States)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  8. Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device

    Science.gov (United States)

    Cen, Duofeng; Huang, Da

    2017-06-01

    Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.

  9. Spectrum characteristics of Denver and Philadelphia ground clutter and the problem of distinguishing wind shear targets from moving clutter

    Science.gov (United States)

    Mackenzie, Anne I.

    1992-01-01

    Spectral analysis of 1991 wind shear flight data has provided information about the power spectral density, spectral width, and velocity of ground clutter detected by the wind shear radar at several major airports. Ground clutter must be recognized and separated from weather targets before wind shear can be computed. Information will be presented characterizing and comparing ground clutter and weather target spectra. The information includes (1) spectral widths of stationary ground clutter seen at various scan and tilt angles, (2) power spectral density and velocity of moving ground clutter relative to the stationary ground clutter, and (3) spectral widths and velocities of weather targets. A summary of numerical results in the form of histograms and example numerical results in the form of spectral plots are presented.

  10. Future research directions to reconcile wind turbine - wildlife interactions

    NARCIS (Netherlands)

    May, R.; Gill, A.B.; Koppel, Johann; Langston, R.H.W.; Reichenbach, Marc; Scheidat, M.; Smallwood, Shawn; Voigt, C.; Hueppop, O.; Portman, Michelle

    2017-01-01

    Concurrent with the development of wind energy, research activity on wind energy generation and wildlife has evolved significantly during the last decade. This chapter presents an overview of remaining key knowledge gaps, consequent future research directions and their significance for management

  11. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available -1 European-African Conference on Wind Engineering 2013, Robinson College, Cambridge, July 2013 Directional Analysis of Extreme Winds under Mixed Climate Conditions *Andries Kruger1, Adam Goliger2 and Johan Retief3 1Climate Service, South African...

  12. Direct observation of shear deformation during equal channel angular pressing of pure aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shan, A. [Shanghai Jiao Tong Univ. (China); Moon, I.G.; Ko, H.S.; Park, J.W. [Korean Inst. of Science and Technology, Seoul (Korea, Republic of). Div. of Metals

    1999-07-23

    Equal Channel Angular (ECA) pressing is a method through which intense plastic strain can be introduced into materials by simple shear. It is suggested that during ECA pressing, only simple shear deformation is introduced into the specimen. The degree of shear deformation can be well predicted by theory and is assumed to be uniform across the specimen except the top and end part. The theory had been proved to be correct by observation of ECA pressing of plasticine with a transparent plexiglass tool and by finite element modeling. However, direct observation of shear deformation had not yet been conducted in metallic materials. One difficulty in observing the shear deformation is that marks or scratches on the surface of the specimen will be erased or destroyed by severe surface deformation caused by friction. In this research, a special method is employed to eliminate the surface friction effect so that a clear shear deformation figure can be observed.

  13. Direct calculation of wind turbine tip loss

    DEFF Research Database (Denmark)

    Wood, D.H.; Okulov, Valery; Bhattacharjee, D.

    2016-01-01

    The usual method to account for a finite number of blades in blade element calculations of wind turbine performance is through a tip loss factor. Most analyses use the tip loss approximation due to Prandtl which is easily and cheaply calculated but is known to be inaccurate at low tip speed ratio...

  14. Wind gust measurements using pulsed Doppler wind-lidar: comparison of direct and indirect techniques

    DEFF Research Database (Denmark)

    The measurements of wind gusts, defined as short duration wind speed maxima, have traditionally been limited by the height that can be reached by weather masts. Doppler lidars can potentially provide information from levels above this and thereby fill this gap in our knowledge. To measure the 3D...... wind vector, we need information from at least three different lines of sight pointing towards different directions. The instrument sensitivity depends on the amount of aerosol present and the velocity measurement uncertainty is directly related to the amount of signal. With the commercial lidars...... is 3.9 s) which can provide high resolution turbulent measurements, both in the vertical direction, and potentially in the horizontal direction. In this study we explore different strategies of wind lidar measurements to measure the wind speed maxima. We use a novel stochastic turbulence reconstruction...

  15. Healing and Shear Stress Reduction on Single Fracture of Rock Salt and Limestone under Slide-Hold-Slide Direct Shear Condition

    Science.gov (United States)

    Kishida, K.; Yano, T.; Yasuhara, H.

    2012-12-01

    In order to clarify the influence of the holding state on the shear strength in the shear process of a single rock fracture, slide-hold-slide (SHS) direct shear-flow coupling tests were carried out on single rock fractures at several confining stresses and under saturated/unsaturated conditions (Kishida, et al., 2011). Consequently, the mortar specimen could be confirmed as the significant shear strength recovery on the SHS process. In this research, the SHS direct shear tests are carried out on the halite (rock salt) and the limestone. In the case of rock salt, a single tensile fracture is artificially created by cutting away. On the other hand, the limestone has a natural rock joint. The experiments are carried out under various normal confining stress conditions and are employed various holding period at the residual state. Figure 1 shows the shear stress - shear displacement of the SHS direct shear experiments on the rock salt. From all cases, the shear stress increases at the initial phase of the experiments, and then, the shear stress reaches at the peak shear strength. After that, the shear stress slightly decreases such as strain softening. Finally, the shear stress reaches to the residual stress state. In every SHS processes, the shear stress is reducing in various hold period. And then, the shear stress is increasing in the process of re-sliding. The shear stress in the process of re-sliding takes over the value at the start time of the holding process. The shear stress reaches at the peak, and then, it reaches the residual stress state. In all cases, as the holding period becomes longer, it is confirmed that the decrement of the shear stress in the holding process is increasing and the increment of the shear stress at the re-sliding process is increasing. Therefore, it is confirmed that the time dependence of shear strength recovery can be observed. In addition, Dieterich's A constant value for the regression lines (Dieterich, 1972, 1994) is plotted

  16. Wind direction variations in the natural wind – A new length scale

    DEFF Research Database (Denmark)

    Johansson, Jens; Christensen, Silas Sverre

    2018-01-01

    During an observation period of e.g. 10min, the wind direction will differ from its mean direction for short periods of time, and a body of air will pass by from that direction before the direction changes once again. The present paper introduces a new length scale which we have labeled the angul...

  17. Wind direction variability in Afternoon and Sunset Turbulence

    Science.gov (United States)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations

  18. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    Science.gov (United States)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads

  19. Wind turbine having a direct-drive drivetrain

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  20. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    Science.gov (United States)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  1. An airborne FLIR detection and warning system for low altitude wind shear

    Science.gov (United States)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.

  2. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    Science.gov (United States)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  3. Nonresonant absorption of shear Alfven waves. [in solar coronal heating and solar wind acceleration

    Science.gov (United States)

    Strauss, H. R.

    1991-01-01

    Resonant absorption of shear Alfven waves is thought to be a likely candidate to explain heating of the solar corona and acceleration of the solar wind. A difficulty with the theory is that the absorption process is slow. Moreover, heating occurs in a very thin layer. A faster absorption mechanism is nonresonant absorption by compressional viscosity, in a curved magnetic field. Heating is nonresonant and is not localized to a narrow layer. The effect could be quite important where the solar coronal magnetic field is strongly curved, in the chromosphere. It could also be important on open field lines in the upper corona, where the compressional viscosity is large. It might imply that a significant part of outgoing Alfven waves are absorbed in the corona.

  4. Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm

    DEFF Research Database (Denmark)

    Gaumond, M.; Réthoré, Pierre-Elouan; Ott, Søren

    2014-01-01

    Accurately quantifying wind turbine wakes is a key aspect of wind farm economics in large wind farms. This paper introduces a new simulation post-processing method to address the wind direction uncertainty present in the measurements of the Horns Rev offshore wind farm. This new technique replaces...... the traditional simulations performed with the 10 min average wind direction by a weighted average of several simulations covering a wide span of directions. The weights are based on a normal distribution to account for the uncertainty from the yaw misalignment of the reference turbine, the spatial variability...... of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape...

  5. Post-processing method for wind speed ensemble forecast using wind speed and direction

    Science.gov (United States)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  6. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    Science.gov (United States)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  7. Modulation of Atmospheric Nonisothermality and Wind Shears on the Propagation of Seismic Tsunami-Excited Gravity Waves

    Directory of Open Access Journals (Sweden)

    John Z. G. Ma

    2016-01-01

    Full Text Available We study the modulation of atmospheric nonisothermality and wind shears on the propagation of seismic tsunami-excited gravity waves by virtue of the vertical wavenumber, m (with its imaginary and real parts, m i and m r , respectively, within a correlated characteristic range of tsunami wave periods in tens of minutes. A generalized dispersion relation of inertio-acoustic-gravity (IAG waves is obtained by relaxing constraints on Hines’ idealized locally-isothermal, shear-free and rotation-free model to accommodate a realistic atmosphere featured by altitude-dependent nonisothermality (up to 100 K/km and wind shears (up to 100 m/s per km. The obtained solutions recover all of the known wave modes below the 200-km altitude where dissipative terms are assumed negligible. Results include: (1 nonisothermality and wind shears divide the atmosphere into a sandwich-like structure of five layers within the 200-km altitude in view of the wave growth in amplitudes: Layer I (0–18 km, Layer II (18–87 km, Layer III (87–125 km, Layer IV (125–175 km and Layer V (175–200 km; (2 in Layers I, III and V, the magnitude of m i is smaller than Hines’ imaginary vertical wavenumber ( m i H , referring to an attenuated growth in the amplitudes of upward propagating waves; on the contrary, in Layers II and IV, the magnitude of m i is larger than that of m i H , providing a pumped growth from Hines’ model; (3 nonisothermality and wind shears enhance m r substantially at an ∼100-km altitude for a tsunami wave period T t s longer than 30 min. While Hines’ model provides that the maximal value of m r 2 is ∼0.05 (1/km 2 , this magnitude is doubled by the nonisothermal effect and quadrupled by the joint nonisothermal and wind shear effect. The modulations are weaker at altitudes outside 80–140-km heights; (4 nonisothermality and wind shears expand the definition of the observation-defined “damping factor”, β: relative to Hines’ classical wave

  8. Vectorial statistics for the standard deviation of wind direction

    Science.gov (United States)

    Farrugia, Pierre S.; Micallef, Alfred

    2017-10-01

    The standard deviation of wind direction is an important parameter in atmospheric pollution management. It can be used to calculate the rate of horizontal diffusion and from this the transport and dispersion of air contaminants can be determined. The standard deviation of wind direction cannot be calculated directly from customary linear statistics, mainly because of its periodic nature which makes the zero position arbitrary. Various algorithms have been proposed to estimate its value. The methodologies adopted in meteorology implicitly assume that the wind angle can be treated independently of the wind speed. Such an assumption might not be appropriate in some instances, as will be shown in this work by means of an example. To overcome this limitation, a new algorithm that takes into account both the periodic and the vectorial nature of the wind direction will be proposed. This is done by weighing each sample value with the corresponding wind speed. The results obtained from the new method were compared to those determined from algorithms available in literature using measured data. The comparison indicates that while the behavior is similar, differences do exist. Further investigation indicated that while the differences can be small, they might be physically important.

  9. Design and optimization of 8 MW directly driven surface mounted permanent magnet wind generators

    Energy Technology Data Exchange (ETDEWEB)

    Shanming, W. [Tsinghua Univ., Beijing (China). Inst. of Power Electronics and Electrical Machine System, State Key Lab of Power Systems, Dept. of Electrical Engineering; Schaefer, U. [Univ. of Technlogy, Berlin (Germany). Inst. of Energy and Automation, Dept. of Electrical Drive Technology

    2007-07-01

    An 8 MW directly-driven surface-mounted permanent magnet synchronous wind generator was described. The electromagnetic field (EMF), armature reaction reactance, and different parts of the generator's leakage reactance were analyzed in order to optimize the generator. Air gap shear stress was measured and optimized in order to increase the power density of the generator. Pole pair numbers were optimized and slot numbers were determined in order to increase generator performance. Parallel branch numbers were set to reduce mechanical errors. The height of the permanent magnet was set to resist the demagnetization effect of stator currents under normal and fault conditions. Slot leakage inductance was decreased while the slot fill factor was set at 0.5. Parameters and performance of the generator were then analyzed using SPEED software. The optimization study showed that the power factor was 0.909 when the generator's rated power of 8 MW was reached. The study also demonstrated that leakage reactances play an important role in total synchronous reactances. Formulae were then developed to accurately calculate winding and differential leakage reactance. Designs with various core lengths, pole pair numbers, and stator windings were modelled using the program. It was concluded that more than 50 per cent of the synchronous reactance is comprised of total leakage reactance. Airgap shear stress for the design was set at 55 kPa. 14 refs., 4 tabs., 2 figs.

  10. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  11. Direct displacement-based design of special composite RC shear walls with steel boundary elements

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2016-06-01

    Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.

  12. Shear bond strength comparison between direct and indirect bonded orthodontic brackets.

    Science.gov (United States)

    Yi, Gia K; Dunn, William J; Taloumis, Louis J

    2003-11-01

    The purpose of this study was to compare the shear bond strength of orthodontic brackets bonded to teeth with either an indirect bonding technique and a new adhesive resin or a direct bonding technique and a light-activated adhesive. Fifty-four extracted premolars were mounted in acrylic blocks and randomly divided into 2 groups (n = 27). In one group, orthodontic brackets were bonded to premolars with an indirect bonding adhesive system; in the other, brackets were bonded with the direct method. Seventy-two hours later, the brackets were placed in a testing machine and subjected to a shear force with a crosshead speed of 1 mm/minute. The mean shear bond strengths for the indirect and direct groups were 11.2 and 10.9 MPa, respectively, both exceeding the minimum shear bond strength range of 5.9 to 7.8 MPa often cited in the literature for clinical success. Data were analyzed with Student t tests. No significant difference in shear bond strength between the 2 groups was detected (P =.76). Resin remnants on orthodontic bracket pads were observed with a dissecting microscope at 30x magnification and scored with a modified adhesive remnant index. There was no significant difference between groups (P >.05). There was also no correlation between shear bond strength and the percentage of adhesive resin remnants left on the orthodontic bracket. Under the conditions of this study, no evidence suggests a difference in shear bond strength of orthodontic brackets bonded to tooth enamel, whether they are bonded with the direct or indirect technique.

  13. Wind direction and its linkage with Vibrio cholerae dissemination.

    Science.gov (United States)

    Paz, Shlomit; Broza, Meir

    2007-02-01

    The relevance of climatic events as causative factors for cholera epidemics is well known. However, examinations of the involvement of climatic factors in intracontinental disease distribution are still absent. The spreading of cholera epidemics may be related to the dominant wind direction over land. We examined the geographic diffusion of three cholera outbreaks through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970-1971 and b) again in 2005-2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992-1993. We also discuss the possible influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Analysis of air pressure data at sea level and at several altitudes over Africa, India, and Bangladesh show a correspondence between the dominant wind direction and the intracontinental spread of cholera. We explored the hypothesis that winds have assisted the progress of cholera Vibrios throughout continents. The current analysis supports the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. This finding may improve our understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease's geographic dissemination.

  14. Indirect versus direct bonding--a shear bond strength comparison: an in vitro study.

    Science.gov (United States)

    Swetha, M; Pai, Vinaya S; Sanjay, N; Nandini, S

    2011-07-01

    The process of bonding orthodontic appliances to the enamel surface of the teeth has come to the forefront as a major improvement in bonding techniques. The purpose of this study is to compare the shear bond strength of stainless steel orthodontic brackets bonded using conventional direct bonding and indirect bonding as described by Thomas. Forty sound human premolars were divided into two groups of 20 each. Group I samples were bonded directly on the tooth surface using concise two paste adhesive system after etching and drying. Group II samples were bonded indirectly on the tooth surface according to Thomas indirect bonding technique using concise two paste adhesive system. The stored specimen was tested for shear bond strength in an Instron universal testing machine at a crosshead speed of 0.5 mm/minute. Data obtained were subjected to statistical analysis. The results showed that there was no statistically significant difference in the shear bond strength between direct and indirect bonding techniques. Chi-square test showed that there were significant differences among the adhesive remnant index scores between direct and indirect bonding groups. In vitro shear bond strength comparison between direct and indirect-bonded attachments showed no significant difference between the two groups. Bond strength obtained with Thomas indirect bonding technique was comparable with direct bonding technique. Thomas indirect bonding technique can be used for bonding of the posterior teeth, where the risk of moisture contamination is high during bonding.

  15. 5MW Direct Drive Wind Turbine Generator Design

    DEFF Research Database (Denmark)

    Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe

    2012-01-01

    A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...

  16. Directional Considerations for Extreme Wind Climatic Events in the ...

    African Journals Online (AJOL)

    Because the extreme wind speed and direction are impossible to predict exactly, and any prediction is subject to uncertainties, the reliability of the line may be assumed only in terms of the probability that the available strength will be adequate to withstand the lifetime maximum load. A spatial interpolation approach was ...

  17. Induction Generators for Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2011-01-01

    This paper considers the use of a squirrel cage induction generator for a direct-drive wind turbine. Advantages of this topology include a simple/rugged construction, and no need for permanent magnets. A major focus of this paper is the choice of an appropriate pole number. An iterative, analytical...... reactance, and increasing the efficiency....

  18. Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting

    DEFF Research Database (Denmark)

    Gallego, Cristobal; Pinson, Pierre; Madsen, Henrik

    2011-01-01

    on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power......Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some...... of these effects by means of statistical models. To this end, a benchmarking between two different families of varyingcoefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused...

  19. Estimates of the low-level wind shear and turbulence in the vicinity of Kennedy International Airport on 24 June 1975

    Science.gov (United States)

    Lewellen, W. S.; Williamson, G. G.

    1976-01-01

    A study was conducted to estimate the type of wind and turbulence distributions which may have existed at the time of the crash of Eastern Airlines Flight 66 while attempting to land. A number of different wind and turbulence profiles are predicted for the site and date of the crash. The morning and mid-afternoon predictions are in reasonably good agreement with magnitude and direction as reported by the weather observer. Although precise predictions cannot be made during the passage of the thunderstorm which coincides with the time of the accident, a number of different profiles which might exist under or in the vicinity of a thunderstorm are presented. The profile that is most probable predicts the mean headwind shear over 100 m (300 feet) altitude change and the average fluctuations about the mean headwind distribution. This combination of means and fluctuations leads to a reasonable probability that the instantaneous headwind shear would equal the maximum value reported in the flight recorder data.

  20. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  1. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  2. Design Tool for Direct Drive Wind Turbine Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika

    The current work offers a comparison of the proposed machine geometries for 6 [MW] direct drive wind generator candidates with the prospective of up scaling to 20MW. The suggestions are based on a design tool especially built for this investigation. The in-built flexibility of the design tool gives....... A comparison of the selected machine types in view of up-scaling to 20 [MW] was performed. As an example fitness criterion, the use of active materials for the generators was considered. Based on this, suggestions for 20 [MW] generators were made. The results are discussed and future work, directions...

  3. Influence of Shear Stiffness Degradation on Crack Paths in Uni-Directional Composite Laminates

    Science.gov (United States)

    Satyanarayana, Arunkumar; Bogert, Phil B.

    2017-01-01

    Influence of shear stiffness degradation in an element, due to damage, on crack paths in uni-directional laminates has been demonstrated. A new shear stiffness degradation approach to improve crack path prediction has been developed and implemented in an ABAQUS/Explicit frame work using VUMAT. Three progressive failure analysis models, built-in ABAQUS (TradeMark), original COmplete STress Reduction (COSTR) and the modified COSTR damage models have been utilized in this study to simulate crack paths in five unidirectional notched laminates, 15deg, 30deg, 45deg, 60deg and 75deg under uniaxial tension load. Results such as crack paths and load vs. edge displacement curves are documented in this report. Modified COSTR damage model shows better accuracy in predicting crack paths in all the uni-directional laminates compared to the ABAQUS (TradeMark) and the original COSTR damage models.

  4. Multi-Pole HTS Generators for Direct Drive Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Seiler, Eugen

    In this presentation the feasibility of installing a 5MW direct drive superconducting generator for an offshore wind turbine is presented. The reference turbine is a geared 5MW wind turbine that has been installed offshore and has been documented extensively by the National Renewable Energy...... laboratory (NREL). The emphasis of the investigation is on cost and mass, where the cost limit for the active material is set at €1M; the active mass limit is set at 40 tons; and the outer diameter is 4.2 meters. The allowable engineering current densities have been estimated by measuring the magnetization...... on two different types of coated conductor. In the specific design the allowable current density was 300A/mm^2 for tape 1 and 70A/mm^2 for tape 2. The design is analytical, based on magnetic circuit analysis, which is validated by finite element modelling. The conclusion is that the either price...

  5. Testing of a direct drive generator for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sondergaard, L.M. [Riso National Laboratory, Roskilde (Denmark)

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  6. Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    OpenAIRE

    Marietti, Yannick; Debierre, Jean-Marc; Bock, Thomas-Michael; Kassner, Klaus

    2001-01-01

    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. ...

  7. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  8. Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth's magnetosphere.

    Science.gov (United States)

    Faganello, M; Califano, F; Pegoraro, F

    2008-01-11

    Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma.

  9. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    Directory of Open Access Journals (Sweden)

    Jin Tan

    2013-12-01

    Full Text Available This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected system is weak. Furthermore, the results of the theoretical analysis are validated through time domain simulations conducted in the two-area four-generator system and the Western Electric Coordinating Council 127 bus system.

  10. Dependence of the wind climate of Ireland on the direction distribution of geostrophic wind; Die Abhaengigkeit des Windklimas von Irland von der Richtungsverteilung des geostrophischen Windes

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.P. [Forskningcenter Risoe, Roskilde (Denmark). Afdelingen for Vindenergi og Atmosfaerefysik

    1998-01-01

    The wind climate of Ireland is calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The dependence of the simulated wind energy on the direction distribution of geostrophic wind is studied. As geostrophic winds from the south-west are most frequent, sites on the north-west coast are particularly suited for wind power stations. In addition, geostrophic wind increases from the south-east to the north-west. (orig.) [Deutsch] Das Windklima von Irland wurde mit dem Karlsruher Atmosphaerischen Mesoskaligen Modell KAMM berechnet. Hier wird die Abhaengigkeit der simultierten Windenergie von der Richtungsverteilung des geostrophischen Windes untersucht. Da geostrophische Winde aus Suedwest am haeufigsten vorkommen, eignet sich besonders die Nordwestkueste als Standort fuer Windkraftanlagen. Zusaetzlich nimmt auch der mittlere geostrophische Wind von Suedost nach Nordwest zu. (orig.)

  11. On the role of horizontal wind shears in the generation of F0.5 layers over the dip equatorial location of Thiruvananthapuram: A numerical simulation study

    Science.gov (United States)

    Mridula, N.; Pant, Tarun Kumar

    2017-03-01

    A numerical simulation is carried out to estimate the rate of convergence of ionization required to produce a F0.5 layer with peak plasma frequency (foF0.5) of 3.2 MHz from three different background layer densities, over Thiruvananthapuram (8.5°N; 77°E; dip latitude 0.5°N), a dip equatorial station in India. Further the simulation study is extended to understand the convergences required by considering the seasonal mean peak F0.5 layer frequencies also. One possible mechanism by which this convergence can be produced is by a horizontal shear in the meridional wind. The corresponding shears required to generate the layer with the above convergence conditions are estimated. It is found that gravity waves are capable of generating wind shears, leading to the pooling of ionization and the generation of the layer over the dip equator. A meridional wind with the gravity wave induced wind shear is numerically estimated. Finally, the short scale gravity waves of periods around 3-23 min have been inferred to be more efficient in generating the wind shear when compared to large scale horizontal waves leading to the generation of F0.5 layer.

  12. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  13. Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System

    OpenAIRE

    Rafael B. Rodrigues; Victor M. F. Mendes; João P. S. Catalão

    2012-01-01

    This paper is concerned with the protection of wind energy systems against the direct effects of lightning. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded as a serious problem. Nevertheless, very few studies exist yet in Portugal regarding lightning protection of wind energy systems using numerical codes. A new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, for the analysi...

  14. Generation of intermediately-long sea waves by weakly sheared winds

    CERN Document Server

    Chernyavski, V M; Golbraikh, E; Mond, M

    2010-01-01

    The present work concerns the numeric modeling of the sea-wave instability under the effect of the logarithmic wind at hurricane conditions (ignoring non-linear effects, such as wave breaking, foam production, etc. Powell et al. (2003)^1, Shtemler et al. (2003)^2. The central point of the study is the calculation of the growth rate, which is proportional to the fractional input energy from the wind to the wave exponentially varied with time. The present modeling demonstrates that the Miles-type model applying Charnock's formula Charnock (1955)^3 for roughness to the hurricane -wind parameters underestimates the growth rate of the wind waves 5-40 times as compared with the model employing the roughness and friction velocity adopted from experimental data for hurricane winds.^1 This occurs due to Charnock's formula fails at large wind speeds. The stability characteristics obtained on the base of the hurricane-wind experimental parameters are self-consistent with the other results of the observations. A maximum ...

  15. Direct Numerical Simulations of a Full Stationary Wind-Turbine Blade

    Science.gov (United States)

    Qamar, Adnan; Zhang, Wei; Gao, Wei; Samtaney, Ravi

    2014-11-01

    Direct numerical simulation of flow past a full stationary wind-turbine blade is carried out at Reynolds number, Re = 10,000 placed at 0 and 5 (degree) angle of attack. The study is targeted to create a DNS database for verification of solvers and turbulent models that are utilized in wind-turbine modeling applications. The full blade comprises of a circular cylinder base that is attached to a spanwise varying airfoil cross-section profile (without twist). An overlapping composite grid technique is utilized to perform these DNS computations, which permits block structure in the mapped computational space. Different flow shedding regimes are observed along the blade length. Von-Karman shedding is observed in the cylinder shaft region of the turbine blade. Along the airfoil cross-section of the blade, near body shear layer breakdown is observed. A long tip vortex originates from the blade tip region, which exits the computational plane without being perturbed. Laminar to turbulent flow transition is observed along the blade length. The turbulent fluctuations amplitude decreases along the blade length and the flow remains laminar regime in the vicinity of the blade tip. The Strouhal number is found to decrease monotonously along the blade length. Average lift and drag coefficients are also reported for the cases investigated. Supported by funding under a KAUST OCRF-CRG grant.

  16. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Directory of Open Access Journals (Sweden)

    Michael Smith

    2017-07-01

    Full Text Available Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM, we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  17. Direct numerical simulations of curvature effects on shear layer transition over airfoils

    Science.gov (United States)

    Zhang, Wei; Cheng, Wan; Qamar, Adnan; Gao, Wei; Samtaney, Ravi

    2013-11-01

    Shear layer transition and subsequent turbulent flow development over the leeward section of airfoils are affected by the surface curvature in terms of its associated effects, such as laminar flow separation, adverse pressure gradient, and the interactions between separated flow and wake vortices, etc. We present direct numerical simulations (DNS) of shear layer transitions over two airfoils, NACA 4412 and NACA 0012-64, at 10 deg. angle of attack, and Rec = 104 based on uniform inflow velocity and chord length. The two airfoils chosen are geometrically almost the same with identical maximum thickness along with chordwise position but different cambers and hence different curvature. The curvature effects on the flow are presented by the unsteady evolution patterns of laminar flow separation; shear layer detachment, breakdown to turbulence, turbulent boundary layer reattachment and vortex shedding, and quantitative results on the development of turbulent boundary layer are emphasized. This DNS database is generated with an energy conservative fourth-order incompressible Navier-Stokes code with O(109) mesh points. Supported by a KAUST funded project on large eddy simulation of turbulent flows. The IBM Blue Gene P Shaheen at KAUST was utilized for the simulations.

  18. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Science.gov (United States)

    Smith, Michael; Calahorra, Yonatan; Jing, Qingshen; Kar-Narayan, Sohini

    2017-07-01

    Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA) nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM), we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  19. Sensor for Direct Measurement of the Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution laser optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  20. VHF radar observation of atmospheric winds, associated shears and C2n at a tropical location: interdependence and seasonal pattern

    Directory of Open Access Journals (Sweden)

    A. R. Jain

    Full Text Available The turbulence refractivity structure constant (C2n is an important parameter of the atmosphere. VHF radars have been used extensively for the measurements of C2n. Presently, most of such observations are from mid and high latitudes and only very limited observations are available for equatorial and tropical latitudes. Indian MST radar is an excellent tool for making high-resolution measurements of atmospheric winds, associated shears and turbulence refractivity structure constant (C2n. This radar is located at Gadanki (13.45° N, 79.18° E, a tropical station in India. The objective of this paper is to bring out the height structure of C2n for different seasons using the long series of data (September 1995 – August 1999 from Indian MST radar. An attempt is also made to understand such changes in the height structure of C2n in relation to background atmospheric parameters such as horizontal winds and associated shears. The height structure of C2n, during the summer monsoon and post-monsoon season, shows specific height features that are found to be related to Tropical Easterly Jet (TEJ winds. It is important to examine the nature of the radar back-scatterers and also to understand the causative mechanism of such scatterers. Aspect sensitivity of the received radar echo is examined for this purpose. It is observed that radar back-scatterers at the upper tropospheric and lower stratospheric heights are more anisotropic, with horizontal correlation length of 10–20 m, as compared to those observed at lower and middle tropospheric heights.Key words. Meteorology and atmospheric dynamics (climatology; tropical meteorology; turbulence

  1. Insights into the movements of landslides from combinations of field monitoring and novel direct shear testing

    Science.gov (United States)

    Petley, D. N.; Carey, J.; Massey, C. I.; Brain, M.

    2015-12-01

    The mechanisms of pre- and post-failure movement of translational landslides remain surprisingly poorly investigated. Previous approaches have focussed on field monitoring, for example through high resolution automated surveying and/or GPS measurements, or from modelling using dedicated codes. There has been some experimental work too, most notably using ring shear devices, although there are limitations as to the type of analyses that can be completed in these devices. In recent years the author has been involved in a series of studies that have sought to understand pre- and post-failure behaviour in translational landslides using both high precision monitoring and experimental investigation using novel apparatus. The latter approach has involved the use of the back pressured shear box, a direct shear machine that allows near-infinite variation of the normal and shear stress state, and measurement and control of the pore water pressure. More recently, a more advanced version of this machine has been developed that allows dynamic loading of both direct and normal shear stresses. This paper presents key lessons learnt about the behaviour of translational landslides from these approaches. The data highlight a number of key elements: The important differences in pre-failure behaviour for materials that show a brittle response compared with those that are ductile. In particular, some aspects of behaviour (e.g. the hyperbolic acceleration to failure) can only be replicated in materials that show brittle cracking processes; In the post-failure domain, all materials show a high level of sensitivity to small changes in pore water pressure when the Factor of Safety is close to unity; Rates of strain are not simply related to pore water pressure / stress state. In particular, some materials show a different deformation response during phases of increasing pore water pressure to that during periods of pore water pressure reduction. The reasons for this require further study

  2. Investigation of mantle kinematics beneath the Hellenic-subduction zone with teleseismic direct shear waves

    Science.gov (United States)

    Confal, Judith M.; Eken, Tuna; Tilmann, Frederik; Yolsal-Çevikbilen, Seda; Çubuk-Sabuncu, Yeşim; Saygin, Erdinc; Taymaz, Tuncay

    2016-12-01

    The subduction and roll-back of the African plate beneath the Eurasian plate along the arcuate Hellenic trench is the dominant geodynamic process in the Aegean and western Anatolia. Mantle flow and lithospheric kinematics in this region can potentially be understood better by mapping seismic anisotropy. This study uses direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea to reveal seismic anisotropy in the mantle. The technique overcomes possible contamination from source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 81 teleseismic events. Employing direct S-waves enabled more stable and reliable splitting measurements than previously possible, based on sparse SKS data at temporary stations, with one to five events for local SKS studies, compared with an average of 12 events for each station in this study. The fast polarization directions mostly show NNE-SSW orientation with splitting time delays between 1.15 s and 1.62 s. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern, most likely due to the usage of a larger number of individual observations in direct S-wave derived splitting measurements. Splitting analysis on direct shear waves typically resulted in larger split time delays compared to previous studies, possibly because S-waves travel along a longer path

  3. The effect of wind induced bottom shear stress and salinity on Zostera noltii replanting in a Mediterranean coastal lagoon

    Science.gov (United States)

    Alekseenko, E.; Roux, B.; Fougere, D.; Chen, P. G.

    2017-03-01

    The paper concerns the wind influence on bottom shear stress and salinity levels in a Mediterranean semi-enclosed coastal lagoon (Etang de Berre), with respect to a replanting program of Zostera noltii. The MARS3D numerical model is used to analyze the 3D current, salinity and temperature distribution induced by three meteorological, oceanic and anthropogenic forcings in this lagoon. The numerical model has been carefully validated by comparison with daily observations of the vertical salinity and temperature profiles at three mooring stations, for one year. Then, two modelling scenarios are considered. The first scenario (scen.#1), starting with a homogeneous salinity of S = 20 PSU and without wind forcing, studies a stratification process under the influence of a periodic seawater inflow and a strong freshwater inflow from a hydropower plant (250 m3/s). Then, in the second scenario (scen.#2), we study how a strong wind of 80 km/h can mix the haline stratification obtained at the end of scen.#1. The most interesting results concern four nearshore replanting areas; two are situated on the eastern side of EB and two on the western side. The results of scen.#2 show that all these areas are subject to a downwind coastal jet. Concerning bottom salinity, the destratification process is very beneficial; it always remains greater than 12 PSU for a N-NW wind of 80 km/h and an hydropower runoff of 250 m3/s. Special attention is devoted to the bottom shear stress (BSS) for different values of the bottom roughness parameter (for gravels, sands and silts), and to the bottom salinity. Concerning BSS, it presents a maximum near the shoreline and decreases along transects perpendicular to the shoreline. There exists a zone, parallel to the shoreline, where BSS presents a minimum (close to zero). When comparing the BSS value at the four replanting areas with the critical value, BSScr, at which the sediment mobility would occur, we see that for the smaller roughness values (ranging

  4. Evaluation of Interface Shear Strength Properties of Geogrid Reinforced Foamed Recycled Glass Using a Large-Scale Direct Shear Testing Apparatus

    Directory of Open Access Journals (Sweden)

    Arul Arulrajah

    2015-01-01

    Full Text Available The interface shear strength properties of geogrid reinforced recycled foamed glass (FG were determined using a large-scale direct shear test (DST apparatus. Triaxial geogrid was used as a geogrid reinforcement. The geogrid increases the confinement of FG particles during shear; consequently the geogrid reinforced FG exhibits smaller vertical displacement and dilatancy ratio than FG at the same normal stress. The failure envelope of geogrid reinforced FG, at peak and critical states, coincides and yields a unique linear line possibly attributed to the crushing of FG particles and the rearrangement of crushed FG after peak shear state. The interface shear strength coefficient α is approximately constant at 0.9. This value can be used as the interface parameter for designing a reinforced embankment and mechanically stabilized earth (MSE wall when FG is used as a lightweight backfill and triaxial geogrid is used as an extensible earth reinforcement. This research will enable FG, recently assessed as suitable for lightweight backfills, to be used together with geogrids in a sustainable manner as a lightweight MSE wall. The geogrid carries tensile forces, while FG reduces bearing stresses imposed on the in situ soil. The use of geogrid reinforced FG is thus significant from engineering, economical, and environmental perspectives.

  5. Generation of intermediately-long sea waves by weakly sheared winds

    CERN Document Server

    Chernyavski, V M; Golbraikh, E; Mond, M

    2010-01-01

    The present work concerns the numeric modeling of the sea-wave instability under the effect of the logarithmic-wind profile at hurricane conditions. Non-linear effects, such as wave breaking, foam production, etc. Powell et al. (2003), Shtemler et al. (2010) are ignored. The central point of the study is the calculation of the wave growth rate, which is proportional to the fractional input energy from the wind to the wave exponentially varied with time. The present modeling demonstrates that the Miles-type model applying Charnock's formula for roughness to the hurricane-wind parameters underestimates the growth rate from 5 to 40 times as compared with the model employing the roughness and friction velocity adopted from experimental data for hurricane winds.1 This occurs due to Charnock's formula fails at large wind speeds. The stability characteristics found on the base of the hurricane-wind experimental parameters are consistent with the other results of the observations. Obtained in the present study a maxi...

  6. Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building

    Directory of Open Access Journals (Sweden)

    Takaaki Kono

    2016-11-01

    Full Text Available From the viewpoint of installing small wind turbines (SWTs on rooftops, this study investigated the effects of wind direction and horizontal aspect ratio (HAR = width/length of a high-rise cuboid building on wind conditions above the roof by conducting large eddy simulations (LESs. The LES results confirmed that as HAR decreases (i.e., as the building width decreases, the variation in wind velocity over the roof tends to decrease. This tendency is more prominent as the angle between the wind direction and the normal vector of the building’s leeward face with longer roof edge increases. Moreover, at windward corners of the roof, wind conditions are generally favorable at relatively low heights. In contrast, at the midpoint of the roof's windward edge, wind conditions are generally not favorable at relatively low heights. At leeward representative locations of the roof, the bottoms of the height range of favorable wind conditions are typically higher than those at the windward representative locations, but the favorable wind conditions are much better at the leeward representative locations. When there is no prevailing wind direction, the center of the roof is more favorable for installing SWTs than the corners or the edge midpoints of the roof.

  7. Lake salinity variations resulting from wind direction, Gobi Desert, China

    Science.gov (United States)

    Bradley, D. C.; Cartwright, I.; Currell, M.

    2010-12-01

    The southern reaches of the Gobi desert, central China, host a large number (~50) of shallow (water table. The resultant lakes are of particular interest, not only because they are host to a number of unique ecosystems, including several rare species, but also because they are very susceptible to environmental disturbances. Physical development of the lakes is a clear threat, but also small scale withdrawal of groundwater in proximity to the lakes can cause a drop in the water table, forcing it below the lake floor, and consequently causing many lakes to dry up. Due to their inaccessibility, many of these lakes have remained relatively untouched by development, and only those lakes closest to the eastern edge of the desert have been utilized directly for either salt harvesting or tourism. This paper reports on research from both pristine and developed lakes, and reveals a higher TDS (20-50mS/cm compared to 0.5-5mS/cm) in the northern end relative to the southern end for undisturbed lakes. Water entering the southern end of the lakes is chemically identical to the local groundwater (TDS ~0.5mS/cm). This geographic difference in lake properties is remarkable, not only in terms of chemical variation, but also in terms of plant variety and abundance. Stable isotopes show a clear evaporation trend for these lakes, increasing from the southern tip, to the northern tip of individual lakes (-3 to -1‰ in the south, compared with 2-8‰ in the north, and -6 to -3‰ in the groundwater for δ2H). TDS likewise increases with increasing isotopic fractionation. The primary wind direction fluctuates from the southeast to the east, causing the movement of water from the southern end of the lake to the northern, and aiding in the evaporation. Once at the northern end of the lake, the water’s increased density causes it to sink back into the groundwater. In this way, the prevailing wind effectively keeps the fresh and saline waters separate, even though they are part of the same

  8. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Science.gov (United States)

    Riemer, M.; Montgomery, M. T.; Nicholls, M. E.

    2009-05-01

    An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics - a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics - to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air - "anti-fuel" for the TC power machine - can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is - if at all - only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show

  9. Using liquid crystal variable retarders for fast modulation of bias and shear direction in quantitative differential interference contrast (DIC) microscope.

    Science.gov (United States)

    Shribak, Michael

    2013-02-02

    Conventional DIC microscope shows the two-dimensional distribution of optical path length gradient encountered along the shear direction between two interfering beams. It is therefore necessary to rotate unknown objects in order to examine them at several orientations. We built new DIC beam shearing assembly, which allows the bias to be modulated and shear directions to be switched rapidly without any mechanically rotating the specimen or the prisms. The assembly consists of two standard DIC prisms with liquid crystal cell in between. Another liquid crystal cell is employed for modulating a bias. All components do not require a special design and are available on the market. We describe techniques for measuring parameters of DIC prisms and calibrating liquid crystal cells. One beam-shearing assembly is added to the illumination path and another one to the imaging path of standard microscope. Two sets of raw DIC images at the orthogonal shear directions and two or three different biases are captured and processed within a second. Then the quantitative image of optical path gradient distribution within a thin optical section is displayed on a computer screen. The obtained data are also used to compute the quantitative distribution of optical phase, which represents refractive index gradient or height distribution. It is possible to generate back the enhanced regular DIC images with any desired shear direction. New DIC microscope can be combined with other techniques, such as fluorescence and polarization microscopy.

  10. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  11. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  12. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    Science.gov (United States)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  13. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    Science.gov (United States)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  14. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    Science.gov (United States)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  15. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    Science.gov (United States)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  16. Progressive failure of composite wind blades with a shear-web spar subjected to static testing

    Science.gov (United States)

    Kam, T. Y.; Chiu, Y. H.

    2017-06-01

    Composite wind blades of 1m long comprising glass-fabric/epoxy skins and a sandwich plate-type spar were designed and fabricated for static testing. In the composite wind blades, the spar supports the top and bottom skins to form the airfoil shape of NACA4418. The blades were tested to failure and the failure modes were identified at different loading stages. A structural failure analysis method which consists of a geometrically nonlinear finite element (FE) model and appropriate phenomenological failure criteria is used to study the progressive failure behaviours of the blades subjected to different types of quasi-static loads. The experimental load-displacement curves as well as failure loads and locations for different failure modes are used to validate the suitability of the proposed failure analysis method.

  17. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...... turbines. In the meantime, superconducting generators (SCSGs) have been of particular interest to become a significant competitor because of their compactness and light weight. This paper compares the performance indicators of these two direct-drive generator types in the same 10-MW wind turbine under...

  18. Low-level vertical wind shear effects on the gravity wave breaking over an isolated two-dimensional orography

    Directory of Open Access Journals (Sweden)

    Xu-Wei Bao

    2012-02-01

    Full Text Available Flow regimes of dry, stratified flow passing over an isolated two-dimensional (2-D orography mainly concentrate at two stagnation points. One occurs on the upslope of the orography owing to flow blocking; another is related to gravity wave breaking (GWB over the leeside. Smith (1979 put forward a hypothesis that the occurring of GWB is suppressed when the low-level vertical wind shear (VWS exceeds some value. In the present study, a theoretical solution in a two-layer linear model of orographic flow with a VWS over a bell-shaped 2-D orography is developed to investigate the effect of VWS on GWB's occurring over a range of surface Froude number Fr0=U0/Nh (U0 is surface wind speed, h is orography height and N is stability parameter, over which the GWB occurs first and the upstream flow blocking is excluded. Based on previous simulations and experiments, the range of surface Froude number selected is 0.6 ≤ Fr0≤2.0. Based on this solution, the conditions of surface wind speed (U0 and one-to-one matching critical VWS (Δuc for GWB's occurring are discussed. Over the selected range of Fr0, GWB's occurring will be suppressed if the VWS (Δu is larger than Δuc at given U0. Moreover, there is a maximum value of Δuc over the selected range of Fr0, which is labelled as Δumax, and its matching surface wind speed by U0m. Once the Δu is larger than Δumax, the flow will pass over the orography without GWB's occurring. That means, over the selected range of Fr0, the flow regime of 2-D orographic flow related to GWB occurring primarily will be absent when Δu > Δumax, regardless of the value for U0. In addition, the vertical profile of atmospheric stability and height of VWS could result in different features of mountain wave, which leads to different Δuc and Δumax for the GWB's occurring. The possible inaccuracy of estimated Δuc in the present linear model is also discussed.

  19. Dependence of the surf zone aerosol on wind direction and wind speed at a coastal site on the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tymon Zieliński

    2003-09-01

    Full Text Available Since 1992 lidar-based measurements have been carried out under various meteorological conditions and at various times of the year. The aerosol optical properties were determined in the marine boundary layer as a function of altitude using such factors as wind direction, duration and velocity and aerosol size distribution and concentration. It was confirmed that in all cases, the total aerosol concentration, size distribution and aerosol extinction increase with wind speed but decrease with altitude. In the range of wind velocities from 1 to 15 m s-1 the mean aerosol optical thickness of the atmosphere (VIS obtained from the lidar varied from 0.1 to 0.38 for offshore winds and from 0.01 to about 0.1 for onshore winds, while the Ångström parameter for VIS oscillated around 0.65 for onshore winds and around 1 for offshore winds. Both parameters depended strongly on the history of the air mass above the Baltic Sea. Such aerosol optical thicknesses are in agreement with those obtained by other researchers in the Baltic Sea area.

  20. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Directory of Open Access Journals (Sweden)

    M. Riemer

    2010-04-01

    Full Text Available An important roadblock to improved intensity forecasts for tropical cyclones (TCs is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur.

    The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis.

    The downdrafts that flush the boundary layer with low

  1. Potential of MgB2 superconductors in direct drive generators for wind turbines

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Liu, Dong; Magnusson, Niklas

    2015-01-01

    Topologies of superconducting direct drive wind turbine generators are based on a combination of superconducting wires wound into field coils, copper armature windings, steel laminates to shape the magnetic flux density and finally structural materials as support. But what is the most optimal...... topology for superconducting wind turbine generators? This question is investigated by assuming some unit cost of the different materials and then minimizing the cost of the active materials of a 10 MW and 9.65 rpm direct drive wind turbine generator intended to be mounted in front of the INNWIND.EU King...... a permanent magnet direct drive generators and the further development directions are discussed. Finally an experimental INNWIND.EU demonstration showing that the current commercial MgB2 wires can be wound into functional field coils for wind turbine generators is discussed....

  2. Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2015-01-01

    agreement with the reference data. A quantitative comparison between the mean flow field of the DWM model with and without the suggested improvements, to that of the AL model, shows that the root-mean-square difference in terms of wind speed and turbulence intensity is reduced on the order of 30% and 40......%, respectively, by including the proposed corrections for a row of eight turbines. Furthermore, it is found that the root-mean-square difference between the AL model and the modified DWM model in terms of wind speed and turbulence intensity does not increase over a row of turbines compared with the root-mean-square...... shear on the wake deficit evolution by including a strain-rate contribution in the wake turbulence calculation. The method to account for the increased turbulence at a wake-affected turbine by basing the wake-added turbulence directly on the Reynolds stresses of the oncoming wake. This also allows...

  3. The effect of wind direction and building surroundings on a marina bay in the Black Sea

    Science.gov (United States)

    Katona, Cosmin; Safta, Carmen Anca

    2017-01-01

    The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.

  4. Motion and interaction of decaying trailing vortices in spanwise shear wind

    Science.gov (United States)

    Liu, C. H.; Lu, T.

    1986-01-01

    A simulation is presented of the drift of trailing vortices in a cross-wind near the ground by an unsteady, two-dimensional, rotational flow field with a concentration of large vorticity in vortical spots (having a finite but small effective size and finite total strength). The problem is analyzed by a combination of the method of matched asymptotic analyses for the decay of the vortical spots and the Euler solution for the unsteady rotational flow. Using the method of averaging, a special numerical method is developed in which the grid size and time step depend only on the length and velocity scales of the background flow and are independent of the effective core size of a vortical spot. The core size can be much smaller than the grid size, whereas the peak velocity in the core is inversely propertional to the spot size. Numerical results are presented to demonstrate the strong interaction between the trajectories of the vortical spots and the change of the vorticity distribution in the background flow field.

  5. LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes

    Directory of Open Access Journals (Sweden)

    Eamon McKeogh

    2011-08-01

    Full Text Available Detailed knowledge of the wind resource is necessary in the developmental and operational stages of a wind farm site. As wind turbines continue to grow in size, masts for mounting cup anemometers—the accepted standard for resource assessment—have necessarily become much taller, and much more expensive. This limitation has driven the commercialization of two remote sensing (RS tools for the wind energy industry: The LIDAR and the SODAR, Doppler effect instruments using light and sound, respectively. They are ground-based and can work over hundreds of meters, sufficient for the tallest turbines in, or planned for, production. This study compares wind measurements from two commercial RS instruments against an instrumented mast, in upland (semi-complex terrain typical of where many wind farms are now being installed worldwide. With appropriate filtering, regression analyses suggest a good correlation between the RS instruments and mast instruments: The RS instruments generally recorded lower wind speeds than the cup anemometers, with the LIDAR more accurate and the SODAR more precise.

  6. Transient EMF induced in LV cables due to wind turbine direct lightning strike

    Energy Technology Data Exchange (ETDEWEB)

    Sarajcev, Petar; Sarajcev, Ivan; Goic, Ranko [University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Rudera Boskovica bb, HR-21000 Split (Croatia)

    2010-04-15

    This paper presents a novel, easy to use, engineering method for determining the transient electromotive force (EMF) induced in low-voltage (LV) cables, connecting the wind turbine with a near-by transformer, in the event of direct lightning strike into the top of the wind turbine tower. Proposed method is based on the application of the travelling wave analysis onto the system consisted of wind turbine tower, earthing system of wind turbine, earthing system of near-by transformer station and LV cables connecting the wind turbine with associated transformer. Hence, this design gives rise to a complex, mutually connected, earthing system. Direct lightning strike to the wind turbine initiates a travelling wave process in the system consisted of lightning channel, wind turbine tower and earthing system of the wind turbine. Due to the transient nature of the observed phenomenon, current and voltage states at the earthing system as well as in the associated low-voltage cables are formed through the propagation and reflection of the accompanying travelling waves. Transient EMF induced in LV cables could endanger cable main insulation and insulation of the associated transformer LV winding. Developed theory is subsequently applied on the concrete wind turbine example. (author)

  7. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  8. Numerical investigations on the influence of wind shear and turbulence on aircraft trailing vortices; Numerische Untersuchungen zum Einfluss von Windscherung und Turbulenz auf Flugzeugwirbelschleppen

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, T.

    2003-07-01

    In several aspects, the behaviour of aircraft wake vortices under situations of vertical wind shear is significantly different from non-shear scenarios and its operational real-time forcast is challenging. By means of numerical investigations of idealized scenarios, the influence of wind shear on the lateral and vertical transport of vortices is analysed both, phenomenologically as well as in the scope of a sensitivity study. The results allow for the verification of controversial views and the benchmark of modelling approaches. Case studies of turbulent shear flows focus on the persistence of vortices. A detailed analysis of the flow fields evidence that unequal vortex decay rates can be attributed to the asymmetric distribution of secondary vorticity structures. The results moreover suggest that extended vortex lifespans can be expected under situations of wind shear. The unusual vortex behaviour observed by means of a LIDAR measurement is reproduced by realistic simulations and permits to reveal potential causes. (orig.) [German] Das Wirbelschleppenverhalten unterscheidet sich in Situationen vertikaler Windscherung in mehrfacher Hinsicht signifikant von scherungsfreien Szenarien und stellt eine besondere Herausforderung fuer eine operationelle Echtzeitvorhersage dar. Mittels numerischer Untersuchungen idealisierter Szenarien wird zunaechst der Einfluss von Windscherung auf den lateralen und vertikalen Wirbeltransport sowohl phaenomenologisch als auch quantitativ im Rahmen einer Sensitivitaetsstudie analysiert. Anhand der gewonnenen Ergebnisse werden auseinandergehende Erklaerungsansaetze geprueft und Modellierungsansaetze bewertet. Fallstudien turbulenter Scherstroemungen zur Wirbelpersistenz stellen einen weiteren Schwerpunkt dieser Arbeit dar. Durch die ausfuehrliche Analyse der Stroemungsfelder wird der Nachweis erbracht, dass sich unterschiedliche Zerfallsraten der Wirbel auf die asymmetrische Verteilung von sekundaeren Vorticity-Strukturen zurueckfuehren

  9. Development of Wind Farm AEP Prediction Program Considering Directional Wake Effect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyoungboo; Cho, Kyungho; Huh, Jongchul [Jeju Nat’l Univ., Jeju (Korea, Republic of)

    2017-07-15

    For accurate AEP prediction in a wind farm, it is necessary to effectively calculate the wind speed reduction and the power loss due to the wake effect in each wind direction. In this study, a computer program for AEP prediction considering directional wake effect was developed. The results of the developed program were compared with the actual AEP of the wind farm and the calculation result of existing commercial software to confirm the accuracy of prediction. The applied equations are identical with those of commercial software based on existing theories, but there is a difference in the calculation process of the detection of the wake effect area in each wind direction. As a result, the developed program predicted to be less than 1% of difference to the actual capacity factor and showed more than 2% of better results compared with the existing commercial software.

  10. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    Science.gov (United States)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  11. Pattern formation in directional solidification under shear flow. I. Linear stability analysis and basic patterns.

    Science.gov (United States)

    Marietti, Y; Debierre, J M; Bock, T M; Kassner, K

    2001-06-01

    An asymptotic interface equation for directional solidification near the absolute stability limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies which is described in the following paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.

  12. Directionality and Orientation Effects on the Resistance to Propagating Shear Failure

    Science.gov (United States)

    Leis, B. N.; Barbaro, F. J.; Gray, J. M.

    Hydrocarbon pipelines transporting compressible products like methane or high-vapor-pressure (HVP) liquids under supercritical conditions can be susceptible to long-propagating failures. As the unplanned release of such hydrocarbons can lead to significant pollution and/or the horrific potential of explosion and/or a very large fire, design criteria to preclude such failures were essential to environmental and public safety. Thus, technology was developed to establish the minimum arrest requirements to avoid such failures shortly after this design concern was evident. Soon after this technology emerged in the early 1970sit became evident that its predictions were increasinglynon-conservative as the toughness of line-pipe steel increased. A second potentially critical factor for what was a one-dimensional technology was that changes in steel processing led to directional dependence in both the flow and fracture properties. While recognized, this dependence was tacitly ignored in quantifying arrest, as were early observations that indicated propagating shear failure was controlled by plastic collapse rather than by fracture processes.

  13. Observations of Wind-Direction Variability in the Nocturnal Boundary Layer

    Science.gov (United States)

    Lang, Francisco; Belušić, Danijel; Siems, Steven

    2017-09-01

    Large sudden wind-direction shifts and submeso variability under nocturnal conditions are examined using a micrometeorological network of stations in north-western Victoria, Australia. The network was located in an area with mostly homogeneous and flat terrain. We have investigated the main characteristics of the horizontal propagation of events causing the wind-direction shift and not addressed in previous studies. The submeso motions at the study site exhibit behaviour typical of flat terrain, such as the lower relative mesovelocity scale and smaller cross-wind variances than that for complex terrain. The distribution of wind-direction shifts shows that there is a small but persistent preference for counter-clockwise rotation, occurring for 55% of the time. Large wind-direction shifts tend to be associated with a sharp decrease in air temperature (74% of the time), which is associated with rising motion of cold air, followed by an increase in turbulent mixing. The horizontal propagation of events was analyzed using the cross-correlation function method. There is no preferred mean wind direction associated with the events nor is there any relationship between the mean wind and propagation directions. The latter indicates that the events are most likely not local flow perturbations advected by the mean flow but are rather features of generally unknown origin. This needs to be taken into account when developing parametrizations of the stable boundary layer in numerical models.

  14. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery

    Directory of Open Access Journals (Sweden)

    Lizhang Zhou

    2017-06-01

    Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.

  15. Seasonal variation of Sigma sub(Theta) with wind speed, direction and stability

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    For an airport site near Visakhapatnam, India, and based on 10 years of data for the months of January, April, August and October, values of Sigma sub(Theta) are given as a function of wind speed, wind direction and Pasquill diffusion category...

  16. Optimized Permanent Magnet Generator Topologies for Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Dubois, M.R.J.

    2004-01-01

    The thesis deals with the issue of cost reduction in direct-drive generators for wind turbines. Today, the combination gearbox-medium-speed (1000-2000 rpm) induction generator largely dominates the market of MW-scale wind turbines. This is due to the lower costs of the gearbox option compared to the

  17. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh

    2017-01-01

    Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate building...

  18. Numerical investigation for the effects of the vertical wind shear on the cloud droplet spectra broadening at the lateral boundary of the cumulus clouds

    Science.gov (United States)

    Wang, Yongqing; Sun, Jiming

    2014-05-01

    The vortex-structure circulation at the top of cumulus clouds can result in air entrainment at the lateral sides of them. The entrained air at the early developing stage of cumulus clouds can lead to new cloud droplet activation at their lateral sides due to its upward expansion cooling induced by the gradient force of the dynamic perturbation pressure. The vertical wind shear may strengthen such a mechanism for cloud droplet nucleation at the lateral sides of cumulus clouds. In order to investigate the impacts of the vertical wind shear on the cloud droplet spectra broadening at the lateral sides, we used the Weather Research and Forecasting (WRF) Model coupled with an aerosol-cloud interaction bin model with a high spectrum resolution (90 bins for aerosols, 160 bins for water drops) and a high spatial resolution (25m in vertical, 50m in horizontal). We run the Large Eddy Simulation (LES) case in the Tianhe supercomputer with more than 1000 CPUs. In our simulations, a new aerosol parameterization scheme have been proposed in order to investigate the secondary activation of cloud condensation nuclei (CCN). The activated CCN will not be cleaned as the current approach. CCN coming from the evaporated cloud droplets can be explicitly determined. Our results show that the vertical wind shear can enhance the cloud droplet nucleation at the leeward lateral side.

  19. A novel linear direct drive system for textile winding applications

    OpenAIRE

    Jakeman, N; Bullough, W; Bingham, Chris; Mellor, Phillip

    2003-01-01

    The paper describes the specification, modelling, magnetic design, thermal characteristics and control of a novel, high acceleration (up to 82g) brushless PM linear actuator with Halbach array, for textile package winding applications. Experimental results demonstrate the realisation of the actuator and induced performance advantages afforded to the phase lead, closed-loop position control scheme.

  20. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  1. Comparison of 10 MW superconducting generator topologies for direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been...... proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high...... magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages...

  2. Seasonal variation of wind direction fluctuations vs Pasquill stabilities in complex terrain

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, K.P.R.V.

    The authors have studied the seasonal variation of sigma theta (the standard deviation of wind direction fluctuations) vs Pasquill stabilities over complex terrain. It is found that the values of sigma theta are quite high in the month of April...

  3. Ensemble standar deviation of wind speed and direction of the FDDA input to WRF

    Data.gov (United States)

    U.S. Environmental Protection Agency — NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input. variable U_NDG_OLD contains standard...

  4. Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System

    Directory of Open Access Journals (Sweden)

    João P. S. Catalão

    2012-07-01

    Full Text Available This paper is concerned with the protection of wind energy systems against the direct effects of lightning. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded as a serious problem. Nevertheless, very few studies exist yet in Portugal regarding lightning protection of wind energy systems using numerical codes. A new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, for the analysis of transient phenomena due to a direct lightning strike to the blade. Comprehensive simulation results are provided by using models of the Restructured Version of the Electro-Magnetic Transients Program (EMTP, and conclusions are duly drawn.

  5. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  6. Analysis of starting resistance moment of direct drive wind turbine

    Directory of Open Access Journals (Sweden)

    He Bin

    2016-01-01

    Full Text Available Permanent magnet motor in the process of running, the permanent magnets provided the magnetic field , the core will have a strong attraction, produce the cogging torque and torque ripple, vibration and noise and other disharmony factors, seriously affect the control precision of the motor system.Therefore, in the design of permanent magnet wind turbine generator, weaken the cogging torque is very important.

  7. Direct Reuse of Rare Earth Permanent Magnets - Wind Turbine Generator Case Study

    DEFF Research Database (Denmark)

    Högberg, Stig; Pedersen, Thomas Stigsberg; Bendixen, Flemming Buus

    2016-01-01

    are directly reusable due to their standard shape and size, and direct reuse effectively bypasses a number of the expensive and energy intensive processes of normal recycling. Based on a model of a 3 MW direct drive wind turbine generator, the finite element studies concluded that normal values of average...

  8. Venus Ionosphere and Induced Magnetosphere Responses to Solar Wind Dynamic Pressure and IMF Direction

    Science.gov (United States)

    Ma, Yingjuan; Toth, Gabor; Nagy, Andew; Russell, Chris

    2017-10-01

    In this study, we focus on the responses of the ionosphere and the induced magnetosphere of Venus to two typical changes in the solar wind: solar wind dynamic pressure changes and the interplanetary magnetic field (IMF) direction changes. Often regarded as the Earth’s ‘sister planet’, Venus has similar size and mass as Earth. But it is also remarkably different from Earth in many respects. Even though we have some basic knowledge of the solar wind interaction with Venus based on spacecraft observations, little is known about how the interaction and the resulting plasma escape rates vary in response to solar wind variations due to the lack of coordinated observations of both upstream solar wind conditions and simultaneous plasma properties in the Venus ionosphere. Furthermore, recent observations suggest that plasma escape rates are significantly enhanced during stormy space weather in response to solar wind pressure pulses (Edberg et al., 2011). Thus it is important to understand the plasma interaction under varying solar wind conditions. We use a sophisticated multi-species MHD model that has been recently developed for Venus (Ma et al., 2013) to characterize the changes of the ionosphere and the induced magnetosphere for varying solar wind conditions. Based on model results, we discuss the perturbations of the magnetic field in the ionosphere and its variation with altitude; the variation of the total plasma escape-rate; and the time scale of the Venus ionosphere and induced magnetosphere in responding to both types of changes in the solar wind.

  9. Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm.

    Science.gov (United States)

    Li, Xinbo; Sun, Haixin; Gao, Wei; Shi, Yaowu; Liu, Guojun; Wu, Yue

    2016-11-01

    This article investigates a kind of method to measure the wind speed and the wind direction, which is based on arc ultrasonic sensor array and combined with array signal processing algorithm. In the proposed method, a new arc ultrasonic array structure is introduced and the array manifold is derived firstly. On this basis, the measurement of the wind speed and the wind direction is analyzed and discussed by means of the basic idea of the classic MUSIC (Multiple Signal Classification) algorithm, which achieves the measurements of the 360° wind direction with resolution of 1° and 0-60m/s wind speed with resolution of 0.1m/s. The implementation of the proposed method is elaborated through the theoretical derivation and corresponding discussion. Besides, the simulation experiments are presented to show the feasibility of the proposed method. The theoretical analysis and simulation results indicate that the proposed method has superiority on anti-noise performance and improves the wind measurement accuracy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.

    Science.gov (United States)

    Nabavizadeh, Alireza; Song, Pengfei; Chen, Shigao; Greenleaf, James F; Urban, Matthew W

    2015-04-01

    Elasticity imaging is becoming established as a means of assisting in diagnosis of certain diseases. Shear wave-based methods have been developed to perform elasticity measurements in soft tissue. Comb-push ultrasound shear elastography (CUSE) is one of these methods that apply acoustic radiation force to induce the shear wave in soft tissues. CUSE uses multiple ultrasound beams that are transmitted simultaneously to induce multiple shear wave sources into the tissue, with improved shear wave SNR and increased shear wave imaging frame rate. We propose a novel method that uses steered push beams (SPB) that can be applied for beam formation for shear wave generation. In CUSE beamforming, either unfocused or focused beams are used to create the propagating shear waves. In SPB methods we use unfocused beams that are steered at specific angles. The interaction of these steered beams causes shear waves to be generated in more of a random nature than in CUSE. The beams are typically steered over a range of 3 to 7° and can either be steered to the left (-θ) or right (+θ).We performed simulations of 100 configurations using Field II and found the best configurations based on spatial distribution of peaks in the resulting intensity field. The best candidates were ones with a higher number of the intensity peaks distributed over all depths in the simulated beamformed results. Then these optimal configurations were applied on a homogeneous phantom and two different phantoms with inclusions. In one of the inhomogeneous phantoms we studied two spherical inclusions with 10 and 20 mm diameters, and in the other phantom we studied cylindrical inclusions with diameters ranging from 2.53 to 16.67 mm. We compared these results with those obtained using conventional CUSE with unfocused and focused beams. The mean and standard deviation of the resulting shear wave speeds were used to evaluate the accuracy of the reconstructions by examining bias with nominal values for the phantoms

  11. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the

  12. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    are compared for 12 different generator topologies. To be sufficiently attractive, superconducting generators must have significant advantages over permanent magnet direct-drive generators, which typically have shear stresses of the order of 53 kPa and efficiencies of 96%. Therefore, we investigate what...

  13. Effects of shear coupling on shear properties of wood

    Science.gov (United States)

    Jen Y. Liu

    2000-01-01

    Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...

  14. Wind shear hazard determination

    Science.gov (United States)

    Lewis, Michael S.

    1992-01-01

    The topics are presented in viewgraph form and include the following: F-factor relationship with aircraft performance; F-factor formulations; the F-bar index; F-factor hazard limit; F-bar with Doppler sensors; and F-bar profile composite.

  15. Seismotectonics in the Pamir: An oblique transpressional shear and south-directed deep-subduction model

    Directory of Open Access Journals (Sweden)

    Jiasheng Zhang

    2011-01-01

    Full Text Available The 3-D geometry of the seismicity in Hindu Kush–Pamir–western China region has been defined by seismic records for 1975–1999 from the National Earthquake Information Center, the U.S. Geological Survey, and over 16,000 relocated earthquakes since 1975 recorded by the Xinjiang seismic network of China. The results show that most Ms ≥ 5.0 hypocenters in the area are confined to a major intracontinental seismic shear zone (MSSZ. The MSSZ, which dips southwards in Pamir has a north-dipping counterpart in the Hindu Kush to the west; the two tectonic realms are separated by the sinistral Chaman transform fault of the India–Asia collisional zone. We demonstrate that the MSSZ constitutes the upper boundary of a south-dipping, actively subducting Pamir continental plate. Three seismic concentrations are recognized just above the Pamir MSSZ at depths between 45–65 km, 95–120 km, and 180–220 km, suggesting different structural relationships where each occurs. Results from focal mechanism solutions in all three seismological concentrations show orientations of the principal maximum stress to be nearly horizontal in an NNW–SSE direction. The south-dipping Pamir subduction slab is wedge-shaped with a wide upper top and a narrow deeper bottom; the slab has a gentle angle of dip in the upper part and steeper dips in the lower part below an elbow depth of ca. 80–120 km. Most of the deformation related to the earthquakes occurs within the hanging wall of the subducting Pamir slab. Published geologic data and repeated GPS measurements in the Pamir document a broad supra-subduction, upper crustal zone of evolving antithetic (i.e. north-dipping back-thrusts that contribute to north-south crustal shortening and are responsible for exhumation of some ultrahigh-pressure rocks formed during earlier Tethyan plate convergence. An alternating occurrence in activity of Pamir and Chaman seismic zones indicates that there is interaction between

  16. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca [Institute for Integrated Energy Systems and Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada)

    2016-01-15

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.

  17. Characteristics of wind waves in shallow tidal basins and how they affect bed shear stress, bottom erosion, and the morphodynamic evolution of coupled marsh and mudflat landforms

    Science.gov (United States)

    Tommasini, Laura; Carniello, Luca; Goodwin, Guillaume; Mudd, Simon M.; Matticchio, Bruno; D'Alpaos, Andrea

    2017-04-01

    Wind-wave induced erosion is one of the main processes controlling the morphodynamic evolution of shallow tidal basins, because wind waves promote the erosion of subtidal platforms, tidal flats and salt marshes. Our study considered zero-, one-and two-dimensional wave models. First, we analyzed the relations between wave parameters, depth and bed shear stress with constant and variable wave period considering two zero-dimensional models based on the Young and Verhagen (1996), and Carniello et al. (2005, 2011) approaches. The first one is an empirical method that computes wave height and the variable wave period from wind velocity, fetch and water depth. The second one is based on the solution of wave action conservation equation, we use this second approach for computing the bottom shear stress and wave height, considering variable and constant (t=2s) wave period. Second, we compared the wave spectral model SWAN with a fully coupled Wind-Wave Tidal Model applied to a 1D rectangular domain. These models describe both the growth and propagation of wind waves. Finally, we applied the two-dimensional Wind Wave Tidal Model (WWTM) to six different configurations of the Venice lagoon considering the same boundary conditions and we evaluated the spatial variation of mean wave power density. The analysis with zero-dimensional models show that the effects of the different model assumptions on the wave period and on the wave height computation cannot be neglected. In particular, the relationships between bottom shear stress and water depth have different shapes. Two results emerge: first, the differences are higher for small depths, and then the maximum values reached with the Young and Verhagen (1996) approach are greater than the maximum values obtained with WWTM approach. The results obtained with two-dimensional models suggest that the wave height is different in particular for small fetch, this could be due to the different formulation of the wave period. Finally, the

  18. Wave spectral response to sudden changes in wind direction in finite depth waters

    Science.gov (United States)

    2015-11-14

    Virtual Special Issue Ocean Surface Waves Wave spectral response to sudden changes in wind direction in finite -depth waters Saima Aijaz a , ∗, W...exact solutions of the nonlinear term n two-dimensional models, in particular for finite -depth waters. In ddition to the complexities of shallow water...vary in time. This study seeks to investigate the wave response in finite -depth aters due to sudden changes in wind by conducting numerical imulations

  19. Assessment of shear bond strength of brackets bonded by direct and indirect techniques: an in vitro study

    OpenAIRE

    Shimizu,Roberto Hideo; Grando, Karlos Giovani; Shimizu, Isabela Almeida; Andriguetto, Augusto Ricardo; MELO, Ana Cláudia Moreira; Witters,Eduardo Leão

    2012-01-01

    OBJECTIVE: This in vitro study was designed to evaluate the shear bond strength (SBS) of orthodontic metal brackets bonded by direct and indirect techniques. METHODS: Thirty healthy human maxillary premolar teeth were used. The teeth were divided into three groups of 10 teeth each: Group I - indirect bonding with SondhiTM Rapid-Set system (3M/Unitek), Group II - indirect bonding with TransbondTM XT adhesive system (3M/Unitek) and Group III - direct bonding with TransbondTM XT adhesive system ...

  20. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    Science.gov (United States)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-06-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three dimensional

  1. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison

    Science.gov (United States)

    Parrish, Judith T.; Peterson, F.

    1988-01-01

    Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.

  2. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  3. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  4. Wind tunnel study of slot spoilers for direct lift control

    Science.gov (United States)

    Andrisani, D., II; Gentry, G. L., Jr.; Stickle, J. W.

    1972-01-01

    An investigation was conducted in a 300-mph 7- by 10- foot tunnel to obtain data for a slot spoiler direct lift control system. Slot spoilers are believed to have advantages over flap-type direct lift control (DLC) systems because of the small amount of power required for actuation. These tests, run at a Reynolds number of 1,400,000 showed that up to 78 percent of the lift due to flap deflection could be spoiled by opening several spanwise slots within the flaps. For a given lift change the drag change was significantly less than that which would be obtained by a variable flap DLC system. A nozzle-shaped slot was the most effective of the slot shapes tested.

  5. Wind direction over the ocean determined by an airborne, imaging, polarimetric radiometer system

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    2001-01-01

    The speed and direction of winds over the ocean can be determined by polarimetric radiometers. This has been established by theoretical work and demonstrated experimentally using airborne radiometers carrying out circle flights and thus measuring the full 360° azimuthal response from the sea...... surface. An airborne experiment, with the aim of measuring wind direction over the ocean using an imaging polarimetric radiometer, is described. A polarimetric radiometer system of the correlation type, measuring all four Stokes brightness parameters, is used. Imaging is achieved using a 1-m aperture...... in the radiometer imagery....

  6. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    Science.gov (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  7. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter...

  8. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Liu, Dong

    2014-01-01

    A superconducting direct drive generator based on field windings of MgB2 superconducting tape is proposed as a solution by mounting the generator in front of the blades using a king-pin nacelle design for offshore turbines with power ratings larger than 10 MW as investigated in the INNWIND.EU pro...

  9. Design of Transverse Flux Permanent Magnet Machines for Large Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Bang, D.

    2010-01-01

    In order to maximize the energy harnessed, to minimize the cost, to improve the power quality and to ensure safety together with the growth of the size, various wind turbine concepts have been developed during last three decades. Different generator systems such as geared and direct-drive generator

  10. The Wind Lost its Direction | Ezenwa-Ohaeto | UJAH: Unizik Journal ...

    African Journals Online (AJOL)

    UJAH: Unizik Journal of Arts and Humanities. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Special Edition 2011 >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. The Wind Lost its Direction. C Ezenwa-Ohaeto. Abstract.

  11. Short Communication The effect of wind direction on flying fish counts

    African Journals Online (AJOL)

    Flying fish and squid flushed by a ship's passage are easy to count, but the value of such data is compromised by uncertainty regarding the proportion of individuals flushed. Wind direction relative to the ship's course plays an important role in determining this proportion, with on average 6 times (range 2.5–10.8) more fish ...

  12. Katabatic wind intensity and direction over Antarctica derived from scatterometer data

    Science.gov (United States)

    Remy, F.; Ledroit, M.; Minster, J. F.

    1992-05-01

    Although satellite radar scatterometers are initially designed to measure ocean surface wind speed and direction, they also provide important observations over continental ice sheets. Data from the Seasat scatterometer analysed over a sector of Antarctica show that the signal is strongly dependent on the incidence angle of observation, but that it also depends on azimuth [Ledroit et al., 1992]. The minimum values of the backscatter coefficient (the ratio of backscattered versus incident power) are always observed in the direction of katabatic winds. A theoretical analysis shows that the backscatter coefficient must be very sensitive to the sastrugi slopes and orientations, which are streamlined features formed on the snow surface in the wind direction [Parish and Bromwich, 1987]. Satellite scatterometers can thus map the characteristics of sastrugis, of importance for the interpretation of microwave measurements above ice sheets; this indirectly provides the intensity and direction of these very persistent and strong winds, which play a important role in the behaviour of the atmosphere and ocean in high southern latitudes.

  13. Direct drive TFPM wind generator analytical design optimised for minimum active mass usage

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Leban, Krisztina Monika; Ritchie, Ewen

    2013-01-01

    The paper focuses of the Transverse Flux Permanent (TFPM) Generator as a solution for offshore direct drive wind turbines. A complex design algorithm is presented. Two topologies (U core and C core) of TFPM were considered. The analytical design is optimised using a combination of genetic...

  14. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    Science.gov (United States)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  15. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics.

    Science.gov (United States)

    Maya-Manzano, J M; Sadyś, M; Tormo-Molina, R; Fernández-Rodríguez, S; Oteros, J; Silva-Palacios, I; Gonzalo-Garijo, A

    2017-04-15

    Airborne bio-aerosol content (mainly pollen and spores) depends on the surrounding vegetation and weather conditions, particularly wind direction. In order to understand this issue, maps of the main land cover in influence areas of 10km in radius surrounding pollen traps were created. Atmospheric content of the most abundant 14 pollen types was analysed in relation to the predominant wind directions measured in three localities of SW of Iberian Peninsula, from March 2011 to March 2014. Three Hirst type traps were used for aerobiological monitoring. The surface area for each land cover category was calculated and wind direction analysis was approached by using circular statistics. This method could be helpful for estimating the potential risk of exposure to various pollen types. Thus, the main land cover was different for each monitoring location, being irrigated crops, pastures and hardwood forests the main categories among 11 types described. Comparison of the pollen content with the predominant winds and land cover shows that the atmospheric pollen concentration is related to some source areas identified in the inventory. The study found that some pollen types (e.g. Plantago, Fraxinus-Phillyrea, Alnus) come from local sources but other pollen types (e.g. Quercus) are mostly coming from longer distances. As main conclusions, airborne particle concentrations can be effectively split by addressing wind with circular statistics. By combining circular statistics and GIS method with aerobiological data, we have created a useful tool for understanding pollen origin. Some pollen loads can be explained by immediate surrounding landscape and observed wind patterns for most of the time. However, other factors like medium or long-distance transport or even pollen trap location within a city, may occasionally affect the pollen load recorded using an air sampler. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  17. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    Science.gov (United States)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  18. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  19. On the Feasibility of Tracking the Monsoon History by Using Ancient Wind Direction Records

    Science.gov (United States)

    Gallego, D.; Ribera, P.; Peña-Ortiz, C.; Vega, I.; Gómez, F. D. P.; Ordoñez-Perez, P.; Garcia-Hererra, R.

    2015-12-01

    In this work, we use old wind direction records to reconstruct indices for the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). Since centuries ago, ships departing from the naval European powers circumnavigated Africa in their route to the Far East. Most of these ships took high-quality observations preserved in logbooks. We show that wind direction observations taken aboard ships can be used to track the seasonal wind reversal typical of monsoonal circulations. The persistence of the SW winds in the 20W-17W and 7N-13N region is highly correlated with the WAM strength and Sahel's precipitation. It has been possible to build a WAM index back to the 19th Century. Our results show that in the Sahel, the second half of the 19thCentury was significantly wetter than present day. The relation of the WAM with the ENSO cycle, and the Atlantic Multidecadal Oscillation was low and instable from the 1840s to the 1970s, when they abruptly suffered an unprecedented reinforcement which last up to the present day. The persistence of the SSW wind in the 60E-80E and 8N-12N area has been used to track the ISM onset since the 1880s. We found evidences of later than average onset dates during the 1900-1925 and 1970-1990 periods and earlier than average onset between 1940 and 1965. A significant relation between the ISM onset and the PDO restricted to shifts from negative to positive PDO phases has been found. The most significant contribution of our study is the fact that we have shown that it is possible to build consistent monsoon indices of instrumental character using solely direct observations of wind direction. Our indices have been generated by using data currently available in the ICOADS 2.5 database, but a large amount of wind observations for periods previous to the 20thcentury still remain not explored in thousands of logbooks preserved in British archives. The interest of unveil these data to track the monsoons for more than 200 -or even 300 years- it is

  20. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    Directory of Open Access Journals (Sweden)

    Xiang-dong Chang

    2017-06-01

    Full Text Available Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact. Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  1. The influence of stevia on the flow, shear and compression behavior of sorbitol, a pharmaceutical excipient for direct compression.

    Science.gov (United States)

    Hurychová, Hana; Ondrejček, Pavel; Šklubalová, Zdenka; Vraníková, Barbora; Svěrák, Tomáš

    2018-02-01

    Good flow and compaction properties are necessary for the manipulation of particulate material in the pharmaceutical industry. The influence of the addition of an alternative sweetener, rebaudioside A, in a concentration 0.2% w/w and 0.5% w/w on the flow, shear and compaction properties of sorbitol for direct compaction, Merisorb® 200, was investigated in this work. Rebaudioside A worsened the flow properties of sorbitol: the Hausner ratio, the compressibility index and the mass flow rate through the aperture of a model hopper. Using a Jenike shear cell revealed a significant increase in cohesion leading to the decrease of the flow function; moreover, the addition of rebaudioside A increased the total energy for compression of tablets and plasticity estimated by the force-displacement method. Finally, the tablets showed a higher tensile strength and needed longer time to disintegrate compared to the tablets made of sorbitol itself. In view of the results for the free-flowable excipient, sorbitol, the effects of stevia even for a 0.2% w/w concentration have to be carefully considered, particularly whenever used in pharmaceutical formulations of poor flow properties.

  2. Development of a Wind Directly Forced Heat Pump and Its Efficiency Analysis

    Directory of Open Access Journals (Sweden)

    Ching-Song Jwo

    2013-01-01

    Full Text Available The requirements of providing electric energy through the wind-forced generator to the heat pump for water cooling and hot water heating grow significantly by now. This study proposes a new technique to directly adopt the wind force to drive heat pump systems, which can effectively reduce the energy conversion losses during the processes of wind force energy converting to electric energy and electric energy converting to kinetic energy. The operation of heat pump system transfers between chiller and heat that are controlled by a four-way valve. The theoretical efficiency of the traditional method, whose heat pump is directly forced by wind, is 42.19%. The experimental results indicated average value for cool water producing efficiency of 54.38% in the outdoor temperature of 35°C and the indoor temperature of 25°C and the hot water producing efficiency of 52.25% in the outdoor temperature and the indoor temperature both of 10°C. We proposed a method which can improve the efficiency over 10% in both cooling and heating.

  3. A Unified Directional Spectrum for Long and Short Wind-Driven Waves

    Science.gov (United States)

    Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D.

    1997-01-01

    Review of several recent ocean surface wave models finds that while comprehensive in many regards, these spectral models do not satisfy certain additional, but fundamental, criteria. We propose that these criteria include the ability to properly describe diverse fetch conditions and to provide agreement with in situ observations of Cox and Munk [1954] and Jiihne and Riemer [1990] and Hara et al. [1994] data in the high-wavenumber regime. Moreover, we find numerous analytically undesirable aspects such as discontinuities across wavenumber limits, nonphysical tuning or adjustment parameters, and noncentrosymmetric directional spreading functions. This paper describes a two-dimensional wavenumber spectrum valid over all wavenumbers and analytically amenable to usage in electromagnetic models. The two regime model is formulated based on the Joint North Sea Wave Project (JONSWAP) in the long-wave regime and on the work of Phillips [1985] and Kitaigorodskii [1973] at the high wavenumbers. The omnidirectional and wind-dependent spectrum is constructed to agree with past and recent observations including the criteria mentioned above. The key feature of this model is the similarity of description for the high- and low-wavenumber regimes; both forms are posed to stress that the air-sea interaction process of friction between wind and waves (i.e., generalized wave age, u/c) is occurring at all wavelengths simultaneously. This wave age parameterization is the unifying feature of the spectrum. The spectrum's directional spreading function is symmetric about the wind direction and has both wavenumber and wind speed dependence. A ratio method is described that enables comparison of this spreading function with previous noncentrosymmetric forms. Radar data are purposefully excluded from this spectral development. Finally, a test of the spectrum is made by deriving roughness length using the boundary layer model of Kitaigorodskii. Our inference of drag coefficient versus wind speed

  4. Assimilation of wind speed and direction observations: results from real observation experiments

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2015-06-01

    Full Text Available The assimilation of wind observations in the form of speed and direction (asm_sd by the Weather Research and Forecasting Model Data Assimilation System (WRFDA was performed using real data and employing a series of cycling assimilation experiments for a 2-week period, as a follow-up for an idealised post hoc assimilation experiment. The satellite-derived Atmospheric Motion Vectors (AMV and surface dataset in Meteorological Assimilation Data Ingest System (MADIS were assimilated. This new method takes into account the observation errors of both wind speed (spd and direction (dir, and WRFDA background quality control (BKG-QC influences the choice of wind observations, due to data conversions between (u,v and (spd, dir. The impacts of BKG-QC, as well as the new method, on the wind analysis were analysed separately. Because the dir observational errors produced by different platforms are not known or tuned well in WRFDA, a practical method, which uses similar assimilation weights in comparative trials, was employed to estimate the spd and dir observation errors. The asm_sd produces positive impacts on analyses and short-range forecasts of spd and dir with smaller root-mean-square errors than the u,v-based system. The bias of spd analysis decreases by 54.8%. These improvements result partly from BKG-QC screening of spd and dir observations in a direct way, but mainly from the independent impact of spd (dir data assimilation on spd (dir analysis, which is the primary distinction from the standard WRFDA method. The potential impacts of asm_sd on precipitation forecasts were evaluated. Results demonstrate that the asm_sd is able to indirectly improve the precipitation forecasts by improving the prediction accuracies of key wind-related factors leading to precipitation (e.g. warm moist advection and frontogenesis.

  5. Effects of Vertical Wind Shear, Radiation, and Ice Clouds on Precipitation Distributions During a Landfall of Severe Tropical Storm, Bilis (2006

    Directory of Open Access Journals (Sweden)

    Donghai Wang

    2013-01-01

    Full Text Available Torrential rainfall responses to vertical wind shear, radiation, and ice clouds during the landfall of severe Tropical Storm, Bilis (2006 are investigated via a rainfall partitioning analysis of grid-scale sensitivity experiment data. The rainfall data are partitioned into eight types based on surface rainfall budget. The largest contributions to total rainfall come from local atmospheric moistening, water vapor convergence, and hydrometeor loss/convergence (Type 3; 29% when the large-scale upward motions occurred only in the upper troposphere on 15 July 2006. When the large-scale upward motion center moved to the mid troposphere on 16 July, Type 3 hydrometeor loss/convergence (26% plus local atmospheric drying, water vapor divergence, and hydrometeor loss/convergence (Type 5; 25% show equally important contributions to total rainfall.

  6. On the asymmetric distribution of shear-relative typhoon rainfall

    Science.gov (United States)

    Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan

    2018-02-01

    The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.

  7. Directional short wind wave spectra derived from the sea surface photography

    Science.gov (United States)

    Dulov, Vladimir; Yurovskaya, Maria; Chapron, Bertrand; Kudryavtsev, Vladimir

    2014-05-01

    New field measurements of 2-D wave number short wind wave spectra in the wavelength range from few millimeters to few decimeters are reported and discussed. The measurement method proposed by [Kosnik and Dulov, 2011] is based on stereophotography and image brightness contrast processing. The method strongly builds on the brightness cross-spectral analysis to reduce the noise within this short wave gravity and capillary range. Field measurements of wind wave spectra are still rare, and the reported data thus provide valuable information to bring new evidences on the 2-D spectral distribution of short wind waves in the wavelength range from decimeters to millimeters. As found, the folded spectra of decimeter waves are very weakly dependent on the wind speed and its direction. Wind speed and direction sensitivity only starts to appear in the short wavelength range, more precisely in the vicinity of the wave number 100 rad/m, where the wind exponent grows from 0.5 to 1.5-2.5 at 800 rad/m, and angular anisotropy parameter introduced by [Elfouhaily et al., 1997] amounts the value of 0.5. These aspects are consistent with other previously reported optical and radar data. For the latter, we solely extracted the polarization sensitivity to best isolate the contribution associated to the wave saturation spectrum around the Bragg resonant wave number. For the former, mean-squared slope statistics were used to assess the integrated shortscale directional spectral properties. As revealed, observed direction spectral distributions are significantly different from those previously suggested [Elfouhaily et al., 1997; Kudryavtsev et al., 2003, 2005]. On the basis of these new in situ measurements, we then propose to revise the semiempirical analytical model of short wind wave spectra developed by [Kudryavtsev et al., 2003, 2005]. In this model the key parameter is exponent n governing the nonlinear dissipation rate as D ~ Bn+1, where B is saturation spectrum. Accordingly, new

  8. Assessing spring direct mortality to avifauna from wind energy facilities in the Dakotas

    Science.gov (United States)

    Graff, Brianna J.; Jenks, Jonathan A.; Stafford, Joshua D.; Jensen, Kent C.; Grovenburg, Troy W.

    2016-01-01

    The Northern Great Plains (NGP) contains much of the remaining temperate grasslands, an ecosystem that is one of the most converted and least protected in the world. Within the NGP, the Prairie Pothole Region (PPR) provides important habitat for >50% of North America's breeding waterfowl and many species of shorebirds, waterbirds, and grassland songbirds. This region also has high wind energy potential, but the effects of wind energy developments on migratory and resident bird and bat populations in the NGP remains understudied. This is troubling considering >2,200 wind turbines are actively generating power in the region and numerous wind energy projects have been proposed for development in the future. Our objectives were to estimate avian and bat fatality rates for wind turbines situated in cropland- and grassland-dominated landscapes, document species at high risk to direct mortality, and assess the influence of habitat variables on waterfowl mortality at 2 wind farms in the NGP. From 10 March to 7 June 2013–2014, we completed 2,398 searches around turbines for carcasses at the Tatanka Wind Farm (TAWF) and the Edgeley-Kulm Wind Farm (EKWF) in South Dakota and North Dakota. During spring, we found 92 turbine-related mortalities comprising 33 species and documented a greater diversity of species (n = 30) killed at TAWF (predominately grassland) than at EKWF (n = 9; predominately agricultural fields). After accounting for detection rates, we estimated spring mortality of 1.86 (SE = 0.22) deaths/megawatt (MW) at TAWF and 2.55 (SE = 0.51) deaths/MW at EKWF. Waterfowl spring (Mar–Jun) fatality rates were 0.79 (SE = 0.11) and 0.91 (SE = 0.10) deaths/MW at TAWF and EKWF, respectively. Our results suggest that future wind facility siting decisions consider avoiding grassland habitats and locate turbines in pre-existing fragmented and converted habitat outside of high densities of breeding waterfowl and major migration corridors.

  9. Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan

    2015-01-01

    The wake of the 5MW reference wind turbine designed by the National Renewable Energy Laboratory (NREL) is simulated using computational fluid dynamics with a fully resolved rotor geometry, an actuator line method and an actuator disc method, respectively. Simulations are carried out prescribing...

  10. Direct Measurement of Anisotropic and Asymmetric Wave Vector Spectrum in Ion-scale Solar Wind Turbulence

    Science.gov (United States)

    Roberts, O. W.; Narita, Y.; Escoubet, C. P.

    2017-12-01

    This analysis represents the first time that a simultaneous measurement of parallel and perpendicular spectral indices at both inertial and kinetic scales has been made directly in wave vector space, using a single interval of solar wind plasma. An interferometric wave vector analysis method is applied to four-point magnetometer data from the Cluster spacecraft to study for the first time the anisotropic and axially asymmetric energy spectrum directly in the three-dimensional wave vector space in the solar wind on spatial scales for the fluid picture (at about 6000 km) down to the ion kinetic regime (at about 400 km) without invoking Taylor’s frozen-in flow hypothesis. At fluid scales, the spectral index is found to transition from -2 along the large-scale magnetic field direction to a spectral index approaching -5/3 in the perpendicular direction. The wave number for the spectral break between ion inertial and kinetic scales occurs at larger scales in the parallel projection, compared to the perpendicular. At ion kinetic scales, the spectrum in the parallel direction is difficult to measure, while the two perpendicular directions are also anisotropic and vary between -8/3 and -11/3. This suggests that a single anisotropic process where symmetry is broken in a single direction cannot account for the results.

  11. Optimal search direction for an animal flying or swimming in a wind or current.

    Science.gov (United States)

    Dusenbery, D B

    1989-11-01

    The problem of the optimal direction in which a flying or swimming animal should search for a chemical plume was addressed. Active spaces were approximated by sphere, prolate ellipsoids, or rectangular parallelepipeds of various length-to-width ratios. The optimum course direction for the sphere was in the direction of flow (downwind). For active spaces that were highly elongated along the direction of the wind or current, the optimal course heading (with respect to the moving medium) was nearly across the flow. For intermediate shapes, the optimal course was intermediate. Because of the effect of the moving medium, these course headings resulted in actual ground tracks that were more in the direction of the flow, depending on the relative speeds of flying (swimming) and the wind (current). When the two speeds were equal, the magnitude of the advantage of choosing the optimum direction over a random direction was close to 50% with a small dependence on the shape of the active space. If the active space was spherical or highly elongated or locomotor speed was much greater than the speed of the current, the advantage approached a factor of π/2 (≈ 1.57).

  12. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  13. Effect of Side Wind on the Directional Stability and Aerodynamics of a Hybrid Buoyant Aircraft

    Directory of Open Access Journals (Sweden)

    Haque Anwar U

    2016-01-01

    Full Text Available Directional stability characteristics explain the capabilities of a hybrid buoyant aircraft’s performance against the side wind, which induces flow separation that is chaotic in nature and may lead to oscillations of the aerodynamic surfaces. A numerical study is carried out to estimate the effect of side wind. The boundary conditions for the computational domain are set to velocity inlet and pressure outlet. Due to the incompressible flow at the cruise velocity, the density is taken to be constant. For these steady state simulations, the time is discretized in first order implicit and the SIMPLE scheme is employed for pressure velocity coupling alongwith k-ω SST model. Based on the results obtained so far, it is concluded that voluminous hybrid lifting fuselage is the major cause of directional.

  14. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Liu, Dong

    A design study of a 10 MW direct drive wind turbine generator based on MgB2 superconducting wires is presented and the cost of the active materials of the generator is estimated to be between 226 €/kW and 84 €/kw, which is lower than the threshold values of 300 €/kW of the INNWIND.EU project. A n...

  15. Wind tunnel testing of 5-bladed H-rotor wind turbine with the integration of the omni-direction-guide-vane

    Science.gov (United States)

    Fazlizan, A.; Chong, W. T.; Omar, W. Z. W.; Mansor, S.; Zain, Z. M.; Pan, K. C.; Oon, C. S.

    2012-06-01

    A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance by increasing the oncoming wind speed and guiding the wind-stream through optimum flow angles before impinging onto the turbine blades. Wind tunnel testing was performed to measure the performance of a 5-bladed H-rotor wind turbine with Wortmann FX63-137 airfoil blades, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV on a building. The diameter and height of the ODGV are 2 times larger than the VAWT's. Torque, rotational speed and power measurements were performed by using torque transducer with hysteresis brake applied to the rotor shaft. The VAWT shows an improvement on its self-starting behavior where the cut-in speed reduced to 4 m/s with the ODGV (7.35 m/s without the ODGV). Since the VAWT is able to self-start at lower wind speed, the working hour of the wind turbine would increase. At the wind speed of 6 m/s and free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor RPM by 182%. At the same wind speed (6 m/s), the ODGV helps to increase the power output by 3.48 times at peak torque. With this innovative design, the size of VAWT can be reduced for a given power output and should generate interest in the market, even for regions with weaker winds.

  16. Estimating direct fatality impacts at wind farms: how far we’ve come, where we have yet to go

    Science.gov (United States)

    Huso, Manuela M.; Schwartz, Susan Savitt

    2013-01-01

    Measuring the potential impacts of wind farms on wildlife can be difficult and may require development of new statistical tools and models to accurately reflect the measurement process. This presentation reviews the recent history of approaches to estimating wildlife fatality under the unique conditions encountered at wind farms, their unifying themes and their potential shortcomings. Avenues of future research are suggested to continue to address the needs of resource managers and industry in understanding direct impacts of wind turbine-caused wildlife fatality.

  17. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    Science.gov (United States)

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non

  18. Application of Surface Protective Coating to Enhance Environment-Withstanding Property of the MEMS 2D Wind Direction and Wind Speed Sensor.

    Science.gov (United States)

    Shin, Kyu-Sik; Lee, Dae-Sung; Song, Sang-Woo; Jung, Jae Pil

    2017-09-19

    In this study, a microelectromechanical system (MEMS) two-dimensional (2D) wind direction and wind speed sensor consisting of a square heating source and four thermopiles was manufactured using the heat detection method. The heating source and thermopiles of the manufactured sensor must be exposed to air to detect wind speed and wind direction. Therefore, there are concerns that the sensor could be contaminated by deposition or adhesion of dust, sandy dust, snow, rain, and so forth, in the air, and that the membrane may be damaged by physical shock. Hence, there was a need to protect the heating source, thermopiles, and the membrane from environmental and physical shock. The upper protective coating to protect both the heating source and thermopiles and the lower protective coating to protect the membrane were formed by using high-molecular substances such as SU-8, Teflon and polyimide (PI). The sensor characteristics with the applied protective coatings were evaluated.

  19. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.

    Science.gov (United States)

    Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2016-02-23

    Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.

  20. Factors Contributing to the Interrupted Decay of Hurricane Joaquin (2015) in a Moderate Vertical Wind Shear Environment

    Science.gov (United States)

    2017-06-01

    convection in the southern hemisphere of the inner-core region of Joaquin. 16 1145 UTC 2 October AMVs zoomed in around Hurricane Joaquin. Pink wind...Navy B.S., Principia College, 2006 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN METEOROLOGY ...Elsberry Second Reader Wendell Nuss Chair, Department of Meteorology iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT This study

  1. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    Science.gov (United States)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  2. Modal analysis of a grid-connected direct-drive permanent magnet synchronous generator wind turbine system

    DEFF Research Database (Denmark)

    Tan, Jin; Wang, Xiao Ru; Chen, Zhe

    2013-01-01

    In order to study the stability of a grid-connected direct-drive permanent magnet synchronous generator (PMSG) wind turbine systems, this paper presents the modal analysis of a PMSG wind turbine system. A PMSG model suitable for small signal stability analysis is presented. The modal properties...

  3. A Lightweight, Direct-Drive, Fully Superconducting Generator for Large Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer [Advanced Magnet Lab, Palm Bay, FL (United States); Morrison, Darrell [Emerson Inc., St. Louis, MO (United States); Prince, Vernon Gregory [Advanced Magnet Lab, Palm Bay, FL (United States)

    2014-12-31

    The current trend in the offshore wind turbine industry favors direct-drive generators based on permanent magnets, as they allow for a simple and reliable drivetrain without a gearbox. These generators, however, do not scale very well to high power levels beneficial for offshore wind, and their use in wind turbines over 6 MW is questionable in terms of mass and economic feasibility. Moreover, rare earth materials composing the permanent magnets are becoming less available, more costly and potentially unavailable in the foreseeable future. A stated goal of the DOE is a critical materials strategy that pursues the development of substitute materials and technology for rare earth materials to improve supply chain flexibility and meet the needs of the clean energy economy.Therefore, alternative solutions are needed, in terms of both favorable up-scaling and minimizing or eliminating the use of permanent magnets. The generator design presented in this document addresses both these issues with the development of a fully superconducting generator (FSG) with unprecedented high specific torque. A full-scale, 10-MW, 10-rpm generator will weigh less about 150 metric tons, compared to 300 metric tons for an equivalent direct-drive, permanent magnet generator. The developed concept does not use any rare earth materials in its critical drive components, but rather relies on a superconductor composed of mainly magnesium and boron (MgB2), both of which are in abundant supply from multiple global sources.

  4. Design study of coated conductor direct drive wind turbine generator for small scale demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech

    2012-01-01

    We have investigated the properties of a superconducting direct drive generator suitable for demonstration in a small scale 11 kW wind turbine. The engineering current density of the superconducting field windings is based on properties of coated conductors wound into coils holding of the order 68...... meters of tape. The active mass of the generators has been investigated as function of the number of poles and a 4 pole generator is suggested as a feasible starting point of an in-field demonstration of the system reliability. An active mass of m = 421 kg and a usage of 3.45 km of tape will be needed...... to realize such a generator with a peak flux density in the airgap of B0 = 1.5 T. © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Guest Editors....

  5. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    Science.gov (United States)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  6. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3.

    Science.gov (United States)

    Zhang, S L; van der Laan, G; Hesjedal, T

    2017-02-24

    The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.

  7. Shear stress affects the intracellular distribution of eNOS: Direct demonstration by a novel in vivo technique

    NARCIS (Netherlands)

    C. Cheng (Caroline (Ka Lai)); M.J. van Haperen (Rien); M.C. de Waard (Monique); L.C.A. van Damme (Luc); D. Tempel (Dennie); R. Hanemaaijer (Roeland); W.A. van Cappellen (Gert); J.A. Bos (Joop); C.J. Slager (Cornelis); D.J.G.M. Duncker (Dirk); A.F.W. van der Steen (Ton); M.P.G. de Crom (Rini); R. Krams (Rob)

    2005-01-01

    textabstractThe focal location of atherosclerosis in the vascular tree is correlated with local variations in shear stress. We developed a method to induce defined variations in shear stress in a straight vessel segment of a mouse. To this end, a cylinder with a tapered lumen was placed around the

  8. The role of posteriorly directed shear loads acting on a pre-rotated growing spine: a hypothesis on the pathogenesis of idiopathic scoliosis.

    Science.gov (United States)

    Janssen, Michiel M A; Kouwenhoven, Jan-Willem M; Castelein, René M

    2010-01-01

    Despite years of extensive research, the etiology of idiopathic scoliosis still has not been resolved. A hypothesis on the role of posteriorly directed shear loads was studied in several biomechanical and imaging studies. So far, it has been shown that: on the human erect spine these posteriorly directed shear loads act; these loads decrease the rotational stability of the spine vitro and in vivo; once rotation occurs, it logically follows an already built-in vertebral rotational pattern, that is pre-existent in the human spine; this pre-existent rotational pattern is related to organ anatomy, and not to handedness; certain areas in the female spine are more subject to posteriorly directed shear loads as certain areas in the female spine are more backwardly inclined. Although it is appreciated that the cause of idiopathic scoliosis is multi-factorial, we believe that the delicate upright spinal sagittal balance and the unique posteriorly directed shear loads acting on the erect human spine play a crucial role in the rotational stability of the human spine, and thus in the pathogenesis of idiopathic scoliosis.

  9. Direct-Shear Experiments on Ice to Large Strains: Implications for the Evolution of Crystallographic Preferred Orientation

    Science.gov (United States)

    Qi, C.; Prior, D. J.; Goldsby, D. L.

    2016-12-01

    Ice 1h is a strongly anisotropic mineral, such that the development of a crystallographic preferred orientation (CPO) in polycrystalline ice causes anisotropy in various bulk physical properties, most notably its viscosity. The development of CPOs in natural ice thus may have a strong influence on the motion of glaciers and ice sheets. Understanding the development of CPOs under well-controlled laboratory conditions is therefore critical for reliably applying experimentally derived flow laws to glaciers and ice sheets. Most ice deformation experiments have been conducted in axial compression; published CPOs of ice deformed in the laboratory are therefore mostly limited to axial strains CPO were sheared between pistons cut at 45° to the compression axis. Each sample was sheared at an approximately constant shear strain rate, to a shear strain between 0.2 and 2. The measured shear stress became nominally constant after a shear strain of 0.2. High-quality orientation data mapped from cut and polished sections of deformed samples using electron backscatter diffraction (EBSD) reveal the microstructures and CPOs present after different shear strains. The microstructure changes most dramatically within the first 50% of shear strain, with a dramatic decrease in grain size, but continues to evolve with increasing strain. A CPO with c-axes concentrated normal to the shear plane is well-developed in the first 50% of shear strain and continues to strengthen with increasing strain. The evolutions of the eigenvalues of the orientation tensor and the rotation axes of subgrain boundaries derived from EBSD analyses provide constraints for numerical modelling of CPO development. Understanding the evolution of CPOs and associated viscous anisotropy to large strains allows for more robust extrapolations of flow laws to natural ice bodies.

  10. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...... stable region (the real part of eigenvalue is equal to zero). The vector-based DPC combines with a space vector modulation technique to achieve a constant switching frequency. The simulation and experimental results clearly validate the effectiveness and feasibility of the proposed vector-based DPC...

  11. Effect of land uses and wind direction on the contribution of local sources to airborne pollen

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20 km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae–Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen

  12. Atmospheric infrasound propagation modelling using the reflectivity method with a direct formulation of the wind effect

    Science.gov (United States)

    Maupin, Valerie; Näsholm, Sven Peter; Schweitzer, Johannes; Gibbons, Steven J.

    2016-04-01

    We recently advocated using the reflectivity method, also known as the wavenumber integration method or fast-field program, to model atmospheric infrasound propagation at regional distances. The advantage of the reflectivity method is its ability to model the full wavefield, including diffractive effects with head waves and shadow zone arrivals, in a broad frequency range but still at a relatively low computational cost. Attenuation can easily be included, giving the possibility to analyse relative amplitudes and frequency content of the different arrivals. It has clear advantages compared with ray theory in terms of predicting phases considering the particular frequent occurrence of shadow zone arrivals in infrasound observations. Its main limitation, at least in the traditional form of the method, lies in the fact that it can only handle range-independent models. We presented earlier some reflectivity method simulations of an observed accidental explosion in Norway. Wind intensity and direction are non-negligible parameters for infrasound propagation and these are appropriately taken into account in most infrasound ray-tracing codes. On the other hand, in the previous reflectivity simulations wind was taken into account only through the effective sound speed approximation where the horizontal projection of the wind field is added to the adiabatic sound speed profiles. This approximation is appropriate for dominantly horizontal propagation but can give incorrect arrival times and shadow zone locations for waves which have a significant portion of their propagation path at more vertical incidence, like thermospheric arrivals. We present here how we have modified the original reflectivity algorithm in order to take the wind into account in a more correct fashion, and how this improvement influences the synthetics.

  13. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    Science.gov (United States)

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport

  14. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Science.gov (United States)

    Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David

    2017-12-01

    The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower

  15. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2017-12-01

    Full Text Available The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8–70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET. Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE. A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports, with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range

  16. Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography.

    Science.gov (United States)

    Han, Kap-Soo; Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I; Jeong, Seul-Ki

    2017-01-01

    The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels (p SIG values were highly correlated with various flow rates (β = 0.96, p SIG was greater than 0.8 in each section at the carotid artery (p SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice.

  17. LIDAR wind speed measurements at a Taiwan onshore wind park

    Science.gov (United States)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  18. Shear Stress Sensing with Elastic Microfence Structures

    Science.gov (United States)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; hide

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  19. Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data

    Science.gov (United States)

    Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.

    2014-12-01

    Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.

  20. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  1. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-01-01

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  2. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  3. Influence of hurricane wind field in the structure of directional wave spectra.

    Science.gov (United States)

    Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.

    2017-04-01

    Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006

  4. Measurement of rotor centre flow direction and turbulence in wind farm environment

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Sommer, A.

    2014-01-01

    The measurement of inflow to a wind turbine rotor was made with a spinner anemometer on a 2 MW wind turbine in a wind farm of eight wind turbines. The wind speed, yaw misalignment and flow inclination angle was measured during a five months measurement campaign. Angular measurements were calibrated...... factor function. Yaw measurements and turbulence measurements, where the average wind speed was corrected to the far field with the induction function, showed good correlation with mast measurements. The yaw misalignment measurements showed a significant yaw misalignment for most of the wind speed range......, and also a minor symmetric yaw misalignment pattern. The flow inclination angle showed slight variation of inflow angle with wind speed and clear wake swirl patterns in the wakes of the other wind turbines. Turbulence intensity measurements showed clear variations from low turbulence in the wake-free wind...

  5. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  6. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  7. Assessing the effect of wind speed/direction changes on urban heat island intensity of Istanbul.

    Science.gov (United States)

    Perim Temizoz, Huriye; Unal, Yurdanur S.

    2017-04-01

    Assessing the effect of wind speed/direction changes on urban heat island intensity of Istanbul. Perim Temizöz, Deniz H. Diren, Cemre Yürük and Yurdanur S. Ünal Istanbul Technical University, Department of Meteorological Engineering, Maslak, Istanbul, Turkey City or metropolitan areas are significantly warmer than the outlying rural areas since the urban fabrics and artificial surfaces which have different radiative, thermal and aerodynamic features alter the surface energy balance, interact with the regional circulation and introduce anthropogenic sensible heat and moisture into the atmosphere. The temperature contrast between urban and rural areas is most prominent during nighttime since heat is absorbed by day and emitted by night. The intensity of the urban heat island (UHI) vary considerably depending on the prevailent meteorological conditions and the characteristics of the region. Even though urban areas cover a small fraction of Earth, their climate has greater impact on the world's population. Over half of the world population lives in the cities and it is expected to rise within the coming decades. Today almost one fifth of the Turkey's population resides in Istanbul with the percentage expected to increase due to the greater job opportunities compared to the other cities. Its population has been increased from 2 millions to 14 millions since 1960s. Eventually, the city has been expanded tremendously within the last half century, shifting the landscape from vegetation to built up areas. The observations of the last fifty years over Istanbul show that the UHI is most pronounced during summer season. The seasonal temperature differences between urban and suburban sites reach up to 3 K and roughly haft degree increase in UHI intensity is observed after 2000. In this study, we explore the possible range of heat load and distribution over Istanbul for different prevailing wind conditions by using the non-hydrostatic MUKLIMO3 model developed by DWD

  8. Software for determining the direction of movement, shear and normal stresses of a fault under a determined stress state

    Science.gov (United States)

    Álvarez del Castillo, Alejandra; Alaniz-Álvarez, Susana Alicia; Nieto-Samaniego, Angel Francisco; Xu, Shunshan; Ochoa-González, Gil Humberto; Velasquillo-Martínez, Luis Germán

    2017-07-01

    In the oil, gas and geothermal industry, the extraction or the input of fluids induces changes in the stress field of the reservoir, if the in-situ stress state of a fault plane is sufficiently disturbed, a fault may slip and can trigger fluid leakage or the reservoir might fracture and become damaged. The goal of the SSLIPO 1.0 software is to obtain data that can reduce the risk of affecting the stability of wellbores. The input data are the magnitudes of the three principal stresses and their orientation in geographic coordinates. The output data are the slip direction of a fracture in geographic coordinates, and its normal (σn) and shear (τ) stresses resolved on a single or multiple fracture planes. With this information, it is possible to calculate the slip tendency (τ/σn) and the propensity to open a fracture that is inversely proportional to σn. This software could analyze any compressional stress system, even non-Andersonian. An example is given from an oilfield in southern Mexico, in a region that contains fractures formed in three events of deformation. In the example SSLIPO 1.0 was used to determine in which deformation event the oil migrated. SSLIPO 1.0 is an open code application developed in MATLAB. The URL to obtain the source code and to download SSLIPO 1.0 are: http://www.geociencias.unam.mx/ alaniz/main_code.txt, http://www.geociencias.unam.mx/ alaniz/ SSLIPO_pkg.exe.

  9. Flux-Tube Texture of the Solar Wind: Weakly Compressible MHD Theory and Direct Numerical Simulations

    Science.gov (United States)

    Bhattacharjee, A.; Sarkar, A.; Ebrahimi, F.

    2012-10-01

    Over the years, there has been a steady accumulation of observational evidence that the solar wind may be thought of as a network of individual magnetic flux tubes each with its own magnetic and plasma characteristics [Bartley et al. 1966, Marliani et al. 1973, Tu and Marsch 1990, Bruno et al. 2001, Borovsky 2008]. The weakly compressible MHD (WC-MHD) model [Bhattacharjee et al., 1998], which incorporates the effect of background spatial inhomogeneities, has been used recently to characterize the anisotropic magnetic fluctuation spectra (the so-called variance anisotropy) observed by ACE spacecraft. For a model of local pressure-driven interchange turbulence in a generic solar wind flux tube, the WC-MHD theory uses the Invariance Principle approach [Connor and Taylor 1997, Bhattacharjee and Hameiri 1988] to calculate explicitly the scaling of magnetic field fluctuations with plasma beta and other background plasma parameters. We test these theoretical predictions by direct numerical simulations of interchange turbulence in a flux tube using the DEBS MHD code. Synthetic variance anisotropy within a generic flux tube is computed in the high-Lundquist-number regime, and shows remarkable similarity with ACE observations.

  10. Direct numerical simulations of an arc-powered heater for used in a hypersonic wind tunnel

    Science.gov (United States)

    Kim, Pilbum; Panesi, Marco; Freund, Jonathan

    2017-11-01

    We study a model arc-heater using direct numerical simulations, in a configuration motivated by its used to generated inflow of a high-speed wind tunnel for hypersonics research. The flow is assumed to be in local thermal equilibrium (LTE) and is modeled with with 11 species (N2, O2, NO, N, O, N2+,O2+,NO+, N+, O+, e-). The flow equations are solved in conjunction with an electrostatic field solver and the gas electric conductivity in LTE. The flow rate and the mean arc power are set to be 50.42 g/s and 84.7 kW with 214.0 V of the mean arc voltage , respectively. We study the flow details, the heading and thrust mechanisms, and make general comparisons with a corresponding, though geometrically more complex, experimental configuration. We particularly interested in the radical species it produces and will potentially be present in the wind-tunnel test section. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  11. Detection and Quantization of Bearing Fault in Direct Drive Wind Turbine via Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Wei Teng

    2016-01-01

    Full Text Available Bearing fault is usually buried by intensive noise because of the low speed and heavy load in direct drive wind turbine (DDWT. Furthermore, varying wind speed and alternating loads make it difficult to quantize bearing fault feature that indicates the degree of deterioration. This paper presents the application of multiscale enveloping spectrogram (MuSEnS and cepstrum to detect and quantize bearing fault in DDWT. MuSEnS can manifest fault modulation information adaptively based on the capacity of complex wavelet transform, which enables the weak bearing fault in DDWT to be detected. Cepstrum can calculate the average interval of periodic components in frequency domain and is suitable for quantizing bearing fault feature under varying operation conditions due to the logarithm weight on the power spectrum. Through comparing a faulty DDWT with a normal one, the bearing fault feature is evidenced and the quantization index is calculated, which show a good application prospect for condition monitoring and fault diagnosis in real DDWT.

  12. Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines

    Directory of Open Access Journals (Sweden)

    E.G. Shehata

    2015-12-01

    Full Text Available In spite of its several advantages, a classic direct power control (DPC of doubly fed induction generators (DFIGs driven by variable speed wind turbines has some drawbacks. In this paper, a simple and robust total sliding mode controller (TSMC is designed to improve the classical DPC performance without complicating the overall scheme. The TSMC is designed to regulate the DFIG stator active and reactive powers. Two integral switching functions are selected for describing the switching surfaces of the active and reactive powers. Reaching phase stability problem of the classical sliding mode controller is avoided in the proposed TSMC. Neither current control loops nor accurate values of machine parameters are required in the proposed scheme. In addition, axes transformation of the stator voltage and current are eliminated. The grid side converter is controlled based on DPC principle to regulate both DC-link voltage and total reactive power. The feasibility of the proposed DPC scheme is validated through simulation studies on a 1.5 MW wind power generation system. The performance of the proposed and conventional DPC schemes is compared under different operating conditions.

  13. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    Science.gov (United States)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  14. Application of order cyclostationary demodulation to damage detection in a direct-driven wind turbine bearing

    Science.gov (United States)

    Liu, Xiaofeng; Bo, Lin; Peng, Chang

    2014-02-01

    This paper presents a method of fault detection and isolation for a direct-driven wind turbine (DWT) bearing. Computed order tracking is employed to convert the non-stationary envelope signal in the time domain into a quasi-stationary signal in the angular domain by even-angle resampling. Cyclostationary demodulation is then utilized to expose the orders related to fault characteristics in the demodulation spectrum. In order to realize the automatic fault diagnosis and emit a stable alarm about bearing damage, the peak value of the demodulation spectrum is scaled and compared to a defined threshold. The significant advantage of the proposed method is the implementation of an automatic algorithm for DWT bearing diagnostics under randomly varying speed and highly alternating load. Practical applications are provided to show that the proposed approach is able to achieve reliable failure warning in the bearing condition monitoring of a DWT.

  15. IRONLESS PERMANENT MAGNET GENERATORS FOR DIRECT-DRIVEN OFFSHORE WIND TURBINES

    OpenAIRE

    Zhaoqiang, Zhang

    2015-01-01

    Since the beginning of this century, the offshore wind power industry has witnessed fast development, as the result of the increasing awareness of climate change and the need for diversifying power supply. Offshore has vast area available with high wind speed, which is an ideal place for large-scale wind power exploitation. However, these advantages come with technological challenges. One of the key challenges is to develop high-power cost-effective wind turbines with high r...

  16. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    Science.gov (United States)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  17. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  18. A study of interunit dispersion around multistory buildings with single-sided ventilation under different wind directions

    Science.gov (United States)

    Ai, Z. T.; Mak, C. M.

    2014-05-01

    This study examines the interunit dispersion characteristics in and around multistory buildings under wind-induced single-sided ventilation conditions using computational fluid dynamics (CFD) method, under the hypothesis that infectious respiratory aerosols exhausted from a unit can reenter into another unit in a same building through opened windows. The effect of balconies on the interunit dispersion pattern is considered. The RNG k - ɛ model and the two-layer near-wall model are employed to establish the coupled indoor and outdoor airflow field, and the tracer gas technique is adopted to simulate pollutant dispersion. Reentry ratios from each unit to other units under prevailing wind directions are quantified and the possible interunit dispersion routes are then revealed. It is found that many reentry ratios appear to reach around 10.0%, suggesting that the interunit dispersion is an important pollutant transmission route. The interunit dispersion pattern is highly dependent on the incident wind direction and the fact whether the building has protrusive envelope features. On average, the strongest dispersion occurs on the windward wall of the buildings under oblique wind direction, owing to high ACH (air change per hour) values and unidirectional spread routes. Except under a normal incident wind, the presence of balconies intensifies the interunit dispersion by forming dispersion channels to increase the reentry ratios.

  19. CFOSAT: a new Chinese-French satellite for joint observations of ocean wind vector and directional spectra of ocean waves

    Science.gov (United States)

    Hauser, D.; Tison, C.; Amiot, T.; Delaye, L.; Mouche, A.; Guitton, G.; Aouf, L.; Castillan, P.

    2016-05-01

    CFOSAT (the China France Oceanography Satellite) is a joint mission from the Chinese and French Space Agencies, devoted to the observation ocean surface wind and waves so as to improve wind and wave forecast for marine meteorology, ocean dynamics modeling and prediction, climate variability knowledge, fundamental knowledge of surface processes. Currently under Phase D (manufacturing phase), the launch is now planned for mid-2018 the later. The CFOSAT will carry two payloads, both Ku-Band radar: the wave scatterometer (SWIM) and the wind scatterometer (SCAT). Both instruments are based on new concepts with respect to existing satellite-borne wind and wave sensors. Indeed, one of the originalities of CFOSAT is that it will provide simultaneously and in the same zone, the directional spectra of ocean waves and the wind vector. The concept used to measure the directional spectra of ocean waves has never been used from space until now: it is based on a near-nadir incidence pointing, rotating fan-beam radar, used in a real-aperture mode. In this paper we present the CFOSAT mission, its objectives and main characteristics. We then focus on the SWIM instrument, the expected geophysical products and performances. Finally, we present ongoing studies based on existing satellite data of directional spectra of ocean waves (Sentinel-1, ..) and carried out in preparation to CAL/VAL activities and to future data exploitation.

  20. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  1. Modelling and Analysis of Radial Flux Surface Mounted Direct-Driven PMSG in Small Scale Wind Turbine

    Directory of Open Access Journals (Sweden)

    Theint Zar Htet

    2017-11-01

    Full Text Available This paper presents the modelling and analysis of permanent magnet synchronous generator (PMSG which are used in direct driven small scale wind turbines. The 3 kW PM generator which is driven directly without gear system is analyzed by Ansoft Maxwell 2D RMxprt. The performance analysis of generator includes the cogging torque in two teeth, induced coil voltages under load, winding current under load, airgap flux density distribution and so on. The modelling analysis is based on the 2D finite element techniques. In an electrical machine, an accurate determination of the geometry parameters is a vital role. The proper performance results of 3kW PMSG in small scale wind turbine can be seen in this paper.

  2. Directed flight and optimal airspeeds: homeward-bound gulls react flexibly to wind yet fly slower than predicted

    NARCIS (Netherlands)

    McLaren, J.D.; Shamoun, J.; Camphuysen, C.J.; Bouten, W.

    2016-01-01

    Birds in flight are proposed to adjust their body orientation (heading) and airspeed to wind conditions adaptively according to time and energy constraints. Airspeeds in goal-directed flight are predicted to approach or exceed maximum-range airspeeds, which minimize transport costs (energy

  3. Gusts and Shear in an Idealized LES-modeled Hurricane

    Science.gov (United States)

    Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.

    2016-12-01

    Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.

  4. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  5. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines: Cost of Energy Based

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    This paper aims at finding feasible electromagnetic designs of superconducting synchronous generators (SCSGs) for a 10-MW direct-drive wind turbine. Since a lower levelized cost of energy (LCoE) increases the feasibility of SCSGs in this application, 12 generator topologies are compared regarding...... their LCoE in a simplified form of levelized equipment cost of energy (LCoE$_{\\text{eq}}$). MgB$_2$ wires are employed in the field winding. Based on the current unit cost and critical current density capability of the MgB $_2$ wire at 20 K, the topologies with more iron have a much lower LCo...

  6. Microbiology of Wind-eroded Sediments: Current Knowledge and Future Research Directions

    Science.gov (United States)

    Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carrie...

  7. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control.

    Science.gov (United States)

    Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John

    2016-09-01

    This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  9. Advanced control of direct-driven PMSG generator in wind turbine system

    Directory of Open Access Journals (Sweden)

    Gajewski Piotr

    2016-12-01

    Full Text Available The paper presents the advanced control system of the wind energy conversion with a variable speed wind turbine. The considered system consists of a wind turbine with the permanent magnet synchronous generator (PMSG, machine side converter (MSC, grid side converter (GSC and control circuits. The mathematical models of a wind turbine system, the PMSG generator and converters have been described. The control algorithms of the converter systems based on the methods of vector control have been applied. In the advanced control system of the machine side converter the optimal MPPT control method has been used. Additionally the pitch control scheme is included in order to achieve the limitation of maximum power and to prevent mechanical damage of the wind turbine. In the control system of the grid side converter the control of active and reactive power has been applied with the application of Voltage Oriented Control (VOC. The performance of the considered wind energy system has been studied by digital simulation. The results of simulation studies confirmed the good effectiveness of the considered wind turbine system and very good performance of the proposed methods of vector control and control systems.

  10. Field-based observations confirm linear scaling of sand flux with wind stress

    CERN Document Server

    Martin, Raleigh L

    2016-01-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the sand flux scales with wind speed, largely because models do not agree on how particle speed changes with wind shear velocity. Here, we present comprehensive measurements from three new field sites and three published studies, showing that characteristic saltation layer heights, and thus particle speeds, remain approximately constant with shear velocity. This result implies a linear dependence of saltation flux on wind shear stress, which contrasts with the nonlinear 3/2 scaling used in most aeolian process predictions. We confirm the linear flux law with direct measurements of the stress-flux relationship occurring at each site. Models for dust generation, dune migration, and other processes driven by wind-blown sand on Earth, Mars, and several other planetary surfaces should be modified to account for linear stress-flux scaling.

  11. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate......In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...

  12. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed...

  13. Canadian Estimate of Bird Mortality Due to Collisions and Direct Habitat Loss Associated with Wind Turbine Developments

    Directory of Open Access Journals (Sweden)

    J. Ryan. Zimmerling

    2013-12-01

    Full Text Available We estimated impacts on birds from the development and operation of wind turbines in Canada considering both mortality due to collisions and loss of nesting habitat. We estimated collision mortality using data from carcass searches for 43 wind farms, incorporating correction factors for scavenger removal, searcher efficiency, and carcasses that fell beyond the area searched. On average, 8.2 ± 1.4 birds (95% C.I. were killed per turbine per year at these sites, although the numbers at individual wind farms varied from 0 - 26.9 birds per turbine per year. Based on 2955 installed turbines (the number installed in Canada by December 2011, an estimated 23,300 birds (95% C.I. 20,000 - 28,300 would be killed from collisions with turbines each year. We estimated direct habitat loss based on data from 32 wind farms in Canada. On average, total habitat loss per turbine was 1.23 ha, which corresponds to an estimated total habitat loss due to wind farms nationwide of 3635 ha. Based on published estimates of nest density, this could represent habitat for ~5700 nests of all species. Assuming nearby habitats are saturated, and 2 adults displaced per nest site, effects of direct habitat loss are less than that of direct mortality. Installed wind capacity is growing rapidly, and is predicted to increase more than 10-fold over the next 10-15 years, which could lead to direct mortality of approximately 233,000 birds / year, and displacement of 57,000 pairs. Despite concerns about the impacts of biased correction factors on the accuracy of mortality estimates, these values are likely much lower than those from collisions with some other anthropogenic sources such as windows, vehicles, or towers, or habitat loss due to many other forms of development. Species composition data suggest that < 0.2% of the population of any species is currently affected by mortality or displacement from wind turbine development. Therefore, population level impacts are unlikely

  14. 76 FR 47353 - Final Directives for Forest Service Wind Energy Special Use Authorizations, Forest Service Manual...

    Science.gov (United States)

    2011-08-04

    ... FWS and the National Marine Fisheries Service (NMFS) and prepare a biological assessment prior to... construction and operation of a wind energy facility might include reconstruction of an NFS road to accommodate...

  15. Direct Embedding of Fiber-Optical Load Sensors into Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars; Buggy, Stephen; Olesen, Ib S.

    Long Period Gratings were embedded into the adhesive utilized in the matrix of a wind turbine blade. The LPGs were subsequently subjected to temperature-testing in order to assess their performance, which illustrates good embedding capabilities.......Long Period Gratings were embedded into the adhesive utilized in the matrix of a wind turbine blade. The LPGs were subsequently subjected to temperature-testing in order to assess their performance, which illustrates good embedding capabilities....

  16. Current direction, wind direction, temperature, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 February 1981 - 01 February 1981 (NODC Accession 8100516)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from February 1, 1981 to...

  17. Current direction, benthic organisms, temperature, and wind direction data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 22 September 1977 - 30 November 1978 (NODC Accession 7900110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, temperature, and wind direction data were collected using moored current meter casts in the Gulf of Mexico from September 22,...

  18. A 225 kW Direct Driven PM Generator Adapted to a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    S. Eriksson

    2011-01-01

    Full Text Available A unique direct driven permanent magnet synchronous generator has been designed and constructed. Results from simulations as well as from the first experimental tests are presented. The generator has been specifically designed to be directly driven by a vertical axis wind turbine and has an unusually low reactance. Generators for wind turbines with full variable speed should maintain a high efficiency for the whole operational regime. Furthermore, for this application, requirements are placed on high generator torque capability for the whole operational regime. These issues are elaborated in the paper and studied through simulations. It is shown that the generator fulfils the expectations. An electrical control can effectively substitute a mechanical pitch control. Furthermore, results from measurements of magnetic flux density in the airgap and no load voltage coincide with simulations. The electromagnetic simulations of the generator are performed by using an electromagnetic model solved in a finite element environment.

  19. Wind wave direction impact on the long-shore sediment transport rate, South East Baltic sea coast

    Directory of Open Access Journals (Sweden)

    Eglė Zuzevičiūtė

    2015-09-01

    Full Text Available The Lithuanian coast of the south eastern part of the Baltic Sea represents a generic type of more or less straight, high-energy (in the Baltic Sea conditions, actively developing coasts that contain a relatively large amount of finer, mobile sediments, are open to predominating wind directions and are exposed to wave activity for a wide range of wave approach directions. The combination of the angular distribution of winds and the geometry of the coast are such that the wave-induced long-shore sediment transport is, in average, to the north over the entire Curonian spit and the mainland coast of Lithuania. Analysis of the field data performed by the G. Žilinskas (2008 from 1976-2007 revealed that the length of accumulative sections has been considerably reduced. Accordingly, the length of the gradually eroding sectors has increased in the end of the 20th century. In this study were analised potential variations in the long-shore sediment transport rate due changes of the wind wave directions. Sediment transport rate is estimated by the energy flux model, also known as the Coastal Engineering Research Centre (CERC model. The study area covers the entire coast of Lithuania. Entire coast was divided into 90 grids, about 1 km long beach sectors, at the 3 m depth isobaths. Wave directions calculated every 10 degrees. Most intensive long-shore sediment transport from south to the north was induced by waves from South. Changing wave approaching direction to the SW, long-shore sediment transport rate become smaller. Waves from WSW induce long shore sediment transport from opposite direction, from north to south. Westerly waves already induce maximum sediment transport to the south. It should be noticed that wave direction further shifting to the North induces sediment transport to the north again.DOI: 10.15181/csat.v3i1.225

  20. Model-based predictive direct power control of brushless doubly fed reluctance generator for wind power applications

    OpenAIRE

    Moazen, Maryam; Kazemzadeh, Rasool; Azizian, Mohammad-Reza

    2016-01-01

    In this paper, a predictive direct power control (PDPC) method for the brushless doubly fed reluctance generator (BDFRG) is proposed. Firstly, the BDFRG active and reactive power equations are derived and then the active and reactive power variations have been predicted within a fixed sampling period. The predicted power variations are used to calculate the required voltage of the secondary winding so that the power errors at the end of the following sampling period are eliminated. Switching ...

  1. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  2. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  3. Composite materials for wind energy applications: micromechanical modeling and future directions

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    The strength and reliability of wind turbine blades depend on the properties, mechanical behavior and strengths of the material components (glass or carbon fibers and polymer matrix), and the interaction between them under loading. In this paper, ideas, methods and concepts of micromechanical mod...... the applicability of different groups of the materials to the application in wind turbine blades. Some examples of the analysis of the microstructural effects on the strength and fatigue life of composites are shown.......The strength and reliability of wind turbine blades depend on the properties, mechanical behavior and strengths of the material components (glass or carbon fibers and polymer matrix), and the interaction between them under loading. In this paper, ideas, methods and concepts of micromechanical...... modelling of materials for wind turbine blades are briefly reviewed. Using the variety of the modeling methods reviewed here, one can predict the strength, stiffness and lifetime of the materials, optimize their microstructures with view on the better usability for wind turbines, or compare...

  4. Wind and Wave Forcing of Longshore Currents Across a Barred Beach

    Science.gov (United States)

    1988-06-01

    method, and direct shear measurements. The first three are indirect methods and are addressed below. The direct shear meas- urement method involves...was named TMA, after the 3 sub-data sets, and includes water depths from 6 - 42 m, wind speeds up to 30 ms- 1 , bottom composition from fine to coarse...experiment site are illustrated in Figure 14. Incomplete survey sightings of the sled prisms due to salt incrustation on the prism lens and Zeiss operator

  5. Potential impacts of topography and prevailing wind direction on future precipitation changes in Japan

    Science.gov (United States)

    Tsunematsu, N.; Dairaku, K.; Hirano, J.

    2013-12-01

    To investigate future changes in summertime precipitation amounts over the Japanese islands and their relations to the topographical heights, this study analyzed 20 km horizontal grid-spacing regional climate model downscalings of MIROC3.2-hires 20C3M and SRES-A1B scenario data for the periods of 1981-2000 and 2081-2100. Results indicate the remarkable increases in June-July-August mean daily precipitation in the west and south sides (windward sides) of the mountainous regions, especially in western Japan where heavy rainfall is frequently observed in the recent climate. The remarkable increases in summertime precipitation are likely to occur not only in high altitude areas but also at low altitudes. The occurrence frequencies of precipitation greater than 100 mm/day would also increase in such areas. The intensification of southwesterly moist air flows in the lower troposphere is considered to be one of the main causes of those precipitation changes because the intensified southwesterly moist air flows impinging on the western and southern slopes of the mountains can generate stronger upslope flows and well-developed clouds, leading to increased precipitation. Also, the results show that future precipitation changes in the lee sides of the mountainous regions (e.g., the Tokyo metropolitan area) would be comparatively small. These results indicate large influences of topography and prevailing wind direction on future precipitation changes. Acknowledgments: This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan. We thank the regional climate modeling groups (MRI

  6. Shear and Turbulence Effects on Lidar Measurements

    DEFF Research Database (Denmark)

    Courtney, Michael; Sathe, Ameya; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. It is known that lidar wind speed measure-ments are affected by both turbulence and wind shear. This report explains the mechanisms behind these sensitivities. For turbulence, it is found that errors in the scalar mean speed...... are usually only small. However, particularly in re-spect of a lidar calibration procedure, turbulence induced errors in the cup anemometer speed are seen to be signifi-cantly larger. Wind shear is shown to induce measurement errors both due to possible imperfections in the lidar sensing height and due...... to the averaging of a non-linear speed profile. Both effects in combination have to be included when modelling the lidar error. Attempts to evaluate the lidar error from ex-perimental data have not been successful probably due to a lack of detailed knowledge of both the wind shear and the actual lidar sensing...

  7. A Transverse Flux High-Temperature Superconducting Generator Topology for Large Direct Drive Wind Turbines

    Science.gov (United States)

    Keysan, Ozan; Mueller, Markus A.

    The cost and mass of an offshore wind turbine power-train can be reduced by using high-temperature superconducting generators, but for a successful commercial design the superconducting generator should be as reliable as its alternatives. In this paper, we present a novel transverse flux superconducting generator topology which is suitable for low-speed, high-torque applications. The generator is designed with a stationary superconducting field winding and a variable reluctance claw pole motor for simplified mechanical structure and maximum reliability. 3D FEA simulation results of a 70 kW prototype is presented.

  8. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  9. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  10. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    based on combined efficiency of the rotor and the reciprocating pump was used to estimate the performance of the wind pump. One year wind speed data collected at 10 m height was extrapolated to the wind pump hub height using wind shear coefficient. The model assumed balanced rotor power and reciprocating pump, ...

  11. Increasing the Feasibility of Superconducting Generators for 10 MW Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Liu, D.

    2017-01-01

    In recent years, superconducting synchronous generators (SCSGs) have been proposed as an alternative to permanent magnet synchronous generators (PMSGs). They are expected to reduce the top head mass and the nacelle size for such large wind turbines. In 2012, the INNWIND.EU project initiated this

  12. Direct load control for electricity supply and demand matching : increasing reliability of wind energy

    NARCIS (Netherlands)

    Hoeve ten, Marieke

    2009-01-01

    In Sweden as well as in The Netherlands energy policy is increasingly aiming at extending the use of renew-able sources. In accordance with the targets of the European Union, both countries have formulated national targets for the year 2020. For wind ener

  13. Airfoil and blade optimization for a direct-drive, permanent magnet wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Dini, P. [Carleton College, Northfield, MN (United States); Bayly, E. [World Power Technologies, Inc., Duluth, MN (United States)

    1996-12-31

    A new blade is designed for a small, variable-speed wind turbine by relying on available theoretical design and analysis methods. The performance predictions are compared to field test measurements and are found to be optimistic. This feedback sheds light on the interpretation of the theoretical results and is used to refine the design method. 9 refs., 10 figs.

  14. Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation.

    Science.gov (United States)

    Kasper, J C; Lazarus, A J; Gary, S P

    2008-12-31

    A study of solar-wind hydrogen and helium temperature observations collected by the Wind spacecraft offers compelling evidence of heating by an Alfvén-cyclotron dissipation mechanism. Observations are sorted by the rate of Coulomb interactions, or collisional age, in the plasma and the differential flow between the two species. We show that helium is preferentially heated perpendicular to the magnetic field direction by more than a factor of 6 when the flow between the species is small relative to the Alfvén wave speed and collisions are infrequent. These signatures are consistent with predictions of dissipation in the presence of multiple ion species. We also report an unexpected result: observations of efficient heating of helium parallel to the magnetic field for large differential flow relative to the sound speed.

  15. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  16. Characteristics of wind force on neighboring high-rise buildings; Renritsusuru koso kenchikubutsu ni sayosuru furyoku no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, T.; Kawaguchi, A. [Obayashi Corp., Tokyo (Japan)

    1998-07-10

    Wind tunnel test (wind force and pressure tests) was made supposing adjacent 200m class buildings to consider some problems on wind resistant design. By using a site of buildings as parameter, wind load of single and adjacent buildings, and acceleration response of adjacent buildings were clarified by wind force test. Distributions of wind directions were also clarified by wind pressure test for single and adjacent buildings. The knowledge on wind force obtained by the tests is as follows. Although the relation between a distance between buildings and a wind force amplitude was affected by building shape, site and period, the maximum shear force of adjacent buildings was 1.6-2.8 times that of a single building. A wind load amplitude was larger in a direction normal to an axis. A wind acceleration of adjacent buildings increased at 180deg in wind direction, and affected by adjacent buildings even at lower wind velocity. A wind force amplitude was caused by spectrum shift due to an increase in wind velocity between buildings followed by change in vortex occurrence period. In some cases, adjacent buildings quaked even at lower wind velocity by interaction. 10 refs., 18 figs.

  17. Accuracy of National Weather Service wind-direction forecasts at Macon and Augusta, Georgia

    Science.gov (United States)

    Leonidas G. Lavdas

    1997-01-01

    National Weather Service wind forecasts and observations over a nine-year period (1985 to 1993) were analyzed to determine the usefulness of these forecasts for forestry smoke management. Data from Macon, GA indicated that forecasts were accurate to within plus or minus 22.5E about 38 percent of the time. When a wider plus or minus 67.5E window was used, accuracy...

  18. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

    Directory of Open Access Journals (Sweden)

    Othman Al-Khudairi

    2017-10-01

    Full Text Available In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i as received blade (ii when a crack of 200 mm was introduced between the web and the spar cap and (iii when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  19. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    Science.gov (United States)

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  20. Light paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    National Research Council Canada - National Science Library

    Yonehara, Y; Goto, Y; Yoda, K; Watanuik, Y; Young, L. C; Weimerskirch, Henri; Bost, Charles-André; Sato, K

    2016-01-01

    ...) ocean surface winds. Fine-scale global positioningsystem (GPS) positional data revealed that soaring seabirds flewtortuously and ground speed fluctuated presumably due to tailwinds and head winds...

  1. 2013-2014 Lidar Campaign: Measurements of Inflow at a Northern Oklahoma Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [Univ. of Oklahoma, Norman, OK (United States); Irons, Zack [Enel Green Power North America, Inc., Andover, MA (United States); Miller, Wayne O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-25

    In November 2013, LLNL deployed two vertically-profiling, Doppler Laser Detection and Ranging (lidar) instruments at Enel Green Power North America’s 235 MW wind farm in Northern Oklahoma to collect wind measurements. The lidars were used to measure wake-free observations of the free-stream wind flow (i.e., inflow) for purposes of quantifying rotor-disk wind characteristics under varying atmospheric conditions. The measurements included horizontal wind speed, vertical wind speed, wind direction, and turbulence intensity, taken at a ~1 Hz sampling rate and averaged over 10-minute intervals. From these measurements we also calculated wind shear across the turbine rotor disk and turbulence kinetic energy (TKE).

  2. Direct microscopic observation of striations in a fractured section of a sirolimus-eluting stent (Cypher Bx Velocity®) indicates induction of stent fracture by continuous shear stress.

    Science.gov (United States)

    Endo, Akira; Ishikawa, Tetsuya; Suzuki, Teruhiko; Kashiwagi, Yusuke; Mutoh, Makoto

    2011-01-01

    A 73-year-old woman with severe congestive heart failure was treated by implantation with a sirolimus-eluting stent (SES; Cypher Bx Velocity(®)) in the left main coronary artery (LMCA) using the staged T-stent, kissing balloon, and hugging balloon techniques. Follow-up coronary multislice computed tomography after 10 months revealed that SES was completely fractured in 2 directions; the fractured stent appeared in the shape of the letter "L" and had migrated into the aorta. An SES fragment was surgically removed and subsequent electron microscopy revealed striations (striped patterns in fractured sections) on the fracture plane, indicating continuous shear stress after SES implantation in the LMCA. This case provides direct evidence of continuous shear stress on the SES and indicates the necessity of improving the structure of the stent such that it can withstand shear stress.

  3. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  4. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  5. The physical phenomena associated with stator winding insulation condition as detected by the ramped direct high-voltage method

    Science.gov (United States)

    Rux, Lorelynn Mary

    Deregulation of the electric utility industry has increased the need to monitor the state of powerplant equipment, such as critical generators and motors, to improve availability and reduce life cycle costs via condition-based maintenance. To achieve these goals, nondestructive condition assessment and diagnostic tests are necessary to evaluate the quality and condition of a machine's stator winding insulation system. Periodic tests are generally conducted to monitor insulation aging, diagnose problems, or provide some assurance that the winding has a minimum level of electrical strength. The basic principles of insulation testing are presented herein, and the physical mechanisms that affect the current versus voltage response are described. A stator winding insulation model was developed based on this theoretical foundation for use in understanding and analyzing the macroscopic behavior of complex insulation phenomena. A comprehensive, controlled laboratory experiment was conducted on a set of stator coils that were deliberately manufactured with and without insulation defects. Specific defects were chosen to represent the types of insulation problems typically encountered during manufacture or as a result of in-service aging, and included lack of resin cure, loosely-applied insulating tapes, internal conductive contamination, reduced density of the groundwall insulation, and thermal cycling damage. Results are presented from a series of electrical tests conducted on the coil specimens to compare the effectiveness of various test methods in detecting the different insulation problems. The tests included insulation resistance, polarization index, ramped direct voltage, dissipation factor, dielectric spectroscopy, partial discharge, and recovery voltage measurements. Dielectric principles and testing experience obtained during this investigation were applied to a collection of test results obtained by the author from in-service machines during the past ten years

  6. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work.

    Energy Technology Data Exchange (ETDEWEB)

    Deola, Regina Anne

    2010-02-01

    Portable remote sensing devices are increasingly needed to cost effectively characterize the meteorology at a potential wind energy site as the size of modern wind turbines increase. A short term project co-locating a Sound Detection and Ranging System (SODAR) with a 200 meter instrumented meteorological tower at the Texas Tech Wind Technology Field Site was performed to collect and summarize wind information through an atmospheric layer typical of utility scale rotor plane depths. Data collected identified large speed shears and directional shears that may lead to unbalanced loads on the rotors. This report identifies suggestions for incorporation of additional data in wind resource assessments and a few thoughts on the potential for using a SODAR or SODAR data to quantify or investigate other parameters that may be significant to the wind industry.

  7. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    in power performance testing: it is no longer required to measure far upstream the rotor – between two and four rotor diameters – to approximate the free stream wind speed. Instead, measurements taken close to the turbine rotor by nacellemountedprofiling lidars can be used to accurately estimate the free......-efficient and provide measurements more representative of the wind flow field than conventional meteorology mast. For the purpose of power curve measurement, it is essential that lidars provide traceable measurements and to assess their measurement uncertainty.  A generic calibration methodology was developed, using...... of the wind field reconstruction methods. Two wind models were developed in this thesis. The first one employs lidar measurement at a single distance – but several heights –, accounts for shear through a power law profile, and estimates hub height wind speed, direction and the shear exponent. The second model...

  8. Directional passive ambient air monitoring of ammonia for fugitive source attribution; a field trial with wind tunnel characteristics

    Science.gov (United States)

    Solera García, M. A.; Timmis, R. J.; Van Dijk, N.; Whyatt, J. D.; Leith, I. D.; Leeson, S. R.; Braban, C. F.; Sheppard, L. J.; Sutton, M. A.; Tang, Y. S.

    2017-10-01

    Atmospheric ammonia is a precursor for secondary particulate matter formation, which harms human health and contributes to acidification and eutrophication. Under the 2012 Gothenburg Protocol, 2005 emissions must be cut by 6% by 2020. In the UK, 83% of total emissions originate from agricultural practices such as fertilizer use and rearing of livestock, with emissions that are spatially extensive and variable in nature. Such fugitive emissions make resolving and tracking of individual site performance challenging. The Directional Passive Air quality Sampler (DPAS) was trialled at Whim Bog, an experimental site with a wind-controlled artificial release of ammonia, in combination with CEH-developed ammonia samplers. Whilst saturation issues were identified, two DPAS-MANDE (Mini Annular Denuder) systems, when deployed in parallel, displayed an average relative deviation of 15% (2-54%) across all 12 directions, with the directions exposed to the ammonia source showing ∼5% difference. The DPAS-MANDE has shown great potential for directional discrimination and can contribute to the understanding and management of fugitive ammonia sources from intensive agriculture sites.

  9. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Science.gov (United States)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  10. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG.

    Science.gov (United States)

    Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao

    2016-03-01

    This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults

    Science.gov (United States)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze

    2017-09-01

    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

  12. Load-Direction-Derived Support Structures for Wind Turbines: A Lattice Tower Concept and Preparations for Future Certifications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Struve, Achim [University of Applied Sciences Flensburg; Faber, Torsten [University of Applied Sciences Flensburg; Ummenhofer, Thomas [Karlsruhe Institute of Technology

    2017-11-07

    The call for more cost-effective and environmentally friendly tower concepts is motivated by tower costs [1] and tower CO2-emission contributions [2], which are high relative to the whole wind turbine system. The proposed rotatable tower concept with yaw bearing at the bottom instead of the top of the tower will provide beneficial economic and environmental impacts to the turbine system. This wind alignment capability indicates a load-direction-derived tower design. By combining this approach with a lattice concept, large material and cost savings for the tower can be achieved. This paper presents a way to analyze and verify the proposed design through aero-servo-elastic simulations, which make future certifications of rotatable tower concepts viable. For this reason, the state-of-the-art, open-source lattice-tower finite-element-method (FEM) module SubDyn [10], developed by the National Renewable Energy Laboratory, has been modified to account for arbitrary member cross-sections. Required changes in the beam element stiffness and mass matrix formulation took place according to an energy method [13]. All validated adaptions will be usable within the aero-servo-elastic simulation framework FAST and are also beneficial for other nonrotatable lattice structures.

  13. The reconstruction of easterly wind directions for the Eifel region (Central Europe during the period 40.3–12.9 ka BP

    Directory of Open Access Journals (Sweden)

    K. Seelos

    2010-03-01

    Full Text Available A high resolution continuous reconstruction of last glacial wind directions is based on provenance analysis of eolian sediments in a sediment core from the Dehner dry Maar in the Eifel region (Germany. This Maar is suitable to archive easterly wind directions due to its location west of the Devonian carbonate basins of the Eifel-North-South-Zone. Thus, eolian sediments with high clastic carbonate content can be interpreted as an east wind signal. The detection of such east wind sediments is applied by a new module of the RADIUS grain size analyze technique. The investigated time period from 40.3–12.9 ka BP can be subclassified in three units: The first unit covers the periods of the ending GIS-9, H4, and GIS-8. With the exception of H4 (40–38 ka BP the content of organics in our record is relatively high. With the end of GIS-8 (38–36.5 ka the content of organics decrease and the content of dust increases rapidly. The second time slice (36–24 ka BP has an increased content of dust accumulation and a high amount of east winds layers (up to 19% of the dust storms per century came from the east. In comparison, the subsequent period (24–12.9 ka BP is characterized by lower east wind sediments again. Increased frequencies of east wind occur during the time intervals corresponding with the Heinrich events H1 and H2. The unusual H3 show no higher east wind frequency but so do its former and subsequent Greenland stadials. The late LGM (21–18 ka BP is characterized by a slightly elevated east wind frequency again.

  14. Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms

    KAUST Repository

    Lee, Giwhyun

    2015-04-22

    In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power production and assessing a turbine’s energy production efficiency. Nevertheless, actual wind power data indicate that the power output is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily consider wind speed and, sometimes, wind speed and direction. We propose an additive multivariate kernel method that can include the aforementioned environmental factors as a new power curve model. Our model provides, conditional on a given environmental condition, both the point estimation and density estimation of power output. It is able to capture the nonlinear relationships between environmental factors and the wind power output, as well as the high-order interaction effects among some of the environmental factors. Using operational data associated with four turbines in an inland wind farm and two turbines in an offshore wind farm, we demonstrate the improvement achieved by our kernel method.

  15. Direct Detection 1.6?m DIAL / Doppler Lidar for Measurements of CO2 Concentration and Wind Profiles (Invited)

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2013-12-01

    wind vector profiles were obtained up to 5 km altitude with 1 km altitude resolution with two azimuth angles. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] Y. Shibata, C. Nagasawa and M. Abo, '1.5 μm incoherent Doppler lidar using an FBG filter', Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010). [2] C. Nagasawa, M. Abo, Y. Shibata, T. Nagai and M. Tsukamoto, 'Direct detection 1.6μm DIAL for measurements of CO2 concentration profiles in the troposphere', Proc. SPIE 8182, 81820G, 2011. doi: 10.1117/12.898794 [3] D. Sakaisawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009.

  16. Longitudinal shear resistance of composite slabs

    NARCIS (Netherlands)

    Schuurman, R.G.; Stark, J.W.B.

    1996-01-01

    Verification methods for longitudinal shear. currently in use, are empirical. This applies for both the m-k method as the Partial Shear Connection method. Parameters and mechanisms determining the behaviour of the shear connection in composite slabs are not directly considered in these methods. A

  17. Model-based predictive direct power control of brushless doubly fed reluctance generator for wind power applications

    Directory of Open Access Journals (Sweden)

    Maryam Moazen

    2016-09-01

    Full Text Available In this paper, a predictive direct power control (PDPC method for the brushless doubly fed reluctance generator (BDFRG is proposed. Firstly, the BDFRG active and reactive power equations are derived and then the active and reactive power variations have been predicted within a fixed sampling period. The predicted power variations are used to calculate the required voltage of the secondary winding so that the power errors at the end of the following sampling period are eliminated. Switching pulses are produced using space vector pulse width modulation (SVPWM approach which causes to a fixed switching frequency. The BDFRG model and the proposed control method are simulated in MATLAB/Simulink software. Simulation results indicate the good performance of the control system in tracking of the active and reactive power references in both power step and speed variation conditions. In addition, fast dynamic response and lower output power ripple are other advantages of this control method.

  18. Wind Regimes above and below a Temperate Deciduous Forest Canopy in Complex Terrain: Interactions between Slope and Valley Winds

    Directory of Open Access Journals (Sweden)

    Xingchang Wang

    2014-12-01

    Full Text Available The thermally driven wind over mountainous terrains challenges the estimation of CO2 exchange between forests and the atmosphere when using the eddy covariance technique. In this study, the wind regimes were investigated in a temperate deciduous forested valley at the Maoershan site, Northeast China. The wind direction above the canopy was preferentially up-valley in the daytime and down-valley in the nighttime, corresponding to the diurnal patterns of above-canopy temperature gradient and stability parameter. In both leaf-on and -off nighttime, a down-valley flow with a maximum velocity of 1~3 m∙s−1 was often developed at 42 m above the ground (2.3-fold of the canopy height. However, the below-canopy prevailing wind was down-slope in the night, contrast to the below-canopy temperature lapse and unstable conditions. This substantial directional shear illustrated shallow slope winds were superimposed on larger-scale valley winds. As a consequence, the valley-wind component becomes stronger with increasing height, indicating a clear confluence of drainage flow to the valley center. In the daytime, the below-canopy wind was predominated down-slope due to the temperature inversion and stable conditions in the leaf-on season, and was mainly up-valley or down-slope in the leaf-off season. The isolation of momentum flux and radiation by the dense canopy played a key role in the formation of the below-canopy unaligned wind and inverse stability. Significant lateral kinematic momentum fluxes were detected due to the directional shear. These findings suggested a significant interaction between slope and valley winds at this site. The frequent vertical convergence / divergence above the canopy and horizontal divergence/convergence below the canopy in the nighttime / daytime is likely to induce significant advections of trace gases and energy flux.

  19. 77 FR 24941 - Vantage Wind Energy LLC; Order Accepting Updated Market Power Analysis and Providing Direction on...

    Science.gov (United States)

    2012-04-26

    ... Energy Regulatory Commission Vantage Wind Energy LLC; Order Accepting Updated Market Power Analysis and... vertical market power.\\10\\ As discussed ] below, we find that Vantage Wind satisfies the Commission's... its power to its power purchasers. Vantage Wind further states that none of Polsky Energy, Invenergy...

  20. The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters

    Directory of Open Access Journals (Sweden)

    Yancai Xiao

    2016-05-01

    Full Text Available In order to meet the requirements of high precision and fast response of permanent magnet direct drive (PMDD wind turbines, this paper proposes a fuzzy proportional integral (PI controller associated with a new control strategy for wind turbine converters. The purpose of the control strategy is to achieve the global optimization for the quantization factors, ke and kec, and scale factors, kup and kui, of the fuzzy PI controller by an improved particle swarm optimization (PSO method. Thus the advantages of the rapidity of the improved PSO and the robustness of the fuzzy controller can be fully applied in the control process. By conducting simulations for 2 MW PMDD wind turbines with Matlab/Simulink, the performance of the fuzzy PI controller based on the improved PSO is demonstrated to be obviously better than that of the PI controller or the fuzzy PI controller without using the improved PSO under the situation when the wind speed changes suddenly.

  1. Correlation between the horizontal wind direction and orientation of cross-field anisotropy of small-scale irregularities in the F region of midlatitude ionosphere

    Science.gov (United States)

    Romanova, N. Yu.

    2017-07-01

    Radio sounding of midlatitude ionosphere shows that natural small-scale electron density irregularities in the F region are cross-field anisotropic. The orientation of the cross-field anisotropy is different under different geophysical conditions. The cross-field anisotropy orientation is matched with the horizontal wind direction calculated within the HWM07 model for each event. It is ascertained that natural irregularities in a plane perpendicular to the magnetic field are stretched along the horizontal wind direction under different geophysical conditions.

  2. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    OpenAIRE

    Sharma, Ranjan; Andersen, Michael A. E.; Akhmatov, Vladislav; Jensen, Kim Høj; Rasmussen, Tonny Wederberg

    2012-01-01

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind ...

  3. Assessment of Interlaminar/Interfiber Failure of UD GRFP for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Lund, Erik

    2012-01-01

    A unidirectional glass fiber/epoxy composite material system used for wind turbine blades was characterized under multi-axial loading by cutting specimens in varying off-axis angles relative to the fiber direction. In addition, Iosipescu shear tests were performed on both symmetric and asymmetric...

  4. Interlaminar/interfiber Failure of Unidirectional GFRP used for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Leong, Martin; Hvejsel, C.F.; Lund, Erik

    2013-01-01

    A unidirectional glass fiber/epoxy composite material system used for wind turbine blades was characterized under multi-axial loading by cutting specimens in varying off-axis angles relative to the fiber direction. In addition, Iosipescu shear tests were performed on both symmetric and asymmetric...

  5. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region

    Science.gov (United States)

    Tateo, Andrea; Marcello Miglietta, Mario; Fedele, Francesca; Menegotto, Micaela; Monaco, Alfonso; Bellotti, Roberto

    2017-04-01

    The Weather Research and Forecasting mesoscale model (WRF) was used to simulate hourly 10 m wind speed and direction over the city of Taranto, Apulia region (south-eastern Italy). This area is characterized by a large industrial complex including the largest European steel plant and is subject to a Regional Air Quality Recovery Plan. This plan constrains industries in the area to reduce by 10 % the mean daily emissions by diffuse and point sources during specific meteorological conditions named wind days. According to the Recovery Plan, the Regional Environmental Agency ARPA-PUGLIA is responsible for forecasting these specific meteorological conditions with 72 h in advance and possibly issue the early warning. In particular, an accurate wind simulation is required. Unfortunately, numerical weather prediction models suffer from errors, especially for what concerns near-surface fields. These errors depend primarily on uncertainties in the initial and boundary conditions provided by global models and secondly on the model formulation, in particular the physical parametrizations used to represent processes such as turbulence, radiation exchange, cumulus and microphysics. In our work, we tried to compensate for the latter limitation by using different Planetary Boundary Layer (PBL) parameterization schemes. Five combinations of PBL and Surface Layer (SL) schemes were considered. Simulations are implemented in a real-time configuration since our intention is to analyze the same configuration implemented by ARPA-PUGLIA for operational runs; the validation is focused over a time range extending from 49 to 72 h with hourly time resolution. The assessment of the performance was computed by comparing the WRF model output with ground data measured at a weather monitoring station in Taranto, near the steel plant. After the analysis of the simulations performed with different PBL schemes, both simple (e.g. average) and more complex post-processing methods (e.g. weighted average

  6. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  7. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    Science.gov (United States)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  8. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    Science.gov (United States)

    Huang, Junji; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.

  9. CPS-SPWM flying capacitor converter applicative direct-drive wind power generator system

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianlin; Hu Shuju; Shao Guiping; Wu Xin; Xu Honghua [Chinese Academy of Science, Inst. of Electrical Engineering, BJ (China)

    2008-07-01

    In direct-drive systems significant simplifications result from the elimination of the gear box which has traditionally been used to interface a slowly rotating shaft with the generator shaft. On the realization of high power electronic equipment, an important problem is that the working frequency of high power devices is too low to apply excellent modulated technique such as PWM. In large-power equipment, the switching frequency of power electronics devices is such low that good control performance can't be obtained with a single converter. In order to overcome this problem, Carrier phase-shifted SPWM technique (CPS-SPWM) has been researched. All this verified by simulation and experiment. (orig.)

  10. Shear effects on crystalline structures of poly(L-lactide)

    DEFF Research Database (Denmark)

    Xiao, Peitao; Li, Hongfei; Huang, Shaoyong

    2013-01-01

    with different shear temperature or under the same shear strain but different shear rate were investigated. The mesophase of polymer melts and shearing effects on their pre-ordered phase turned out to be the key factor affecting the crystal structure of PLLA under different shearing conditions.......The shearing effects of sheared polymer melts on their finally formed crystalline structures of poly(L-lactide) (PLLA) were investigated by means of small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). The results of WAXD prove that shear has no effects on the crystal...... structure of PLLA. The SAXS results demonstrate that both of the long period and the thickness of crystalline lamellae increase with rising shear rates when vertical to the shear direction, but remains constant when being parallel to the shear direction. The structural changes for samples prepared...

  11. Effect of Virtual Reality Exposure and Aural Stimuli on Eye Contact, Directional Focus, and Focus of Attention of Novice Wind Band Conductors

    Science.gov (United States)

    Orman, Evelyn K.

    2016-01-01

    This study examined the effects of virtual reality immersion with audio on eye contact, directional focus and focus of attention for novice wind band conductors. Participants (N = 34) included a control group (n = 12) and two virtual reality groups with (n = 10) and without (n = 12) head tracking. Participants completed conducting/score study…

  12. Numerical modeling of the wind flow over a transverse dune.

    Science.gov (United States)

    Araújo, Ascânio D; Parteli, Eric J R; Pöschel, Thorsten; Andrade, José S; Herrmann, Hans J

    2013-10-04

    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee - the separation bubble - displays a surprisingly strong dependence on the wind shear velocity, u: it is nearly independent of u for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u is larger than approximately 0.39 m/s, whereas a larger value of u (about 0.49 m/s) is required to initiate this reverse transport.

  13. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input......To identify the influence of wind shear and turbulence on wind turbine performance, flat terrain wind profiles are analysed up to a height of 160 m. The profiles' shapes are found to extend from no shear to high wind shear, and on many occasions, local maxima within the profiles are also observed...... to a Blade Element Momentum model that simulates the Siemens 3.6 MW wind turbine. The analysis is carried out as time series simulations where the electrical power is the primary characterization parameter. The results of the simulations indicate that wind speed measurements at different heights over...

  14. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    1 in the lowest part of the atmospheric surface layer with the form ∼ {u}* 2{k}-1, where {u}* is the surface friction velocity and k is the wavenumber. Tchen’s turbulence theory is shown to be able to predict the measured spectra of the wind velocity component parallel to the mean wind direction for eddy sizes larger than the measurement height above the ground. An amended analytical model for the near-neutral surface layer spectrum is then proposed. This model, which is applicable to the scaling of the u spectrum at all heights in the surface layer, is obtained by a combination of Kaimal’s classical spectral model for scaling the inertial subrange with Tchen’s 1953 and 1954 proposed shear production subrange theory. The shear production-amended spectral model is compared with observations of ensemble-averaged near-neutral spectra selected during a nine-month measurement period from recordings from six sonic anemometers at heights of 10, 20, 40, 60, 80, and 100 m in the meteorological tower at the test site for large wind turbines in Høvsøre, Denmark. Finally, potential applications of the new spectral model are discussed, in particular for use within the lowest one-third of the surface layer in which the production subrange component of the spectrum is most prominent. The new spectral model can supply wavenumber-resolved turbulent kinetic energies for the prediction of wind loads on buildings, bridges, and wind turbines, and its spectral parameterization can also be used for scale-dependent parameterization of, e.g., surface-released atmospheric dispersion calculations for regions close to the ground.

  15. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally...

  16. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  17. Probability distribution of vertical longitudinal shear fluctuations.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    This paper discusses some recent measurements of third and fourth moments of vertical differences (shears) of longitudinal velocity fluctuations obtained in unstable air at the NASA 150 m meteorological tower site at Cape Kennedy, Fla. Each set of measurements consisted of longitudinal velocity fluctuation time histories obtained at the 18, 30, 60, 90, 120 and 150 m levels, so that 15 wind-shear time histories were obtained from each set of measurements. It appears that the distribution function of the longitudinal wind fluctuations at two levels is not bivariate Gaussian. The implications of the results relative to the design and operation of aerospace vehicles are discussed.-

  18. The Electric Wind of Venus: A global and persistent "polar wind" like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions

    Science.gov (United States)

    Collinson, G.; Frahm, R.; Glocer, A.; Coates, A. J.; Grebowsky, J. M.; Barbash, S.; Fedorov, A.; Futaana, Y.; Gilbert, L.; Khazanov, G. V.; Domagal-Goldman, S. D.; Nordheim, T.; Mitchell, D. L.; Moore, T. E.; Peterson, W.; Winningham, D.; Zhang, T.

    2016-12-01

    Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an "ambipolar" electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earth's similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres, and such an "electric wind" must be considered when studying the evolution and potential habitability of any planet in any star system

  19. The Electric Wind of Venus: A Global and Persistent Polar Wind -Like Ambipolar Electric Field Sufficient for the Direct Escape of Heavy Ionospheric Ions

    Science.gov (United States)

    Collinson, Glyn A.; Frahm, Rudy A.; Glocer, Alex; Coates, Andrew J.; Grebowsky, Joseph M.; Barabash, Stas; Domagal-Goldman, Shawn D.; Federov, Andrei; Futaana, Yoshifumi; Gilbert, Lin K.; hide

    2016-01-01

    Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an ambipolar electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earths similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres and such an electric wind must be considered when studying the evolution and potential habitability of any planet in any star system.

  20. Accurate wind farm development and operation. Advanced wake modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))

    2013-11-15

    The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.

  1. Heat transference in flat solar collectors considering speed and wind direction; Transferencia de calor en colectores solares planos considerando velocidad y direccion del viento

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. C.; Rodriguez, P. A.; Salgado, R.; Venegas, M.; Lecuona, A.

    2008-07-01

    Thermal solar collector performance depends on the process temperature but also on environmental variables like solar radiation, ambient temperature, wind speed and wind direction. collector operating design parameters like insulating and optical characteristics will affect also its performance. An unsteady energy balance on the collector developing a numerical method has been carried out to evaluate thermal losses. The numerical results are validated with experimental data from the facility placed at UC3M. these data, together with environmental variables, enable to calculate experimentally the collector performance to be compared with normalization curve and model prediction. The latest ones adjust more accurately to experimental than those from normalization curve. The main causes for this discrepancy are optical degradation of the collector due to aging and the wind effects. (Author)

  2. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    Science.gov (United States)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  3. Simulation of a 7.7 MW onshore wind farm with the Actuator Line Model

    Science.gov (United States)

    Guggeri, A.; Draper, M.; Usera, G.

    2017-05-01

    Recently, the Actuator Line Model (ALM) has been evaluated with coarser resolution and larger time steps than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition. The aim of the present paper is to continue these studies, assessing the capability of the ALM to represent the wind turbines’ interactions in an onshore wind farm. The ‘Libertad’ wind farm, which consists of four 1.9MW Vestas V100 wind turbines, was simulated considering different wind directions, and the results were compared with the wind farm SCADA data, finding good agreement between them. A sensitivity analysis was performed to evaluate the influence of the spatial resolution, finding acceptable agreement, although some differences were found. It is believed that these differences are due to the characteristics of the different Atmospheric Boundary Layer (ABL) simulations taken as inflow condition (precursor simulations).

  4. Results from utility wind resource assessment programs in Nebraska, Colorado, and Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Drapeau, C.L. [Global Energy Concepts, Inc., Bothell, WA (United States)

    1997-12-31

    Global Energy Concepts (GEC) has been retained by utilities in Colorado, Nebraska, and Arizona to site, install, and operate 21 wind monitoring stations as part of the Utility Wind Resource Assessment Program (U*WRAP). Preliminary results indicate wind speed averages at 40 meters (132 ft) of 6.5 - 7.4 m/s (14.5-16.5 mph) in Nebraska and 7.6 - 8.9 m/s (17.0-19.9 mph) in Colorado. The Arizona stations are not yet operational. This paper presents the history and current status of the 21 monitoring stations as well as preliminary data results. Information on wind speeds, wind direction, turbulence intensity, wind shear, frequency distribution, and data recovery rates are provided.

  5. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    Science.gov (United States)

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok

    2013-01-01

    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  6. Electronic Power Transformer Control Strategy in Wind Energy Conversion Systems for Low Voltage Ride-through Capability Enhancement of Directly Driven Wind Turbines with Permanent Magnet Synchronous Generators (D-PMSGs

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2014-11-01

    Full Text Available This paper investigates the use of an Electronic Power Transformer (EPT incorporated with an energy storage system to smooth the wind power fluctuations and enhance the low voltage ride-through (LVRT capability of directly driven wind turbines with permanent magnet synchronous generators (D-PMSGs. The decoupled control schemes of the system, including the grid side converter control scheme, generator side converter control scheme and the control scheme of the energy storage system, are presented in detail. Under normal operating conditions, the energy storage system absorbs the high frequency component of the D-PMSG output power to smooth the wind power fluctuations. Under grid fault conditions, the energy storage system absorbs the redundant power, which could not be transferred to the grid by the EPT, to help the D-PMSG to ride through low voltage conditions. This coordinated control strategy is validated by simulation studies using MATLAB/Simulink. With the proposed control strategy, the output wind power quality is improved and the D-PMSG can ride through severe grid fault conditions.

  7. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...... are presented on graphs and in a table....

  8. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results ar...

  9. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...

  10. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  11. Pollen, water, and wind: Chaotic mixing in a puddle of water

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig

    2016-01-01

    This paper talks about how pine pollen grains dispersedin an approximately 1 m wide and 1 cm deep water puddle. The pollen has mixed due to wind blowing across the liquid surface, revealing a strikingly complex flow pattern. The flows revealed by nature’s tracer particles may influence circulation...... and nutrient distribution in puddles and small ponds.The flow patterns are generated by wind blowing across the puddle surface. This causes a shear stress at the atmospheric interface, which drives a flow in the liquid below. Chaotic mixing can occur if the wind direction changes over time. A fluid patch...

  12. Land use and wind direction drive hybridization between cultivated poplar and native species in a Mediterranean floodplain environment.

    Science.gov (United States)

    Paffetti, Donatella; Travaglini, Davide; Labriola, Mariaceleste; Buonamici, Anna; Bottalico, Francesca; Materassi, Alessandro; Fasano, Gianni; Nocentini, Susanna; Vettori, Cristina

    2018-01-01

    Deforestation and intensive land use management with plantations of fast-growing tree species, like Populus spp., may endanger native trees not only by eliminating or reducing their habitats, but also by diminishing their species integrity via hybridization and introgression. The genus Populus has persistent natural hybrids because clonal and sexual reproduction is common. The objective of this study was to assess the effect of land use management of poplar plantations on the spatial genetic structure and species composition in poplar stands. Specifically, we studied the potential breeding between natural and cultivated poplar populations in the Mediterranean environment to gain insight into spontaneous hybridization events between exotic and native poplars; we also used a GIS-based model to evaluate the potential threats related to an intensive land use management. Two study areas, both near to poplar plantations (P.×euramericana), were designated in the native mixed stands of P. alba, P. nigra and P.×canescens within protected areas. We found that the spatial genetic structure differed between the two stands and their differences depended on their environmental features. We detected a hybridization event with P.×canescens that was made possible by the synchrony of flowering between the poplar plantation and P.×canescens and facilitated by the wind intensity and direction favoring the spread of pollen. Taken together, our results indicate that natural and artificial barriers are crucial to mitigate the threats, and so they should be explicitly considered in land use planning. For example, our results suggest the importance of conserving rows of trees and shrubs along rivers and in agricultural landscapes. In sum, it is necessary to understand, evaluate, and monitor the spread of exotic species and genetic material to ensure effective land use management and mitigation of their impact on native tree populations. Copyright © 2017 Elsevier B.V. All rights

  13. Potencial eólico na direção predominante do vento no Nordeste brasileiro Wind energy potential for the prevailing direction in Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Bernardo B. da Silva

    2002-12-01

    Full Text Available Neste trabalho, foram utilizados dados horários de velocidade e direção do vento, provenientes de registros de anemógrafo Universal Fuess, a 10 m de altura, de 77 estações climatológicas pertencentes ao Instituto Nacional de Meteorologia (INMET, no período de janeiro de 1977 a dezembro de 1981. O objetivo da pesquisa foi a determinação da potência eólica média horária da direção predominante do vento em todas as estações selecionadas. Para tanto, identificou-se a direção predominante do vento de cada localidade e se estimaram os parâmetros da distribuição de Weibull, através dos quais se calculou a potência eólica média horária. Em função dos resultados apresentados neste trabalho, constatou-se que a direção predominante do vento no Nordeste do Brasil é de Leste, com flutuações para Sudeste e Nordeste. O ajuste do Método dos Momentos evidenciou-se melhor que o dos Mínimos Quadrados. Os Estados do Maranhão e Rio Grande do Norte apresentaram, respectivamente, o menor e maior potencial eólico. As estações de Alto Parnaíba, MA, e Acaraú, CE, apresentaram, mensalmente, a menor (0,022 W m-2 e a maior (138,302 W m-2 potência eólica, respectivamente.Hourly mean data of wind speed and direction, measured with a Fuess anemograph at 10 m height, were used in this study. These data were collected from January 1977 to December 1981 at 77 weather stations located in the Northeast of Brazil. The main objective of the study was to determine the wind energy potential for the predominant wind direction of selected stations; therefore, the identification of the relative frequency related to the hourly mean wind speed of the predominant direction was carried out. Then, the parameters, of a Weibull distribution related to the hourly mean wind speed of the predominant direction at each station were estimated by Moments and Graphical methods. The results show that the predominant wind direction in Northeast as a whole is

  14. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation

    Directory of Open Access Journals (Sweden)

    Leopoldo Rodriguez Salazar

    2016-12-01

    Full Text Available This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS. The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain, was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz

  15. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  16. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use of the...

  17. A yield criterion based on mean shear stress

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.

    2014-01-01

    This work investigates the relation between shear stress and plastic yield considering that a crystal can only deform in a limited set of directions. The shear stress in arbitrary directions is mapped for some cases showing relevant differences. Yield loci based on mean shear stress are con-

  18. Aircraft control in wake vortex wind shear

    Science.gov (United States)

    Wold, Gregory R.

    1995-01-01

    In the past, there have been a number of fatal incidents attributable to wake vortex encounters, involving both general aviation and commercial aircraft. In fact, the wake vortex hazard is considered to be the single dominant safety issue determining the aircraft spacing requirements at airports. As the amount of air traffic increases, the number of dangerous encounters is likely only to increase. It is therefore imperative that a means be found to reduce the danger. That is the purpose of this research: to use nonlinear inverse dynamic (NID) control methods in the design of an aircraft control system which can improve the safety margin in a wake vortex encounter.

  19. Forward looking wind shear detection program

    Science.gov (United States)

    Gallagher, Brian; Selogie, Mark

    1991-01-01

    Delco Systems' Forward Looking Windshear Detection program is reviewed in viewgraph form. Topics covered include extinction of radiance by absorbing and scattering media, atmospheric absorption in the far infrared region, an inframetrics imaging radiometer, a basic radiance signal equation, and tower and flight test plans.

  20. Wind Shear radar program future plans

    Science.gov (United States)

    Robertson, Roy E.

    1991-01-01

    The status of the Windshear Radar Program at the Collins Air Transport Division of Rockwell International is given in viewgraph form. Topics covered include goals, modifications to the WXR-700 system, flight test plans, technical approaches, design considerations, system considerations, certification, and future plans.

  1. Advanced technology wind shear prediction system evaluation

    Science.gov (United States)

    Gering, Greg

    1992-01-01

    The program overviews: (1) American Airline (AA)/Turbulence Prediction Systems (TPS), which have installed forward looking infrared predictive windshear system on 3 MD-80 aircraft; (2) AA/TPS AWAS III evaluation, which is a joint effort and is installed in the noise landing gear (NLG) area and a data recorder installed in the E/E compartment.

  2. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Griffin, Benjamin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  3. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Directory of Open Access Journals (Sweden)

    Ajami B

    2007-01-01

    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  4. For wind turbines in complex terrain, the devil is in the detail

    Science.gov (United States)

    Lange, Julia; Mann, Jakob; Berg, Jacob; Parvu, Dan; Kilpatrick, Ryan; Costache, Adrian; Chowdhury, Jubayer; Siddiqui, Kamran; Hangan, Horia

    2017-09-01

    The cost of energy produced by onshore wind turbines is among the lowest available; however, onshore wind turbines are often positioned in a complex terrain, where the wind resources and wind conditions are quite uncertain due to the surrounding topography and/or vegetation. In this study, we use a scale model in a three-dimensional wind-testing chamber to show how minor changes in the terrain can result in significant differences in the flow at turbine height. These differences affect not only the power performance but also the life-time and maintenance costs of wind turbines, and hence, the economy and feasibility of wind turbine projects. We find that the mean wind, wind shear and turbulence level are extremely sensitive to the exact details of the terrain: a small modification of the edge of our scale model, results in a reduction of the estimated annual energy production by at least 50% and an increase in the turbulence level by a factor of five in the worst-case scenario with the most unfavorable wind direction. Wind farm developers should be aware that near escarpments destructive flows can occur and their extent is uncertain thus warranting on-site field measurements.

  5. Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K

    2010-02-22

    Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow and turbulence at these heights in the boundary layer. Depending on whether the boundary layer is stable, neutral, or convective, the mean wind speed, direction, and turbulence properties may vary greatly across the tall turbine swept area (40 to 120 m AGL). This variability can cause tall turbines to produce difference amounts of power during time periods with identical hub height wind speeds. Using meteorological and power generation data from a West Coast North American wind farm over a one-year period, our study synthesizes standard wind park observations, such as wind speed from turbine nacelles and sparse meteorological tower observations, with high-resolution profiles of wind speed and turbulence from a remote sensing platform, to quantify the impact of atmospheric stability on power output. We first compare approaches to defining atmospheric stability. The standard, limited, wind farm operations enable the calculation only of a wind shear exponent ({alpha}) or turbulence intensity (I{sub U}) from cup anemometers, while the presence at this wind farm of a SODAR enables the direct observation of turbulent kinetic energy (TKE) throughout the turbine rotor disk. Additionally, a nearby research meteorological station provided observations of the Obukhov length, L, a direct measure of atmospheric stability. In general, the stability parameters {alpha}, I{sub U}, and TKE are in high agreement with the more physically-robust L, with TKE exhibiting the best agreement with L. Using these metrics, data periods are segregated by stability class to investigate power performance dependencies. Power output at this wind farm is highly correlated with atmospheric stability during the spring and summer months, while atmospheric stability exerts

  6. Galactic winds with MUSE: A direct detection of Fe II* emission from a z = 1.29 galaxy

    Science.gov (United States)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Epinat, Benoît; Bacon, Roland; Brinchmann, Jarle; Cantalupo, Sebastiano; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael; Richard, Johan; Schroetter, Ilane; Verhamme, Anne; Weilbacher, Peter M.; Wendt, Martin; Wisotzki, Lutz

    2017-09-01

    Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M⋆ = 8 × 109M⊙, star formation rate SFR = 77+40-25 M⊙ yr-1, and star formation rate surface brightness ΣSFR = 1.6M⊙ kpc-2 within the [Oii] λλ3727,3729 half-light radius R1/2, [OII] = 2.76 ± 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s-1, we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at λ2365, λ2396, λ2612, and λ2626, at 1.2-2.4-1.5-2.7 × 10-18 erg s-1 cm-2 respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R1/2, Fe II ∗ =4.1 ± 0.4 kpc, is 70% larger than the stellar continuum (R1/2,⋆ ≃2.34 ± 0.17) or the [Oii] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s-1, which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p-v diagram along that axis. These features are consistent with a bi-conical outflow. Based on observations of the Hubble Deep Field South made with ESO telescopes at the La Silla Paranal Observatory under program ID 60.A-9100(C). Advanced data products are available at http://muse-vlt.eu/ science

  7. Aleutian Pribilof Islands Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski

  8. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  9. Design and Comparison of a Novel Stator Interior Permanent Magnet Generator for Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Johan Xi; Chen, Zhe; Cheng, M.

    2007-01-01

    A novel stator interior permanent magnet generator (SIPMG) is presented. A modular stator design is used for convenience in manufacture and maintenance. The generator has the advantages of rugged rotor and concentrated winding design whereas the torque ripple is smaller than that produced...

  10. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Science.gov (United States)

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  11. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2014-01-01

    Full Text Available Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  12. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    Science.gov (United States)

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  13. Direct Global Measurements of Tropspheric Winds Employing a Simplified Coherent Laser Radar using Fully Scalable Technology and Technique

    Science.gov (United States)

    Kavaya, Michael J.; Spiers, Gary D.; Lobl, Elena S.; Rothermel, Jeff; Keller, Vernon W.

    1996-01-01

    Innovative designs of a space-based laser remote sensing 'wind machine' are presented. These designs seek compatibility with the traditionally conflicting constraints of high scientific value and low total mission cost. Mission cost is reduced by moving to smaller, lighter, more off-the-shelf instrument designs which can be accommodated on smaller launch vehicles.

  14. Identification of severe wind conditions using a Reynolds Averaged Navier-Stokes solver

    Science.gov (United States)

    Sørensen, N. N.; Bechmann, A.; Johansen, J.; Myllerup, L.; Botha, P.; Vinther, S.; Nielsen, B. S.

    2007-07-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting the flow in the complex terrain by comparing with measurements from two meteorology masts. Next, it is illustrated how levels of turbulent kinetic energy can be used to easily identify areas with severe flow conditions, relying on a high correlation between high turbulence intensity and severe flow conditions, in the form of high wind shear and directional shear which may seriously lower the lifetime of a wind turbine.

  15. On the Space-Time Structure of Sheared Turbulence

    DEFF Research Database (Denmark)

    de Mare, Martin Tobias; Mann, Jakob

    2016-01-01

    as spectral velocity tensors, can be estimated from measured spectra or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and the mean shear of the flow. The developed models can, for example, be used in wind-turbine engineering, in applications such as lidar......-assisted feed forward control and wind-turbine wake modelling....

  16. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    ), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide...

  17. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...

  18. Vortex-induced vibrations of a cylinder in planar shear flow

    Science.gov (United States)

    Gsell, Simon; Bourguet, Remi; Braza, Marianna

    2017-11-01

    Vortex-induced vibrations (VIV) of bluff bodies are common in nature and in engineering applications where flexible or flexibly mounted structures are exposed to wind and ocean currents. VIV have been thoroughly studied through the canonical problem of an elastically mounted, rigid cylinder immersed in uniform flow. However, in the real physical systems where VIV develop, the oncoming flows are usually non-uniform. The present work investigates the impact of a shear of the oncoming current in the cross-flow direction. As a first preliminary step, focus is placed on the fixed cylinder case; the analysis is based on a series of numerical simulations over a wide range of shear rates, at Reynolds number 100. It is found that the shear leads to the cancellation of wake unsteadiness beyond a critical value of the shear rate. Once the rigid cylinder is elastically mounted, free vibrations arise over the entire range of shear rates under study, including beyond the above mentioned critical value. Different flow-structure interaction regimes are uncovered. Some of them exhibit a major deviation from the uniform-flow case, with a profound reconfiguration of the wake patterns and a dramatic amplification of the structural response amplitudes.

  19. Comparison of Beijing MST radar and radiosonde horizontal wind measurements

    Science.gov (United States)

    Tian, Yufang; Lü, Daren

    2017-01-01

    To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere-Stratosphere-Troposphere (MST) radar, comparisons of radar measured horizontal winds in the height range 3-25 km with radiosonde observations were made during 2012. A total of 427 profiles and 15 210 data pairs were compared. There was very good agreement between the two types of measurement. Standard deviations of difference (mean difference) for wind direction, wind speed, zonal wind and meridional wind were 24.86° (0.77°), 3.37 (-0.44), 3.33 (-0.32) and 3.58 (-0.25) m s-1, respectively. The annual standard deviations of differences for wind speed were within 2.5-3 m s-1 at all heights apart from 10-15 km, the area of strong winds, where the values were 3-4 m s-1. The relatively larger differences were mainly due to wind field variations in height regions with larger wind speeds, stronger wind shear and the quasi-zero wind layer. A lower MST radar SNR and a lower percentage of data pairs compared will also result in larger inconsistencies. Importantly, this study found that differences between the MST radar and radiosonde observations did not simply increase when balloon drift resulted in an increase in the real-time distance between the two instruments, but also depended on spatiotemporal structures and their respective positions in the contemporary synoptic systems. In this sense, the MST radar was shown to be a unique observation facility for atmospheric dynamics studies, as well as an operational meteorological observation system with a high temporal and vertical resolution.

  20. Current direction, wind wave spectra, phytoplankton, zooplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 24 September 1977 - 31 August 1981 (NODC Accession 8100681)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, wind wave spectra, and other data were collected using moored current meter casts and other instruments in...

  1. Current direction, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 11 October 1978 - 19 March 1980 (NODC Accession 8000368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and other data were collected using moored current meter casts and other instruments from the CAPT JACK and EXCELLENCE in the...

  2. Wind direction and other data from fixed platforms from Stuart Island and other locations as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 March 1980 to 11 July 1980 (NODC Accession 8200244)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction and other data were collected from fixed platforms from Stuart Island and other locations from 17 March 1980 to 11 July 1980. Data were collected by...

  3. Wind direction and other data from fixed platforms from the Beaufort Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 15 July 1979 to 31 August 1979 (NODC Accession 8000332)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction and other data were collected from fixed platforms in the Beaufort Sea from 15 July 1979 to 31 August 1979. Data were collected by the University of...

  4. Current direction, benthic organisms, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 12 January 1978 - 01 June 1980 (NODC Accession 8000465)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, wind wave spectra, and other data were collected using moored current meter casts and other instruments from the CAPT JACK and...

  5. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 02 February 1977 - 31 January 1979 (NODC Accession 7900144)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, salinity, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from February 2, 1978 to January 31,...

  6. Wind direction and other data from the Beaufort Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 18 July 1978 to 01 September 1978 (NODC Accession 8300057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction and other data were collected from the Beaufort Sea from 18 July 1978 to 01 September 1978. Data were collected by University of Washington (UW) as...

  7. Current direction, wind wave spectra, and CTD data from moored current meter and CTD casts in the North Atlantic Ocean from 1982-09-15 to 1983-09-15 (NODC Accession 8500148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and CTD data were collected using moored current meter and CTD casts in the Gulf of Mexico from September 3, 1982 to September...

  8. Current direction and wind wave spectra data from moored current meter casts in the North American Coastline-South from 16 January 1985 - 01 April 1985 (NODC Accession 8600012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and wind wave spectra data were collected using moored current meter and CTD casts in the North American Coastline-South from January 16, 1985 to...

  9. Current direction, benthic organisms, wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 25 March 1977 - 01 February 1980 (NODC Accession 8000320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, wind wave spectra, and other data were collected using moored current meter casts in the Gulf of Mexico from March 25, 1977 to...

  10. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1977-12-22 to 1978-10-31 (NODC Accession 7900023)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from December 22, 1977 to October...

  11. Current direction, zooplankton, wind wave spectra, benthic organisms, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 18 October 1977 to 01 May 1979 (NODC Accession 7900270)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, zooplankton, benthic organisms, wind wave spectra, and other data were collected using moored current meter casts and other instruments in the...

  12. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 January 1981 - 01 January 1981 (NODC Accession 8100474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from January 1, 1981 to January 1, 1981. Data...

  13. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1977-12-22 to 1978-07-01 (NODC Accession 7900123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from December 22, 1977 to October...

  14. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 November 1980 - 01 November 1980 (NODC Accession 8100222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from November 1, 1980 to November 1, 1980. Data...

  15. Current direction, wind wave spectra, phytoplankton, and other data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 24 September 1977 - 31 May 1981 (NODC Accession 8100612)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, phytoplankton, temperature, salinity, and other data were collected using moored current meter casts in the Gulf of Mexico from...

  16. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 December 1980 - 01 December 1980 (NODC Accession 8100457)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from December 1, 1980 to December 1, 1980. Data...

  17. Wind direction and other data from the Utukok River and other locations from fixed platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 27 July 1982 to 30 August 1982 (NODC Accession 8300064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction and other data were collected from the Utukok River and other locations from fixed platforms from 27 July 1982 to 30 August 1982. Data were collected...

  18. Current direction, phytoplankton, zooplankton, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 07 February 1981 - 01 November 1982 (NODC Accession 8300055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, phytoplankton, zooplankton, wind wave spectra, and other data were collected using moored current meter casts and other instruments in the Gulf of...

  19. Wake dynamics in offshore wind farms

    DEFF Research Database (Denmark)

    de Mare, Martin Tobias

    Wind turbines within offshore wind farms spend considerable time operating in the wake of neighboring wind turbines. An important contribution to the loads on a wake-affected wind turbine is the slow movement of the wake from the upstream wind turbine across the rotor of the wake-affected wind...... to be uniquely determined by the friction velocity, the shear and the dissipation of turbulent kinetic energy, all of them physical properties of the flow. If local equilibrium between the turbulent kinetic energy produced by shear and the turbulent kinetic energy dissipated as heat is assumed, then, for neutral...... components of the cross-spectra at known shear, is proposed. Future work could also include investigating if a Rapid Distortion formulation that also includes a term for buoyancy effects is needed in order to make accurate predictions for non-neutral atmospheric stratification....

  20. Sheared Ising models in three dimensions

    Science.gov (United States)

    Hucht, Alfred; Angst, Sebastian

    2013-03-01

    The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals [A. Hucht and S. Angst, EPL 100, 20003 (2012)]. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures Tc which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent θ = 2 as well as the correlation length exponents ν∥ = 1 and ν⊥ = 1 / 2 . These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior. Supported by CAPES-DAAD through PROBRAL as well as by the German Research Society (DFG) through SFB 616 ``Energy Dissipation at Surfaces.''

  1. Coherent structures in a boundary layer and shear layer of a turbulent backward-facing step flow

    Science.gov (United States)

    Jovic, Srba; Browne, L. W. B.

    1989-01-01

    A wind tunnel experiment has been carried out at the NASA Ames Research Center to analyze the evolution of coherent structures from a boundary layer to a shear layer in a turbulent, backward-facing, step flow. A miniature X-wire/cold-wire probe has been used in conjunction with two arrays of cold wires, one aligned in the plane of main shear and the other in the spanwise direction of the flow, to detect and characterize delta-scale organized structures in the outer regions of the flow and to provide detailed information concerning these structures. Kinematic features of the events associated with the large scale structures were analyzed and topological pictures of the evolving flow, as well as the contributions to the Reynolds shear stress components are presented.

  2. Evaluation of the stress-strain state of a twisted rod made from an anisotropic material in the shear direction at creep

    Science.gov (United States)

    Banshchikova, I. A.

    2017-10-01

    Torsion of circular samples cut out in the longitudinal direction of a plate from a transversally-isotropic alloy with reduced resistance to creep in a direction at angle of 45° to the direction of the plate normal is simulated. To verify the calculations in the finite-element program, a lower and upper estimate of the torsion angle was obtained based on the principles of minimum of the total power and minimum of the additional dissipation power.

  3. Dynamics and sources of last glacial aeolian deposition in southwest France derived from dune patterns, grain-size gradients and geochemistry, and reconstruction of efficient wind directions

    Science.gov (United States)

    Sitzia, Luca; Bertran, Pascal; Sima, Adriana; Chery, Philippe; Queffelec, Alain; Rousseau, Denis-Didier

    2017-08-01

    Dune pattern, grain-size gradients and geochemistry were used to investigate the sources and dynamics of aeolian deposition during the last glacial in southwest France. The coversands form widespread fields of low-amplitude ridges (zibars), whereas Younger Dryas parabolic dunes mainly concentrate in corridors and along rivers. Spatial modelling of grain-size gradients combined with geochemical analysis points to a genetic relationship between coversands and loess, the latter resulting primarily from dust produced by aeolian abrasion of the coversands. The alluvium of the Garonne river provided also significant amounts of dust at a more local scale. The geochemical composition of loess shows much lower scattering than that of coversands, due to stronger homogenisation during transport in the atmosphere. Overall, sandy loess and loess deposits decrease in thickness away from the coversands. Dune orientation and grain-size gradients suggest that the efficient winds blew respectively from the W to the NW during the glacial, and the W-SW during the Younger Dryas. A comparison between the wind directions derived from the proxy data and those provided by palaeoclimatic simulations suggests a change of the main transport season. Ground surface conditions and their evolution throughout the year, i.e. the length of the season with snow and frozen or moist topsoil, and the seasonal distribution of wind speeds able to cause deflation are thought to have been the main factors that controlled the transport season in the study area.

  4. Reduced shear power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  5. Doppler lidar measurements in the marine boundary layer for offshore wind-energy applications

    Science.gov (United States)

    Pichugina, Y.; Banta, R. M.; Brewer, A.; Hardesty, R.; Sandberg, S. P.

    2011-12-01

    Accurate measurement of wind-speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy is an application that requires accurate information on wind speeds above the surface at the levels occupied by turbine blades. Little measured data are available at these heights, and the behavior of near-surface winds is often unrepresentative of that at the required heights. As a consequence, numerical model data, another potential source of information, is unverified at these levels of the atmosphere. A motion-compensated, high-resolution Doppler lidar measurements of the marine wind flow will be presented. The system, which has been evaluated in several ways, has been used in several ship-borne measurement campaigns over the past decade, and a sampling of data from the 2004 New England Air Quality Study (NEAQS) shows the kind of analysis and information available. Although individual Doppler lidar scans have been shown to provide useful images of the flow structure, the emphasis here is on high-resolution (wind speed and direction averaged over 15-min, calculated from the scan data. Examples include time-height cross sections, time series, and profiles of wind speed and direction aloft, and distributions of quantities such as wind speed, shear through the blade layer, and deviations between values of wind speed at hub height calculated from power-law profiles and those measured by the Doppler lidar. These results show strong spatial and temporal variability to the wind field in the marine boundary layer. Winds near the coast show diurnal behavior, and frequent occurrences of low-level jet structure are evident especially during nocturnal periods. Persistent patterns of spatial variability of the flow field due to coastal irregularities should be of particular concern for wind energy planning, because this affects the representativeness of fixed-location measurements and implies that some areas would be favored for

  6. Marine wind data presentation using wind transition matrix

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.J.; Gouveia, A.D.; Desai, R.G.P.

    One of the methods to simulate the random wind behaviour through time is to use historical wind data presented in the form of wind transition matrix. Here it is assumed that, the probability that the wind will shift from one direction to another...

  7. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    Science.gov (United States)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  8. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  9. Anisotropic Spinodal Decomposition under Shear Flow

    Science.gov (United States)

    Imaeda, T.; Onuki, A.; Kawasaki, K.

    1984-01-01

    When a critical fluid is brought into the unstable region in the presence of shear flow, growing fluctuations are greatly elongated in the flow direction, giving rise to strongly anisotropic light scattering. In the strong shear case the linear growth theory becomes applicable in a sizable time region 0 Bar-on and Miller, it is found to increase as t(a') with a' =~ 0.2, whereas the characteristic size in the flow direction continues to increase roughly as t.

  10. Effects of trade-wind strength and direction on the leeside circulations and rainfall of the island of Hawaii

    Science.gov (United States)

    Yang Yang; Yi-Leng Chen; Francis M. Fujioka

    2009-01-01

    The leeside circulations and weather of the island of Hawaii were studied from the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) land surface model simulations for eight strong (∼7.9 m s−1) and eight weak (∼5.2 m s−1) trade-wind days and for five days with southeasterly trades (∼7.1 m s

  11. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Jensen, L.E.

    2010-01-01

    Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine...... thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can...... be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under-estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due...

  12. Investigation of the Optimal Omni-Direction-Guide-Vane Design for Vertical Axis Wind Turbines Based on Unsteady Flow CFD Simulation

    Directory of Open Access Journals (Sweden)

    Behzad Shahizare

    2016-03-01

    Full Text Available With soaring energy demands, the desire to explore alternate and renewable energy resources has become the focal point of various active research fronts. Therefore, the scientific community is revisiting the notion to tap wind resources in more rigorous and novel ways. In this study, a two-dimensional computational investigation of the vertical axis wind turbine (VAWT with omni-direction-guide-vane (ODGV is proposed to determine the effects of this guide vane. In addition, the mesh and time step (dt size dependency test, as well as the effect of the different turbulence models on results accuracy are investigated. Eight different shape ratios (R of the omni-direction-guide-vane were also examined in this study. Further, the CFD model is validated by comparing the numerical results with the experimental data. Validation results show a good agreement in terms of shape and trend in CFD simulation. Based on these results, all the shape ratios, except two ratios including 0.3 and 0.4 at TSR of 1.3 to 3, have a positive effect on the power and torque coefficient improvement. Moreover, results show that the best case has a shape ratio of 0.55, which improves the power coefficient by 48% and the torque coefficient up to 58%.

  13. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  14. Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation

    Science.gov (United States)

    Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.

  15. Estudo in vitro da resistência ao cisalhamento da colagem direta de tubos ortodônticos em molares In vitro study of shear bond strength in direct bonding of orthodontic molar tubes

    Directory of Open Access Journals (Sweden)

    Célia Regina Maio Pinzan Vercelino

    2011-06-01

    conducted with the purpose of evaluating whether direct bonding would benefit from the application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface. METHODS: A sample of 40 mandibular third molars was selected and randomly divided into two groups: Group 1 - Conventional direct bonding, followed by the application of a layer of resin to the occlusal surfaces of the tube/ tooth interface, and Group 2 - Conventional direct bonding. Shear bond strength was tested 24 hours after bonding with the aid of a universal testing machine operating at a speed of 0.5mm/min. The results were analyzed using the independent t-test. RESULTS: The shear bond strength tests yielded the following mean values: 17.08 MPa for Group 1 and 12.60 MPa for Group 2. Group 1 showed higher statistically significant shear bond strength than Group 2. CONCLUSIONS: The application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface was found to enhance bond strength quality of orthodontic buccal tubes bonded directly to molar teeth.

  16. Gearbox and Drivetrain Models to Study Dynamic Effects of Modern Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Girsang, I. P.; Dhupia, J. S.; Muljadi, E.; Singh, M.; Pao, L. Y.

    2013-10-01

    Wind turbine drivetrains consist of components that directly convert kinetic energy from the wind to electrical energy. Guaranteeing robust and reliable drivetrain designs is therefore important to minimize turbine downtime. Current drivetrain models often lack the ability to model both the impacts of electrical transients as well as wind turbulence and shear in one package. In this work, thecapability of the FAST wind turbine computer-aided engineering tool, developed by the National Renewable Energy Laboratory, is enhanced through integration of a dynamic model of the drivetrain. The dynamic drivetrain model is built using Simscape in the MATLAB/Simulink environment and incorporates detailed electrical generator models. This model can be used in the future to test advanced controlschemes to extend life of the gearbox.

  17. Shear Thinning in Xenon

    Science.gov (United States)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  18. Surface drag over the snow surface of the Antarctic Plateau. 1. Factors controlling surface drag over the Katabatic wind region

    Science.gov (United States)

    Inoue, Jiro

    1989-02-01

    The drag coefficient of the snow surface over the Antarctic Plateau is evaluated through direct measurement of Reynolds stress on the Mizuho Plateau, East Antarctica, in the austral summer. The estimated roughness height (Z0) varies from 10-l to 10-4 cm, even under near-neutral conditions. Large shear stress appears in light wind, followed by increased turbulent intensity. In the katabatic wind region of the plateau, Z0 shows symmetric changes with wind direction. The average value of Z0 in the smoothest direction is 0.0004 cm, which is the minimum value previously reported, and it increases to 0.015 cm for 40° rotation of wind direction toward the roughest direction. The directional dependence of Z0 is similar at three stations located nearly 100 km apart. Unlike the results of Jackson and Carroll at the south pole, the smoothest direction deviates 20° from the mean sastrugi axes and agrees with the direction of the prevailing high wind. The 4-m neutral drag coefficient is estimated to be 0.8 × 10-3 for the smoothest direction and 1.5 × 10-3 for the roughest direction. The effect of snow drift is unimportant. A generalized discussion of the results is given in a companion paper.

  19. Motifs of Networks from Shear Fractures

    CERN Document Server

    Ghaffari, H O

    2011-01-01

    Rupture's sequence of shear fractures using a transformation form of aperture patterns to complex networks was studied, and then sub-graphs abundance within the corresponding networks was analyzed. Furthermore, to distinguish the role of contact zones and flow of energy in ruptures tips, the contact strings were constructed. The contacts 'strings were connected by using constrained geometrical distance and amount of net-contact area per string, yields directed networks. For shear rupture, we observed approximately similar trend in sub-graphs distribution which were the results of parallel and transversal aperture profiles (a super-family phenomena). We confirmed the same inherent dynamic of sheared fracture yields the nearly same family of sub-graphs. For directed networks, our results confirmed the role of the feed-forward sub-graphs in flow of energy through the development of shear rupture.

  20. Exploring the influence of boundary layer stability on wind farms and their interplay with the surrounding environment

    Science.gov (United States)

    Vanderwende, Brian Joseph

    There is growing awareness in the wind power industry that boundary-layer stability influences wind turbine performance in meaningful ways. Stability is inextricably tied to the diurnal ebb and flow of heat, momentum, and moisture that drives weather. Boundary-layer stability is closely linked to low-level wind speeds, wind shear, wind veer, and turbulence. It is these myriad consequences of stability which directly impact turbines, both modifying performance and contributing to structural fatigue. I describe the influence of near-surface stability on the aggregate power output of a utility-scale wind farm in central North America. During convective conditions, the wind farm produced more power than during neutral conditions, while in stable conditions the farm underperformed. These results are statistically significant, despite the uncertainty involved in using nacelle anemometer measurements of wind speed. Next, I use lidar measurements from Iowa to categorize low-level jets and their impact on rotor-layer winds. Observed jets are similar to those studied in the Great Plains, though regional sloping terrain forcing is absent in Iowa. Rotor-layer wind speeds intensify during jet periods, but detrimental wind shear and veer also increase when jets occur. Simulations using the Weather Research and Forecasting (WRF) model with various input data and boundary-layer physics favorably reproduce jet features. I then utilize the same model to examine the impact of switching from maize to soybeans on rotor-layer winds during the peak of the growing season. The crop change was represented in the simulation by surface roughness. The switch produces a statistically significant increase in both wind speed and power output. Finally, I evaluate the performance of the wind farm parameterization (WFP) in WRF using high-resolution large eddy simulations (LES) from the same model. The wind speed and turbulence impacts estimated by the WFP compare favorably to LES flow for both