WorldWideScience

Sample records for wind direction atmospheric

  1. Wind direction correlated measurements of radon and radon progeny in atmosphere: a method for radon source identification

    International Nuclear Information System (INIS)

    Akber, R.A.; Pfitzner, J.; Johnston, A.

    1994-01-01

    This paper describes the basic principles and methodology of a wind direction correlated measurement technique which is used to distinguish the mine-related and background components of radon and radon progeny concentrations in the vicinity of the ERA Ranger Uranium Mine. Simultaneous measurements of atmospheric radon and radon progeny concentrations and wind speed and direction were conducted using automatic sampling stations. The data were recorded as a time series of half hourly averages and grouped into sixteen 22.5 degrees wind sectors. The sampling interval and the wind sector width were chosen considering wind direction variability (σ θ ) over the sampling time interval. The data were then analysed for radon and radon progeny concentrations in each wind sector. Information about the wind frequency wind speed seasonal and diurnal variations in wind direction and radon concentrations was required for proper data analysis and interpretation of results. A comparison with model-based estimates for an identical time period shows agreement within about a factor of two between the two methods. 15 refs., 1 tab., 5 figs

  2. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  3. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  4. Improvement of wind tunnel experiment method for atmospheric diffusion

    International Nuclear Information System (INIS)

    Nakai, Masayuki; Sada, Koichi

    1987-01-01

    A wind direction fluctuation vane was added to CRIEPI's large - scale atmospheric diffusion wind tunnel for the purpose of increasing and controlling turbulence intensity. When the wind direction fluctuation vane was operated lateral plume spread and lateral turbulence intersity became greater than for cases when it was not operated. Use of the vane improved the ability of the wind tunnel to simulate plane spread under natural conditions. (author)

  5. Statistics of wind direction and its increments

    International Nuclear Information System (INIS)

    Doorn, Eric van; Dhruva, Brindesh; Sreenivasan, Katepalli R.; Cassella, Victor

    2000-01-01

    We study some elementary statistics of wind direction fluctuations in the atmosphere for a wide range of time scales (10 -4 sec to 1 h), and in both vertical and horizontal planes. In the plane parallel to the ground surface, the direction time series consists of two parts: a constant drift due to large weather systems moving with the mean wind speed, and fluctuations about this drift. The statistics of the direction fluctuations show a rough similarity to Brownian motion but depend, in detail, on the wind speed. This dependence manifests itself quite clearly in the statistics of wind-direction increments over various intervals of time. These increments are intermittent during periods of low wind speeds but Gaussian-like during periods of high wind speeds. (c) 2000 American Institute of Physics

  6. The sound of high winds. The effect of atmospheric stability on wind turbine sound and microphone noise

    International Nuclear Information System (INIS)

    Van den Berg, G.P.

    2006-01-01

    In this thesis issues are raised concerning wind turbine noise and its relationship to altitude dependent wind velocity. The following issues are investigated: what is the influence of atmospheric stability on the speed and sound power of a wind turbine?; what is the influence of atmospheric stability on the character of wind turbine sound?; how widespread is the impact of atmospheric stability on wind turbine performance: is it relevant for new wind turbine projects; how can noise prediction take this stability into account?; what can be done to deal with the resultant higher impact of wind turbine sound? Apart from these directly wind turbine related issues, a final aim was to address a measurement problem: how does wind on a microphone affect the measurement of the ambient sound level?

  7. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  8. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    Science.gov (United States)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  9. Atmospheric diffusion wind tunnel with automatic measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maki, S; Sakai, J; Murata, E

    1974-01-01

    A wind tunnel which permits estimates of atmospheric diffusion is described. Smoke from power plant smoke stacks, for example, can be simulated and traced to determine the manner of diffusion in the air as well as the grade of dilution. The wind tunnel is also capable of temperature controlled diffusion tests in which temperature distribution inside the wind tunnel is controlled. A minimum wind velocity of 10 cm can be obtained with accuracy within plus or minus 0.05 percent using a controlled direct current motor; diffusion tests are often made at low wind velocity. Fully automatic measurements can be obtained by using a minicomputer so that the operation and reading of the measuring instruments can be remotely controlled from the measuring chamber. (Air Pollut. Abstr.)

  10. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  11. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  12. DISC ATMOSPHERES AND WINDS IN X-RAY BINARIES

    Directory of Open Access Journals (Sweden)

    Maria Díaz Trigo

    2013-12-01

    Full Text Available We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.

  13. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  14. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    Science.gov (United States)

    Marjanovic, Nikola

    grid nesting configurations, turbulence closures, and grid resolutions is evaluated by comparison to observation data. Improvement to simulation results from the use of more computationally expensive high resolution simulations is only found for the complex terrain simulation during the locally-driven event. Physical parameters, such as soil moisture, have a large effect on locally-forced events, and prognostic turbulence kinetic energy (TKE) schemes are found to perform better than non-local eddy viscosity turbulence closure schemes. Mesoscale models, however, do not resolve turbulence directly, which is important at finer grid resolutions capable of resolving wind turbine components and their interactions with atmospheric turbulence. Large-eddy simulation (LES) is a numerical approach that resolves the largest scales of turbulence directly by separating large-scale, energetically important eddies from smaller scales with the application of a spatial filter. LES allows higher fidelity representation of the wind speed and turbulence intensity at the scale of a wind turbine which parameterizations have difficulty representing. Use of high-resolution LES enables the implementation of more sophisticated wind turbine parameterizations to create a robust model for wind energy applications using grid spacing small enough to resolve individual elements of a turbine such as its rotor blades or rotation area. Generalized actuator disk (GAD) and line (GAL) parameterizations are integrated into WRF to complement its real-world weather modeling capabilities and better represent wind turbine airflow interactions, including wake effects. The GAD parameterization represents the wind turbine as a two-dimensional disk resulting from the rotation of the turbine blades. Forces on the atmosphere are computed along each blade and distributed over rotating, annular rings intersecting the disk. While typical LES resolution (10-20 m) is normally sufficient to resolve the GAD, the GAL

  15. A new low threshold bi-directional wind vane and its potential impact on unplanned atmospheric release prediction

    International Nuclear Information System (INIS)

    Parker, M.J.

    1996-01-01

    At the Savannah River Site, the Environmental Transport Group (ETG) maintains and develops a comprehensive meteorological monitoring program which employs bi-directional wind vanes (bivanes) for the measurement of horizontal and vertical wind direction and turbulence. Wind data collected near and below instrument starting thresholds under stable nighttime conditions with these bivanes can result in artificially large standard deviations of horizontal wind direction (σA). In one hypothetical case, downwind concentrations could be underestimated by a factor of 40 by using artificially high σA data in a Gaussian dispersion model. In an effort to improve low wind speed measurements of wind direction, a Cooperative Research and Development Agreement (CRADA) between Met One Instruments and the Westinghouse Savannah River Company (WSRC) has been created to improve the dynamic performance of the Met One Model 1585 Bi-Directional Wind Vane

  16. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  17. On The Implications of Atmospheric Gravity Waves on Wind Power

    OpenAIRE

    Norris, Luke

    2011-01-01

    In view of the rapidly rising cost of fossil fuels and concerns over climate change, there can be little doubt that renewable energy is to play a large role in the future of our economic development. The impact of Atmospheric Gravity Waves (AGWs) on wind power is, at best, unclear. In this research, AGWs are successfully modelled both in theoretical and real world environments using the WindSim software package which has revealed a potential 7.4% drop in annual power output as a direct ...

  18. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    International Nuclear Information System (INIS)

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-01-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s –1 directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 ± 1 km s –1 blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of ∼2 km s –1 and that lower Doppler shifts of ∼1 km s –1 are found for the higher drag cases, results consistent with—but not yet strongly constrained by—the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  20. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  1. A comparison of the WIND System atmospheric models and RASCAL

    International Nuclear Information System (INIS)

    Fast, J.D.

    1991-01-01

    A detailed comparison of the characteristics of the WIND System atmospheric models and the NRC's RASCAL code was made. The modeling systems differ substantially in the way input is entered and the way output is displayed. Nevertheless, using the same source term and meteorological input parameters, the WIND System atmospheric models and RASCAL produce similar results in most situations. The WIND System atmospheric model predictions and those made by RASCAL are within a factor of two at least 70% of the time and are within a factor of four 89% of the time. Significant differences in the dose between the models may occur during conditions of low wind speeds, strong atmospheric stability, and/or wet deposition as well as for many atmospheric cases involving cloud shine. Even though the numerical results are similar in most cases, there are many site-specific and operational characteristics that have been incorporated into the WIND System atmospheric models to provide SRS emergency response personnel with a more effective emergency response tool than is currently available from using RASCAL

  2. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  3. Wind turbine power and sound in relation to atmospheric stability

    NARCIS (Netherlands)

    van den Berg, G. P.

    2008-01-01

    Atmospheric stability cannot, with respect to modem, toll wind turbines, be viewed as a 'small perturbation to a basic neutral state' This can be demonstrated by comparison of measured wind velocity at the height of the rotor with the wind velocity expected in a neutral or 'standard' atmosphere.

  4. The atmospheric transfer of pollution for a site with rapidly variable winds (low winds)

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1980-01-01

    This paper firstly describes the ICAIR 2 computer model which takes into account the variability in space and time of wind speed and direction in estimating the dispersion of a pollutant in the atmosphere. This is done by breaking down each release into a series of separate puffs which continuously respond to the meteorological conditions applying at the point in time to the positions in which they are located. The law governing the change in each of the puffs is tri-Gaussian and the standard deviations used are a function of the transfer time and the wind speed for transfer times of less than 2000 seconds and of the transfer time alone beyond this period. Finally, the concentration patterns at various points calculated using ICAIR 2 are compared with those obtained during a series of experiments in situ using tracers at low wind speeds (< 1 m/s)

  5. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  6. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot W.; Churchfield, Matthew J.; Cheung, Lawrence; Kern, Stefan

    2017-01-09

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  7. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    the Gulf of Alaska influence ocean conditions in central and southern California via these wind relaxations. The ocean response within a few km of the coast involves poleward-flowing currents that transport warm water out of the lees of capes and headlands and counter to the direction of the California Current [Send et al. 1987, Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. A similar response occurs in the Benguela and Canary Current coastal upwelling systems. The ocean response involves both barotropic and baroclinic dynamics and is consistent with existing geophysical models of buoyant, coastally-trapped plumes [Washburn et al., in prep]. Our ongoing work includes i) studying the regional ocean response to determine its spatial extent, time evolution, and ocean-atmosphere coupling dynamics; ii) developing an atmospheric index to predict wind relaxations in southern California based on pressure in the Gulf of Alaska; iii) examining the strength and frequency of wind relaxations over the past 30 years for connections to El Niño and the Pacific Decadal Oscillation; and iv) predicting future variations in wind relaxations and the response of the California Current Large Marine Ecosystem.

  8. Dependence of the wind climate of Ireland on the direction distribution of geostrophic wind; Die Abhaengigkeit des Windklimas von Irland von der Richtungsverteilung des geostrophischen Windes

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.P. [Forskningcenter Risoe, Roskilde (Denmark). Afdelingen for Vindenergi og Atmosfaerefysik

    1998-01-01

    The wind climate of Ireland is calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The dependence of the simulated wind energy on the direction distribution of geostrophic wind is studied. As geostrophic winds from the south-west are most frequent, sites on the north-west coast are particularly suited for wind power stations. In addition, geostrophic wind increases from the south-east to the north-west. (orig.) [Deutsch] Das Windklima von Irland wurde mit dem Karlsruher Atmosphaerischen Mesoskaligen Modell KAMM berechnet. Hier wird die Abhaengigkeit der simultierten Windenergie von der Richtungsverteilung des geostrophischen Windes untersucht. Da geostrophische Winde aus Suedwest am haeufigsten vorkommen, eignet sich besonders die Nordwestkueste als Standort fuer Windkraftanlagen. Zusaetzlich nimmt auch der mittlere geostrophische Wind von Suedost nach Nordwest zu. (orig.)

  9. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  10. Annual progress report 2000. Wind Energy and Atmospheric Physics Dept.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  11. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Jensen, L.E.

    2010-01-01

    Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine...... thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can...... be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under-estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due...

  12. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...... boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd....

  13. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P -E

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  14. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  15. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Churchfield, Matthew; Cheung, Lawrence; Kern, Stefan

    2017-02-01

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  16. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  17. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes

    International Nuclear Information System (INIS)

    Iungo, Giacomo Valerio; Porté-Agel, Fernando

    2014-01-01

    Aerodynamic optimization of wind farm layout is a crucial task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as wind shear and turbulence intensity, which are in turn affected by the ABL thermal stability. In order to characterize the downstream evolution of wakes produced by full-scale wind turbines under different atmospheric conditions, wind velocity measurements were performed with three wind LiDARs. The volumetric scans are performed by continuously sweeping azimuthal and elevation angles of the LiDARs in order to cover a 3D volume that includes the wind turbine wake. The minimum wake velocity deficit is then evaluated as a function of the downstream location for different atmospheric conditions. It is observed that the ABL thermal stability has a significant effect on the wake evolution, and the wake recovers faster under convective conditions

  18. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  19. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  20. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2017-06-01

    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  1. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  2. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems....... The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danishand international organisations on wind energy and atmospheric environmental impact. A sum......-mary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members....

  3. Large wind ripples on Mars: A record of atmospheric evolution

    Science.gov (United States)

    Lapotre, M G; Ewing, R C; Lamb, M P; Fischer, W W; Grotzinger, J P; Rubin, D M; Lewis, K W; Ballard, M; Day, Mitch D.; Gupta, S.; Banham, S G; Bridges, N T; Des Marais, D J; Fraeman, A A; Grant, J A; Herkenhoff, Kenneth E.; Ming, D W; Mischna, M A; Rice, M S; Sumner, D A; Vasavada, A R; Yingst, R A

    2016-01-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  4. Large wind ripples on Mars: A record of atmospheric evolution

    Science.gov (United States)

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M. J.; Day, M.; Gupta, S.; Banham, S. G.; Bridges, N. T.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A.; Herkenhoff, K. E.; Ming, D. W.; Mischna, M. A.; Rice, M. S.; Sumner, D. A.; Vasavada, A. R.; Yingst, R. A.

    2016-07-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter- to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  5. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  6. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery

    Directory of Open Access Journals (Sweden)

    Lizhang Zhou

    2017-06-01

    Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.

  7. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    Science.gov (United States)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  8. Wind direction variations in the natural wind – A new length scale

    DEFF Research Database (Denmark)

    Johansson, Jens; Christensen, Silas Sverre

    2018-01-01

    During an observation period of e.g. 10min, the wind direction will differ from its mean direction for short periods of time, and a body of air will pass by from that direction before the direction changes once again. The present paper introduces a new length scale which we have labeled the angular...... length scale. This length scale expresses the average size of the body of air passing by from any deviation of wind direction away from the mean direction. Using metrological observations from two different sites under varying conditions we have shown that the size of the body of air relative to the mean...... size decreases linearly with the deviation from the mean wind direction when the deviation is normalized with the standard deviation of the wind direction. It is shown that this linear variation is independent of the standard deviation of the wind direction, and that the two full-scale data sets follow...

  9. Simulation of a 5MW wind turbine in an atmospheric boundary layer

    International Nuclear Information System (INIS)

    Meister, Konrad; Lutz, Thorsten; Krämer, Ewald

    2014-01-01

    This article presents detached eddy simulation (DES) results of a 5MW wind turbine in an unsteady atmospheric boundary layer. The evaluation performed in this article focuses on turbine blade loads as well as on the influence of atmospheric turbulence and tower on blade loads. Therefore, the turbulence transport of the atmospheric boundary layer to the turbine position is analyzed. To determine the influence of atmospheric turbulence on wind turbines the blade load spectrum is evaluated and compared to wind turbine simulation results with uniform inflow. Moreover, the influences of different frequency regimes and the tower on the blade loads are discussed. Finally, the normal force coefficient spectrum is analyzed at three different radial positions and the influence of tower and atmospheric turbulence is shown

  10. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  11. Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain

    DEFF Research Database (Denmark)

    Han, Xingxing; Liu, Deyou; Xu, Chang

    2018-01-01

    This paper evaluates the influence of atmospheric stability and topography on wind turbine performance and wake properties in complex terrain. To assess atmospheric stability effects on wind turbine performance, an equivalent wind speed calculated with the power output and the manufacture power...... and topography have significant influences on wind turbine performance and wake properties. Considering effects of atmospheric stability and topography will benefit the wind resource assessment in complex terrain....

  12. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    International Nuclear Information System (INIS)

    Shangguan Ming-Jia; Xia Hai-Yun; Dou Xian-Kang; Wang Chong; Qiu Jia-Wei; Zhang Yun-Peng; Shu Zhi-Feng; Xue Xiang-Hui

    2015-01-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. (paper)

  13. Numerical modeling of wind waves in the Black Sea generated by atmospheric cyclones

    Science.gov (United States)

    Fomin, V. V.

    2017-09-01

    The influence of the translation speed and intensity of atmospheric cyclones on surface wind waves in the Black Sea is investigated by using tightly-coupled model SWAN+ADCIRC. It is shown that the wave field has a spatial asymmetry, which depends on the velocity and intensity of the cyclone. The region of maximum waves is formed to the right of the direction of the cyclone motion. Speedier cyclones generate wind waves of lower height. The largest waves are generated at cyclonic translation speed of 7-9 m/s. This effect is due to the coincidence of the characteristic values of the group velocity of the dominant wind waves in the deep-water part of the Black Sea with the cyclone translation speed.

  14. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    Science.gov (United States)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  15. BNL Direct Wind Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  16. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  17. Pollutant forecasting error based on persistence of wind direction

    International Nuclear Information System (INIS)

    Cooper, R.E.

    1978-01-01

    The purpose of this report is to provide a means of estimating the reliability of forecasts of downwind pollutant concentrations from atmospheric puff releases. These forecasts are based on assuming the persistence of wind direction as determined at the time of release. This initial forecast will be used to deploy survey teams, to predict population centers that may be affected, and to estimate the amount of time available for emergency response. Reliability of forecasting is evaluated by developing a cumulative probability distribution of error as a function of lapsed time following an assumed release. The cumulative error is determined by comparing the forecast pollutant concentration with the concentration measured by sampling along the real-time meteorological trajectory. It may be concluded that the assumption of meteorological persistence for emergency response is not very good for periods longer than 3 hours. Even within this period, the possibiity for large error exists due to wind direction shifts. These shifts could affect population areas totally different from those areas first indicated

  18. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, James G. [Univ. of Colorado, Boulder, CO (United States)

    2017-05-09

    The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cyber Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed

  19. A joint probability density function of wind speed and direction for wind energy analysis

    International Nuclear Information System (INIS)

    Carta, Jose A.; Ramirez, Penelope; Bueno, Celia

    2008-01-01

    A very flexible joint probability density function of wind speed and direction is presented in this paper for use in wind energy analysis. A method that enables angular-linear distributions to be obtained with specified marginal distributions has been used for this purpose. For the marginal distribution of wind speed we use a singly truncated from below Normal-Weibull mixture distribution. The marginal distribution of wind direction comprises a finite mixture of von Mises distributions. The proposed model is applied in this paper to wind direction and wind speed hourly data recorded at several weather stations located in the Canary Islands (Spain). The suitability of the distributions is judged from the coefficient of determination R 2 . The conclusions reached are that the joint distribution proposed in this paper: (a) can represent unimodal, bimodal and bitangential wind speed frequency distributions, (b) takes into account the frequency of null winds, (c) represents the wind direction regimes in zones with several modes or prevailing wind directions, (d) takes into account the correlation between wind speeds and its directions. It can therefore be used in several tasks involved in the evaluation process of the wind resources available at a potential site. We also conclude that, in the case of the Canary Islands, the proposed model provides better fits in all the cases analysed than those obtained with the models used in the specialised literature on wind energy

  20. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  1. Coupling Atmosphere and Waves for Coastal Wind Turbine Design

    DEFF Research Database (Denmark)

    Bolanos, Rodolfo; Larsén, Xiaoli Guo; Petersen, Ole S.

    2014-01-01

    model (MIKE 21 SW) are implemented for the North Sea in order to consider wave effects on roughness. The objective is to see the reaction of an atmospheric model to the water surface description through offline coupling. A comparison with three simplified roughness formulations embedded in WRF showed......Offshore wind farms in coastal areas are considered by the Danish government to contribute to the goal of having 50% of the energy consumption from renewable sources by 2025. Therefore, new coastal developments will take place in Danish areas. The impact of waves on atmosphere is most often...... described by roughness length, which is typically determined by the Charnock formulation. This simplification in many atmospheric models has been shown to bring bias in the estimation of the extreme wind. Some wave-dependent formulations have been reported to overestimate the drag coefficient and roughness...

  2. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    Science.gov (United States)

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  3. A new wind vane for the measurement of atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M.J.; Heverly, M.

    1997-02-01

    A Cooperative Research and Development Agreement (CRADA) between Met One Instruments, Incorporated (Met One) and Westinghouse Savannah River Company (WSRC) was created to develop a new wind vane that more accurately measures atmospheric turbulence. Through a process that had several phases, Met One created a prototype vane that was designed to attach to the existing Model 1585 Bi-Directional Wind Vane instrument structure. The prototype contained over 20% less mass to enhance responsiveness, which was also increased through the use of a teardrop-shaped fin structure. The prototype vane can be readily manufactured for commercial retail. Tests in wind tunnel of Building 735-7A, the Meteorological Engineering Facility, indicated that the new vane has a superior starting threshold of less than 0.14 meter per second, a delay distance of 0.72 meter, and a damping ratio of 0.4. The relative accuracy of less than one degree is unchanged from the previous design. The vane bias was acceptable at 0.8 degree for the horizontal wind angle, but was slightly high at 1.4 degree for the verticle wind angle. The high value of the verticle wind angle bias can most likely be reduced to the desired less than one degree value with standard manufacturing production techniques. The durability of the prototype vane was not tested in the field but is expected to be slightly less due to the use of hollow rather than foam-filled fins. However, the loss of some durability is more than compensated with increased sensitivity at low wind speeds. Field testing of the prototype is required to test for adequacy of durability.

  4. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    Science.gov (United States)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  5. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient s...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics.......In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...

  6. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    Science.gov (United States)

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  7. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  8. Cometary X-rays : solar wind charge exchange in cometary atmospheres

    NARCIS (Netherlands)

    Bodewits, Dennis

    2007-01-01

    The interaction of the solar wind with the planets and the interstellar medium is of key importance for the evolution of our solar system. The interaction with Earth's atmosphere is best known for the northern light. In case of Mars, the interaction with the solar wind might have lead to the erosion

  9. A methodology for the design and testing of atmospheric boundary layer models for wind energy applications

    Directory of Open Access Journals (Sweden)

    J. Sanz Rodrigo

    2017-02-01

    Full Text Available The GEWEX Atmospheric Boundary Layer Studies (GABLS 1, 2 and 3 are used to develop a methodology for the design and testing of Reynolds-averaged Navier–Stokes (RANS atmospheric boundary layer (ABL models for wind energy applications. The first two GABLS cases are based on idealized boundary conditions and are suitable for verification purposes by comparing with results from higher-fidelity models based on large-eddy simulation. Results from three single-column RANS models, of 1st, 1.5th and 2nd turbulence closure order, show high consistency in predicting the mean flow. The third GABLS case is suitable for the study of these ABL models under realistic forcing such that validation versus observations from the Cabauw meteorological tower are possible. The case consists on a diurnal cycle that leads to a nocturnal low-level jet and addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The simulations are evaluated in terms of surface-layer fluxes and wind energy quantities of interest: rotor equivalent wind speed, hub-height wind direction, wind speed shear and wind direction veer. The characterization of mesoscale forcing is based on spatially and temporally averaged momentum budget terms from Weather Research and Forecasting (WRF simulations. These mesoscale tendencies are used to drive single-column models, which were verified previously in the first two GABLS cases, to first demonstrate that they can produce similar wind profile characteristics to the WRF simulations even though the physics are more simplified. The added value of incorporating different forcing mechanisms into microscale models is quantified by systematically removing forcing terms in the momentum and heat equations. This mesoscale-to-microscale modeling approach is affected, to a large extent, by the input uncertainties of the mesoscale

  10. Wake effects of large offshore wind farms on the mesoscale atmosphere

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    to the fact that its typical horizontal grid spacing is on the order of 2km, the energy extracted by the turbine, as well as the wake development inside the turbine-containing grid-cells, are not described explicitly, but are parametrized as another sub-grid scale process. In order to appropriately capture...... the wind farm wake recovery and its direction, two properties are important, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual turbines apply a thrust dependent on a local sub grid scale velocity, which is influenced...... by the up-stream turbines. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, is taken into account. Furthermore, since the model horizontal distance is several times larger then the turbine diameter, it has been assumed that the generated...

  11. Current direction, wind direction, temperature, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 February 1981 - 01 February 1981 (NODC Accession 8100516)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from February 1, 1981 to...

  12. Design of a monolithic Michelson interferometer for fringe imaging in a near-field, UV, direct-detection Doppler wind lidar.

    Science.gov (United States)

    Herbst, Jonas; Vrancken, Patrick

    2016-09-01

    The low-biased, fast, airborne, short-range, and range-resolved determination of atmospheric wind speeds plays a key role in wake vortex and turbulence mitigation strategies and would improve flight safety, comfort, and economy. In this work, a concept for an airborne, UV, direct-detection Doppler wind lidar receiver is presented. A monolithic, tilted, field-widened, fringe-imaging Michelson interferometer (FWFIMI) combines the advantages of low angular sensitivity, high thermo-mechanical stability, independence of the specific atmospheric conditions, and potential for fast data evaluation. Design and integration of the FWFIMI into a lidar receiver concept are described. Simulations help to evaluate the receiver design and prospect sufficient performance under different atmospheric conditions.

  13. Wind Energy and Atmospheric Physics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems...

  14. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  15. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  16. Current direction, benthic organisms, temperature, and wind direction data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 22 September 1977 - 30 November 1978 (NODC Accession 7900110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, temperature, and wind direction data were collected using moored current meter casts in the Gulf of Mexico from September 22,...

  17. Full scale experimental analysis of wind direction changes (EOD)

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    wind direction gust amplitudes associated with the investigated European sites are low compared to the recommended IEC- values. However, these values, as function of the mean wind speed, are difficult to validate thoroughly due to the limited number of fully correlated measurements....... the magnitudes of a joint gust event defined by a simultaneously wind speed- and direction change in order to obtain an indication of the validity of the magnitudes specified in the IEC code. The analysis relates to pre-specified recurrence periods and is based on full-scale wind field measurements. The wind......A coherent wind speed and wind direction change (ECD) load case is defined in the wind turbine standard. This load case is an essential extreme load case that e.g. may be design driving for flap defection of active stall controlled wind turbines. The present analysis identifies statistically...

  18. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  19. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  20. Markov Chain model for the stochastic behaviors of wind-direction data

    International Nuclear Information System (INIS)

    Masseran, Nurulkamal

    2015-01-01

    Highlights: • I develop a Markov chain model to describe about the stochastic and probabilistic behaviors of wind direction data. • I describe some of the theoretical arguments regarding the Markov chain model in term of wind direction data. • I suggest a limiting probabilities approach to determine a dominant directions of wind blow. - Abstract: Analyzing the behaviors of wind direction can complement knowledge concerning wind speed and help researchers draw conclusions regarding wind energy potential. Knowledge of the wind’s direction enables the wind turbine to be positioned in such a way as to maximize the total amount of captured energy and optimize the wind farm’s performance. In this paper, first-order and higher-order Markov chain models are proposed to describe the probabilistic behaviors of wind-direction data. A case study is conducted using data from Mersing, Malaysia. The wind-direction data are classified according to an eight-state Markov chain based on natural geographical directions. The model’s parameters are estimated using the maximum likelihood method and the linear programming formulation. Several theoretical arguments regarding the model are also discussed. Finally, limiting probabilities are used to determine a long-run proportion of the wind directions generated. The results explain the dominant direction for Mersing’s wind in terms of probability metrics

  1. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. III. X-ray emission from wind-embedded shocks

    Science.gov (United States)

    Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.

    2016-05-01

    Context. Extreme ultraviolet (EUV) and X-ray radiation emitted from wind-embedded shocks in hot, massive stars can affect the ionization balance in their outer atmospheres and can be the mechanism responsible for producing highly ionized atomic species detected in stellar wind UV spectra. Aims: To allow for these processes in the context of spectral analysis, we have implemented the emission from wind-embedded shocks and related physics into our unified, NLTE model atmosphere/spectrum synthesis code FASTWIND. Methods: The shock structure and corresponding emission is calculated as a function of user-supplied parameters (volume filling factor, radial stratification of shock strength, and radial onset of emission). We account for a temperature and density stratification inside the postshock cooling zones, calculated for radiative and adiabatic cooling in the inner and outer wind, respectively. The high-energy absorption of the cool wind is considered by adding important K-shell opacities, and corresponding Auger ionization rates have been included in the NLTE network. To test our implementation and to check the resulting effects, we calculated a comprehensive model grid with a variety of X-ray emission parameters. Results: We tested and verified our implementation carefully against corresponding results from various alternative model atmosphere codes, and studied the effects from shock emission for important ions from He, C, N, O, Si, and P. Surprisingly, dielectronic recombination turned out to play an essential role for the ionization balance of O iv/O v (particularly in dwarfs with Teff~ 45 000 K). Finally, we investigated the frequency dependence and radial behavior of the mass absorption coefficient, κν(r), which is important in the context of X-ray line formation in massive star winds. Conclusions: In almost all of the cases considered, direct ionization is of major influence because of the enhanced EUV radiation field, and Auger ionization only affects N vi

  2. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  3. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient

    OpenAIRE

    Peña, Alfredo; Rathmann, Ole

    2014-01-01

    We extend the infinite wind-farm boundary-layer (IWFBL) model of Frandsen to take into account atmospheric static stability effects. This extended model is compared with the IWFBL model of Emeis and to the Park wake model used inWind Atlas Analysis and Application Program (WAsP), which is computed for an infinite wind farm. The models show similar behavior for the wind-speed reduction when accounting for a number of surface roughness lengths, turbine to turbine separations and wind speeds und...

  4. Improving wind energy forecasts using an Ensemble Kalman Filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    Science.gov (United States)

    Williams, J. L.; Maxwell, R. M.; Delle Monache, L.

    2012-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its propensity to change speed and direction over short time scales. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. Using the PF.WRF model, a fully-coupled hydrologic and atmospheric model employing the ParFlow hydrologic model with the Weather Research and Forecasting model coupled via mass and energy fluxes across the land surface, we have explored the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture and wind speed, and demonstrated that reductions in uncertainty in these coupled fields propagate through the hydrologic and atmospheric system. We have adapted the Data Assimilation Research Testbed (DART), an implementation of the robust Ensemble Kalman Filter data assimilation algorithm, to expand our capability to nudge forecasts produced with the PF.WRF model using observational data. Using a semi-idealized simulation domain, we examine the effects of assimilating observations of variables such as wind speed and temperature collected in the atmosphere, and land surface and subsurface observations such as soil moisture on the quality of forecast outputs. The sensitivities we find in this study will enable further studies to optimize observation collection to maximize the utility of the PF.WRF-DART forecasting system.

  5. An experimental and numerical study of the atmospheric stability impact on wind turbine wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Koblitz, Tilman

    2016-01-01

    campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s1 and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk–Richardson number and the Froude number. Three test cases are subsequently defined covering various...... atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed......In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Risø...

  6. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    Science.gov (United States)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands

  7. Application of an atmospheric CFD code to wind resource assessment in complex terrain

    International Nuclear Information System (INIS)

    Laporte, Laurent

    2008-01-01

    This thesis is organized in two parts. The first part presents the use of the atmospheric CFD code Mercure Saturne to estimate the wind resource in complex terrain. A measurement campaign was led by EDF to obtain data for validation. A methodology was developed using meso-scale profiles as boundary conditions. Clustering of meteorological situations was used to reduce the number of simulations needed to calculate the wind resource. The validation of the code on the Askervein hill, the methodology and comparisons with measurements from the complex site are presented. The second part presents the modeling of wakes with the Mercure Saturne code. Forces, generated by the blades on the wind, are modeled by source terms, calculated by the BEM method. Two comparisons are proposed to validate the method: the first compares the numerical model with wind tunnel measurements from a small wind turbine, the second with measurements made on porous disks in an atmospheric boundary layer wind tunnel (author) [fr

  8. Effect of Wind Direction on ENVISAT ASAR Wind Speed Retrieval

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2010-01-01

    This paper presents an evaluation of effects of wind directions (NCEP, MANAL, QuickSCAT and WRF) on the sea surface wind speed retrieval from 75 ENVISAT ASAR images with four C-band Geophysical model functions, CMOD4, CMOD_IFR2, CMOD5 and CMOD5N at two target areas, Hiratsuka and Shirahama. As re...

  9. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    Science.gov (United States)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  10. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model (...

  11. High Resolution Atmospheric Modeling for Wind Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  12. Assimilation of wind speed and direction observations: results from real observation experiments

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2015-06-01

    Full Text Available The assimilation of wind observations in the form of speed and direction (asm_sd by the Weather Research and Forecasting Model Data Assimilation System (WRFDA was performed using real data and employing a series of cycling assimilation experiments for a 2-week period, as a follow-up for an idealised post hoc assimilation experiment. The satellite-derived Atmospheric Motion Vectors (AMV and surface dataset in Meteorological Assimilation Data Ingest System (MADIS were assimilated. This new method takes into account the observation errors of both wind speed (spd and direction (dir, and WRFDA background quality control (BKG-QC influences the choice of wind observations, due to data conversions between (u,v and (spd, dir. The impacts of BKG-QC, as well as the new method, on the wind analysis were analysed separately. Because the dir observational errors produced by different platforms are not known or tuned well in WRFDA, a practical method, which uses similar assimilation weights in comparative trials, was employed to estimate the spd and dir observation errors. The asm_sd produces positive impacts on analyses and short-range forecasts of spd and dir with smaller root-mean-square errors than the u,v-based system. The bias of spd analysis decreases by 54.8%. These improvements result partly from BKG-QC screening of spd and dir observations in a direct way, but mainly from the independent impact of spd (dir data assimilation on spd (dir analysis, which is the primary distinction from the standard WRFDA method. The potential impacts of asm_sd on precipitation forecasts were evaluated. Results demonstrate that the asm_sd is able to indirectly improve the precipitation forecasts by improving the prediction accuracies of key wind-related factors leading to precipitation (e.g. warm moist advection and frontogenesis.

  13. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2012-12-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  14. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    Science.gov (United States)

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non

  15. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS

    International Nuclear Information System (INIS)

    PARKER, B.; ESCALLIER, J.

    2005-01-01

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper

  16. Atmospheric radiocarbon as a Southern Ocean wind proxy over the last 1000 years

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff Fletcher, S.; Galbraith, E.; Sarmiento, J. L.; Gnanadesikan, A.; Slater, R. D.; Naegler, T.

    2009-04-01

    Measurements of radiocarbon in tree rings over the last 1000 years indicate that there was a pre-industrial latitudinal gradient of atmospheric radiocarbon of 3.9-4.5 per mail and that this gradient had temporal variability of order 6 per mil. Here we test the idea that the mean gradient as well as variability in he gradient is dominated by the strength of the winds over the Southern Ocean. This is done using an ocean model and an atmospheric transport model. The ocean model is used to derive fluxes of 12CO2 and 14CO2 at the sea surface, and these fluxes are used as a lower boundary condition for the transport model. For the mean state, strong winds in the Southern Ocean drive significant upwelling of radiocarbon-depleted Circumpolar Deep Water (CDW), leading to a net flux of 14CO2 relative to 12CO2 into the ocean. This serves to maintain a hemispheric gradient in pre-anthropogenic atmospheric delta-c14. For perturbations, increased/decreased Southern Ocean winds drive increased/decreased uptake of 14CO2 relative to 12CO2, thus increasing/decreasing the hemispheric gradient in atmospheric delta-c14. The tree ring data is interpreted to reveal a decrease in the strength of the Southern Ocean winds at the transition between the Little Ice Age and the Medieval Warm Period.

  17. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  18. Comparison of NWP wind speeds and directions to measured wind speeds and directions

    DEFF Research Database (Denmark)

    Astrup, Poul; Mikkelsen, Torben

    Numerical Weather Predictions (NWP) of wind speed and direction has been compared to measurements for seven German sites for nuclear power plants, and for Risø, the site of the Danish nuclear research reactors now being decommissioned . For the German sites the data cover approximately three month...

  19. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  20. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient

    DEFF Research Database (Denmark)

    Peña, Alfredo; Rathmann, Ole

    2014-01-01

    We extend the infinite wind-farm boundary-layer (IWFBL) model of Frandsen to take into account atmospheric static stability effects. This extended model is compared with the IWFBL model of Emeis and to the Park wake model used inWind Atlas Analysis and Application Program (WAsP), which is computed......) larger than the adjusted values for a wide range of neutral to stable atmospheric stability conditions, a number of roughness lengths and turbine separations lower than _ 10 rotor diameters and (ii) too large compared with those obtained by a semiempirical formulation (relating the ratio of the friction...

  1. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1997-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  2. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1998-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  3. Direct Interval Forecasting of Wind Power

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2013-01-01

    This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness...

  4. Assessment of wind characteristics and atmospheric dispersion modeling of 137Cs on the Barakah NPP area in the USA

    International Nuclear Information System (INIS)

    Lee, Jong Kuk; Lee, Kun Jai; Yun, Jong IL; Kim, Jae Chul; Belorid, Miloslav; Beeley, Philip A.

    2014-01-01

    This paper presents the results of an analysis of wind characteristics and atmosphere dispersion modeling that are based on computational simulation and part of a preliminary study evaluating environmental radiation monitoring system (ERMS) positions within the Barakah nuclear power plant (BNPP). The return period of extreme wind speed was estimated using the Weibull distribution over the life time of the BNPP. In the annual meteorological modeling, the winds from the north and west accounted for more than 90 % of the wind directions. Seasonal effects were not represented. However, a discrepancy in the tendency between daytime and nighttime was observed. Six variations of cesium-137 ( 137 Cs) dispersion test were simulated under severe accident condition. The 137 Cs dispersion was strongly influenced by the direction and speed of the main wind. A virtual receptor was set and calculated for observation of the 137 Cs movement and accumulation. The results of the surface roughness effect demonstrated that the deposition of 137 Cs was affected by surface condition. The results of these studies offer useful information for developing environmental radiation monitoring systems (ERMSs) for the BNPP and can be used to assess the environmental effects of new nuclear power plant.

  5. Earth aeolian wind streaks: Comparison to wind data from model and stations

    Science.gov (United States)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  6. Wind turbine having a direct-drive drivetrain

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  7. Effects in atmospheric electricity daily variation controlled by solar wind

    International Nuclear Information System (INIS)

    Ptitsyna, N.G.; Tyasto, M.I.; Levitin, A.E.; Gromova, L.A.; Tuomi, T.; AN SSSR, Moscow

    1995-01-01

    An analysis of fair weather atmospheric electricity, one of the environmental factors which affects the biosphere, is conducted. A distinct difference in the diurnal variation of atmospheric electric field at Helsinki is found between disturbed and extremely quiet conditions in the magnetosphere in winter before midnight. The comparison with the numerical model of the ionospheric electric field based on the solar wind parameters reveals that the maximum contribution of the magnetospheric-ionospheric generator to atmospheric electric field is about 100-150 v/m which assumes values of about 30% of the surface field. 8 refs.; 2 figs

  8. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  9. Experimental study of the impact of large-scale wind farms on land–atmosphere exchanges

    International Nuclear Information System (INIS)

    Zhang Wei; Markfort, Corey D; Porté-Agel, Fernando

    2013-01-01

    Large-scale wind farms, covering a significant portion of the land and ocean surface, may affect the transport of momentum, heat, mass and moisture between the atmosphere and the land locally and globally. To understand the wind-farm–atmosphere interaction, we conducted wind-tunnel experiments to study the surface scalar (heat) flux using model wind farms, consisting of more than ten rows of wind turbines—having typical streamwise and spanwise spacings of five and four rotor diameters—in a neutral boundary layer with a heated surface. The spatial distribution of the surface heat flux was mapped with an array of surface heat flux sensors within the quasi-developed regime of the wind-farm flow. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for a staggered wind farm and nearly zero change for an aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on the wind-farm layout, was significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practice and optimizing farm land use strategy regarding wind energy project development. The well-controlled wind-tunnel experiments presented in this study also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations of surface scalar fluxes in numerical models. (letter)

  10. Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm

    DEFF Research Database (Denmark)

    Gaumond, M.; Réthoré, Pierre-Elouan; Ott, Søren

    2014-01-01

    of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape...... of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power...... production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both...

  11. Wind gust measurements using pulsed Doppler wind-lidar: comparison of direct and indirect techniques

    DEFF Research Database (Denmark)

    The measurements of wind gusts, defined as short duration wind speed maxima, have traditionally been limited by the height that can be reached by weather masts. Doppler lidars can potentially provide information from levels above this and thereby fill this gap in our knowledge. To measure the 3D...... is 3.9 s) which can provide high resolution turbulent measurements, both in the vertical direction, and potentially in the horizontal direction. In this study we explore different strategies of wind lidar measurements to measure the wind speed maxima. We use a novel stochastic turbulence reconstruction...... model, driven by the Doppler lidar measurements, which uses a non-linear particle filter to estimate the small-scale turbulent fluctuations. The first results show that the reconstruction method can reproduce the wind speed maxima measured by the sonic anemometer if a low-pass filter with a cut...

  12. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    -based observations become available. At present preliminary results are obtained using the routine methods. The first step in the process is to retrieve raw SAR data, calibrate the images and use a priori wind direction as input to the geophysical model function. From this process the wind speed maps are produced....... The wind maps are geo-referenced. The second process is the analysis of a series of geo-referenced SAR-based wind maps. Previous research has shown that a relatively large number of images are needed for achieving certain accuracies on mean wind speed, Weibull A and k (scale and shape parameters......Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy...

  13. Atmospheric pressure, density, temperature and wind variations between 50 and 200 km

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1972-01-01

    Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.

  14. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  15. Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting

    DEFF Research Database (Denmark)

    Gallego, Cristobal; Pinson, Pierre; Madsen, Henrik

    2011-01-01

    Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these e......Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some...... on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power...... transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different...

  16. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  17. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  18. Dependence of offshore wind turbine fatigue loads on atmospheric stratification

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Ott, Søren

    2014-01-01

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representi...... conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow....

  19. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  20. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H; Barthelmie, R J; Crippa, P; Doubrawa, P; Pryor, S C

    2014-01-01

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve

  1. Ten years statistics of wind direction and wind velocity measurements performed at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Becker, M.; Dilger, H.

    1979-06-01

    The measurements of wind direction and wind velocity performed at 60 m and 200 m height were evaluated for one year each and frequency distributions of the measured values were established. The velocity was divided into 1 m/s steps and the direction into 10 0 sectors. The frequency distribution of the wind direction reveals three maxima located in the southwest, northeast and north, respectively. The maximum of the frequency distribution of the wind velocity occurs between 4 and 5 m/s at 200 m height and between 3 and 4 m/s at 60 m height. (orig.) [de

  2. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    Science.gov (United States)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the

  3. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  4. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Science.gov (United States)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-11-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N

  5. Intercomparison of middle-atmospheric wind in observations and models

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2018-04-01

    Full Text Available Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3° N, 16.0° E. Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1 exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.

  6. Dependence of offshore wind turbine fatigue loads on atmospheric stratification

    International Nuclear Information System (INIS)

    Hansen, K S; Larsen, G C; Ott, S

    2014-01-01

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow

  7. Direct measurements of wind-water momentum coupling in a marsh with emergent vegetation and implications for gas transfer estimates

    Science.gov (United States)

    Tse, I.; Poindexter, C.; Variano, E. A.

    2013-12-01

    Among the numerous ecological benefits of restoring wetlands is carbon sequestration. As emergent vegetation thrive, atmospheric CO2 is removed and converted into biomass that gradually become additional soil. Forecasts and management for these systems rely on accurate knowledge of gas exchange between the atmosphere and the wetland surface waters. Our previous work showed that the rate of gas transfer across the air-water interface is affected by the amount of water column mixing caused by winds penetrating through the plant canopy. Here, we present the first direct measurements of wind-water momentum coupling made within a tule marsh. This work in Twitchell Island in the California Delta shows how momentum is imparted into the water from wind stress and that this wind stress interacts with the surface waters in an interesting way. By correlating three-component velocity signals from a sonic anemometer placed within the plant canopy with data from a novel Volumetric Particle Imager (VoPI) placed in the water, we measure the flux of kinetic energy through the plant canopy and the time-scale of the response. We also use this unique dataset to estimate the air-water drag coefficient using an adjoint method.

  8. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-01

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  9. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  10. Influence of Wind Strength and Duration on Relative Hypoxia Reductions by Opposite Wind Directions in an Estuary with an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2016-09-01

    Full Text Available Computer model experiments are applied to analyze hypoxia reductions for opposing wind directions under various speeds and durations in the north–south oriented, two-layer-circulated Chesapeake estuary. Wind’s role in destratification is the main mechanism in short-term reduction of hypoxia. Hypoxia can also be reduced by wind-enhanced estuarine circulation associated with winds that have down-estuary straining components that promote bottom-returned oxygen-rich seawater intrusion. The up-bay-ward along-channel component of straining by the southerly or easterly wind induces greater destratification than the down-bay-ward straining by the opposite wind direction, i.e., northerly or westerly winds. While under the modulation of the west-skewed asymmetric cross-channel bathymetry in the Bay’s hypoxic zone, the westward cross-channel straining by easterly or northerly winds causes greater destratification than its opposite wind direction. The wind-induced cross-channel circulation can be completed much more rapidly than the wind-induced along-channel circulation, and the former is usually more effective than the latter in destratification and hypoxia reduction in an early wind period. The relative importance of cross-channel versus along-channel circulation for a particular wind direction can change with wind speed and duration. The existence of month-long prevailing unidirectional winds in the Chesapeake is explored, and the relative hypoxia reductions among different prevailing directions are analyzed. Scenarios of wind with intermittent calm or reversing directions on an hourly scale are also simulated and compared.

  11. Low cost digital wind speed meter with wind direction using PIC16F877A

    Energy Technology Data Exchange (ETDEWEB)

    Sujod, M.Z.; Ismail, M.M. [Malaysia Pahang Univ., Pahang (Malaysia). Faculty of Electrical and Electronics Engineering

    2008-07-01

    Weather measurement tools are necessary to determine the actual weather and forecasting. Wind is one of the weather elements that can be measured using an anemometer which is a device for measuring the velocity or the pressure of the wind. It is one of the instruments used in weather stations. This paper described a circuit design for speed and direction of the meter and created a suitable programming to measure and display the wind speed meter and direction. A microcontroller (PIC16F877A) was employed as the central processing unit for digital wind speed and direction meter. The paper presented and discussed the hardware and software implementation as well as the calibration and results. The paper also discussed cost estimation and future recommendations. It was concluded that the hardware and software implementation were carefully selected after considering the development cost where the cost was much lower than the market prices. 4 refs., 8 figs.

  12. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  13. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  14. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  15. Design winds during ice storm as a function of direction for transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The effects of wind directionality are important considerations in the design of electric transmission lines. A procedure for the estimation of the probability distribution function of maximum wind speed as a function of direction was proposed. The procedure was applied to the sample of annual maximum wind speeds using the Gumbal distribution method and then used to estimate the maximum wind speed as a function of direction for the sample of maximum annual wind speeds, and maximum annual wind speeds during ice storms at 22 locations throughout Quebec. Wind direction obtained from the meteorological stations was recorded in 10 degrees sectors. The data set was used to obtain maximum wind speed for each year in each of 36 sectors. The joint probability distribution function was obtained by assuming that extreme distribution for non-directional winds was common to all directions during a season or period, as well as by assuming independence between wind speed and wind direction during a storm pattern. Structural effects were obtained by integrating the joint probability distribution with design equations. Results were then presented in the form of a ratio relative to the reference wind speed for each location. The procedure was demonstrated using a meteorological data set as well as glaze ice data from Quebec City, and covered a period of 30 years. Results indicated that a reduction factor of 25 per cent can be achieved on ice accumulations when overhead lines are directed parallel to dominant winds. It was concluded that the method will represent significant savings in the design and up-grading of existing lines. Further research will be conducted to address issues related to regional criteria and local adjustments for topographical features. 7 refs., 4 figs.

  16. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.

    Science.gov (United States)

    Xia, Haiyun; Shangguan, Mingjia; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2016-11-15

    For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.

  17. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1996-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  18. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  19. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    Science.gov (United States)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  20. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...... described by the standard winds derived from the REMO pressure data. The mean wind parameters include the directional wind distribution, directional and omni-directional mean values and Weibull fitting parameters, spectral analysis and interannual variability of the standard winds. It was also found that......, on average, the wind characteristics from REMO are in better agreement with observations than those derived from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis pressure data. The spatial correlation of REMO surface winds in Europe...

  1. Atmospheric energy harvesting: use of Doppler Wind Lidars on UAVs to extend mission endurance and enable quiet operations

    Science.gov (United States)

    Greco, S.; Emmitt, G. D.; Wood, S. A.; Costello, M.

    2014-10-01

    The investigators are developing a system tool that utilizes both pre-flight information and continuous real-time knowledge and description of the state of the atmosphere and atmospheric energetics by an Airborne Doppler Wind Lidar (ADWL) to provide the autonomous guidance for detailed and adaptive flight path planning by UAS and small manned aircraft. This flight planning and control has the potential to reduce mission dependence upon preflight assumptions, extend flight duration and endurance, enable long periods of quiet operations and allow for the optimum self-routing of the aircraft. The ADWL wind data is used in real-time to detect atmospheric energy features such as thermals, waves, wind shear and others. These detected features are then used with an onboard, weather model driven flight control model to adaptively plan a flight path that optimizes energy harvesting with frequent updates on local changes in the opportunities and atmospheric flow characteristics. We have named this package AEORA for the Atmospheric Energy Opportunity Ranking Algorithm (AEORA).

  2. Atmospheric stability and atmospheric circulation in Athens, Greece

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Petrakis, M.; Kassomenos, P.; Lykoudis, S.

    1996-01-01

    In the evaluation and study of atmospheric pollution reference is always made to the stability criteria. These criteria, usually represented as functions of different meteorological data such as wind speed and direction, temperature, solar radiation, etc., play a very important role in the investigation of different parameters that affect the build up of pollution episodes mainly in urban areas. In this paper an attempt is made to evaluate the atmospheric stability criteria based on measurements obtained from two locations in and nearby Athens. The atmospheric stability is then examined along with the other meteorological parameters

  3. Assessing the Habitability of TRAPPIST-1e: MHD Simulations of Atmospheric Loss Due to CMEs and Stellar Wind

    Science.gov (United States)

    Harbach, Laura Marshall; Drake, Jeremy J.; Garraffo, Cecilia; Alvarado-Gomez, Julian D.; Moschou, Sofia P.; Cohen, Ofer

    2018-01-01

    Recently, three rocky planets were discovered in the habitable zone of the nearby planetary system TRAPPIST-1. The increasing number of exoplanet detections has led to further research into the planetary requirements for sustaining life. Habitable zone occupants have, in principle, the capacity to retain liquid water, whereas actual habitability might depend on atmospheric retention. However, stellar winds and photon radiation interactions with the planet can lead to severe atmospheric depletion and have a catastrophic impact on a planet’s habitability. While the implications of photoevaporation on atmospheric erosion have been researched to some degree, the influence of stellar winds and Coronal Mass Ejections (CMEs) has yet to be analyzed in detail. Here, we model the effect of the stellar wind and CMEs on the atmospheric envelope of a planet situated in the orbit of TRAPPIST-1e using 3D magnetohydrodynamic (MHD) simulations. In particular, we discuss the atmospheric loss due to the effect of a CME, and the relevance of the stellar and planetary magnetic fields on the sustainability of M-dwarf exoplanetary atmospheres.

  4. BOREAS AFM-06 Mean Wind Profile Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Fault diagnosis of direct-drive wind turbine based on support vector machine

    International Nuclear Information System (INIS)

    An, X L; Jiang, D X; Li, S H; Chen, J

    2011-01-01

    A fault diagnosis method of direct-drive wind turbine based on support vector machine (SVM) and feature selection is presented. The time-domain feature parameters of main shaft vibration signal in the horizontal and vertical directions are considered in the method. Firstly, in laboratory scale five experiments of direct-drive wind turbine with normal condition, wind wheel mass imbalance fault, wind wheel aerodynamic imbalance fault, yaw fault and blade airfoil change fault are carried out. The features of five experiments are analyzed. Secondly, the sensitive time-domain feature parameters in the horizontal and vertical directions of vibration signal in the five conditions are selected and used as feature samples. By training, the mapping relation between feature parameters and fault types are established in SVM model. Finally, the performance of the proposed method is verified through experimental data. The results show that the proposed method is effective in identifying the fault of wind turbine. It has good classification ability and robustness to diagnose the fault of direct-drive wind turbine.

  6. Structural Flexibility of Large Direct Drive Generators for Wind Turbines

    NARCIS (Netherlands)

    Shrestha, G.

    2013-01-01

    The trend in wind energy is towards large offshore wind farms. This trend has led to the demand for high reliability and large single unit wind turbines. Different energy conversion topologies such as multiple stage geared generators, single stage geared generators and gearless (direct drive)

  7. Climatology of Wind Direction Fluctuations at Risø

    DEFF Research Database (Denmark)

    Kristensen, Leif; Panofsky, H. A.

    1976-01-01

    Standard deviations of wind direction fluctuations at 76 m at Risø for the first half year of 1975 have been analyzed as functions of wind speed and temperature lapse rate, either measured near the surface or near the level of the azimuth variations. Between 31 and 37% of the variance of the stan...

  8. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2015-06-01

    Full Text Available Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR are sometimes visible and atmospheric and wake models are here shown to convincingly reproduce the observed very long wind farm wakes. The present study mainly focuses on wind farm wake climatology based on Envisat ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev has been used for geo-located wind farm wake studies. However, the results are difficult to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases, but not always, the second. In the new method all wind field maps are rotated such that the wind is always coming from the same relative direction. By applying the new method to the SAR wind maps, mesoscale and microscale model wake aggregated wind-fields results are compared. The SAR-based findings strongly support the model results at Horns Rev 1.

  9. Analysis of Venusian Atmospheric Two-Dimensional Winds and Features Using Venus Express, Akatsuki, and Ground-Based Images

    Science.gov (United States)

    McCabe, Ryan M.; Gunnarson, Jacob; Sayanagi, Kunio M.; Blalock, John J.; Peralta, Javier; Gray, Candace L.; McGouldrick, Kevin; Imamura, Takeshi; Watanabe, Shigeto

    2017-10-01

    We investigate the horizontal dynamics of Venus’s atmosphere at cloud-top level. In particular, we focus on the atmospheric superrotation, in which the equatorial atmosphere rotates with a period of approximately 4-5 days (~60 times faster than the solid planet). The superrotation’s forcing and maintenance mechanisms remain to be explained. Temporal evolution of the zonal (latitudinal direction) wind could reveal the transport of energy and momentum in/out of the equatorial region, and eventually shed light on mechanisms that maintain the Venusian superrotation. As a first step, we characterize the zonal mean wind field of Venus between 2006 and 2013 in ultraviolet images captured by the Venus Monitoring Camera (VMC) on board the ESA Venus Express (VEX) spacecraft which observed Venus’s southern hemisphere. Our measurements show that, between 2006 and 2013, the westward wind speed at mid- to equatorial latitudes exhibit an increase of ~20 m/s; these results are consistent with previous studies by Kouyama et al. 2013 and Khatuntsev et al. 2013. The meridional component of the wind could additionally help us characterize large-scale cloud features and their evolution that may be connected to such superrotation. We also conduct ground-based observations contemporaneously with JAXA’s Akatsuki orbiter at the 3.5 m Astrophysical Research Consortium (ARC) telescope at the Apache Point Observatory (APO) in Sunspot, NM to extend our temporal coverage to present. Images we have captured at APO to date demonstrate that, even under unfavorable illumination, it is possible to see large features that could be used for large-scale feature tracking to be compared to images taken by Akatsuki. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, NSF AAG 1212216, and JAXA’s ITYF Fellowship.Kouyama, T. et al (2013), J. Geophys. Res. Planets, 118, 37-46, doi:10.1029/2011JE004013.Khatuntsev et al. (2013), Icarus, 226, 140-158, doi

  10. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.

    Science.gov (United States)

    Chung, King; McKibben, Nicholas

    2011-10-01

    Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer either directional microphones or omnidirectional microphones for users at-large. As all cochlear implants utilize pre-emphasis filters to reduce low-frequency energy before the signal is encoded, effective wind noise reduction algorithms for hearing aids might not be applicable for cochlear implants. The purposes of this study were to investigate the effect of microphone directionality on speech recognition and perceived sound quality of cochlear implant users in wind noise and to derive effective wind noise reduction strategies for cochlear implants. A repeated-measure design was used to examine the effects of spectral and temporal masking created by wind noise recorded through directional and omnidirectional microphones and the effects of pre-emphasis filters on cochlear implant performance. A digital hearing aid was programmed to have linear amplification and relatively flat in-situ frequency responses for the directional and omnidirectional modes. The hearing aid output was then recorded from 0 to 360° at flow velocities of 4.5 and 13.5 m/sec in a quiet wind tunnel. Sixteen postlingually deafened adult cochlear implant listeners who reported to be able to communicate on the phone with friends and family without text messages participated in the study. Cochlear implant users listened to speech in wind noise recorded at locations that the directional and omnidirectional microphones yielded the lowest noise levels. Cochlear implant listeners repeated the sentences and rated the sound quality of the testing materials. Spectral and temporal characteristics of flow noise, as well as speech and/or noise characteristics before

  11. Fitting a circular distribution based on nonnegative trigonometric sums for wind direction in Malaysia

    Science.gov (United States)

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman

    2015-02-01

    Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.

  12. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development

    Science.gov (United States)

    Frost, W.; Long, B. H.; Turner, R. E.

    1978-01-01

    The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.

  13. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results...... are compared with data from the European Wind Atlas which have been analyzed using the Wind Atlas Analysis and Application Program, WA(S)P. The prediction of the areas of higher wind power is fair. Stations with low power are overpredicted....

  14. Development of Wind Farm AEP Prediction Program Considering Directional Wake Effect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyoungboo; Cho, Kyungho; Huh, Jongchul [Jeju Nat’l Univ., Jeju (Korea, Republic of)

    2017-07-15

    For accurate AEP prediction in a wind farm, it is necessary to effectively calculate the wind speed reduction and the power loss due to the wake effect in each wind direction. In this study, a computer program for AEP prediction considering directional wake effect was developed. The results of the developed program were compared with the actual AEP of the wind farm and the calculation result of existing commercial software to confirm the accuracy of prediction. The applied equations are identical with those of commercial software based on existing theories, but there is a difference in the calculation process of the detection of the wake effect area in each wind direction. As a result, the developed program predicted to be less than 1% of difference to the actual capacity factor and showed more than 2% of better results compared with the existing commercial software.

  15. MAVEN Observations of Atmospheric Loss at Mars

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other

  16. Field test of a lidar wind profiler

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Wind speeds and wind directions are measured remotely using an incoherent backscatter lidar system operating at a wavelength of 1.06 mm with a maximum repetition rate of 13 Hz. The principle of the measurements is based on following detectable atmospheric structures, which are transported by the

  17. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    Science.gov (United States)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  18. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  19. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Peña, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2013-01-01

    Here, we evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide ran...

  20. Calculation and design of steel bearing structure for wind turbine

    Directory of Open Access Journals (Sweden)

    Bešević Miroslav

    2014-01-01

    Full Text Available Wind represents directed movement of the air and is caused by differences in atmospheric pressure which are caused by uneven heating of air masses. Global and local winds can be distinguished. Global winds have high altitude, while local winds occur in the ground layer of the atmosphere. Given that the global wings have high altitude they cannot be used as propellant for wind generators, but they should be known for their effects on the winds in the lower atmosphere. Modern wind turbines are made with a horizontal axle that has a system for the swiveling axis in the horizontal plane for tracking wind direction changes. They can have different number of blades, but for larger forces three blades are commonly used because they provide the greatest efficiency. Rotor diameter of these turbines depends on the strength and it ranges from 30 m for the power of 300 kW to 115 m for the power of 5 MW. Wind turbines are mounted on vertical steel tower which can be high even more than 100 m. Depending on the diameter of the turbine rotor, column is usually built as steel conical and less often as a steel-frame. This study includes analysis and design of steel tower for wind generator made by manufacturer Vestas, type V112 3MW HH 119 (power 3.2 MW for the construction of wind farm 'Kovačica'.

  1. Calculating the wind energy input to a system using a spatially explicit method that considers atmospheric stability

    Science.gov (United States)

    Atmospheric stability has a major effect in determining the wind energy doing work in the atmospheric boundary layer (ABL); however, it is seldom considered in determining this value in emergy analyses. One reason that atmospheric stability is not usually considered is that a sui...

  2. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    Science.gov (United States)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  3. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter...... of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind...... are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM...

  4. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  5. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  6. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  7. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  8. Atmospheric response in aurora experiment: Observations of E and F region neutral winds in a region of postmidnight diffuse aurora

    International Nuclear Information System (INIS)

    Larsen, M.F.; Marshall, T.R.; Mikkelsen, I.S.

    1995-01-01

    The goal of the Atmospheric Response in Aurora (ARIA) experiment carried out at Poker Flat, Alaska, on March 3, 1992, was to determine the response of the neutral atmosphere to the long-lived, large-scale forcing that is characteristic of the diffuse aurora in the postmidnight sector. A combination of chemical release rocket wind measurements, intrumented rocket composition measurements, and ground-based optical measurements were used to characterize the response of the neutral atmosphere. The rocket measurements were made at the end of a 90-min period of strong Joule heating. We focus on the neutral wind measurements made with the rocket. The forcing was determined by running the assimilated mapping of ionospheric electrodynamics (AMIE) analysis procedure developed at the National Center for Atmospheric Research. The winds expected at the latitude and longitude of the experiment were calculated using the spectral thermospheric general circulation model developed at the Danish Meteorological Institute. Comparisons of the observations and the model suggest that the neutral winds responded strongly in two height ranges. An eastward wind perturbation of ∼100 m s -1 developed between 140 and 200 km altitude with a peak near 160 km. A southwestward wind with peak magnitude of ∼150 m s -1 developed near 115 km altitude. The large amplitude winds at the lower altitude are particularly surprising. They appear to be associated with the upward propagating semidiurnal tide. However, the amplitude is much larger than predicted by any of the tidal models, and the shear found just below the peak in the winds was nomially unstable with a Richardson number of ∼0.08. 17 refs., 12 figs

  9. Wind Farm Wake: The 2016 Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2017-03-01

    Full Text Available Offshore wind farm wakes were observed and photographed in foggy conditions at Horns Rev 2 on 25 January 2016 at 12:45 UTC. These new images show highly contrasting conditions regarding the wind speed, turbulence intensity, atmospheric stability, weather conditions and wind farm wake development as compared to the Horns Rev 1 photographs from 12 February 2008. The paper examines the atmospheric conditions from satellite images, radiosondes, lidar and wind turbine data and compares the observations to results from atmospheric meso-scale modelling and large eddy simulation. Key findings are that a humid and warm air mass was advected from the southwest over cold sea and the dew-point temperature was such that cold-water advection fog formed in a shallow layer. The flow was stably stratified and the freestream wind speed was 13 m/s at hub height, which means that most turbines produced at or near rated power. The wind direction was southwesterly and long, narrow wakes persisted several rotor diameters downwind of the wind turbines. Eventually mixing of warm air from aloft dispersed the fog in the far wake region of the wind farm.

  10. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available Directional statistics provide design engineers with the opportunity to realise considerable cost savings, but these are not yet provided for in the South African standard for wind loading. The development of the directional statistics of extreme...

  11. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  12. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  13. Study of atmospheric stagnation, recirculation, and ventilation potential at Narora Atomic Power Station site

    International Nuclear Information System (INIS)

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Rao, K.S.; Kumar, Jaivender; Ravi, P.M.

    2011-01-01

    Atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. Estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This article describes the meteorological characteristics of Narora Atomic Power Station (NAPS) site by using the integral parameters developed by Allwine and Whiteman. Meteorological data measured during the period 2006-2010 were analyzed. The integral quantities related to the occurrence of stagnation, recirculation, and ventilation characteristics were studied for NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation, and ventilation characteristics during 2006-2010 at NAPS site is observed to be 33.8% of the time, 19.5% of the time, and 34.7% of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1% and 44.3%) and recirculation (32.6% of the summer season). The presence of light winds and more dispersed winds during prewinter season with predominant wind directions W and WNW results in more stagnation (59.7% of the prewinter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent releases from any nuclear industry. (author)

  14. Laddermill-sailing. Ship propulsion by wind energy independent from the wind direction

    Energy Technology Data Exchange (ETDEWEB)

    Ockels, W. J.

    2007-12-15

    The use of large kites in ship propulsion has been getting a growing attention because of the urgent need to reduce the CO2 production and thus stop the use of fossil fuels. A novel application of ship propulsion by kites is proposed based on a Laddermill apparatus mounted on a ship. Such an apparatus consist of a winch, an electric motor/generator, a kite system (including launch and retrieval) and controlling electronics. Rather than the traditional sailing by wind force the Laddermill propulsion is achieved by a combination of the production and use of electrical power and the direct pulling force from the kite system. The feasibility of this application is investigated. It is shown that when the overall Laddermill to ship thrust efficiency can be made around 50% the resulting speed of the ship becomes practically independent from the wind direction. Such a capability could thus well change the world's seafaring.

  15. Numerical Analysis of the Effect of Active Wind Speed and Direction on Circulation of Sea of Azov Water with and without Allowance for the Water Exchange through the Kerch Strait

    Science.gov (United States)

    Cherkesov, L. V.; Shul'ga, T. Ya.

    2018-01-01

    The effect of seawater movement through the Kerch Strait for extreme deviations in the level and speed of currents in the Sea of Azov caused by the action of climate wind fields has been studied using the Princeton ocean model (POM), a general three-dimensional nonlinear model of ocean circulation. Formation of the water flow through the strait is caused by the long-term action of the same type of atmospheric processes. The features of the water dynamics under conditions of changing intensity and active wind direction have been studied. Numerical experiments were carried out for two versions of model Sea of Azov basins: closed (without the Kerch Strait) and with a fluid boundary located in the Black Sea. The simulation results have shown that allowance for the strait leads to a significant change in the velocities of steady currents and level deviations at wind speeds greater than 5 m/s. The most significant effect on the parameters of steady-state movements is exerted by the speed of the wind that generates them; allowance for water exchange through the strait is less important. Analysis of the directions of atmospheric circulation has revealed that the response generated by the movement of water through the strait is most pronounced when a southeast wind is acting.

  16. Solar Wind Interaction and Impact on the Venus Atmosphere

    Science.gov (United States)

    Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.

    2017-11-01

    Venus has intrigued planetary scientists for decades because of its huge contrasts to Earth, in spite of its nickname of "Earth's Twin". Its invisible upper atmosphere and space environment are also part of the larger story of Venus and its evolution. In 60s to 70s, several missions (Venera and Mariner series) explored Venus-solar wind interaction regions. They identified the basic structure of the near-Venus space environment, for example, existence of the bow shock, magnetotail, ionosphere, as well as the lack of the intrinsic magnetic field. A huge leap in knowledge about the solar wind interaction with Venus was made possible by the 14-year long mission, Pioneer Venus Orbiter (PVO), launched in 1978. More recently, ESA's probe, Venus Express (VEX), was inserted into orbit in 2006, operated for 8 years. Owing to its different orbit from that of PVO, VEX made unique measurements in the polar and terminator regions, and probed the near-Venus tail for the first time. The near-tail hosts dynamic processes that lead to plasma energization. These processes in turn lead to the loss of ionospheric ions to space, slowly eroding the Venusian atmosphere. VEX carried an ion spectrometer with a moderate mass-separation capability and the observed ratio of the escaping hydrogen and oxygen ions in the wake indicates the stoichiometric loss of water from Venus. The structure and dynamics of the induced magnetosphere depends on the prevailing solar wind conditions. VEX studied the response of the magnetospheric system on different time scales. A plethora of waves was identified by the magnetometer on VEX; some of them were not previously observed by PVO. Proton cyclotron waves were seen far upstream of the bow shock, mirror mode waves were observed in magnetosheath and whistler mode waves, possibly generated by lightning discharges were frequently seen. VEX also encouraged renewed numerical modeling efforts, including fluid-type of models and particle-fluid hybrid type of models

  17. Representativeness of wind measurements in moderately complex terrain

    Science.gov (United States)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  18. Induction Generators for Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2011-01-01

    This paper considers the use of a squirrel cage induction generator for a direct-drive wind turbine. Advantages of this topology include a simple/rugged construction, and no need for permanent magnets. A major focus of this paper is the choice of an appropriate pole number. An iterative, analytical...

  19. GENERATION OF GROUND ATMOSPHERE α-, β- AND γ-FIELDS BY NATURAL ATMOSPHERIC RADIONUCLIDES

    Directory of Open Access Journals (Sweden)

    V.S. Yakovleva

    2014-06-01

    Full Text Available The results of numerical investigation of influence of atmospheric turbulence, wind speed and direction as well as radon and thoron flux density from the soil on characteristics of atmospheric α-, β- and γ-radiation fields, which created by atmospheric radon, thoron and their short-lived decay products, are represented and analyzed in the work. It was showed that variation of radon and thoron flux densities from the earth surface changes yields and flux densities of α-, β- and γ-radiation in the ground atmosphere proportionally but does not change a form of their vertical profile.

  20. Numerical forecast test on local wind fields at Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chen Xiaoqiu

    2005-01-01

    Non-hydrostatic, full compressible atmospheric dynamics model is applied to perform numerical forecast test on local wind fields at Qinshan nuclear power plant, and prognostic data are compared with observed data for wind fields. The results show that the prognostic of wind speeds is better than that of wind directions as compared with observed results. As the whole, the results of prognostic wind field are consistent with meteorological observation data, 54% of wind speeds are within a factor of 1.5, about 61% of the deviation of wind direction within the 1.5 azimuth (≤33.75 degrees) in the first six hours. (authors)

  1. The impact of scatterometer wind data on global weather forecasting

    Science.gov (United States)

    Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.

    1984-01-01

    The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.

  2. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 December 1980 - 01 December 1980 (NODC Accession 8100457)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from December 1, 1980 to December 1, 1980. Data...

  3. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 January 1981 - 01 January 1981 (NODC Accession 8100474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from January 1, 1981 to January 1, 1981. Data...

  4. Pressure Balance at Mars and Solar Wind Interaction with the Martian Atmosphere

    Science.gov (United States)

    Krymskii, A. M.; Ness, N. F.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.

    2003-01-01

    The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.

  5. Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Masseran, N.; Razali, A.M.; Ibrahim, K.; Latif, M.T.

    2013-01-01

    Highlights: • We suggest a simple way for wind direction modeling using the mixture of von Mises distribution. • We determine the most suitable probability model for wind direction regime in Malaysia. • We provide the circular density plots to show the most prominent directions of wind blows. - Abstract: A statistical distribution for describing wind direction provides information about the wind regime at a particular location. In addition, this information complements knowledge of wind speed, which allows researchers to draw some conclusions about the energy potential of wind and aids the development of efficient wind energy generation. This study focuses on modeling the frequency distribution of wind direction, including some characteristics of wind regime that cannot be represented by a unimodal distribution. To identify the most suitable model, a finite mixture of von Mises distributions were fitted to the average hourly wind direction data for nine wind stations located in Peninsular Malaysia. The data used were from the years 2000 to 2009. The suitability of each mixture distribution was judged based on the R 2 coefficient and the histogram plot with a density line. The results showed that the finite mixture of the von Mises distribution with H number of components was the best distribution to describe the wind direction distributions in Malaysia. In addition, the circular density plots of the suitable model clearly showed the most prominent directions of wind blows than the other directions

  6. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  7. The annual averaged atmospheric dispersion factor and deposition factor according to methods of atmospheric stability classification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

  8. Wind-direction analysis in coastal mountainous sites: An experimental study within the Gulf of Corinth, Greece

    International Nuclear Information System (INIS)

    Xydis, G.

    2012-01-01

    Highlights: ► Focus was given to the forced airflow around mountains and the effect on wind profile. ► WAsP model correlated measured and predicted wind directions in 4 coastal areas. ► The difference between simulated and measured values was always less than 8.35%. ► The clear forefront, distance from the mast and the shore influences the wind rose. - Abstract: The wind potential around several coastal areas within the Gulf of Corinth has been studied and an experimental analysis implemented accentuates the level of significance that local winds have in wind farm development and planning. The purpose of this study was to examine wind direction of coastal areas based on field measurements and correlate the results with ruggedness and distance. Four coastal mountainous areas, situated within the Gulf of Corinth, were examined and simulated results were compared to measurements aiming in explaining substantially the wind direction profile. Understanding wind flow interdependent not only from local wind, but also in the wider area of large mountains masses is of great importance for estimating wind resource in rough coastal terrain. In the present paper wind resource analysis results impose new views on the relation among masts’ horizontal distance, difference of ruggedness index, and wind direction in coastal sites.

  9. The effect of moving waves on neutral marine atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2014-01-01

    Full Text Available Large eddy simulations are performed to study the effects of wind-wave direction misalignment of the neutral marine atmospheric boundary layer over a wavy wall. The results show that the wind-wave misalignment has a significant effect on the velocity profiles and the pressure fluctuation over the wave surface. These effects are not confined to the near wave surface region but extend over the whole atmospheric surface layer.

  10. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses

    Directory of Open Access Journals (Sweden)

    Y. Kawatani

    2016-06-01

    Full Text Available This paper reports on a project to compare the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD of the monthly-mean zonal wind and this depends on latitude, longitude, height, and the phase of the quasi-biennial oscillation (QBO. At each height the SD displays a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. At 50–70 hPa the geographical distributions of SD are closely related to the density of radiosonde observations. The largest SD values are over the central Pacific, where few in situ observations are available. At 10–20 hPa the spread among the reanalyses and differences with in situ observations both depend significantly on the QBO phase. Notably the easterly-to-westerly phase transitions in all the reanalyses except MERRA are delayed relative to those directly observed in Singapore. In addition, the timing of the easterly-to-westerly phase transitions displays considerable variability among the different reanalyses and this spread is much larger than for the timing of the westerly-to-easterly phase changes. The eddy component in the monthly-mean zonal wind near the Equator is dominated by zonal wavenumber 1 and 2 quasi-stationary planetary waves propagating from midlatitudes in the westerly phase of the QBO. There generally is considerable disagreement among the reanalyses in the details of the quasi-stationary waves near the Equator. At each level, there is a tendency for the agreement to be best near the longitude of Singapore, suggesting that the Singapore observations act as a strong constraint on all the reanalyses. Our measures of the quality of the reanalysis clearly show systematic improvement over the period considered (1979–2012. The SD among the reanalysis

  11. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  12. Elemental composition and ionization state of the solar atmosphere and solar wind

    International Nuclear Information System (INIS)

    Joselyn, J.A.C.

    1978-01-01

    Abundance measurements have always proved useful in generating and refining astrophysical theories. Some of the classical problems of astrophysics involve determining the relative abundances of elements in the atmosphere of a star from observations of its line spectrum, and then synthesizing the physical processes which would produce such abundances. Theories of the formation of the solar system are critically tested by their ability to explain observed abundances, and, elemental abundances can serve as tracers, helping to determine the origin and transport of ions. Since the solar wind originates at the sun, it can act as a diagnostic probe of solar conditions. In particular, measurements of the composition of the solar wind should be related to the solar composition. And, assuming ionization equilibrium, measurements of the relative abundances of the ionization states in the solar wind should infer coronal temperatures and temperature gradients. However, most spherically symmetric models of the solar wind are unable to explain the relationship between the composition estimated from solar observations and as measured at 1 AU; and, recent observations of significant flow speeds in the transition region raise doubts about the validity of the assumption of ionization equilibrium

  13. Statistical prediction of far-field wind-turbine noise, with probabilistic characterization of atmospheric stability

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Barlas, Emre; Sogachev, Andrey

    2018-01-01

    Here we provide statistical low-order characterization of noise propagation from a single wind turbine, as affected by mutually interacting turbine wake and environmental conditions. This is accomplished via a probabilistic model, applied to an ensemble of atmospheric conditions based upon......; the latter solves Reynolds-Averaged Navier-Stokes equations of momentum and temperature, including the effects of stability and the ABL depth, along with the drag due to the wind turbine. Sound levels are found to be highest downwind for modestly stable conditions not atypical of mid-latitude climates...

  14. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    Science.gov (United States)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  15. Contributions from the Department of Wind Energy and Atmospheric Physics to EWEC `99 in Nice, France

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C; Westermann, Kirsten; Noergaard, Per [eds.

    1999-03-01

    The first conference following the merger of the series of European Union Wind Energy Conference and the European Wind Energy Conferences - EWEC`99 - was held in Nice, France during the period 1-5 March 1999. About 600 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included 96 oral presentations and 305 posters. The Department of Wind Energy and Atmospheric Physics contributed with 29 oral presentations and 36 posters with members of the department as authors or co-authors. The present report contains the set of these papers available at the deadline 19 March 1999. The contributions cover a wide spectrum of subjects including wind resources, aerodynamics, reliability and load assessment, grid connection, measurement methods, innovative wind turbines and market aspects. (au)

  16. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  17. Magnetosheath Propagation Time of Solar Wind Directional Discontinuities

    Science.gov (United States)

    Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.

    2018-05-01

    Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.

  18. Measuring and modelling of the wind on the scale of tall wind turbines

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph

    The air flow in the lower atmosphere on the spatial scale of the modern wind turbines is studied. Because wind turbines are nowadays often taller than 100 m, the validity of current analytical and numerical atmospheric models has to be evaluated and more knowledge about the structure of the atmos......The air flow in the lower atmosphere on the spatial scale of the modern wind turbines is studied. Because wind turbines are nowadays often taller than 100 m, the validity of current analytical and numerical atmospheric models has to be evaluated and more knowledge about the structure...

  19. Current direction, wind wave spectra, and CTD data from moored current meter and CTD casts in the North Atlantic Ocean from 1982-09-15 to 1983-09-15 (NODC Accession 8500148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and CTD data were collected using moored current meter and CTD casts in the Gulf of Mexico from September 3, 1982 to September...

  20. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  1. Solar-wind interactions with the Moon: role of oxygen ions

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1979-01-01

    The solar-wind interacts directly with the lunar surface due to tenuous atmosphere and magnetic field. The interaction results in an almost complete absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream. The solar-wind oxygen ionic species induce and undergo a complex set of reactions with the elements of the lunar minerals and the solar-wind derived trapped gases. In this paper, the long-term concentration and the role of oxygen derived from the solar-wind is discussed. (Auth.)

  2. A novel polarization interferometer for measuring upper atmospheric winds

    International Nuclear Information System (INIS)

    Ting-Kui, Mu; Chun-Min, Zhang

    2010-01-01

    A static polarization interferometer for measuring upper atmospheric winds is presented, based on two Savart plates with their optical axes perpendicular to each other. The principle and characteristics of the interferometer are described. The interferometer with a wide field of view can offer a stable benchmark optical path difference over a specified spectral region of 0.55–0.63 μm because there are no quarter wave plates. Since the instrument employs a straight line common-path configuration but without moving parts and slits, it is very compact, simple, inherently robust and has high throughput. The paper is limited to a theoretical analysis. (general)

  3. A Standardized Based Approach to Managing Atmosphere Studies For Wind Energy Research

    Science.gov (United States)

    Stephan, E.; Sivaraman, C.

    2015-12-01

    Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. Better insight into the flow physics has the potential to reduce wind farm energy losses by up to 20%, to reduce annual operational costs by hundreds of millions of dollars, and to improve project financing terms to more closely resemble traditional capital projects. The Data Archive and Portal (DAP) is a key capability of the A2e initiative. The DAP is a cloud-based distributed system known as the 'Wind Cloud' that functions as a repository for all A2e data. This data includes numerous historic and on-going field studies involving in situ and remote sensing instruments, simulations, and scientific analysis. Significantly it is the integration and sharing of these diverse data sets through the DAP that is key to meeting the goals of A2e. This cloud will be accessible via an open and easy-to navigate user interface that facilitates community data access, interaction, and collaboration. DAP management is working with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud. Security will be provided to facilitate storage of proprietary data alongside publicly accessible data in the Wind Cloud, and the capability to generate anonymized data will be provided to facilitate using private data by non-privileged users (when appropriate). Finally, limited computing capabilities will be provided to facilitate co-located data analysis, validation, and generation of derived products in support of A2e science.

  4. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  5. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  6. Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2018-03-01

    Mars Atmosphere and Volatile EvolutioN observations at Mars show clear signatures of the shocked solar wind interaction with the extended oxygen atmosphere and hot corona displayed in a lateral deflection of the magnetosheath flow in the direction opposite to the direction of the solar wind motional electric field. The value of the velocity deflection reaches ˜50 km/s. The occurrence of such deflection is caused by the "Lorentz-type" force due to a differential streaming of the solar wind protons and oxygen ions originating from the extended oxygen corona. The value of the total deceleration of the magnetosheath flow due to mass loading is estimated as ˜40 km/s.

  7. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison

    Science.gov (United States)

    Parrish, Judith T.; Peterson, F.

    1988-01-01

    Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.

  8. Direct Drive Synchronous Machine Models for Stability Assessment of Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing size of wind farms requires power system stability analysis including dynamic wind generator models. For turbines above 1MW doubly-fed induction machines are the most widely used concept. However, especially in Germany, direct-drive wind generators based on converter-driven synchronous generator concepts have reached considerable market penetration. This paper presents converter driven synchronous generator models of various order that can be used for simulating transients and dynamics in a very wide time range.

  9. Modeling wind speed and wind power distributions in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Bonfils [Department of Physics, National University of Rwanda, P.O. Box 117, Huye District, South Province (Rwanda)

    2011-02-15

    Utilization of wind energy as an alternative energy source may offer many environmental and economical advantages compared to fossil fuels based energy sources polluting the lower layer atmosphere. Wind energy as other forms of alternative energy may offer the promise of meeting energy demand in the direct, grid connected modes as well as stand alone and remote applications. Wind speed is the most significant parameter of the wind energy. Hence, an accurate determination of probability distribution of wind speed values is very important in estimating wind speed energy potential over a region. In the present study, parameters of five probability density distribution functions such as Weibull, Rayleigh, lognormal, normal and gamma were calculated in the light of long term hourly observed data at four meteorological stations in Rwanda for the period of the year with fairly useful wind energy potential (monthly hourly mean wind speed anti v{>=}2 m s{sup -1}). In order to select good fitting probability density distribution functions, graphical comparisons to the empirical distributions were made. In addition, RMSE and MBE have been computed for each distribution and magnitudes of errors were compared. Residuals of theoretical distributions were visually analyzed graphically. Finally, a selection of three good fitting distributions to the empirical distribution of wind speed measured data was performed with the aid of a {chi}{sup 2} goodness-of-fit test for each station. (author)

  10. Current direction, chemical, benthic organisms, and wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1977-10-14 to 1979-08-24 (NODC Accession 7900335)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, benthic organisms, and wind direction data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  11. Incorporating geostrophic wind information for improved space–time short-term wind speed forecasting

    KAUST Repository

    Zhu, Xinxin

    2014-09-01

    Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric pressure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal (TDD) model. This paper proposes to incorporate the geostrophic wind as a new predictor in the TDD model. The geostrophic wind captures the physical relationship between wind and pressure through the observed approximate balance between the pressure gradient force and the Coriolis acceleration due to the Earth’s rotation. Based on our numerical experiments with data from West Texas, our new method produces more accurate forecasts than does the TDD model using air pressure and temperature for 1to 6-hour-ahead forecasts based on three different evaluation criteria. Furthermore, forecasting errors can be further reduced by using moving average hourly wind speeds to fit the diurnal pattern. For example, our new method obtains between 13.9% and 22.4% overall mean absolute error reduction relative to persistence in 2-hour-ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous space-time methods in this setting.

  12. Current direction, wind wave spectra, phytoplankton, and other data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 1977-09-24 to 1981-05-31 (NODC Accession 8100612)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, phytoplankton, temperature, salinity, and other data were collected using moored current meter casts in the Gulf of Mexico from...

  13. The changing winds of atmospheric environment policy

    International Nuclear Information System (INIS)

    Murray, Frank

    2013-01-01

    Highlights: ► Changes in atmosphere policies over several decades are analysed. ► Direct regulation is less effective and been complemented by other instruments. ► Policy approaches are more complex and integrated and the scale of the issues has evolved. ► The role of stakeholders has grown and the corporate sector has assumed increased responsibility. ► Governance arrangements have become more complex, multilevel and polycentric. -- Abstract: Atmospheric environmental policies have changed considerably over the last several decades. Clearly the relative importance of the various issues has changed over half a century, for example from smoke, sulphur dioxide and photochemical smog being the top priorities to greenhouse gases being the major priority. The traditional policy instrument to control emissions to the atmosphere has been command and control regulation. In many countries this was successful in reducing emissions from point sources, the first generation issues, and to a lesser extent, emissions from mobile and area sources, the second generation issues, although challenges remain in many jurisdictions. However once the simpler, easier, cheaper and obvious targets had been at least partially controlled this form of regulation became less effective. It has been complemented by other instruments including economic instruments, self-regulation, voluntarism and information instruments to address more complex issues including climate change, a third generation issue. Policy approaches to atmospheric environmental issues have become more complex. Policies that directly focus on atmospheric issues have been partially replaced by more integrated approaches that consider multimedia (water, land, etc.) and sustainability issues. Pressures from stakeholders for inclusion, greater transparency and better communication have grown and non-government stakeholders have become increasingly important participants in governance. The scale of the issues has evolved

  14. Power quality issues of 3MW direct-driven PMSG wind turbine

    OpenAIRE

    Ahmed, IA; Zobaa, AF; Taylor, GA

    2015-01-01

    This paper presents power quality issues of a grid connected wind generation system with a MW-class direct-driven permanent magnet synchronous generator (PMSG). A variable speed wind turbine model was simulated and developed with the simulation tool of PSCAD/EMTDC. The model includes a wind turbine with one mass-model drive train model, a PMSG model and a full-scale voltage source back to back PWM converter. The converter controller model is employed in the dq-synchronous rotating reference f...

  15. The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines

    OpenAIRE

    Jun Liu; Feihang Zhou; Gungyi Wang

    2016-01-01

    This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify ...

  16. Wind tunnel testing to predict control room atmospheric dispersion factors

    International Nuclear Information System (INIS)

    Holmquist, L.J.; Harden, P.A.; Muraida, J.E.

    1993-01-01

    Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10 -2 m 3 /s (25 ft 3 /min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage

  17. Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Pena Diaz, Alfredo; Badger, Merete

    2014-01-01

    The QuikSCAT mission provided valuable daily information on global ocean wind speed and direction from July 1999 until November 2009 for various applications including numerical weather prediction, ocean and atmospheric modelling. One new and important application for wind vector satellite data i...

  18. Numerical methods of estimating the dispersion of radionuclides in atmosphere

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Ghitulescu, Alina; Popescu, Gheorghe; Piciorea, Iuliana

    2007-01-01

    Full text: The paper presents the method of dispersion calculation, witch can be applied for the DLE calculation. This is necessary to ensure a secure performance of the Experimental Pilot Plant for Tritium and Deuterium Separation (using the technology for detritiation based upon isotope catalytic exchange between tritiated heavy water and deuterium followed by cryogenic distillation of the hydrogen isotopes). For the calculation of the dispersion of radioactivity effluents in the atmosphere, at a given distance between source and receiver, the Gaussian mathematical model was used. This model is currently applied for estimating the long-term results of dispersion in case of continuous or intermittent emissions as basic information for long-term radioprotection measures for areas of the order of kilometres from the source. We have considered intermittent or continuous emissions of intensity lower than 1% per day relative to the annual emission. It is supposed that the radioactive material released into environment presents a gaussian dispersion both in horizontal and vertical plan. The local dispersion parameters could be determined directly with turbulence measurements or indirectly by determination of atmospheric stability. Weather parameters for characterizing the atmospheric dispersion include: - direction of wind relative to the source; - the speed of the wind at the height of emission; - parameters of dispersion to different distances, depending on the atmospheric turbulence which characterizes the mixing of radioactive materials in the atmosphere; - atmospheric stability range; - the height of mixture stratum; - the type and intensity of precipitations. The choice of the most adequate version of Gaussian model depends on the relation among the height where effluent emission is in progress, H (m), and the height at which the buildings influence the air motion, HB (m). There were defined three zones of distinct dispersion. This zones can have variable lengths

  19. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...... turbines. In the meantime, superconducting generators (SCSGs) have been of particular interest to become a significant competitor because of their compactness and light weight. This paper compares the performance indicators of these two direct-drive generator types in the same 10-MW wind turbine under...... the same design and optimization method. Such comparisons will be interesting and insightful for commercialization of superconducting generators and for development of future wind energy industry, although SCSGs are still far from a high technology readiness level. The results show that the SCSGs may...

  20. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  1. Seasonal variation of Sigma sub(Theta) with wind speed, direction and stability

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    For an airport site near Visakhapatnam, India, and based on 10 years of data for the months of January, April, August and October, values of Sigma sub(Theta) are given as a function of wind speed, wind direction and Pasquill diffusion category...

  2. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  3. WindScanner.eu - a new remote sensing research infrastructure for on- and offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Torben; Knudsen, Soeren; Sjoeholm, M.; Angeloua, N.; Tegtmeier, A. [Technical Univ. og Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)

    2012-07-01

    A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment studies on- and off shore of the future. Today, hub heights on +5 MW wind turbines exceed the 100 m mark. At the Danish DTU test site Oesterild testing is ongoing with a Siemens turbine with hub height 120 meters and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky. The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane. The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind lidar measurement of turbulence in complex terrain within an internal boundary layer developing behind an escarpment. Also measurements of wind speed and direction profiles

  4. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1977-12-22 to 1978-07-01 (NODC Accession 7900123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from December 22, 1977 to October...

  5. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data

    Science.gov (United States)

    Hedin, A. E.; Spencer, N. W.; Killeen, T. L.

    1988-01-01

    Thermospheric wind data obtained from the Atmosphere Explorer E and Dynamics Explorer 2 satellites have been used to generate an empirical wind model for the upper thermosphere, analogous to the MSIS model for temperature and density, using a limited set of vector spherical harmonics. The model is limited to above approximately 220 km where the data coverage is best and wind variations with height are reduced by viscosity. The data base is not adequate to detect solar cycle (F10.7) effects at this time but does include magnetic activity effects. Mid- and low-latitude data are reproduced quite well by the model and compare favorably with published ground-based results. The polar vortices are present, but not to full detail.

  6. The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79

    Science.gov (United States)

    Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.

    1985-12-01

    In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.

  7. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  8. Solar-wind interactions with the Moon: nature and composition of nitrogen compounds

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1981-01-01

    The lunar atmosphere and magnetic field are very tenuous. The solar wind, therefore, interacts directly with the lunar surface material and the dominant nature of interaction is essentially complete absorption of solar-wind particles by the surface material resulting in no upstream bowshock, but a cavity downstream. The solar-wind nitrogen ion species induce and undergo a complex set of reactions with the elements of lunar material and the solar-wind-derived trapped elements. The nitrogen concentration indigeneous to the lunar surface material is practically nil. Therefore any nitrogen and nitrogen compounds found in the lunar surface material are due to the solar-wind implantation of nitrogen ions. The flux of the solar-wind nitrogen ion species is about 6 X 10 3 cm -2 s -1 . Since there is no evidence for accumulation of nitrogen species in the lunar surface material, the outflux of nitrogen species from the lunar material to the atmosphere is the same as the solar-wind nitrogen ion flux. The species of the outflux are primarily NO and NH 3 , and their respective concentrations in the near surface lunar atmosphere are found to be 327 and 295 cm -3 . (Auth.)

  9. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Science.gov (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  10. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  11. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1977-02-02 to 1979-01-31 (NODC Accession 7900144)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, salinity, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from February 2, 1978 to January 31,...

  12. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1978-06-28 to 1978-12-31 (NODC Accession 7900128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from June 28, 1978 to December 31,...

  13. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  14. ZZ SIESTA, Atmospheric Dispersion Experiment over Complex Terrain

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Name of experiment: SIESTA. 2 - Computer for which program is designed and other machine version packages available: To request or retrieve programs click on the one of the active versions below. A password and special authorization is required. Explanation of the status codes. Program-name: ZZ-SIESTA; Package-ID Status: NEA-1617/01 Tested; Machines used: Package-ID: NEA-1617/01; Orig. Computer: DEC VAX 6000; Test Computer: DEC VAX 6000. 3 - Purpose and phenomena tested: The aim of the project was to obtain knowledge of the general nature of the turbulence, advection and atmospheric dispersion in the two flow regimes parallel to the Swiss Jura ridge, which represent the most frequent wind systems occurring on the Swiss Plain. 4 - Description of the experimental set-up used: The atmospheric dispersion process was investigated by carrying out SF 6 tracer experiments. The tracer was released about 6 m above ground level near the Goesgen meteo tower. Sampling units were placed on ellipses around the release point. Total sampling time was at least one hour. Tracer concentrations were determined after each experiment by Gas chromatography. 5 - Special features: Because of the uncertainty in the transport direction of the tracer plume, a mobile tracer analyzing system was used. 6 - Description of experiment and analysis: To investigate the flow field in the test region, the following measuring setups were used: (1) Three tethered balloon sounding systems to measure temperature, humidity, wind speed and direction; (2) a meteo tower to measure 10-minute averages of wind direction and velocity at two fixed heights; (3) sonic anemometers to measure heat flux, friction velocity, Monin-Obukhov length, and wind speed at the release point and at a certain distance; (4) 2-m masts to measure wind speed and direction continuously. The wind flow system was measured by radar-tracked tetroons

  15. Spin and Wind Directions I: Identifying Entanglement in Nature and Cognition.

    Science.gov (United States)

    Aerts, Diederik; Arguëlles, Jonito Aerts; Beltran, Lester; Geriente, Suzette; Sassoli de Bianchi, Massimiliano; Sozzo, Sandro; Veloz, Tomas

    2018-01-01

    We present a cognitive psychology experiment where participants were asked to select pairs of spatial directions that they considered to be the best example of Two different wind directions . Data are shown to violate the CHSH version of Bell's inequality with the same magnitude as in typical Bell-test experiments with entangled spins. Wind directions thus appear to be conceptual entities connected through meaning, in human cognition, in a similar way as spins appear to be entangled in experiments conducted in physics laboratories. This is the first part of a two-part article. In the second part (Aerts et al. in Found Sci, 2017) we present a symmetrized version of the same experiment for which we provide a quantum modeling of the collected data in Hilbert space.

  16. Studies using wind tunnel to simulate the Atmospheric Boundary Layer at the Alcântara Space Center

    Directory of Open Access Journals (Sweden)

    Luciana P. Bassi Marinho

    2009-01-01

    Full Text Available The Alcântara Space Center (ASC region has a peculiar topography due to the existence of a coastal cliff, which modifies the atmospheric boundary layer characteristic in a way that can affect rocket launching operations. Wind tunnel measurements can be an important tool for the understanding of turbulence and wind flow pattern characteristics in the ASC neighborhood, along with computational fluid dynamics and observational data. The purpose of this paper is to describe wind tunnel experiments that have been carried out by researchers from the Brazilian Institutions IAE, ITA and INPE. The technologies of Hot-Wire Anemometer and Particle Image Velocimetry (PIV have been used in these measurements, in order to obtain information about wind flow patterns as velocity fields and vorticity. The wind tunnel measurements are described and the results obtained are presented.

  17. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  18. Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks.

    Science.gov (United States)

    Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab

    2012-01-01

    In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.

  19. Lidar observations of marine boundary-layer winds and heights: a preliminary study

    DEFF Research Database (Denmark)

    Peña, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2015-01-01

    the highest data availability (among the three sites) and a very good agreement with the observations of wind speed and direction from cup anemometers and vanes from the platform's tower. The wind lidar was also able to perform measurements under a winter storm where 10-s gusts were observed above 60 m s 1......Here we describe a nearly 1-yr meteorological campaign, which was carried out at the FINO3 marine research platform on the German North Sea, where a pulsed wind lidar and a ceilometer were installed besides the platform's 105-m tower and measured winds and the aerosol backscatter in the entire...... marine atmospheric boundary layer. The campaign was the last phase of a research project, in which the vertical wind profile in the atmospheric boundary layer was firstly investigated on a coastal and a semi-urban site. At FINO3 the wind lidar, which measures the wind speed up to 2000 m, shows...

  20. Wide angle Michelson Doppler imaging interferometer. [measuring atmospheric emissions

    Science.gov (United States)

    Shepherd, G. G.

    1980-01-01

    The optical system, stepping control, phase and modulation depth, array detector, and directions sensor are described for a specialized type of Michelson interferometer which works at sufficiently high resolution to measure the line widths and Doppler shifts of naturally occurring atmospheric emissions. With its imaging capability, the instrument can potentially supply this data independently for each element of the 100 x 100 detector array. The experiment seeks: (1) to obtain vertical profiles of atmospheric winds and temperatures as functions of latitude by observing near the limb; (2) to acquire exploratory wind and temperature data on smaller scale structures in airglow irregularities and in auroral forms; and (3) to collaborate with other Spacelab experiments, such as barium cloud releases, in providing wind and temperature data.

  1. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-05-01

    Full Text Available Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010 of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers, it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values. This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap

  2. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Science.gov (United States)

    Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua

    2018-05-01

    Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into

  3. Some considerations about the natural atmospheric radioactive aerosol

    International Nuclear Information System (INIS)

    Renoux, A.; Madelaine, G.

    1985-01-01

    From experiments made in Brest by the use of a semi-automatic device for direct measurements of atmospheric radon (the double filter method), we obtained daily average values of Radon 222 concentration, and establish that the values obtained are completely different according to the wind direction. We establish that radioactive balance is never realized in the air between radon and its daughters RaA(Po218), RaB(Pb214) and RaC(Bi214); the state of radioactive balance strongly depends on wind direction. We also study the ionic state of the radioactive aerosol accruing from Radon 222. Using an experimental system consisting of absolute filters, diffusion batteries, cascade impactors and ions tubes, we establish the size distribution of natural radioactive aerosol. We thus show 40% of the natural atmospheric radioactivity is located on particles whose radii are inferior to 2 . 10-2 mm. A good agreement is provided between the theory and our experimental points

  4. Gone with the Wind: Three Years of MAVEN Measurements of Atmospheric Loss at Mars

    Science.gov (United States)

    Brain, David; MAVEN Team

    2017-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is making measurements of the Martian upper atmosphere and near space environment, and their interactions with energy inputs from the Sun. A major goal of the mission is to evaluate the loss of atmospheric gases to space in the present epoch, and over Martian history. MAVEN is equipped with instruments that measure both the neutral and charged upper atmospheric system (thermosphere, ionosphere, exosphere, and magnetosphere), inputs from the Sun (extreme ultraviolet flux, solar wind and solar energetic particles, and interplanetary magnetic field), and escaping atmospheric particles. The MAVEN instruments, coupled with models, allow us to more completely understand the physical processes that control atmospheric loss and the particle reservoirs for loss.Here, we provide an overview of the significant results from MAVEN over approximately 1.5 Mars years (nearly three Earth years) of observation, from November 2014 to present. We argue that the MAVEN measurements tell us that the loss of atmospheric gases to space was significant over Martian history, and present the seasonal behavior of the upper atmosphere and magnetosphere. We also discuss the influence of extreme events such as solar storms, and a variety of new discoveries and observations of the Martian system made by MAVEN.

  5. Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System

    Directory of Open Access Journals (Sweden)

    João P. S. Catalão

    2012-07-01

    Full Text Available This paper is concerned with the protection of wind energy systems against the direct effects of lightning. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded as a serious problem. Nevertheless, very few studies exist yet in Portugal regarding lightning protection of wind energy systems using numerical codes. A new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, for the analysis of transient phenomena due to a direct lightning strike to the blade. Comprehensive simulation results are provided by using models of the Restructured Version of the Electro-Magnetic Transients Program (EMTP, and conclusions are duly drawn.

  6. Development of a Wind Directly Forced Heat Pump and Its Efficiency Analysis

    OpenAIRE

    Jwo, Ching-Song; Chien, Zi-Jie; Chen, Yen-Lin; Chien, Chao-Chun

    2013-01-01

    The requirements of providing electric energy through the wind-forced generator to the heat pump for water cooling and hot water heating grow significantly by now. This study proposes a new technique to directly adopt the wind force to drive heat pump systems, which can effectively reduce the energy conversion losses during the processes of wind force energy converting to electric energy and electric energy converting to kinetic energy. The operation of heat pump system transfers between chil...

  7. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-10-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  8. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Directory of Open Access Journals (Sweden)

    K. B. Rodgers

    2011-10-01

    Full Text Available Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004 indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980 or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980. As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950–1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980–2004. This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  9. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  10. Calibration and validation of the advanced E-Region Wind Interferometer

    Directory of Open Access Journals (Sweden)

    S. K. Kristoffersen

    2013-07-01

    Full Text Available The advanced E-Region Wind Interferometer (ERWIN II combines the imaging capabilities of a CCD detector with the wide field associated with field-widened Michelson interferometry. This instrument is capable of simultaneous multi-directional wind observations for three different airglow emissions (oxygen green line (O(1S at a height of ~97 km, the PQ(7 and P(7 emission lines in the O2(0–1 atmospheric band at ~93 km and P1(3 emission line in the (6, 2 hydroxyl Meinel band at ~87 km on a three minute cadence. In each direction, for 45 s measurements for typical airglow volume emission rates, the instrument is capable of line-of-sight wind precisions of ~1 m s−1 for hydroxyl and O(1S and ~4 m s−1 for O2. This precision is achieved using a new data analysis algorithm which takes advantage of the imaging capabilities of the CCD detector along with knowledge of the instrument phase variation as a function of pixel location across the detector. This instrument is currently located in Eureka, Nunavut as part of the Polar Environment Atmospheric Research Laboratory (PEARL (80°N, 86° W. The details of the physical configuration, the data analysis algorithm, the measurement calibration and validation of the observations from December 2008 and January 2009 are described. Field measurements which demonstrate the capabilities of this instrument are presented. To our knowledge, the wind determinations with this instrument are the most accurate and have the highest observational cadence for airglow wind observations of this region of the atmosphere and match the capabilities of other wind-measuring techniques.

  11. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  12. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)

    2017-04-15

    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  13. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  14. Current direction, wind wave spectra, phytoplankton, zooplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1977-09-24 to 1981-08-31 (NODC Accession 8100681)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, wind wave spectra, and other data were collected using moored current meter casts and other instruments in...

  15. Current direction, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-10-11 to 1980-03-19 (NODC Accession 8000368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and other data were collected using moored current meter casts and other instruments from the CAPT JACK and EXCELLENCE in the...

  16. Comparison of 10 MW superconducting generator topologies for direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been...... magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages...... proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high...

  17. The footprint of atmospheric turbulence in power grid frequency measurements

    Science.gov (United States)

    Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.

    2018-02-01

    Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (renewable generation.

  18. A contribution to the study of the influence of the energy of solar wind upon the atmospheric processes

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2003-01-01

    Full Text Available According to the satellite observing of solar wind, and as well according the development of certain weather conditions it is realized that their interactive connections could have important role on the development of atmospheric processes. In this paper is given several of such situations. We have tried to point to a very important significance of new methodological approach in understanding development of meteorological conditions. Researching the influence of the solar wind on the changes of conditions in the atmosphere could develop in several ways but in any case for the further steps a multidiscipline approach is needed. Karen Labitske in Germany has done a lot of research in this area. "The physics is still highly speculative at this point though".

  19. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh

    2017-01-01

    Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate buildings...... to improve the discharge flow rate. Results indicate that the twist on Savonius wind rotor reduces the negative torque and improves its performance. According to the results, a twisted Savonius wind turbine with conical shaft is associated with 18% increase in power coefficient and 31% increase in discharge...... flowrate compared to simple Savonius wind turbine. Also, wind turbine with variable cut plane has a 12% decrease in power coefficient and 5% increase in discharge flow rate compared to simple Savonius wind turbine. Therefore, it can be inferred that twisted wind turbine with conical shaft indicated...

  20. A new approach to very short term wind speed prediction using k-nearest neighbor classification

    International Nuclear Information System (INIS)

    Yesilbudak, Mehmet; Sagiroglu, Seref; Colak, Ilhami

    2013-01-01

    Highlights: ► Wind speed parameter was predicted in an n-tupled inputs using k-NN classification. ► The effects of input parameters, nearest neighbors and distance metrics were analyzed. ► Many useful and reasonable inferences were uncovered using the developed model. - Abstract: Wind energy is an inexhaustible energy source and wind power production has been growing rapidly in recent years. However, wind power has a non-schedulable nature due to wind speed variations. Hence, wind speed prediction is an indispensable requirement for power system operators. This paper predicts wind speed parameter in an n-tupled inputs using k-nearest neighbor (k-NN) classification and analyzes the effects of input parameters, nearest neighbors and distance metrics on wind speed prediction. The k-NN classification model was developed using the object oriented programming techniques and includes Manhattan and Minkowski distance metrics except from Euclidean distance metric on the contrary of literature. The k-NN classification model which uses wind direction, air temperature, atmospheric pressure and relative humidity parameters in a 4-tupled space achieved the best wind speed prediction for k = 5 in the Manhattan distance metric. Differently, the k-NN classification model which uses wind direction, air temperature and atmospheric pressure parameters in a 3-tupled inputs gave the worst wind speed prediction for k = 1 in the Minkowski distance metric

  1. Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind" electric potential

    Science.gov (United States)

    Collinson, Glyn; Mitchell, David; Glocer, Alex; Grebowsky, Joseph; Peterson, W. K.; Connerney, Jack; Andersson, Laila; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrei; Ma, Yingjuan; Bougher, Steven; Lillis, Robert; Ergun, Robert; Jakosky, Bruce

    2015-11-01

    An important mechanism in the generation of polar wind outflow is the ambipolar electric potential which assists ions in overcoming gravity and is a key mechanism for Terrestrial ionospheric escape. At Mars, open field lines are not confined to the poles, and outflow of ionospheric electrons is observed far into the tail. It has thus been hypothesized that a similar electric potential may be present at Mars, contributing to global ionospheric loss. However, no direct measurements of this potential have been made. In this pilot study, we examine photoelectron spectra measured by the Solar Wind Electron Analyzer instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout to put an initial upper bound on the total potential drop in the ionosphere of Mars of Φ♂ ≾⊥ 2V , with the possibility of a further ≾4.5 V potential drop above this in the magnetotail. If the total potential drop was close to the upper limit, then strong outflows of major ionospheric species (H+, O+, and O2+) would be expected. However, if most of the potential drop is confined below the spacecraft, as expected by current theory, then such a potential would not be sufficient on its own to accelerate O2+ to escape velocities, but would be sufficient for lighter ions. However, any potential would contribute to atmospheric loss through the enhancement of Jeans escape.

  2. Development of a Wind Directly Forced Heat Pump and Its Efficiency Analysis

    Directory of Open Access Journals (Sweden)

    Ching-Song Jwo

    2013-01-01

    Full Text Available The requirements of providing electric energy through the wind-forced generator to the heat pump for water cooling and hot water heating grow significantly by now. This study proposes a new technique to directly adopt the wind force to drive heat pump systems, which can effectively reduce the energy conversion losses during the processes of wind force energy converting to electric energy and electric energy converting to kinetic energy. The operation of heat pump system transfers between chiller and heat that are controlled by a four-way valve. The theoretical efficiency of the traditional method, whose heat pump is directly forced by wind, is 42.19%. The experimental results indicated average value for cool water producing efficiency of 54.38% in the outdoor temperature of 35°C and the indoor temperature of 25°C and the hot water producing efficiency of 52.25% in the outdoor temperature and the indoor temperature both of 10°C. We proposed a method which can improve the efficiency over 10% in both cooling and heating.

  3. Composition of atmospheric precipitation. II. Sulfur, chloride, iodine compounds. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E

    1952-01-01

    Atmospheric precipitation invariably contains insoluble substances of different origin. A large scale study was conducted to determine the content of sulfur, chloride, and iodine in rainwater from various places around the world. The origin of these elements in rainwater is discussed. Several meteorological factors influence the Cl-content of rainwater. They include: rainfall, wind direction and wind strength, altitude, and seasonal variation.

  4. Far offshore wind conditions in scope of wind energy

    NARCIS (Netherlands)

    Holtslag, M.C.

    2016-01-01

    Far offshore atmospheric conditions are favourable for wind energy purposes since mean wind speeds are relatively high (i.e., high power production) while turbulence levels are relatively low (i.e., less fatigue loads) compared to onshore conditions. Offshore wind energy, however, is still expensive

  5. Current direction, phytoplankton, zooplankton, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1981-02-07 to 1982-11-01 (NODC Accession 8300055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, phytoplankton, zooplankton, wind wave spectra, and other data were collected using moored current meter casts and other instruments in the Gulf of...

  6. The marbll experiment: towards a martian wind lidar

    Directory of Open Access Journals (Sweden)

    Määttänen Anni

    2018-01-01

    Full Text Available Operating a lidar on Mars would fulfill the need of accessing wind and aerosol profiles in the atmospheric boundary layer. This is the purpose of the MARs Boundary Layer Lidar (MARBLL instrument. We report recent developments of this compact direct-detection wind lidar designed to operate from the surface of Mars. A new laser source has been developed and an azimuthal scanning capability has been added. Preliminary results of a field campaign are presented.

  7. Multi-Pole HTS Generators for Direct Drive Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Seiler, Eugen

    or the performance of the coated conductor has to improve significantly (by a factor of 10 or more) in order for HTS generators to become feasible in direct drive offshore wind turbines. This price/performance improvement is not unrealistic in the coming decade. Additionally the reliability of such machines...

  8. A Case for Including Atmospheric Thermodynamic Variables in Wind Turbine Fatigue Loading Parameter Identification

    International Nuclear Information System (INIS)

    Kelley, Neil D.

    1999-01-01

    This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes

  9. Wind structure during mid-latitude storms and its application in Wind Energy

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Du, Jianting; Bolanos, Rodolfo

    2015-01-01

    in Denmark. The extreme wind and wave conditions in the coastal area for wind energy application are important but have rarely been studied in the literature. Our experiments are done to the Danish coasts where the mid-latitude depression systems are causes of the extreme wind and wave conditions....... The numerical modeling is done through an atmosphere-wave coupled system, where the atmospheric model is the Weather Research and Forecasting (WRF) model and the wave model is the Simulating WAves Nearshore (SWAN) model. Measurements from offshore stations, Horns Rev and the FINO platform, as well as satellite...... and the modeling will be presented. Here the “key” is referring both to the application of wind energy and the wind-wave coupling system. The various parameterization of the interface parameter for the atmospheric and wave modeling, the roughness length, has been examined. Data analysis reveals the importance...

  10. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    Science.gov (United States)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  11. Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment

    International Nuclear Information System (INIS)

    Castellani, Francesco; Astolfi, Davide; Sdringola, Paolo; Proietti, Stefania; Terzi, Ludovico

    2017-01-01

    Highlights: • The directional behavior of four turbines of an onshore wind farm is investigated. • The positions of the nacelles are discretized to highlight clusterization effects. • The recurrent alignment patterns of the cluster are individuated and analyzed. • The patterns are studied by the point of view of efficiency and power output. • Significative performance deviations arise among the most frequent configurations. - Abstract: SCADA control systems are the keystone for reliable performance optimization of wind farms. Processing into knowledge the amount of information they spread is a challenging task, involving engineering, physics, statistics and computer science skills. This work deals with SCADA data analysis methods for assessing the importance of how wind turbines align in patterns to the wind direction. In particular it deals with the most common collective phenomenon causing clusters of turbines behaving as a whole, rather than as a collection of individuality: wake effects. The approach is based on the discretization of nacelle position measurements and subsequent post-processing through simple statistical methods. A cluster, severely affected by wakes, from an onshore wind farm, is selected as test case. The dominant alignment patterns of the cluster are identified and analyzed by the point of view of power output and efficiency. It is shown that non-trivial alignments with respect to the wind direction arise and important performance deviations occur among the most frequent configurations.

  12. Potential of MgB2 superconductors in direct drive generators for wind turbines

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Liu, Dong; Magnusson, Niklas

    2015-01-01

    Topologies of superconducting direct drive wind turbine generators are based on a combination of superconducting wires wound into field coils, copper armature windings, steel laminates to shape the magnetic flux density and finally structural materials as support. But what is the most optimal...... by using the current cost of 4 €/m for the MgB2 wire from Columbus Superconductors and also a possible future cost of 1 €/m if a superconducting offshore wind power capacity of 10 GW has been introduced by 2030 as suggested in a roadmap. The obtained topologies are compared to what is expected from...... a permanent magnet direct drive generators and the further development directions are discussed. Finally an experimental INNWIND.EU demonstration showing that the current commercial MgB2 wires can be wound into functional field coils for wind turbine generators is discussed....

  13. Direct employment in the wind energy sector: An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)], E-mail: isabel.blanco@ewea.org; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  14. Direct employment in the wind energy sector. An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers - including major sub-components - are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles - project managers, engineers and O and M technicians - is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice. (author)

  15. Direct employment in the wind energy sector: An EU study

    International Nuclear Information System (INIS)

    Blanco, Maria Isabel; Rodrigues, Gloria

    2009-01-01

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  16. Design Tool for Direct Drive Wind Turbine Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika

    . A comparison of the selected machine types in view of up-scaling to 20 [MW] was performed. As an example fitness criterion, the use of active materials for the generators was considered. Based on this, suggestions for 20 [MW] generators were made. The results are discussed and future work, directions......The current work offers a comparison of the proposed machine geometries for 6 [MW] direct drive wind generator candidates with the prospective of up scaling to 20MW. The suggestions are based on a design tool especially built for this investigation. The in-built flexibility of the design tool gives...

  17. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    Science.gov (United States)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  18. Current direction, zooplankton, wind wave spectra, benthic organisms, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 18 October 1977 to 01 May 1979 (NODC Accession 7900270)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, zooplankton, benthic organisms, wind wave spectra, and other data were collected using moored current meter casts and other instruments in the...

  19. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu...

  20. Current direction, benthic organisms, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-01-12 to 1980-06-01 (NODC Accession 8000465)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, wind wave spectra, and other data were collected using moored current meter casts and other instruments from the CAPT JACK and...

  1. Analysis of vertical wind direction and speed gradients for data from the met. mast at Høvsøre

    DEFF Research Database (Denmark)

    Cariou, Nicolas; Wagner, Rozenn; Gottschall, Julia

    The task of this project has been to study the vertical gradient of the wind direction from experimental data obtained with different measurement instruments at the Høvsøre test site, located at the west coast of Denmark. The major part of the study was based on data measured by wind vanes mounted...... at a meteorological (met.) mast. These measurements enabled us to make an analysis of the variation of the direction with altitude, i.e. the wind direction shear. For this purpose, four years of wind direction measurements at two heights (60 m and 100 m) were analysed with special respect to the diurnal and seasonal...... variations of the direction gradient. The location of the test site close to the sea allowed for an investigation of specific trends for offshore and onshore winds, dependent on the considered wind direction sector. Furthermore, a comparison to lidar measurements showed the existence of an offset between...

  2. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  3. On the Magnetic Protection of the Atmosphere of Proxima Centauri b

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sage, K.; Glocer, A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Drake, J. J. [Harvard Smithsonian Center for Astrophysics, Cambridge, MA (United States); Gronoff, G. [NASA Langley, Hampton, VA (United States); Cohen, O., E-mail: katherine.garcia-sage@nasa.gov [University of Massachusetts, Lowell, MA (United States)

    2017-07-20

    The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a “temperate orbit,” i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth’s early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.

  4. On the Magnetic Protection of the Atmosphere of Proxima Centauri b

    International Nuclear Information System (INIS)

    Garcia-Sage, K.; Glocer, A.; Drake, J. J.; Gronoff, G.; Cohen, O.

    2017-01-01

    The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a “temperate orbit,” i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth’s early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.

  5. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  6. DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields

    DEFF Research Database (Denmark)

    Chassefiere, E.; Nagy, A.; Mandea, M.

    2004-01-01

    DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure...... of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate...

  7. VisibleWind: wind profile measurements at low altitude

    Science.gov (United States)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  8. Directional passive ambient air monitoring of ammonia for fugitive source attribution; a field trial with wind tunnel characteristics

    Science.gov (United States)

    Solera García, M. A.; Timmis, R. J.; Van Dijk, N.; Whyatt, J. D.; Leith, I. D.; Leeson, S. R.; Braban, C. F.; Sheppard, L. J.; Sutton, M. A.; Tang, Y. S.

    2017-10-01

    Atmospheric ammonia is a precursor for secondary particulate matter formation, which harms human health and contributes to acidification and eutrophication. Under the 2012 Gothenburg Protocol, 2005 emissions must be cut by 6% by 2020. In the UK, 83% of total emissions originate from agricultural practices such as fertilizer use and rearing of livestock, with emissions that are spatially extensive and variable in nature. Such fugitive emissions make resolving and tracking of individual site performance challenging. The Directional Passive Air quality Sampler (DPAS) was trialled at Whim Bog, an experimental site with a wind-controlled artificial release of ammonia, in combination with CEH-developed ammonia samplers. Whilst saturation issues were identified, two DPAS-MANDE (Mini Annular Denuder) systems, when deployed in parallel, displayed an average relative deviation of 15% (2-54%) across all 12 directions, with the directions exposed to the ammonia source showing ∼5% difference. The DPAS-MANDE has shown great potential for directional discrimination and can contribute to the understanding and management of fugitive ammonia sources from intensive agriculture sites.

  9. Conventional and novel control designs for direct driven PMSG wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Xu, Ling [Department of Electrical and Computer Engineering, The University of Alabama, 317 Houser Hall, Tuscaloosa, AL 35487 (United States)

    2010-03-15

    With the advance of power electronic technology, direct driven permanent magnet synchronous generators (PMSG) have increasingly drawn interests to wind turbine manufactures. This paper studies and compares conventional and a novel control designs for a direct driven PMSG wind turbine. The paper presents transient and steady-state models of a PMSG system in a d-q reference frame. Then, general PMSG characteristics are investigated in the rotor-flux-oriented frame. A shortage of conventional control mechanisms is studied analytically and through computer simulation. A novel direct-current based d-q vector control technique is proposed by integrating fuzzy, adaptive and traditional PID control technologies in an optimal control configuration. Comparison study demonstrates that the proposed control approach, having superior performance in various aspects, is effective not only in achieving desired PMSG control objectives but also in improving the optimal performance of the overall system. (author)

  10. Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, Edward G.

    2013-01-01

    This study demonstrates that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. Three different angles are considered: the wind turning, the angle between the stress vector and the mean wind direction......, and the angle between the stress vector and the vertical gradient of the mean velocity vector. The latter is assumed to be zero by the often applied turbulent-viscosity hypothesis, so that the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where...... the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only...

  11. Simulation of a 7.7 MW onshore wind farm with the Actuator Line Model

    Science.gov (United States)

    Guggeri, A.; Draper, M.; Usera, G.

    2017-05-01

    Recently, the Actuator Line Model (ALM) has been evaluated with coarser resolution and larger time steps than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition. The aim of the present paper is to continue these studies, assessing the capability of the ALM to represent the wind turbines’ interactions in an onshore wind farm. The ‘Libertad’ wind farm, which consists of four 1.9MW Vestas V100 wind turbines, was simulated considering different wind directions, and the results were compared with the wind farm SCADA data, finding good agreement between them. A sensitivity analysis was performed to evaluate the influence of the spatial resolution, finding acceptable agreement, although some differences were found. It is believed that these differences are due to the characteristics of the different Atmospheric Boundary Layer (ABL) simulations taken as inflow condition (precursor simulations).

  12. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  13. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  14. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  15. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  16. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    This paper aims at assessing the potential of partially superconducting generators for 10 MW direct-drive wind turbines by investigating their performance for a very wide range of excitation currents. Performance indicators such as shear stress and efficiency and other generator characteristics...... are compared for 12 different generator topologies. To be sufficiently attractive, superconducting generators must have significant advantages over permanent magnet direct-drive generators, which typically have shear stresses of the order of 53 kPa and efficiencies of 96%. Therefore, we investigate what...... they achieve this performance. By examining the maximum magnetic flux density at the location of the superconducting field winding, feasible superconductors can be chosen according to their engineering current density capabilities. It is found that high- and low-temperature superconductors can meet...

  17. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, Pauline; Badger, Jake

    2015-01-01

    Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR) are sometimes visible and atmospheric and wake models are here shown to convincingly repro...

  18. Airborne direct-detection and coherent wind lidar measurements over the North Atlantic in 2015 supporting ESA's aeolus mission

    Science.gov (United States)

    Marksteiner, Uwe; Reitebuch, Oliver; Lemmerz, Christian; Lux, Oliver; Rahm, Stephan; Witschas, Benjamin; Schäfler, Andreas; Emmitt, Dave; Greco, Steve; Kavaya, Michael J.; Gentry, Bruce; Neely, Ryan R.; Kendall, Emma; Schüttemeyer, Dirk

    2018-04-01

    The launch of the Aeolus mission by the European Space Agency (ESA) is planned for 2018. The satellite will carry the first wind lidar in space, ALADIN (Atmospheric Laser Doppler INstrument). Its prototype instrument, the ALADIN Airborne Demonstrator (A2D), was deployed during several airborne campaigns aiming at the validation of the measurement principle and optimization of algorithms. In 2015, flights of two aircraft from DLR & NASA provided the chance to compare parallel wind measurements from four airborne wind lidars for the first time.

  19. MERCURY IN ATMOSPHERE OVER RURAL, URBAN AND INDUSTRIAL PARTS OF ZAGREB CITY

    Directory of Open Access Journals (Sweden)

    Ladislav A. Palinkaš

    1990-12-01

    Full Text Available In recent years Zagreb city encounters severe pollution problems in aquatic, terrrestrial and atmospheric environment. A random or permanent monitoring of some inorganic gaseous pollutants in atmosphere has already been organized and published alsewhere. By means of a sophisticated mercury vapor analyser with a Zeeman effect background corrector, however, continuous registration along two traverses (monitoring routes over rural, urban and industrial parts of Zagreb has been elaborated for the first lime. Data show strong anthropogenic influence in the Žitnjak industrial area. The anomaly high 105 ngm Hg, on the 22 October moved slightly to downtown by change of wind direction on the 31 October. Intensity raised as much as 155 ngm Hg, 13 times augmented in comparison to a background value on the Medvednica mountain. Explanation should be sought in denser public traffic, change of wind direction and lowering of atmospheric pressure.

  20. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  1. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  2. WindScanner.eu - a new Remote Sensing Research Infrastructure for On- and Offshore Wind Energy

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Siggaard Knudsen, Søren; Sjöholm, Mikael

    2012-01-01

    will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D Wind......A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology......Scanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind...

  3. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  4. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  5. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  6. Wind Climate in Kongsfjorden, Svalbard, and Attribution of Leading Wind Driving Mechanisms through Turbulence-Resolving Simulations

    Directory of Open Access Journals (Sweden)

    Igor Esau

    2012-01-01

    Full Text Available This paper presents analysis of wind climate of the Kongsfjorden-Kongsvegen valley, Svalbard. The Kongsfjorden-Kongsvegen valley is relatively densely covered with meteorological observations, which facilitate joint statistical analysis of the turbulent surface layer structure and the structure of the higher atmospheric layers. Wind direction diagrams reveal strong wind channeled in the surface layer up to 300 m to 500 m. The probability analysis links strong wind channeling and cold temperature anomalies in the surface layer. To explain these links, previous studies suggested the katabatic wind flow mechanism as the leading driver responsible for the observed wind climatology. In this paper, idealized turbulence-resolving simulations are used to distinct between different wind driving mechanisms. The simulations were performed with the real surface topography at resolution of about 60 m. These simulations resolve the obstacle-induced turbulence and the turbulence in the non-stratified boundary layer core. The simulations suggest the leading roles of the thermal land-sea breeze circulation and the mechanical wind channeling in the modulation of the valley winds. The characteristic signatures of the developed down-slope gravity-accelerated flow, that is, the katabatic wind, were found to be of lesser significance under typical meteorological conditions in the valley.

  7. Current direction, marine toxic substances, and wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1977-09-15 to 1979-06-30 (NODC Accession 7900295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, marine toxic substances, and wind wave spectra data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  8. Current direction, marine toxic substances, and wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1977-12-22 to 1979-09-30 (NODC Accession 7900336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, marine toxic substances, and wind wave spectra data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  9. OffWindSolver: Wind farm design tool based on actuator line/actuator disk concept in OpenFoam architecture

    Directory of Open Access Journals (Sweden)

    Panjwani Balram

    2014-01-01

    Full Text Available Wind energy is a good alternative to meet the energy requirements in some parts of the world; however the efficiency of wind farm depends on the optimized location of the wind turbines. Therefore a software tool that is capable of predicting the in-situ performance of multiple turbine installations in different operating conditions with reliable accuracy is needed. In present study wind farm layout design tool OffWindSolver is developed within the OpenFoam architecture. Unsteady PisoFoam solver is extended to account for wind turbines, where each turbine is modeled as a sink term in the momentum equation. Turbine modeling is based on actuator line concepts derived from SOWFA code, where each blade of the turbine is represented as a line. The loading on each line/blade of the turbine is estimated using the Blade Element Method (BEM. The inputs for the solver are tabulated airfoil aerodynamic data, dimension and height of the wind turbines, wind magnitude and direction. OffWindSolver is validated for a real wind farm – Lillgrund offshore facility in Sweden/Denmark operated by Vattenfall Vindkraft AB. Because of the scale of the computation, we only examine the effect of wind from one direction at one speed. In the absence of time dependent Marine Atmospheric Boundary Layer (MABL, a log wind profile with surface roughness of 0.04 is used at the inlet. The simulated power production of each turbine is compared to the field data and large-eddy simulation. The overall power of the wind farm is well predicted. The simulation shows the significant decreases of the power for those turbines that were in the wake.

  10. Venus's winds and temperatures during the MESSENGER's flyby: towards a three-dimensional instantaneous state of the atmosphere

    Science.gov (United States)

    Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.

    2017-09-01

    The atmosphere of the Earth or Mars globally rotates with a speed similar to the rotation of the planet (approximately 24 h). The rotation of Venus is of about 243 days, much slower than the Earth, but when scientists measured the winds by tracking the clouds of Venus, they discovered that the atmosphere rotates 60 times faster! No one has explained yet what originates this "superrotation", and we do not know well what happens either above or below the clouds. The technique of "Doppler shift" has been used to measure winds above the clouds, but results are "chaotic" and different to interpret. Thanks to a worldwide collaboration in June 2007 between NASA (MESSENGER), ESA (Venus Express), and many observatories (VLT in Chile, JCMT in Hawaii, HHSMT in Arizona, or IRAM in Spain), the authors combined the different data to obtain, for the first time, the instantaneous 3-D structure of the winds on Venus at the clouds and also above, very important for new Venus models to start "forecasts" of the Venus weather with "data assimilation". We also discovered that the superrotation seems unexpectedly different on the night of Venus and that it varies its altitude depending on the day.

  11. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  12. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  13. Persistency of atmospheric diffusion conditions in Angra dos Reis - Brazil

    International Nuclear Information System (INIS)

    Nicolli, D.

    1981-12-01

    Based on a 2 year observation period, the diffusion conditions at the Almirante Alvaro Alberto N.P.P. site, in Angra dos Reis, are analized with respect to persistency as a function of the wind direction, the Pasquill stability class and the time of the day. The Pasquill stability class relates to the bulk vertical temperature gradient measured between 2m and 50m in the atmosphere; the wind direction is measured at 50m height. The persistency is defined in this report as the probability that the wind direction will remain longer than a given time in a sector without change in the diffusion category by more than a certain stage. During the day the persistency is mostly affected by the sea breeze with predominance of the unstable and neutral categories. At night the stable categories dominate. The alternating sea and land breezes disturb daily the trade wind field resulting in low persistency of the diffusion conditions. (Author) [pt

  14. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad; Zobeck, Ted M.; Kocurek, Gary; Yang, Zong-Liang; Stenchikov, Georgiy L.

    2016-01-01

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  15. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  16. Acoustic and geophysical measurement of infrasound from turbines at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Hepburn, H.G. [Hepburn Exploration Inc., Canmore, AB (Canada)

    2005-07-01

    An experiment was conducted at the Castle River Wind Farm in southern Alberta to measure and characterize infrasound from the turbines. The wind farm contains one 600 MW turbine and fifty-nine 660 MW wind turbines. Three types of sensors were used to measure both the low and high frequency acoustic energy and geophysical sound levels. These included low frequency geophones, acoustic microphones and a precision sound analyzer. Data was recorded for low, medium and high wind states, with the entire wind turbine array operating, and with the entire wind farm stopped. Downwind telemetry measurements were recorded for 30 continuous 50 metre offsets, up to a distance of 1450 metres from the wind farm. The objective of the project was to characterize the ambient noise levels and sound emitted by the turbines. Measurements were taken for wind speed and direction, atmospheric pressure, atmospheric temperature and turbine related data. Visual observations included atmospheric conditions, extraneous sources of noise such as aircraft, trains, motor vehicle traffic, highway noise, bird song, crickets and the rotational state of the turbines. It was concluded that for studying low frequency sound, the linear dB scale should be used instead of the dBA scale. Measurements of frequencies down to 6.3 Hz, showed that infrasound emission from the Castle River Wind Farm is not a significant concern. Lower frequencies down to about 2.5 Hz also confirmed that infrasound emissions are not significantly above the ambient noise levels. Any infrasound emissions were strongly coupled to the ground and were attenuated quickly. Time domain measurements showed that at all wind speeds and for frequencies up to 270 Hz, wind noise was actually attenuated when the wind farm is in operation. The noise levels were higher when the turbines were not turning. This finding was confirmed through spectral analysis. 12 refs., 2 tabs., 46 figs.

  17. The problem of the second wind turbine – a note on a common but flawed wind power estimation method

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2012-06-01

    Full Text Available Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than

  18. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    Science.gov (United States)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  19. Accurate wind farm development and operation. Advanced wake modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))

    2013-11-15

    The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.

  20. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  1. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  2. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  3. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  4. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  5. Defining Data Access Pathways for Atmosphere to Electrons Wind Energy Data

    Science.gov (United States)

    Macduff, M.; Sivaraman, C.

    2016-12-01

    Atmosphere to Electrons (A2e), is a U.S. Department of Energy (DOE) Wind Program research initiative designed to optimize the performance of wind power plants by lowering the levelized cost of energy (LCOE). The Data Archive and Portal (DAP), managed by PNNL and hosted on Amazon Web Services, is a key capability of the A2e initiative. The DAP is used to collect, store, catalog, preserve and disseminate results from the experimental and computational studies representing a diverse user community requiring both open and proprietary data archival solutions(http://a2e.pnnl.gov). To enable consumer access to the data in DAP it is being built on a set of API's that are publically accessible. This includes persistent references for key meta-data objects as well as authenticated access to the data itself. The goal is to make the DAP catalog visible through a variety of data access paths bringing the data and metadata closer to the consumer. By providing persistent metadata records we hope to be able to build services that capture consumer utility and make referencing datasets easier.

  6. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  7. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  8. Chapter 13. Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete

  9. Analysis of Solar Wind Precipitation on Mars Using MAVEN/SWIA Observations of Spacecraft-Scattered Ions

    Science.gov (United States)

    Lue, C.; Halekas, J. S.

    2017-12-01

    Particle sensors on the MAVEN spacecraft (SWIA, SWEA, STATIC) observe precipitating solar wind ions during MAVEN's periapsis passes in the Martian atmosphere (at 120-250 km altitude). The signature is observed as positive and negative particles at the solar wind energy, traveling away from the Sun. The observations can be explained by the solar wind penetrating the Martian magnetic barrier in the form of energetic neutral atoms (ENAs) due to charge-exchange with the Martian hydrogen corona, and then being reionized in positive or negative form upon impact with the atmosphere (1). These findings have elucidated solar wind precipitation dynamics at Mars, and can also be used to monitor the solar wind even when MAVEN is at periapsis (2). In the present study, we focus on a SWIA instrument background signal that has been interpreted as spacecraft/instrument-scattered ions (2). We aim to model and subtract the scattered ion signal from the observations including those of reionized solar wind. We also aim to use the scattered ion signal to track hydrogen ENAs impacting the spacecraft above the reionization altitude. We characterize the energy spectrum and directional scattering function for solar wind scattering off the SWIA aperture structure, the radome and the spacecraft body. We find a broad scattered-ion energy spectrum up to the solar wind energy, displaying increased energy loss and reduced flux with increasing scattering angle, allowing correlations with the solar wind direction, energy, and flux. We develop models that can be used to predict the scattered signal based on the direct solar wind observations or to infer the solar wind properties based on the observed scattered signal. We then investigate deviations to the models when the spacecraft is in the Martian atmosphere and evaluate the plausibility of that these are caused by ENAs. We also perform SIMION modeling of the scattering process and the resulting signal detection by SWIA, to study the results from

  10. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Edward G. [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-07-14

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratification and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the

  11. Design study of coated conductor direct drive wind turbine generator for small scale demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech

    2012-01-01

    We have investigated the properties of a superconducting direct drive generator suitable for demonstration in a small scale 11 kW wind turbine. The engineering current density of the superconducting field windings is based on properties of coated conductors wound into coils holding of the order 68...

  12. PAVAN, Atmospheric Dispersion of Radioactive Releases from Nuclear Power Plants

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: PAVAN estimates down-wind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Options can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. 2 - Method of solution: Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases or evaluated releases from free-standing stacks. The X/Q calculations are based on the theory that material released to the atmosphere will be normally distributed (Gaussian) about the plume centerline. A straight-line trajectory is assumed between the point of release and all distances for which X/Q values are calculated. 3 - Restrictions on the complexity of the problem: - The code cannot handle multiple emission sources

  13. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  14. Direct calculation of wind turbine tip loss

    DEFF Research Database (Denmark)

    Wood, D.H.; Okulov, Valery; Bhattacharjee, D.

    2016-01-01

    . We develop three methods for the direct calculation of the tip loss. The first is the computationally expensive calculation of the velocities induced by the helicoidal wake which requires the evaluation of infinite sums of products of Bessel functions. The second uses the asymptotic evaluation......The usual method to account for a finite number of blades in blade element calculations of wind turbine performance is through a tip loss factor. Most analyses use the tip loss approximation due to Prandtl which is easily and cheaply calculated but is known to be inaccurate at low tip speed ratio...

  15. Testing of a direct drive generator for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sondergaard, L.M. [Riso National Laboratory, Roskilde (Denmark)

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  16. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    Science.gov (United States)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  17. Practical use of offsite atmospheric measurements to enhance profitability of onsite wind prediction

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Craig [GL Garrad Hassan (Canada)

    2011-07-01

    This paper presents the use of offsite atmospheric measurements to improve the profitability of onsite wind prediction. There are two common sensitivities used, intraday and interday. Results from US mid-western sites show that the error associated with wind predictions is large but there are possibilities for improvement. Inter- and intraday can be used traditionally to contribute towards NWP bias correction. Intraday alone can be used with machine learning and NWP. These techniques are compared and given in order of ease of use and potential accuracy gains. Some considerations and differences for all three techniques, namely, traditional, data assimilation and machine learning are also detailed. An offsite selection matrix shows how elements like location, geography and telemetry rate in the 3 techniques. The experimental setup for all 3 techniques over a 3-month period is given and the results are presented. It can be concluded that the results from these simple experiments show promise but vary in method and time scale.

  18. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  19. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two

  20. Evaluation of the collective effective dose equivalent of atmospheric discharges in the Rhone valley

    International Nuclear Information System (INIS)

    Le Grand, J.; Despres, A.; Robeau, D.; Bouville, A.

    1982-01-01

    Two models were used to evaluate the integrated atmospheric concentrations: - TALD, a long-range atmospheric transport model which takes account of the actual trajectories of the discharged matter; - a Gaussian plume model which assumes straight-line trajectories defined by the wind at the point of emission. In order to bring out the differences due to the use of the two models the dose equivalents are presented as a function of wind direction at the point of emission and the contributions of the near zone and the further zone are compared. (author)

  1. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    Science.gov (United States)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  2. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas

    2017-01-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated...... structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation...

  3. The Huygens Doppler Wind Experiment: Ten Years Ago

    Science.gov (United States)

    Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter

    2015-04-01

    The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.

  4. E region neutral winds in the postmidnight diffuse aurora during the atmospheric response in aurora 1 rocket campaign

    International Nuclear Information System (INIS)

    Brinkman, D.G.; Walterscheid, R.L.; Lyons, L.R.

    1995-01-01

    Measured E region neutral winds from the Atmospheric Response in Aurora (ARIA 1) rocket campaign are compared with winds predicted by a high-resolution nonhydrostatic dynamical thermosphere model. The ARIA 1 rockets were launched into the postmidnight diffuse aurora during the recovery phase of a substorm. Simulations have shown that electrodynamical coupling between the auroral ionosphere and the thermosphere was expected to be strong during active diffuse auroral conditions. This is the first time that simulations using the time history of detailed specifications of the magnitude and latitudinal variation of the auroral forcing based on measurements have been compared to simultaneous wind measurements. Model inputs included electron densities derived from ground-based airglow measurements, precipitating electron fluxes measured by the rocket, electron densities measured on the rocket, electric fields derived from magnetometer and satellite ion drift measurements, and large-scale background winds from a thermospheric general circulation model. Our model predicted a strong jet of eastward winds at E region heights. A comparison between model predicted and observed winds showed modest agreement. Above 135 km the model predicted zonal winds with the correct sense, the correct profile shape, and the correct altitude of the peak wind. However, it overpredicted the magnitude of the eastward winds by more than a factor or 2. For the meridional winds the model predicted the general sense of the winds but was unable to predict the structure or strength of the winds seen in the observations. Uncertainties in the magnitude and latitudinal structure of the electric field and in the magnitude of the background winds are the most likely sources of error contributing to the differences between model and observed winds. Between 110 and 135 km the agreement between the model and observations was poor because of a large unmodeled jetlike feature in the observed winds

  5. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    Science.gov (United States)

    Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle

    2013-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.

  6. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  7. Wind Stress Variability Observed Over Coastal Waters

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  8. Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation

    Science.gov (United States)

    Cotté, B.

    2018-05-01

    This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.

  9. SAR-Based Wind Resource Statistics in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alfredo Peña

    2011-01-01

    Full Text Available Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms.

  10. Precision Photometric Extinction Corrections from Direct Atmospheric Measurements

    Science.gov (United States)

    McGraw, John T.; Zimmer, P.; Linford, J.; Simon, T.; Measurement Astrophysics Research Group

    2009-01-01

    For decades astronomical extinction corrections have been accomplished using nightly mean extinction coefficients derived from Langley plots measured with the same telescope used for photometry. Because this technique results in lost time on program fields, observers only grudgingly made sporadic extinction measurements. Occasionally extinction corrections are not measured nightly but are made using tabulated mean monthly or even quarterly extinction coefficients. Any observer of the sky knows that Earth's atmosphere is an ever-changing fluid in which is embedded extinction sources ranging from Rayleigh (molecular) scattering to aerosol, smoke and dust scattering and absorption, to "just plain cloudy.” Our eyes also tell us that the type, direction and degree of extinction changes on time scales of minutes or less - typically shorter than many astronomical observations. Thus, we should expect that atmospheric extinction can change significantly during a single observation. Mean extinction coefficients might be well-defined nightly means, but those means have high variance because they do not accurately record the wavelength-, time-, and angle-dependent extinction actually affecting each observation. Our research group is implementing lidar measurements made in the direction of observation with one minute cadence, from which the absolute monochromatic extinction can be measured. Simultaneous spectrophotometry of nearby bright standard stars allows derivation and MODTRAN modeling atmospheric transmission as a function of wavelength for the atmosphere through which an observation is made. Application of this technique is demonstrated. Accurate real-time extinction measurements are an enabling factor for sub-1% photometry. This research is supported by NSF Grant 0421087 and AFRL Grant #FA9451-04-2-0355.

  11. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  12. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  13. Overview of FACTS devices for wind power plants directly connected to the transmission network

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2010-01-01

    Growing number of wind turbines is changing electricity generation profile all over the world. This brings challenges for power system operation, which was designed and developed around conventional power plants with directly coupled synchronous generators. In result, safety and stability...... of the electrical network with high wind energy penetration might be compromised. For this reason transmission system operators (TSO) impose more stringent connection requirements on the wind power plant (WPP) owners. On the other hand flexible AC transmission systems (FACTS) devices offer enhancement of grid...... research in FACTS applicability for WPPs is summarized. Examples of few existing FACTS applications for wind farms are given....

  14. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  15. 5MW Direct Drive Wind Turbine Generator Design

    DEFF Research Database (Denmark)

    Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe

    2012-01-01

    A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...... for the suitable machine are listed and the modelling process presented. The model of the generator was improved by changing design parameters, e.g the position of the magnets or fitting additional I-Cores, and analyse the effect of it....

  16. Impact of the interfaces for wind and wave modeling - interpretation using COAWST, SAR and point measurements

    DEFF Research Database (Denmark)

    Air and sea interacts, where winds generate waves and waves affect the winds. This topic is ever relevant for offshore functions such as shipping, portal routines, wind farm operation and maintenance. In a coupled modeling system, the atmospheric modeling and the wave modeling interfere with each...... use the stress directly, thus avoiding the uncertainties caused by parameterizations. This study examines the efficiency of the wave impact transfer to the atmospheric modeling through the two types of interfaces, roughness length and stress, through the coupled......-ocean-atmosphere-wave-sediment-transport (COAWST) modeling system. The roughness length has been calculated using seven schemes (Charnock, Fan, Oost, Drennen, Liu, Andreas, Taylor-Yelland). The stress approach is applied through a wave boundary layer model in SWAN. The experiments are done to a case where the Synthetic Aperture Radar (SAR) image...

  17. Dispersion and transport of atmospheric pollutants

    International Nuclear Information System (INIS)

    Cieslik, S.

    1991-01-01

    This paper presents the physical mechanisms that govern the dispersion and transport of air pollutant; the influence of the state of the 'carrying fluid', i.e. the role of meteorology; and finally, outlines the different techniques of assessing the process. Aspects of physical mechanisms and meteorology covered include: fate of an air pollutant; turbulence and dispersion; transport; wind speed and direction; atmospheric stability; and the role of atmospheric water. Assessment techniques covered are: concentrations measurements; modelling meteorological observations; and tracer releases. It is concluded that the only way to reduce air pollution is to pollute less. 10 refs., 12 figs., 2 tabs

  18. VHF radar observation of atmospheric winds, associated shears and C2n at a tropical location: interdependence and seasonal pattern

    Directory of Open Access Journals (Sweden)

    A. R. Jain

    Full Text Available The turbulence refractivity structure constant (C2n is an important parameter of the atmosphere. VHF radars have been used extensively for the measurements of C2n. Presently, most of such observations are from mid and high latitudes and only very limited observations are available for equatorial and tropical latitudes. Indian MST radar is an excellent tool for making high-resolution measurements of atmospheric winds, associated shears and turbulence refractivity structure constant (C2n. This radar is located at Gadanki (13.45° N, 79.18° E, a tropical station in India. The objective of this paper is to bring out the height structure of C2n for different seasons using the long series of data (September 1995 – August 1999 from Indian MST radar. An attempt is also made to understand such changes in the height structure of C2n in relation to background atmospheric parameters such as horizontal winds and associated shears. The height structure of C2n, during the summer monsoon and post-monsoon season, shows specific height features that are found to be related to Tropical Easterly Jet (TEJ winds. It is important to examine the nature of the radar back-scatterers and also to understand the causative mechanism of such scatterers. Aspect sensitivity of the received radar echo is examined for this purpose. It is observed that radar back-scatterers at the upper tropospheric and lower stratospheric heights are more anisotropic, with horizontal correlation length of 10–20 m, as compared to those observed at lower and middle tropospheric heights.Key words. Meteorology and atmospheric dynamics (climatology; tropical meteorology; turbulence

  19. Pollen, water, and wind: Chaotic mixing in a puddle of water

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig

    2016-01-01

    and nutrient distribution in puddles and small ponds.The flow patterns are generated by wind blowing across the puddle surface. This causes a shear stress at the atmospheric interface, which drives a flow in the liquid below. Chaotic mixing can occur if the wind direction changes over time. A fluid patch......This paper talks about how pine pollen grains dispersedin an approximately 1 m wide and 1 cm deep water puddle. The pollen has mixed due to wind blowing across the liquid surface, revealing a strikingly complex flow pattern. The flows revealed by nature’s tracer particles may influence circulation...

  20. Molecular gas species in the lunar atmosphere

    International Nuclear Information System (INIS)

    Hoffman, J.H.; Hodges, R.R. Jr.

    1975-01-01

    There is good evidence for the existence of very small amounts of methane, ammonia and carbon dioxide in the very tenuous lunar atmosphere which consists primarily of the rare gases helium, neon and argon. All of these gases, except 40 Ar, originate from solar wind particles which impinge on the lunar surface and are imbedded in the surface material. Here they may form molecules before being released into the atmosphere, or may be released directly, as is the case for rare gases. Evidence for the existence of the molecular gas species is based on the pre-dawn enhancement of the mass peaks attributable to these compounds in the data from the Apollo 17 Lunar Mass Spectrometer. Methane is the most abundant molecular gas but its concentration is exceedingly low, 1 x 10 3 mol cm -3 , slightly less than 36 Ar, whereas the solar wind flux of carbon is approximately 2000 times that of 36 Ar. Several reasons are advanced for the very low concentration of methane in the lunar atmosphere

  1. Comparisons of spectral characteristics of wind noise between omnidirectional and directional microphones.

    Science.gov (United States)

    Chung, King

    2012-06-01

    Wind noise reduction is a topic of ongoing research and development for hearing aids and cochlear implants. The purposes of this study were to examine spectral characteristics of wind noise generated by directional (DIR) and omnidirectional (OMNI) microphones on different styles of hearing aids and to derive wind noise reduction strategies. Three digital hearing aids (BTE, ITE, and ITC) were fitted to Knowles Electronic Manikin for Acoustic Research. They were programmed to have linear amplification and matching frequency responses between the DIR and OMNI modes. Flow noise recordings were made from 0° to 360° azimuths at flow velocities of 4.5, 9.0, and 13.5 m/s in a quiet wind tunnel. Noise levels were analyzed in one-third octave bands from 100 to 8000 Hz. Comparison of wind noise revealed that DIR generally produced higher noise levels than OMNI for all hearing aids, but it could result in lower levels than OMNI at some frequencies and head angles. Wind noise reduction algorithms can be designed to detect noise levels of DIR and OMNI outputs in each frequency channel, remove the constraint to switch to OMNI in low-frequency channel(s) only, and adopt the microphone mode with lower noise levels to take advantage of the microphone differences.

  2. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    Science.gov (United States)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  3. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  4. On the Feasibility of Tracking the Monsoon History by Using Ancient Wind Direction Records

    Science.gov (United States)

    Gallego, D.; Ribera, P.; Peña-Ortiz, C.; Vega, I.; Gómez, F. D. P.; Ordoñez-Perez, P.; Garcia-Hererra, R.

    2015-12-01

    In this work, we use old wind direction records to reconstruct indices for the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). Since centuries ago, ships departing from the naval European powers circumnavigated Africa in their route to the Far East. Most of these ships took high-quality observations preserved in logbooks. We show that wind direction observations taken aboard ships can be used to track the seasonal wind reversal typical of monsoonal circulations. The persistence of the SW winds in the 20W-17W and 7N-13N region is highly correlated with the WAM strength and Sahel's precipitation. It has been possible to build a WAM index back to the 19th Century. Our results show that in the Sahel, the second half of the 19thCentury was significantly wetter than present day. The relation of the WAM with the ENSO cycle, and the Atlantic Multidecadal Oscillation was low and instable from the 1840s to the 1970s, when they abruptly suffered an unprecedented reinforcement which last up to the present day. The persistence of the SSW wind in the 60E-80E and 8N-12N area has been used to track the ISM onset since the 1880s. We found evidences of later than average onset dates during the 1900-1925 and 1970-1990 periods and earlier than average onset between 1940 and 1965. A significant relation between the ISM onset and the PDO restricted to shifts from negative to positive PDO phases has been found. The most significant contribution of our study is the fact that we have shown that it is possible to build consistent monsoon indices of instrumental character using solely direct observations of wind direction. Our indices have been generated by using data currently available in the ICOADS 2.5 database, but a large amount of wind observations for periods previous to the 20thcentury still remain not explored in thousands of logbooks preserved in British archives. The interest of unveil these data to track the monsoons for more than 200 -or even 300 years- it is

  5. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  6. Dust measurement campaign in the Mantes region atmosphere; Campagne de mesures ``poussieres`` dans l`atmosphere de la region Mantaise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A measurement campaign have been carried out in the Mantes region (West of Paris) in order to determine particulate concentrations and types in the city atmosphere: granulometric particulate concentrations and concentration levels of the various types of airborne particulates (metals and metalloids, black smoke, polycyclic aromatic hydrocarbons, mono-cyclic aromatic hydrocarbons) are presented. The wind direction and speed have been taken into consideration

  7. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  8. Mapping Offshore Winds Around Iceland Using Satellite Synthetic Aperture Radar and Mesoscale Model Simulations

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Nawri, Nikolai

    2015-01-01

    effects, gap flow, coastal barrier jets, and atmospheric gravity waves are not only observed in SAR, but are also modeled well from HARMONIE. Offshore meteorological observations are not available, but wind speed and wind direction measurements from coastal meteorological masts are found to compare well...... to nearby offshore locations observed by SAR. More than 2500 SAR scenes from the Envisat ASAR wide swathmode are used for wind energy resource estimation. The wind energy potential observed from satellite SAR shows high values above 1000 Wm −2 in coastal regions in the south, east, and west, with lower...

  9. Simultaneous observations of SAO and QBO in winds, temperature and ozone in the tropical middle atmosphere over Thumba (8.5 N, 77 E)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Karanam Kishore; Swain, Debadatta; John, Sherine Rachel; Ramkumar, Geetha [Vikram Sarabhai Space Center, Space Physics Laboratory, Thiruvananthapuram (India)

    2011-11-15

    Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002-2007 at Thumba (8.5 N, 77 E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100 km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20-100 km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone

  10. Wind Turbine Wake in Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan Mikael

    to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-ε turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply......) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-ε model’s issues are investigated, of which none of them is found to be adequate. The mixing of the wake...

  11. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    Science.gov (United States)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  12. Towards an automatic wind speed and direction profiler for Wide Field adaptive optics systems

    Science.gov (United States)

    Sivo, G.; Turchi, A.; Masciadri, E.; Guesalaga, A.; Neichel, B.

    2018-05-01

    Wide Field Adaptive Optics (WFAO) systems are among the most sophisticated adaptive optics (AO) systems available today on large telescopes. Knowledge of the vertical spatio-temporal distribution of wind speed (WS) and direction (WD) is fundamental to optimize the performance of such systems. Previous studies already proved that the Gemini Multi-Conjugated AO system (GeMS) is able to retrieve measurements of the WS and WD stratification using the SLOpe Detection And Ranging (SLODAR) technique and to store measurements in the telemetry data. In order to assess the reliability of these estimates and of the SLODAR technique applied to such complex AO systems, in this study we compared WS and WD values retrieved from GeMS with those obtained with the atmospheric model Meso-NH on a rich statistical sample of nights. It has previously been proved that the latter technique provided excellent agreement with a large sample of radiosoundings, both in statistical terms and on individual flights. It can be considered, therefore, as an independent reference. The excellent agreement between GeMS measurements and the model that we find in this study proves the robustness of the SLODAR approach. To bypass the complex procedures necessary to achieve automatic measurements of the wind with GeMS, we propose a simple automatic method to monitor nightly WS and WD using Meso-NH model estimates. Such a method can be applied to whatever present or new-generation facilities are supported by WFAO systems. The interest of this study is, therefore, well beyond the optimization of GeMS performance.

  13. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  14. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind

    Directory of Open Access Journals (Sweden)

    Y. I. Portnyagin

    Full Text Available An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km, extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.

    Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics

  15. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael J. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Go, David B., E-mail: dgo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States)

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  16. Wind uplift of radioactive dust from the ground

    International Nuclear Information System (INIS)

    Makhon'ko, K.P.

    1992-01-01

    Near nuclear power plants the recontamination of the atmosphere near the ground becomes dangerous, if a radioactive zone has formed at the site. Wind can easily carry toxic dust from the polluted territory of neighboring industrial enterprises. Moreover, wind erosion of the soil during the summer or transport of radioactive snow by a snowstorm during the winter can displace the boundaries of the contaminated radioactive zone. In Russia the investigation of wind pickup of radioactive dust from the ground began after a radiation accident occurred at a storage facility in the Southern Urals in 1957, as a result of which a contaminated zone formed in the area. Since the direct mechanism of detachment of dust particles from the ground is not important in studying the results of the raising of radioactive dust into the atmosphere by wind, the authors do not distinguish between wind pickup and wind erosion, and the entire process wind pickup of radioactivity from the ground. After the radiation accident at the Chernobyl nuclear power plant a new generation of investigators began to study wind pickup of radioactive dust from the ground, and the process under consideration was sometimes referred to as wind uplift. The intensity of the process of wind pickup of radioactive dust from the ground is characterized by the wind pickup coefficient α, which is the coefficient of proportionality between the upward flux Q of radioactivity from the ground and the density A of radioactive contamination of the ground: α = Q/A. Physically, the coefficient α is the upward flux of the impurity from the ground with unit contamination density, i.e., the intensity of dust contamination or the fraction of radioactivity picked up by the wind from the ground per unit time. The greatest difficulty in determining α experimentally under dusty conditions is measuring correctly the upward radioactivity flux Q. The author discusses three methods for determining this quantity

  17. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (z{sub i}), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime z{sub i} from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the z{sub i} and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle

  18. Seasonal variation of wind direction fluctuations vs Pasquill stabilities in complex terrain

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, K.P.R.V.

    The authors have studied the seasonal variation of sigma theta (the standard deviation of wind direction fluctuations) vs Pasquill stabilities over complex terrain. It is found that the values of sigma theta are quite high in the month of April...

  19. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    Science.gov (United States)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  20. TWO REGIMES OF INTERACTION OF A HOT JUPITER’S ESCAPING ATMOSPHERE WITH THE STELLAR WIND AND GENERATION OF ENERGIZED ATOMIC HYDROGEN CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G. [Institute of Laser Physics SB RAS, Novosibirsk (Russian Federation); Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L. [Space Research Institute, Austrian Acad. Sci., Graz (Austria); Johnstone, C. P., E-mail: maxim.khodachenko@oeaw.ac.at [Department of Astrophysics, University of Vienna, Vienna (Austria)

    2016-12-01

    The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.

  1. TWO REGIMES OF INTERACTION OF A HOT JUPITER’S ESCAPING ATMOSPHERE WITH THE STELLAR WIND AND GENERATION OF ENERGIZED ATOMIC HYDROGEN CORONA

    International Nuclear Information System (INIS)

    Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G.; Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.

    2016-01-01

    The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.

  2. Optimal trajectory planning for a UAV glider using atmospheric thermals

    Science.gov (United States)

    Kagabo, Wilson B.

    An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider's aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy-efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of "hot spots". Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori.

  3. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-02-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.

  4. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    International Nuclear Information System (INIS)

    Airapetian, Vladimir S.; Usmanov, Arcadi V.

    2016-01-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion

  5. Modal analysis of a grid-connected direct-drive permanent magnet synchronous generator wind turbine system

    DEFF Research Database (Denmark)

    Tan, Jin; Wang, Xiao Ru; Chen, Zhe

    2013-01-01

    In order to study the stability of a grid-connected direct-drive permanent magnet synchronous generator (PMSG) wind turbine systems, this paper presents the modal analysis of a PMSG wind turbine system. A PMSG model suitable for small signal stability analysis is presented. The modal properties...... of a grid-connected PMSG wind turbine system are studied. Then the comprehensive impacts of the shaft model, shaft parameters, operation points and lengths of the transmission line on the modal characteristic of the system are investigated by the eigenvalue analysis method. Meanwhile, the corresponding...... analysis. It offers a better understanding about the essence of the stability of grid-connected PMSG wind turbine system....

  6. The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea

    Science.gov (United States)

    Semedo, Alvaro

    2015-04-01

    Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and

  7. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  8. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    the west-east component of the net wind energy vector, with some further improvement if one also includes the south-north component and annual mean atmospheric pressure. Knowledge of these local correlations can then be used to correct values of annual mean sea for these atmospheric effects. This halves the margin of error (expressed as 95%-confidence interval) for linear trends in a 20-year sea level record. The sensitivity on wind direction has a regional variability, even on a small scale like the Dutch Wadden Sea. Model results illustrate the detailed spatial patterns in inter-annual variability of annual mean sea level. This study also implies that climatic changes in wind direction, or in the strength of winds from a specific direction, may affect local annual mean sea level quite significantly.

  9. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    International Nuclear Information System (INIS)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-01-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  10. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  11. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  12. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    Science.gov (United States)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  13. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic

  14. Effects of flow gradients on directional radiation of human voice.

    Science.gov (United States)

    Pulkki, Ville; Lähivaara, Timo; Huhtakallio, Ilkka

    2018-02-01

    In voice communication in windy outdoor conditions, complex velocity gradients appear in the flow field around the source, the receiver, and also in the atmosphere. It is commonly known that voice emanates stronger towards the downstream direction when compared with the upstream direction. In literature, the atmospheric effects are used to explain the stronger emanation in the downstream direction. This work shows that the wind also has an effect to the directivity of voice also favouring the downstream direction. The effect is addressed by measurements and simulations. Laboratory measurements are conducted by using a large pendulum with a loudspeaker mimicking the human head, whereas practical measurements utilizing the human voice are realized by placing a subject through the roof window of a moving car. The measurements and a simulation indicate congruent results in the speech frequency range: When the source faces the downstream direction, stronger radiation coinciding with the wind direction is observed, and when it faces the upstream direction, radiation is not affected notably. The simulated flow gradients show a wake region in the downstream direction, and the simulated acoustic field in the flow show that the region causes a wave-guide effect focusing the sound in the direction.

  15. Wind Climate Analyses for a 61-M Tower in the Southeast

    International Nuclear Information System (INIS)

    Weber, A.H.

    2003-01-01

    The Savannah River Technology Center's (SRTC) Atmospheric Technologies Group (ATG) has operated nine 61-m tower sites including the Central Climatology (CC) tower which is located near the center of the Savannah River Site (SRS) since 1985. Data from the weather instruments on this tower have provided answers to questions involving risk analyses, dose studies, forecast verifications, and wind/temperature conditions during extreme events and planned tests. Most recently, data from these towers are being used for initial and boundary conditions for computationally intensive numerical simulations using mesoscale forecasting models that are run on a three-hourly basis by ATG for SRS and the surrounding vicinity. We found that a series of wind roses based on relatively short time scales (from two weeks to one hour) were a convenient method to depict the predominant wind speeds and directions at anemometer sites in the Southeast operated by the NWS. That report also revealed some interesting spatial and temporal relationships among thirteen NWS stations in the Carolinas, Georgia, and Florida. Our study here will focus on the CC tower to show changes in the wind speed and direction distributions with height during diurnal and annual cycles. This study will concentrate on mean wind speed and direction statistics

  16. Influence of hurricane wind field in the structure of directional wave spectra

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-04-01

    Extensive field measurements of wind waves in deep waters in the Gulf of Mexico and Caribbean Sea, have been analyzed to describe the spatial structure of directional wave spectra during hurricane conditions. Following Esquivel-Trava et al. (2015) this analysis was made for minor hurricanes (categories 1 and 2) and major hurricanes (categories 3, 4 and 5). In both cases the directionality of the energy wave spectrum is similar in all quadrants. Some differences are observed however, and they are associated with the presence and the shape of swell energy in each quadrant. Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. The aim of the experiments is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. This work has been supported by CONACYT scholarship 164510 and projects RugDisMar (155793), CB-2011-01-168173 and the Department of Physical Oceanography of CICESE. References Esquivel-Trava, B., Ocampo-Torres, F. J., & Osuna, P. (2015). Spatial structure of directional wave spectra in hurricanes. Ocean Dynam., 65(1), 65-76. doi:10.1007/s10236-014-0791-9 Van der

  17. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  18. Standard deviation of wind direction as a function of time; three hours to five hundred seventy-six hours

    International Nuclear Information System (INIS)

    Culkowski, W.M.

    1976-01-01

    The standard deviation of horizontal wind direction sigma/sub theta/ increases with time of averaging up to a maximum value of 104 0 . The average standard deviation of horizontal wind directions averaged over periods of 3, 5, 10, 16, 24, 36, 48, 72, 144, 288, and 576 hours were calculated from wind data obtained from a 100 meter tower in the Oak Ridge area. For periods up to 100 hours, sigma/sub theta/ varies as t/sup .28/; after 100 hours sigma/sub theta/ varies as 6.5 ln t

  19. Investigation on the Possible Use of Magnetic Bearings in Large Direct Drive Wind Turbines

    NARCIS (Netherlands)

    Shrestha, G.; Polinder, H.; Bang, D.; Jassal, A.K.; Ferreira, J.A.

    2009-01-01

    A direct drive generator used in wind turbine has high energy yield compared to other drivetrain topologies and low maintenance is expected as the technology matures. On the other hand direct drive generator weight and size increases rapidly when scaled up to larger units. This paper will

  20. The influence of several changes in atmospheric states over semi-arid areas on the incidence of mental health disorders

    Science.gov (United States)

    Yackerson, Naomy S.; Zilberman, Arkadi; Todder, Doron; Kaplan, Zeev

    2011-05-01

    The incidence of suicide attempts [Deliberate Self Harm (DSH); ICD-10: X60-X84] and psychotic attacks (PsA; ICD-10, F20-F29) in association with atmospheric states, typical for areas close to big deserts, was analyzed. A retrospective study is based on the 4,325 cases of DSH and PsA registered in the Mental Health Center (MHC) of Ben-Gurion University (Be'er-Sheva, Israel) during 2001-2003. Pearson and Spearman test correlations were used; the statistical significance was tested at p 0.1). Correlation coefficients between N SU and N PS and speed WS of westerly wind reaches 0.3 ( p 0.09). Variations in easterly wind direction WD influence N SU and N PS values ( p 0.3). Obviously ,in transition areas located between different regions ,the main role of air streams in meteorological-biological impact can scarcely be exaggerated. An unstable balance in the internal state of a weather-sensitive person is disturbed when the atmospheric state is changed by specific desert winds, which can provoke significant perturbations in meteorological parameters. Results indicate the importance of wind direction, defining mainly the atmospheric situation in semi-arid areas: changes in direction of the easterly wind influence N SU and N PS , while changes in WS are important for mental health under westerly air streams. Obviously, N SU and N PS are more affected by the disturbance of weather from its normal state, for a given season, to which the local population is accustomed, than by absolute values of meteorological parameters.

  1. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  2. A Lightweight, Direct-Drive, Fully Superconducting Generator for Large Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer [Advanced Magnet Lab, Palm Bay, FL (United States); Morrison, Darrell [Emerson Inc., St. Louis, MO (United States); Prince, Vernon Gregory [Advanced Magnet Lab, Palm Bay, FL (United States)

    2014-12-31

    The current trend in the offshore wind turbine industry favors direct-drive generators based on permanent magnets, as they allow for a simple and reliable drivetrain without a gearbox. These generators, however, do not scale very well to high power levels beneficial for offshore wind, and their use in wind turbines over 6 MW is questionable in terms of mass and economic feasibility. Moreover, rare earth materials composing the permanent magnets are becoming less available, more costly and potentially unavailable in the foreseeable future. A stated goal of the DOE is a critical materials strategy that pursues the development of substitute materials and technology for rare earth materials to improve supply chain flexibility and meet the needs of the clean energy economy.Therefore, alternative solutions are needed, in terms of both favorable up-scaling and minimizing or eliminating the use of permanent magnets. The generator design presented in this document addresses both these issues with the development of a fully superconducting generator (FSG) with unprecedented high specific torque. A full-scale, 10-MW, 10-rpm generator will weigh less about 150 metric tons, compared to 300 metric tons for an equivalent direct-drive, permanent magnet generator. The developed concept does not use any rare earth materials in its critical drive components, but rather relies on a superconductor composed of mainly magnesium and boron (MgB2), both of which are in abundant supply from multiple global sources.

  3. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  4. Effect of wind turbine wakes on summer-time wind profiles in the US Great Plains

    Science.gov (United States)

    Rhodes, M. E.; Lundquist, J. K.; Aitken, M.

    2011-12-01

    Wind energy is steadily becoming a significant source of grid electricity in the United States, and the Midwestern United States provides one of the nation's richest wind resources. This study examines the effect of wind turbine wakes on the wind profile in central Iowa. Data were collected using a coherent Doppler LiDAR system located approximately 2.5 rotor diameters north of a row of modern multi-MW wind turbine generators. The prevailing wind direction was from the South allowing the LiDAR to capture wind turbine wake properties; however, a number of periods existed where the LiDAR captured undisturbed flow. The LiDAR system reliably obtained readings up to 200 m above ground level (AGL), spanning the entire rotor disk (~40 m to 120 m AGL) which far surpasses the information provided by traditional wind resource assessment instrumentation. We extract several relevant parameters from the lidar data including: horizontal wind speed, vertical velocity, horizontal turbulence intensity, wind shear, and turbulent kinetic energy (TKE). Each time period at a particular LiDAR measurement height was labeled "wake" or "undisturbed" based on the wind direction at that height. Wake and undisturbed data were averaged separately to create a time-height cross-section averaged day for each parameter. Significant differences between wake and undisturbed data emerge. During the day, wake conditions experience larger values of TKE within the altitudes of the turbine rotor disk while TKE values above the rotor disk are similar between waked and undisturbed conditions. Furthermore, the morning transition of TKE in the atmospheric boundary layer commences earlier during wake conditions than in undisturbed conditions, and the evening decay of TKE persists longer during wake conditions. Waked wind shear is consistently greater than undisturbed periods at the edges of the wind turbine rotor disk (40m & 120m AGL), but especially so during the night where wind shear values during wake

  5. NASA's GMAO Atmospheric Motion Vectors Simulator: Description and Application to the MISTiC Winds Concept

    Science.gov (United States)

    Carvalho, David; McCarty, Will; Errico, Ron; Prive, Nikki

    2018-01-01

    An atmospheric wind vectors (AMVs) simulator was developed by NASA's GMAO to simulate observations from future satellite constellation concepts. The synthetic AMVs can then be used in OSSEs to estimate and quantify the potential added value of new observations to the present Earth observing system and, ultimately, the expected impact on the current weather forecasting skill. The GMAO AMV simulator is a tunable and flexible computer code that is able to simulate AMVs expected to be derived from different instruments and satellite orbit configurations. As a case study and example of the usefulness of this tool, the GMAO AMV simulator was used to simulate AMVs envisioned to be provided by the MISTiC Winds, a NASA mission concept consisting of a constellation of satellites equipped with infrared spectral midwave spectrometers, expected to provide high spatial and temporal resolution temperature and humidity soundings of the troposphere that can be used to derive AMVs from the tracking of clouds and water vapor features. The GMAO AMV simulator identifies trackable clouds and water vapor features in the G5NR and employs a probabilistic function to draw a subset of the identified trackable features. Before the simulator is applied to the MISTiC Winds concept, the simulator was calibrated to yield realistic observations counts and spatial distributions and validated considering as a proxy instrument to the MISTiC Winds the Himawari-8 Advanced Imager (AHI). The simulated AHI AMVs showed a close match with the real AHI AMVs in terms of observation counts and spatial distributions, showing that the GMAO AMVs simulator synthesizes AMVs observations with enough quality and realism to produce a response from the DAS equivalent to the one produced with real observations. When applied to the MISTiC Winds scanning points, it can be expected that the MISTiC Winds will be able to collect approximately 60,000 wind observations every 6 hours, if considering a constellation composed of

  6. Modelling and Analysis of Radial Flux Surface Mounted Direct-Driven PMSG in Small Scale Wind Turbine

    Directory of Open Access Journals (Sweden)

    Theint Zar Htet

    2017-11-01

    Full Text Available This paper presents the modelling and analysis of permanent magnet synchronous generator (PMSG which are used in direct driven small scale wind turbines. The 3 kW PM generator which is driven directly without gear system is analyzed by Ansoft Maxwell 2D RMxprt. The performance analysis of generator includes the cogging torque in two teeth, induced coil voltages under load, winding current under load, airgap flux density distribution and so on. The modelling analysis is based on the 2D finite element techniques. In an electrical machine, an accurate determination of the geometry parameters is a vital role. The proper performance results of 3kW PMSG in small scale wind turbine can be seen in this paper.

  7. SUMO: A small unmanned meteorological observer for atmospheric boundary layer research

    International Nuclear Information System (INIS)

    Reuder, J; Jonassen, M; Mayer, S; Brisset, P; Mueller, M

    2008-01-01

    A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around HofsjoUkull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 deg. C and wind speeds up to 15 m s -1 . With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes

  8. SUMO: A small unmanned meteorological observer for atmospheric boundary layer research

    Energy Technology Data Exchange (ETDEWEB)

    Reuder, J; Jonassen, M; Mayer, S [Geophysical Institute, University of Bergen, Allegaten 70, 5009 Bergen (Norway); Brisset, P [Ecole Nationale de l' Aviation Civile (ENAC), 7 avenue Edouard Belin, 31055 Toulouse (France); Mueller, M [Orleansstrasse 26a, 31135 Hildesheim (Germany)], E-mail: joachim.reuder@gfi.uib.no, E-mail: pascal.brisset@enac.fr, E-mail: marius.jonassen@gfi.uib.no, E-mail: martin@pfump.org, E-mail: stephanie.mayer@gfi.uib.no

    2008-05-01

    A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around HofsjoUkull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 deg. C and wind speeds up to 15 m s{sup -1}. With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes.

  9. Statistical modeling of temperature, humidity and wind fields in the atmospheric boundary layer over the Siberian region

    Science.gov (United States)

    Lomakina, N. Ya.

    2017-11-01

    The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.

  10. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    Science.gov (United States)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  11. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  12. Direct cosmic ray muons and atmospheric neutrinos

    International Nuclear Information System (INIS)

    Ryazhskaya, O.G.; Volkova, L.V.; Zatsepin, G.T.

    2005-01-01

    A possible contribution of very short living particles (particles with life-time much shorter than that of charmed particles), for example, resonances, into cosmic ray muon and atmospheric neutrino fluxes (direct muons and neutrinos) is estimated. This contribution could become of the same order of magnitude as that from pions and kaons (conventional) already at energies of hundreds TeV and tens TeV for muons and muon neutrinos coming to the sea level in the vertical direction correspondingly. Of course, the estimation has quite a qualitative character and even it is quite arbitrary but it is necessary to keep this contribution in mind when studying EAS, cosmic ray muon component or trying to interpret data of experiments on cosmic neutrino searching at high energies

  13. Preliminary study of long-term wind characteristics of the Mexican Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2009-01-01

    Mexico's Yucatan Peninsula is one of the most promising areas for wind energy development within the Latin American region but no comprehensive assessment of wind resource has been previously published. This research presents a preliminary analysis of the meteorological parameters relevant to the wind resource in order to find patterns in their long-term behaviour and to establish a foundation for subsequent research into the wind power potential of the Yucatan Peninsula. Three meteorological stations with data measured for a period between 10 and 20 years were used in this study. The monthly trends of ambient temperature, atmospheric pressure and wind speed data were identified and are discussed. The directional behaviour of the winds, their frequency distributions and the related Weibull parameters are presented. Wind power densities for the study sites have been estimated and have been shown to be relatively low (wind power class 1), though a larger number of suitable sites needs to be studied before a definitive resource evaluation can be reported.

  14. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  15. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...

  16. Wind-stilling in the light of wind speed measurements: the Czech experience

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Valík, A.; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Možný, M.

    2018-01-01

    Roč. 74 (2018), s. 131-143 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:86652079 Keywords : universal anemograph * vaisala wind-speed sensors * wind speed * homogenisation * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  17. Wind Plant Power Optimization and Control under Uncertainty

    Science.gov (United States)

    Jha, Pankaj; Ulker, Demet; Hutchings, Kyle; Oxley, Gregory

    2017-11-01

    The development of optimized cooperative wind plant control involves the coordinated operation of individual turbines co-located within a wind plant to improve the overall power production. This is typically achieved by manipulating the trajectory and intensity of wake interactions between nearby turbines, thereby reducing wake losses. However, there are various types of uncertainties involved, such as turbulent inflow and microscale and turbine model input parameters. In a recent NREL-Envision collaboration, a controller that performs wake steering was designed and implemented for the Longyuan Rudong offshore wind plant in Jiangsu, China. The Rudong site contains 25 Envision EN136-4 MW turbines, of which a subset was selected for the field test campaign consisting of the front two rows for the northeasterly wind direction. In the first row, a turbine was selected as the reference turbine, providing comparison power data, while another was selected as the controlled turbine. This controlled turbine wakes three different turbines in the second row depending on the wind direction. A yaw misalignment strategy was designed using Envision's GWCFD, a multi-fidelity plant-scale CFD tool based on SOWFA with a generalized actuator disc (GAD) turbine model, which, in turn, was used to tune NREL's FLORIS model used for wake steering and yaw control optimization. The presentation will account for some associated uncertainties, such as those in atmospheric turbulence and wake profile.

  18. Wind-Driven Waves in Tampa Bay, Florida

    Science.gov (United States)

    Gilbert, S. A.; Meyers, S. D.; Luther, M. E.

    2002-12-01

    Turbidity and nutrient flux due to sediment resuspension by waves and currents are important factors controlling water quality in Tampa Bay. During December 2001 and January 2002, four Sea Bird Electronics SeaGauge wave and tide recorders were deployed in Tampa Bay in each major bay segment. Since May 2002, a SeaGauge has been continuously deployed at a site in middle Tampa Bay as a component of the Bay Regional Atmospheric Chemistry Experiment (BRACE). Initial results for the summer 2002 data indicate that significant wave height is linearly dependent on wind speed and direction over a range of 1 to 12 m/s. The data were divided into four groups according to wind direction. Wave height dependence on wind speed was examined for each group. Both northeasterly and southwesterly winds force significant wave heights that are about 30% larger than those for northwesterly and southeasterly winds. This difference is explained by variations in fetch due to basin shape. Comparisons are made between these observations and the results of a SWAN-based model of Tampa Bay. The SWAN wave model is coupled to a three-dimensional circulation model and computes wave spectra at each model grid cell under observed wind conditions and modeled water velocity. When SWAN is run without dissipation, the model results are generally similar in wave period but about 25%-50% higher in significant wave height than the observations. The impact of various dissipation mechanisms such as bottom drag and whitecapping on the wave state is being investigated. Preliminary analyses on winter data give similar results.

  19. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  20. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  1. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  2. Wind Energy Department. Annual progress report 2001

    International Nuclear Information System (INIS)

    Skrumsager, B.; Larsen, S.; Hauge Madsen, P.

    2002-10-01

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  3. Wind Energy Department. Annual progress report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Skrumsager, B.; Larsen, S.; Hauge Madsen, P. (eds.)

    2002-10-01

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  4. Wind farm density and harvested power in very large wind farms: A low-order model

    Science.gov (United States)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  5. Effects of Turbine Spacings in Very Large Wind Farms

    DEFF Research Database (Denmark)

    farm. LES simulations of large wind farms are performed with full aero-elastic Actuator Lines. The simulations investigate the inherent dynamics inside wind farms in the absence of atmospheric turbulence compared to cases with atmospheric turbulence. Resulting low frequency structures are inherent...... in wind farms for certain turbine spacings and affect both power production and loads...

  6. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    Science.gov (United States)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  7. Atmospheric electrical field measurements near a fresh water reservoir and the formation of the lake breeze

    Directory of Open Access Journals (Sweden)

    Francisco Lopes

    2016-06-01

    Full Text Available In order to access the effect of the lakes in the atmospheric electrical field, measurements have been carried out near a large man-made lake in southern Portugal, the Alqueva reservoir, during the ALqueva hydro-meteorological EXperiment 2014. The purpose of these conjoint experiments was to study the impact of the Alqueva reservoir on the atmosphere, in particular on the local atmospheric electric environment by comparing measurements taken in the proximity of the lake. Two stations 10 km apart were used, as they were located up- and down-wind of the lake (Amieira and Parque Solar, respectively, in reference to the dominant northwestern wind direction. The up-wind station shows lower atmospheric electric potential gradient (PG values than the ones observed in the down-wind station between 12 and 20 UTC. The difference in the atmospheric electric PG between the up-wind and the down-wind station is ~30 V/m during the day. This differential occurs mainly during the development of a lake breeze, between 10 and 18 UTC, as a consequence of the surface temperature gradient between the surrounding land and the lake water. In the analysis presented, a correlation is found between the atmospheric electric PG differences and both wind speed and temperature gradients over the lake, thus supporting the influence of the lake breeze over the observed PG variation in the two stations. Two hypotheses are provided to explain this observation: (1 The air that flows from the lake into the land station is likely to increase the local electric conductivity through the removal of ground dust and the transport of cleaner air from higher altitudes with significant light ion concentrations. With such an increase in conductivity, it is expected to see a reduction of the atmospheric electric PG; (2 the resulting air flow over the land station carries negative ions formed by wave splashing in the lake's water surface, as a result of the so-called balloelectric effect

  8. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  9. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

    Science.gov (United States)

    Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.

    2010-09-01

    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

  10. Wind energy, status and opportunities

    International Nuclear Information System (INIS)

    Van Wijk, A.

    1994-01-01

    Wind energy is diffuse but was widely used before the industrial revolution. The first oil crisis triggered renewed interest in wind energy technology in remote areas. Winds develop when solar radiation reaches the earth's highly varied surface unevenly, creating temperature density and pressure differences. The earth's atmosphere has to circulate to transport heat from the tropics towards the poles. On a global scale, these atmospheric currents work as an immense energy transfer medium. Three main applications can be distinguished: wind pumps, off-grid applications and grid-connected applications. The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime (the wind energy potential is proportional to v 3 where v is the wind speed), the efficiency and availability of the wind turbine. The main gains are achieved as a result of improved reliability. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives, it can be calculated by the avoided costs of damage to flora, fauna and mankind due to acid rain deposition, enhancement of the greenhouse effect. The environmental aspects are bird hindrance, noise, telecommunication interference and safety. 2 tabs., 1 fig

  11. Marine wind data presentation using wind transition matrix

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.J.; Gouveia, A.D.; Desai, R.G.P.

    One of the methods to simulate the random wind behaviour through time is to use historical wind data presented in the form of wind transition matrix. Here it is assumed that, the probability that the wind will shift from one direction to another...

  12. An intercomparison of mesoscale models at simple sites for wind energy applications

    DEFF Research Database (Denmark)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria

    2017-01-01

    of the output from 25 NWP models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated sing a number of statistical properties relevant to wind energy and verified with observations. On average the models have small wind speed biases offshore and aloft ( ... %) and larger biases closer to the surface over land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that using a grid spacing larger than 3 km...... decreases the accuracy of the models, but we found no evidence that using a grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction....

  13. Wind Farm parametrization in the mesoscale model WRF

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2012-01-01

    , but are parametrized as another sub-grid scale process. In order to appropriately capture the wind farm wake recovery and its direction, two properties are important, among others, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual...... the extracted force is proportional to the turbine area interfacing a grid cell. The sub-grid scale wake expansion is achieved by adding turbulence kinetic energy (proportional to the extracted power) to the flow. The validity of both wind farm parametrizations has been verified against observational data. We...... turbines produce a thrust dependent on the background velocity. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, which is responsible for the expansion, is taken into account. Furthermore, since the model horizontal distance is several times...

  14. An Examination of the Quality of Wind Observations with Smartphones

    Science.gov (United States)

    Hintz, Kasper; Vedel, Henrik; Muñoz-Gomez, Juan; Woetmann, Niels

    2017-04-01

    Over the last years, the number of devices connected to the internet has increased significantly making it possible for internal and external sensors to communicate via the internet, opening up many possibilities for additional data for use in the atmospheric sciences. Vaavud has manufactured small anemometer devices which can measure wind speed and wind direction when connected to a smartphone. This work examines the quality of such crowdsourced Handheld Wind Observations (HWO). In order to examine the quality of the HWO, multiple idealised measurement sessions were performed at different sites in different atmospheric conditions. In these sessions, a high-precision ultrasonic anemometer was installed to work as a reference measurement. The HWO are extrapolated to 10 m in order to compare these to the reference observations. This allows us to examine the effect of stability correction in the surface layer and the quality of height extrapolated HWO. The height extrapolation is done using the logarithmic wind profile law with and without stability correction. Furthermore, this study examines the optimal ways of using traditional observations and numerical models to validate HWO. In order to do so, a series of numerical reanalysis have been run for a period of 5 months to quantise the effect of including crowdsourced HWO in a traditional observation dataset.

  15. Validation of wind loading codes by experiments

    NARCIS (Netherlands)

    Geurts, C.P.W.

    1998-01-01

    Between 1994 and 1997, full scale measurements of the wind and wind induced pressures were carried out on the main building of Eindhoven University of Technology. Simultaneously, a comparative wind tunnel experiment was performed in an atmospheric boundary layer wind tunnel. In this paper, the

  16. Wind characteristics on the Yucatan Peninsula based on short term data from meteorological stations

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2010-01-01

    Due to the availability of sparsely populated and flat open terrain, the Yucatan Peninsula located in eastern Mexico is a promising region from the perspective of wind energy development. Study of the diurnal and seasonal wind resource is an important stage in the move towards commercial exploitation of wind power in this Latin American region. An analysis of the characteristics of the wind resource of the Yucatan Peninsula is presented in this paper, based on 10 min averaged wind speed data from nine meteorological stations, between 2000 and 2007. Hourly and monthly patterns of the main environmental parameters have been examined. Highly directional behaviour was identified that reflects the influence of winds coming from the Caribbean Sea and the Gulf of Mexico. The characteristics of the wind speed variation observed at the studied sites reflected their proximity to the coast and whether they were influenced by wind coming predominantly from over the land or predominantly from over the sea. The atmospheric stability over the eastern seas of the Yucatan Peninsula was also analysed to assess thermal effects for different wind directions. The findings were consistent with the variation in average wind speeds observed at the coastal sites where winds came predominantly from over the sea. The research presented here is to be used as a basis for a wind atlas for the Yucatan Peninsula.

  17. Estonian wind climate

    International Nuclear Information System (INIS)

    Kull, Ain

    1999-01-01

    Estonia is situated on the eastern coast of the Baltic Sea. This is a region with intensive cyclonic activity and therefore with a relatively high mean wind speed. Atmospheric circulation and its seasonal variation determine the general character of the Estonian wind regime over the Atlantic Ocean and Eurasia. However, the Baltic sea itself is a very important factor affecting wind climate, it has an especially strong influence on the wind regime in costal areas. The mean energy density (W/m 2 ) is a wind energy characteristic that is proportional to the third power of wind speed and describes energy available in a flow of air through a unit area. The mean energy density is a characteristic which has practical importance in regional assessment of snowdrift, storm damage and wind energy

  18. Grid Compatibility of Variable Speed Wind Turbines with Directly Coupled Synchronous Generator and Hydro-Dynamically Controlled Gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.; Poeller, M. [DIgSILENT GmbH, 72810 Gomaringen (Germany); Basteck, A.; Tilscher, M.; Pfister, J. [Voith Turbo GmbH and Co. KG, 74564 Crailsheim (Germany)

    2006-07-01

    This paper analyzes grid integration aspects of a new type of variable-speed wind turbine, the directly coupled synchronous generator with hydro-dynamically controlled gearbox. In contrast to existing wind generators using synchronous generators, the generator of this concept is directly connected to the AC grid, without the application of any power electronics converter. Variable speed operation of the turbine is mechanically achieved by a gear box with continuously controllable variable gear box ratio. For this purpose, a detailed dynamic model of a 2 MW wind turbine with a Voith WinDrive has been implemented using the modelling environment of the simulation software DIgSILENT PowerFactory. For investigating grid compatibility aspects of this new wind generator concept, a model of a 50 MW wind farm, with typical layout, based on 25 wind turbines of the 2 MW-class has been analyzed. This paper focuses on the compatibility of the new concept with existing connection standards, such as the E.ON grid code. Of special interest are typical stability phenomena of synchronous generators, such as transient and oscillatory stability as well as power quality issues like voltage flicker. The results of stability studies are presented and possible advantages of the new concept with special focus on offshore applications are discussed.

  19. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Science.gov (United States)

    Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David

    2017-12-01

    The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower

  20. Wind Energy Department annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, B.D.; Riis, U. (eds.)

    2003-12-01

    Research and development activities of the Wind Energy Department range from boundary layer meteorology, fluid dynamics, and structural mechanics to power and control engineering as well as wind turbine loading and safety. The overall purpose of our work is to meet the needs for knowledge, methods and procedures from government, the scientific community, and the wind turbine industry in particular. Our assistance to the wind turbine manufacturers serve to pave the way for technological development and thus further the exploitation of wind energy worldwide. We do this by means of research and innovation, education, testing and consultancy. In providing services for the wind turbine industry, we are involved in technology development, design, testing, procedures for operation and maintenance, certification and international wind turbine projects s as well as the solution of problems encountered in the application of wind energy, e.g. grid connection. A major proportion of these activities are on a commercial basis, for instance consultancy, software development, accredited testing of wind turbines and blades as well as approval and certification in co-operation with Det Norske Veritas. The departments activities also include research into atmospheric physics and environmental issues related to the atmosphere. One example is the development of online warning systems for airborne bacteria and other harmful substances. The department is organized in programmes according to its main scientific and technical activities. Research programmes: 1) Aeroelastic Design, AED; 2) Atmospheric Phyrics, ATM; 3) Electrical DEsign and Control, EDS; 4) Wind Power Meteorology, VKM; 5) Wind Turbines, VIM; 6) Wind Turbine Diagnostics, VMD. Commercial programmes: 1) The Test Station for Large Wind Turbines, Hoevsoere, HOeV; 2) Risoe Wind Consult, INR; 3) Wind Turbine Testing; 4) Sparkaer Blade Test Centre.(au)

  1. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    International Nuclear Information System (INIS)

    Ahmed, D; Ahmad, A

    2013-01-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  2. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  3. Atmospheric stability in CFD &NDASH; Representation of the diurnal cycle in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2012-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL), for exam......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL......), for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art CFD models. In order to decrease the uncertainty of wind resource assessment, especially in complex terrain, the effect of thermal stratification on the ABL should be included in such models. The present...

  4. An Empirical Study of Atmospheric Correction Procedures for Regional Infrasound Amplitudes with Ground Truth.

    Science.gov (United States)

    Howard, J. E.

    2014-12-01

    This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.

  5. The New WindForS Wind Energy Test Site in Southern Germany

    Science.gov (United States)

    Clifton, A. J.

    2017-12-01

    Wind turbines are increasingly being installed in complex terrain where patchy landcover, forestry, steep slopes, and complex regional and local atmospheric conditions lead to major challenges for traditional numerical weather prediction methods. In this presentation, the new WindForS complex terrain test site will be introduced. WindForS is a southern Germany-based research consortium of more than 20 groups at higher education and research institutes, with strong links to regional government and industry. The new test site will be located in the hilly, forested terrain of the Swabian Alps between Stuttgart and Germany, and will consist of two wind turbines with four meteorological towers. The test site will be used for accompanying ecological research and will also have mobile eddy covariance measurement stations as well as bird and bat monitoring systems. Seismic and noise monitoring systems are also planned. The large number of auxiliary measurements at this facility are intended to allow the complete atmosphere-wind turbine-environment-people system to be characterized. This presentation will show some of the numerical weather prediction work and measurements done at the site so far, and inform the audience about WindForS' plans for the future. A major focus of the presentation will be on opportunities for collaboration through field campaigns or model validation.

  6. Variational approach to direct and inverse problems of atmospheric pollution studies

    Science.gov (United States)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2016-04-01

    We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition

  7. SPICAM: studying the global structure and composition of the Martian atmosphere

    Science.gov (United States)

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  8. Assessing the effect of wind speed/direction changes on urban heat island intensity of Istanbul.

    Science.gov (United States)

    Perim Temizoz, Huriye; Unal, Yurdanur S.

    2017-04-01

    Assessing the effect of wind speed/direction changes on urban heat island intensity of Istanbul. Perim Temizöz, Deniz H. Diren, Cemre Yürük and Yurdanur S. Ünal Istanbul Technical University, Department of Meteorological Engineering, Maslak, Istanbul, Turkey City or metropolitan areas are significantly warmer than the outlying rural areas since the urban fabrics and artificial surfaces which have different radiative, thermal and aerodynamic features alter the surface energy balance, interact with the regional circulation and introduce anthropogenic sensible heat and moisture into the atmosphere. The temperature contrast between urban and rural areas is most prominent during nighttime since heat is absorbed by day and emitted by night. The intensity of the urban heat island (UHI) vary considerably depending on the prevailent meteorological conditions and the characteristics of the region. Even though urban areas cover a small fraction of Earth, their climate has greater impact on the world's population. Over half of the world population lives in the cities and it is expected to rise within the coming decades. Today almost one fifth of the Turkey's population resides in Istanbul with the percentage expected to increase due to the greater job opportunities compared to the other cities. Its population has been increased from 2 millions to 14 millions since 1960s. Eventually, the city has been expanded tremendously within the last half century, shifting the landscape from vegetation to built up areas. The observations of the last fifty years over Istanbul show that the UHI is most pronounced during summer season. The seasonal temperature differences between urban and suburban sites reach up to 3 K and roughly haft degree increase in UHI intensity is observed after 2000. In this study, we explore the possible range of heat load and distribution over Istanbul for different prevailing wind conditions by using the non-hydrostatic MUKLIMO3 model developed by DWD

  9. Application of nonparametric regression methods to study the relationship between NO2 concentrations and local wind direction and speed at background sites.

    Science.gov (United States)

    Donnelly, Aoife; Misstear, Bruce; Broderick, Brian

    2011-02-15

    Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling

  10. Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

    Science.gov (United States)

    Nandi, Tarak Nath

    Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity. Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings. The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P

  11. State of the Art and Trends in Wind Resource Assessment

    Directory of Open Access Journals (Sweden)

    Oliver Probst

    2010-06-01

    Full Text Available Given the significant rise of the utilization of wind energy the accurate assessment of the wind potential is becoming increasingly important. Direct applications of wind assessment techniques include the creation of wind maps on a local scale (typically 5 20 km and the micrositing of wind turbines, the estimation of vertical wind speed variations, prospecting on a regional scale (>100 km, estimation of the long-term wind resource at a given site, and forecasting. The measurement of wind speed and direction still widely relies on cup anemometers, though sonic anemometers are becoming increasingly popular. Moreover, remote sensing by Doppler techniques using the backscattering of either sonic beams (SODAR or light (LIDAR allowing for vertical profiling well beyond hub height are quickly moving into the mainstream. Local wind maps are based on the predicted modification of the regional wind flow pattern by the local atmospheric boundary layer which in turn depends on both topographic and roughness features and the measured wind rose obtained from one or several measurement towers within the boundaries of the planned development site. Initial models were based on linearized versions of the Navier-Stokes equations, whereas more recently full CFD models have been applied to wind farm micrositing. Linear models tend to perform well for terrain slopes lower than about 25% and have the advantage of short execution times. Long-term performance is frequently estimated from correlations with nearby reference stations with concurrent information and continuous time series over a period of at least 10 years. Simple methods consider only point-to-point linear correlations; more advanced methods like multiple regression techniques and methods based on the theory of distributions will be discussed. Both for early prospecting in regions where only scarce or unreliable reference information is available, wind flow modeling on a larger scale (mesoscale is becoming

  12. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  13. Building Chinese wind data for Wind Erosion Prediction System using surrogate US data

    Science.gov (United States)

    Wind erosion is a global problem, especially in arid and semiarid regions of the world, which leads to land degradation and atmosphere pollution. The process-based Wind Erosion Prediction System (WEPS), developed by the USDA, is capable of simulating the windblown soil loss with changing weather and...

  14. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  15. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds

  16. Canadian Estimate of Bird Mortality Due to Collisions and Direct Habitat Loss Associated with Wind Turbine Developments

    Directory of Open Access Journals (Sweden)

    J. Ryan. Zimmerling

    2013-12-01

    Full Text Available We estimated impacts on birds from the development and operation of wind turbines in Canada considering both mortality due to collisions and loss of nesting habitat. We estimated collision mortality using data from carcass searches for 43 wind farms, incorporating correction factors for scavenger removal, searcher efficiency, and carcasses that fell beyond the area searched. On average, 8.2 ± 1.4 birds (95% C.I. were killed per turbine per year at these sites, although the numbers at individual wind farms varied from 0 - 26.9 birds per turbine per year. Based on 2955 installed turbines (the number installed in Canada by December 2011, an estimated 23,300 birds (95% C.I. 20,000 - 28,300 would be killed from collisions with turbines each year. We estimated direct habitat loss based on data from 32 wind farms in Canada. On average, total habitat loss per turbine was 1.23 ha, which corresponds to an estimated total habitat loss due to wind farms nationwide of 3635 ha. Based on published estimates of nest density, this could represent habitat for ~5700 nests of all species. Assuming nearby habitats are saturated, and 2 adults displaced per nest site, effects of direct habitat loss are less than that of direct mortality. Installed wind capacity is growing rapidly, and is predicted to increase more than 10-fold over the next 10-15 years, which could lead to direct mortality of approximately 233,000 birds / year, and displacement of 57,000 pairs. Despite concerns about the impacts of biased correction factors on the accuracy of mortality estimates, these values are likely much lower than those from collisions with some other anthropogenic sources such as windows, vehicles, or towers, or habitat loss due to many other forms of development. Species composition data suggest that < 0.2% of the population of any species is currently affected by mortality or displacement from wind turbine development. Therefore, population level impacts are unlikely

  17. Evaluation of main control room habitability in Japanese LWR (2). Evaluation for applicability of existing atmospheric dispersion models to building wake dispersion by using wind tunnel experiment

    International Nuclear Information System (INIS)

    Fukuda, Ryo; Fujita, Yuko; Yoneda, Jiro; Okabayashi, Kazuki; Tabuse, Shigehiko; Watada, Masayuki

    2009-01-01

    It is necessary to predict the concentration field behind the containment vessel building for the evaluation of main control room habitability in case of the emergency. The concentration field behind the building is very complicated phenomena and the exact prediction of concentration would be very difficult even if philosophical numerical simulation was used. Instead the simple and analytical prediction models (ARCON96, Gifford and Murphy-Campe etc.) have been used for the assessment of main control room habitability. In order to evaluate the previous models, the wind tunnel experiment was carried out. Recent regulatory models of ADMS4 developed by UK-CERC and AERMOD by US-EPA were also compared with this experimental data. Only both the containment vessel and reactor buildings of the typical PWR plant was scaled in 1/200 and the atmospheric stability C-D between C and D of Pasquill-Gifford categories was reproduced as a neutral condition in the wind tunnel experiment. In the wind experiment, the meandering effect for 1 hour was taken into consideration by the so-called overlapping method that a scaled model in the test section of a wind tunnel was rotated. By the rotation of the scaled model, wind directional fluctuations were relatively generated in the test section. The model was rotated at a various speed which was inversely proportional to each frequency of occurrence of a wind direction. Tracer gas was sampled during the rotation of the building model. As a result, we got the 1 hr.-averaged concentration taking a meandering effect into consideration. In this experiment, it is assumed that the frequency distribution of wind direction is Gaussian and horizontal plume width for 1 hr. was expanded to about 1.8 times of plume width based on Pasquill-Gifford chart by 1/5 power law due to the meandering effect. From the experiment, it was found as follows; It seems that meandering effect was not important in the near field behind a building, because strong

  18. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    Science.gov (United States)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  19. Recent advances in non-LTE stellar atmosphere models

    Science.gov (United States)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  20. Ensemble standar deviation of wind speed and direction of the FDDA input to WRF

    Data.gov (United States)

    U.S. Environmental Protection Agency — NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input. variable U_NDG_OLD contains standard...

  1. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    Science.gov (United States)

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. U.S. Hail Frequency and the Global Wind Oscillation

    Science.gov (United States)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  3. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon.

    Science.gov (United States)

    Kumar, Prashant; Fennell, Paul; Britter, Rex

    2008-08-25

    There have been many studies concerning dispersion of gaseous pollutants from vehicles within street canyons; fewer address the dispersion of particulate matter, particularly particle number concentrations separated into the nucleation (10-30 nm or N10-30) or accumulation (30-300 nm or N30-300) modes either separately or together (N10-300). This study aimed to determine the effect of wind direction and speed on particle dispersion in the above size ranges. Particle number distributions (PNDs) and concentrations (PNCs) were measured in the 5-2738 nm range continuously (and in real-time) for 17 days between 7th and 23rd March 2007 in a regular (aspect ratio approximately unity) street canyon in Cambridge (UK), using a newly developed fast-response differential mobility spectrometer (sampling frequency 0.5 Hz), at 1.60 m above the road level. The PNCs in each size range, during all wind directions, were better described by a proposed two regime model (traffic-dependent and wind-dependent mixing) than by simply assuming that the PNC was inversely proportional to the wind speed or by fitting the data with a best-fit single power law. The critical cut-off wind speed (Ur,crit) for each size range of particles, distinguishing the boundary between these mixing regimes was also investigated. In the traffic-dependent PNC region (UrUrwind speed and direction. In the wind speed dependent PNC region (UrUr>Ur,critUr,crit), concentrations were inversely proportional to Ur irrespective of any particle size range and wind directions. The wind speed demarcating the two regimes (Ur,critUr,crit) was 1.23+/-0.55 m s(-1) for N10-300, (1.47+/-0.72 m s(-1)) for N10-30 but smaller (0.78+/-0.29 m s(-1)) for N30-300.

  4. The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice.

    Science.gov (United States)

    Contini, D; Gambaro, A; Belosi, F; De Pieri, S; Cairns, W R L; Donateo, A; Zanotto, E; Citron, M

    2011-09-01

    The direct influence of ship traffic on atmospheric levels of coarse and fine particulate matter (PM(2.5), PM(10)) and fifteen polycyclic aromatic hydrocarbons (PAHs) has been estimated in the urban area of Venice. Data analysis has been performed on results collected at three sites over the summer, when ship traffic is at a maximum. Results indicate that monitoring of the PM daily concentrations is not sufficiently detailed for the evaluation of this contribution, even though it could be useful for specific markers such as PAHs. Therefore a new methodology, based on high temporal resolution measurements coupled with wind direction information and the database of ship passages of the Harbour Authority of Venice has been developed. The sampling sites were monitored with optical detectors (DustTrack(®) and Mie pDR-1200) operating at a high temporal resolution (20s and 1s respectively) for PM(2.5) and PM(10). PAH in the particulate and gas phases were recovered from quartz fibre filters and polyurethane foam plugs using pressurised solvent extraction, the extracts were then analysed by gas chromatography- high-resolution mass spectrometry. Our results shows that the direct contribution of ships traffic to PAHs in the gas phase is 10% while the contribution to PM(2.5) and to PM(10) is from 1% up to 8%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053

    Science.gov (United States)

    Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  6. AN INVESTIGATION OF THE SOURCES OF EARTH-DIRECTED SOLAR WIND DURING CARRINGTON ROTATION 2053

    Energy Technology Data Exchange (ETDEWEB)

    Fazakerley, A. N.; Harra, L. K.; Van Driel-Gesztelyi, L., E-mail: a.fazakerley@ucl.ac.uk [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode ’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  7. Direct drive TFPM wind generator analytical design optimised for minimum active mass usage

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Leban, Krisztina Monika; Ritchie, Ewen

    2013-01-01

    The paper focuses of the Transverse Flux Permanent (TFPM) Generator as a solution for offshore direct drive wind turbines. A complex design algorithm is presented. Two topologies (U core and C core) of TFPM were considered. The analytical design is optimised using a combination of genetic...

  8. Assessing spring direct mortality to avifauna from wind energy facilities in the Dakotas

    Science.gov (United States)

    Graff, Brianna J.; Jenks, Jonathan A.; Stafford, Joshua D.; Jensen, Kent C.; Grovenburg, Troy W.

    2016-01-01

    The Northern Great Plains (NGP) contains much of the remaining temperate grasslands, an ecosystem that is one of the most converted and least protected in the world. Within the NGP, the Prairie Pothole Region (PPR) provides important habitat for >50% of North America's breeding waterfowl and many species of shorebirds, waterbirds, and grassland songbirds. This region also has high wind energy potential, but the effects of wind energy developments on migratory and resident bird and bat populations in the NGP remains understudied. This is troubling considering >2,200 wind turbines are actively generating power in the region and numerous wind energy projects have been proposed for development in the future. Our objectives were to estimate avian and bat fatality rates for wind turbines situated in cropland- and grassland-dominated landscapes, document species at high risk to direct mortality, and assess the influence of habitat variables on waterfowl mortality at 2 wind farms in the NGP. From 10 March to 7 June 2013–2014, we completed 2,398 searches around turbines for carcasses at the Tatanka Wind Farm (TAWF) and the Edgeley-Kulm Wind Farm (EKWF) in South Dakota and North Dakota. During spring, we found 92 turbine-related mortalities comprising 33 species and documented a greater diversity of species (n = 30) killed at TAWF (predominately grassland) than at EKWF (n = 9; predominately agricultural fields). After accounting for detection rates, we estimated spring mortality of 1.86 (SE = 0.22) deaths/megawatt (MW) at TAWF and 2.55 (SE = 0.51) deaths/MW at EKWF. Waterfowl spring (Mar–Jun) fatality rates were 0.79 (SE = 0.11) and 0.91 (SE = 0.10) deaths/MW at TAWF and EKWF, respectively. Our results suggest that future wind facility siting decisions consider avoiding grassland habitats and locate turbines in pre-existing fragmented and converted habitat outside of high densities of breeding waterfowl and major migration corridors.

  9. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  10. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2017-12-01

    Full Text Available The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8–70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET. Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE. A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports, with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range

  11. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    , superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large-eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully...

  12. Short-term landfill methane emissions dependency on wind.

    Science.gov (United States)

    Delkash, Madjid; Zhou, Bowen; Han, Byunghyun; Chow, Fotini K; Rella, Chris W; Imhoff, Paul T

    2016-09-01

    Short-term (2-10h) variations of whole-landfill methane emissions have been observed in recent field studies using the tracer dilution method for emissions measurement. To investigate the cause of these variations, the tracer dilution method is applied using 1-min emissions measurements at Sandtown Landfill (Delaware, USA) for a 2-h measurement period. An atmospheric dispersion model is developed for this field test site, which is the first application of such modeling to evaluate atmospheric effects on gas plume transport from landfills. The model is used to examine three possible causes of observed temporal emissions variability: temporal variability of surface wind speed affecting whole landfill emissions, spatial variability of emissions due to local wind speed variations, and misaligned tracer gas release and methane emissions locations. At this site, atmospheric modeling indicates that variation in tracer dilution method emissions measurements may be caused by whole-landfill emissions variation with wind speed. Field data collected over the time period of the atmospheric model simulations corroborate this result: methane emissions are correlated with wind speed on the landfill surface with R(2)=0.51 for data 2.5m above ground, or R(2)=0.55 using data 85m above ground, with emissions increasing by up to a factor of 2 for an approximately 30% increase in wind speed. Although the atmospheric modeling and field test are conducted at a single landfill, the results suggest that wind-induced emissions may affect tracer dilution method emissions measurements at other landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Wake characteristics of wind turbines in utility-scale wind farms

    Science.gov (United States)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  14. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  15. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  16. Design of Transverse Flux Permanent Magnet Machines for Large Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Bang, D.

    2010-01-01

    In order to maximize the energy harnessed, to minimize the cost, to improve the power quality and to ensure safety together with the growth of the size, various wind turbine concepts have been developed during last three decades. Different generator systems such as geared and direct-drive generator

  17. The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation.

    Science.gov (United States)

    Masiol, Mauro; Squizzato, Stefania; Ceccato, Daniele; Pavoni, Bruno

    2015-01-01

    The concentrations of selected elemental tracers were determined in the aerosol of a semi-rural coastal site near Venice (Italy). Size-segregated aerosol samples were collected using an 8-stage cascade impactor set at 15m above ground, during the cold season (late autumn and winter), when high levels of many pollutants are known to cause risks for human health. From the experimental data, information was extracted on potential pollutant sources by investigating the relationships between elements in the different size fractions. Moreover, an approach to highlight the importance of local atmospheric circulation and air mass origin in influencing the PM composition and fractional distribution is proposed. Anthropogenic elements are strongly inter-correlated in the submicrometric (4 μm) Fe and Zn are well correlated and are probably linked to tire and brake wear emissions. Regarding atmospheric circulation, results show increasing levels of elements related to pollution sources (S, K, Mn, Ni, Cu, Zn) when air masses come from Central and Eastern Europe direction and on the ground wind blows from NWN-N-NE (from mainland Venice). Low wind speed and high percentage of wind calm hours favor element accumulation in the submicrometric and intermediate modes. Furthermore, strong winds favor the formation of sea-spray and the increase of Si in the coarse mode due to the resuspension of sand fine particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Numerical Wind Atlas - the KAMM/WAsP Method

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H P; Rathmann, O; Mortensen, N G; Landberg, L

    2001-06-01

    The method of combining the Karlsruhe Atmospheric Mesoscale Model, KAMM, with the Wind Atlas Analysis and Application Program, WAsP, to make local predictions of the wind resource is presented. It combines the advantages of meso-scale modeling - overview over a big region and use of global data bases - with the local prediction capacity of the small-scale model WAsP. Results are presented for Denmark, Ireland, Northern Portugal and Galicia, and the Faroe Islands. Wind atlas files were calculated from wind data simulated with the meso-scale model using model grids with a resolution of 2.5, 5, and 10 km. Using these wind atlas files in WAsP the local prediction of the mean wind does not depend on the grid resolution of the meso-scale model. The local predictions combining KAMM and WAsP are much better than simple interpolation of the wind simulated by KAMM. In addition an investigation was made on the dependence of wind atlas data on the size of WAsP-maps. It is recommended that a topographic map around a site should extend 10 km out from it. If there is a major roughness change like a coast line further away in a frequent wind direction this should be included at even greater distances, perhaps up to 20 km away.

  19. Atmospheric corrosion of low carbon steel in a polar marine environment. Study of the effect of wind regime; Corrosion atmosferica del acero bajo en carbono en un ambiente marino polar. Estudio del efecto del regimen de vientos

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, S.; Chico, B.; Fuente, D. de la; Morcillo, M.

    2007-07-01

    The present work studies the atmospheric corrosion of carbon steel (UNE-EN 10130) in a sub-polar marine environment (Artigas Antarctic Scientific Base (BCAA), Uruguay) as a function of site atmospheric salinity and exposure time. A linear relationship is established between corrosion rate and airborne salinity deposition rate, valid in the deposition range encountered (125-225 mg Cl-l/m{sup 2}.d) and a bi logarithmic relationship established between corrosion and exposure time (1-4 years). Atmospheric salinity is related with the monthly wind speed average, based on the concept of the wind run. chloride ion deposition rates of less than 300 mg Cl-l/m{sup 2}.d are related with remote (oceanic) winds and coastal winds basically of speeds between 1-40 km/h, while higher deposition rates (300-700 mg Cl-/m{sup 2}.d) correspond to coastal marine winds of a certain persistence with speeds of between 41-80 km/h. (Author) 39 refs.

  20. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    Directory of Open Access Journals (Sweden)

    Xiang-dong Chang

    2017-06-01

    Full Text Available Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact. Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  1. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope.

    Science.gov (United States)

    Chang, Xiang-Dong; Peng, Yu-Xing; Zhu, Zhen-Cai; Gong, Xian-Sheng; Yu, Zhang-Fa; Mi, Zhen-Tao; Xu, Chun-Ming

    2017-06-09

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope's tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact). Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  2. Forecasting wind power production from a wind farm using the RAMS model

    DEFF Research Database (Denmark)

    Tiriolo, L.; Torcasio, R. C.; Montesanti, S.

    2015-01-01

    of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available......The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex...... and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution...

  3. Mesoscale to microscale wind farm flow modeling and evaluation

    DEFF Research Database (Denmark)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    2017-01-01

    The increasing size of wind turbines, with rotors already spanning more than 150m diameter and hub heights above 100m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer stru...

  4. Experimental constraints on impact-induced winds

    Science.gov (United States)

    Quintana, Stephanie N.; Schultz, Peter H.; Horowitz, Seth S.

    2018-05-01

    A new class of wind streaks on Mars uniquely associated with impact craters is most clearly detected in nighttime thermal infrared imaging. Thermally bright streaks radiate from some well-preserved impact craters and are related to the impact process. Using laboratory experiments performed at the NASA Ames Vertical Gun Range, we test the hypothesis that these streaks are formed from either the winds within an air-blast or winds set up by expanding impact vapor interacting with the atmosphere. The experiments use a variety of tracers and instruments to document three interrelated processes occurring in the impact of a Pyrex projectile into an easily vaporized powdered dolomite target: (1) a surface roughening spreading outward from the impact point, (2) an expanding vapor plume, and (3) outward winds made visible by dust trails from vertically placed, dusty pipe cleaners. The clear connection between the surface roughening, vapor expansion, and outward winds implicate an expanding vapor interacting with the atmosphere as the controlling process.

  5. Wind driven saltation: a hitherto overlooked challenge for life on Mars

    Science.gov (United States)

    Bak, Ebbe; Goul, Michael; Rasmussen, Martin; Moeller, Ralf; Nørnberg, Per; Knak Jensen, Svend; Finster, Kai

    2017-04-01

    The Martian surface is a hostile environment characterized by low water availability, low atmospheric pressure and high UV and ionizing radiation. Furthermore, wind-driven saltation leads to abrasion of silicates with a production of reactive surface sites and, through triboelectric charging, a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects of wind-driven saltation have hitherto been ignored. In this study, we have investigated the effect of exposing bacteria to wind-abraded silicates and directly to wind-driven saltation on Mars in controlled laboratory simulation experiments. Wind-driven saltation was simulated by tumbling mineral samples in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative cells of P. putida, B. subtilis and D. radiodurans in aqueous suspensions was reduced by more than 99% by exposure to abraded basalt, while the viability of B. subtilis endospores was unaffected. B. subtilis mutants lacking different spore components were likewise highly resistant to the exposure to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl radicals produced by Fenton-like reactions in the presence of transition metals. Direct exposure to simulated saltation had a dramatic effect on both D. radiodurans cells and B

  6. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  7. Using albedo to reform wind erosion modelling, mapping and monitoring

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  8. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer