WorldWideScience

Sample records for wildfire airborne sensor

  1. Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data

    Science.gov (United States)

    Wilfrid Schroeder; Evan Ellicott; Charles Ichoku; Luke Ellison; Matthew B. Dickinson; Roger D. Ottmar; Craig Clements; Dianne Hall; Vincent Ambrosia; Robert. Kremens

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near-coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge...

  2. Advancing Sensor Technology to Monitor Wildfires

    Science.gov (United States)

    EPA and partners are looking at ways to use miniature sensors to monitor air quality near wildfires. Data from these small sensors can complement measurements obtained from more complex regulatory-grade monitors that are stationary.

  3. Airborne Deployment of a High Resolution PTR-ToF-MS to Characterize Non-methane Organic Gases in Wildfire Smoke: A Pilot Study During WE-CAN Test Flights

    Science.gov (United States)

    Permar, W.; Hu, L.; Fischer, E. V.

    2017-12-01

    Despite being the second largest primary source of tropospheric volatile organic compounds (VOCs), biomass burning is poorly understood relative to other sources due in part to its large variability and the difficulty inherent to sampling smoke. In light of this, several field campaigns are planned to better characterize wildfire plume emissions and chemistry through airborne sampling of smoke plumes. As part of this effort, we will deploy a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) on the NSF/NCAR C-130 research aircraft during the collaborative Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) mission. PTR-ToF-MS is well suited for airborne measurements of VOC in wildfire smoke plumes due to its ability to collect real time, high-resolution data for the full mass range of ionizable organic species, many of which remain uncharacterized or unidentified. In this work, we will report on our initial measurements from the WE-CAN test flights in September 2017. We will also discuss challenges associated with deploying the instrument for airborne missions targeting wildfire smoke and goals for further study in WE-CAN 2018.

  4. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  5. UAS Developments Supporting Wildfire Observations

    Science.gov (United States)

    Ambrosia, V. G.; Dahlgren, R. P.; Watts, A.; Reynolds, K. W.; Ball, T.

    2014-12-01

    Wildfires are regularly occurring emergency events that threaten life, property, and natural resources in every U.S. State and many countries around the world. Despite projections that $1.8 billion will be spent by U.S. Federal agencies alone on wildfires in 2014, the decades-long trend of increasing fire size, severity, and cost is expected to continue. Furthermore, the enormous potential for UAS (and concomitant sensor systems) to serve as geospatial intelligence tools to improve the safety and effectiveness of fire management, and our ability to forecast fire and smoke movements, remains barely tapped. Although orbital sensor assets are can provide the geospatial extent of wildfires, generally those resources are limited in use due to their spatial and temporal resolution limitations. These two critical elements make orbital assets of limited utility for tactical, real-time wildfire management, or for continuous scientific analysis of the temporal dynamics related to fire energy release rates and plume concentrations that vary significantly thru a fire's progression. Large UAS platforms and sensors can and have been used to monitor wildfire events at improved temporal, spatial and radiometric scales, but more focus is being placed on the use of small UAS (sUAS) and sensors to support wildfire observation strategies. The use of sUAS is therefore more critical for TACTICAL management purposes, rather than strategic observations, where small-scale fire developments are critical to understand. This paper will highlight the historical development and use of UAS for fire observations, as well as the current shift in focus to smaller, more affordable UAS for more rapid integration into operational use on wildfire events to support tactical observation strategies, and support wildfire science measurement inprovements.

  6. Airborne Measurements and Emission Estimates of Greenhouse Gases and Other Trace Constituents From the 2013 California Yosemite Rim Wildfire

    Science.gov (United States)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; hide

    2015-01-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4/(ppm CO2) on 26 August, 6.5 ppb CH4 (ppm CO2)1 on 29 August and 18.3 ppb CH4 (ppm CO2)1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4/(ppm CO2) during the primary burning period to 18.3 ppb CH4/(ppm CO2) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  7. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    Science.gov (United States)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  8. Validating MODIS Above-Cloud Aerosol Optical Depth Retrieved from Color Ratio Algorithm Using Direct Measurements Made by NASA's Airborne AATS and 4STAR Sensors

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob

    2016-01-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.

  9. Airborne Electro-Optical Sensor Simulation System. Final Report.

    Science.gov (United States)

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  10. A Correction Method for UAV Helicopter Airborne Temperature and Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Longqing Fan

    2017-01-01

    Full Text Available This paper presents a correction method for UAV helicopter airborne temperature and humidity including an error correction scheme and a bias-calibration scheme. As rotor downwash flow brings measurement error on helicopter airborne sensors inevitably, the error correction scheme constructs a model between the rotor induced velocity and temperature and humidity by building the heat balance equation for platinum resistor temperature sensor and the pressure correction term for humidity sensor. The induced velocity of a spatial point below the rotor disc plane can be calculated by the sum of the induced velocities excited by center line vortex, rotor disk vortex, and skew cylinder vortex based on the generalized vortex theory. In order to minimize the systematic biases, the bias-calibration scheme adopts a multiple linear regression to achieve a systematically consistent result with the tethered balloon profiles. Two temperature and humidity sensors were mounted on “Z-5” UAV helicopter in the field experiment. Overall, the result of applying the calibration method shows that the temperature and relative humidity obtained by UAV helicopter closely align with tethered balloon profiles in providing measurements of the temperature profiles and humidity profiles within marine atmospheric boundary layers.

  11. Sensor integration and testing in an airborne environment

    Science.gov (United States)

    Ricks, Timothy P.; Streling, Julie T.; Williams, Kirk W.

    2005-11-01

    The U.S. Army Redstone Technical Test Center (RTTC) has been supporting captive flight testing of missile sensors and seekers since the 1980's. Successful integration and test of sensors in an airborne environment requires attention to a broad range of disciplines. Data collection requirements drive instrumentation and flight profile configurations, which along with cost and airframe performance factors influence the choice of test aircraft. Installation methods used for instrumentation must take into consideration environmental and airworthiness factors. In addition, integration of test equipment into the aircraft will require an airworthiness release; procedures vary between the government for military aircraft, and the Federal Aviation Administration (FAA) for the use of private, commercial, or experimental aircraft. Sensor mounting methods will depend on the type of sensor being used, both for sensor performance and crew safety concerns. Pilots will require navigation input to permit the execution of accurate and repeatable flight profiles. Some tests may require profiles that are not supported by standard navigation displays, requiring the use of custom hardware/software. Test locations must also be considered in their effect on successful data collection. Restricted airspace may also be required, depending on sensor emissions and flight profiles.

  12. Multiple UAV Cooperation for Wildfire Monitoring

    Science.gov (United States)

    Lin, Zhongjie

    Wildfires have been a major factor in the development and management of the world's forest. An accurate assessment of wildfire status is imperative for fire management. This thesis is dedicated to the topic of utilizing multiple unmanned aerial vehicles (UAVs) to cooperatively monitor a large-scale wildfire. This is achieved through wildfire spreading situation estimation based on on-line measurements and wise cooperation strategy to ensure efficiency. First, based on the understanding of the physical characteristics of the wildfire propagation behavior, a wildfire model and a Kalman filter-based method are proposed to estimate the wildfire rate of spread and the fire front contour profile. With the enormous on-line measurements from on-board sensors of UAVs, the proposed method allows a wildfire monitoring mission to benefit from on-line information updating, increased flexibility, and accurate estimation. An independent wildfire simulator is utilized to verify the effectiveness of the proposed method. Second, based on the filter analysis, wildfire spreading situation and vehicle dynamics, the influence of different cooperation strategies of UAVs to the overall mission performance is studied. The multi-UAV cooperation problem is formulated in a distributed network. A consensus-based method is proposed to help address the problem. The optimal cooperation strategy of UAVs is obtained through mathematical analysis. The derived optimal cooperation strategy is then verified in an independent fire simulation environment to verify its effectiveness.

  13. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications: Western U.S. Wildfire Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoxi [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Now at Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Now at Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Huey, L. Gregory [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Yokelson, Robert J. [Department of Chemistry, University of Montana, Missoula Montana USA; Selimovic, Vanessa [Department of Chemistry, University of Montana, Missoula Montana USA; Simpson, Isobel J. [Department of Chemistry, University of California, Irvine California USA; Müller, Markus [Department of Chemistry, University of Montana, Missoula Montana USA; Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck Austria; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Campuzano-Jost, Pedro [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Beyersdorf, Andreas J. [NASA Langley Research Center, Hampton Virginia USA; Now at Department of Chemistry, California State University, San Bernardino California USA; Blake, Donald R. [Department of Chemistry, University of California, Irvine California USA; Butterfield, Zachary [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos New Mexico USA; Now at Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Choi, Yonghoon [NASA Langley Research Center, Hampton Virginia USA; Science Systems and Applications, Inc., Hampton Virginia USA; Crounse, John D. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Day, Douglas A. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Diskin, Glenn S. [NASA Langley Research Center, Hampton Virginia USA; Dubey, Manvendra K. [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos New Mexico USA; Fortner, Edward [Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica Massachusetts USA; Hanisco, Thomas F. [Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Hu, Weiwei [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; King, Laura E. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Kleinman, Lawrence [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Meinardi, Simone [Department of Chemistry, University of California, Irvine California USA; Mikoviny, Tomas [Department of Chemistry, University of Oslo, Oslo Norway; Onasch, Timothy B. [Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica Massachusetts USA; Palm, Brett B. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Peischl, Jeff [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Pollack, Ilana B. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Now at Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Ryerson, Thomas B. [Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Sachse, Glen W. [NASA Langley Research Center, Hampton Virginia USA; Sedlacek, Arthur J. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Shilling, John E. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Springston, Stephen [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; St. Clair, Jason M. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Now at Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Now at Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore Maryland USA; Tanner, David J. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Teng, Alexander P. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Wennberg, Paul O. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Division of Engineering and Applied Science, California Institute of Technology, Pasadena California USA; Wisthaler, Armin [Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck Austria; Department of Chemistry, University of Oslo, Oslo Norway; Wolfe, Glenn M. [Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore Maryland USA

    2017-06-14

    Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than two times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 ± 570 Gg yr-1) is over three times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from BB in the western states is significantly underestimated. In addition, our results indicate prescribed burning may be an effective method to reduce fine particle emissions.

  14. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications: Western U.S. Wildfire Emissions

    International Nuclear Information System (INIS)

    Liu, Xiaoxi; University of Colorado, Boulder, CO; Huey, L. Gregory; Yokelson, Robert J.; Selimovic, Vanessa

    2017-01-01

    Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM 1 ) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. Furthermore, the wildfires emitted high amounts of PM 1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM 1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM 1 emission estimate (1530 ± 570 Gg yr -1 ) is over 3 times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. Additionally, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.

  15. Airborne Wireless Sensor Networks for Airplane Monitoring System

    Directory of Open Access Journals (Sweden)

    Shang Gao

    2018-01-01

    Full Text Available In traditional airplane monitoring system (AMS, data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM for AMS in future.

  16. The potential of satellite data to study individual wildfire events

    Science.gov (United States)

    Benali, Akli; López-Saldana, Gerardo; Russo, Ana; Sá, Ana C. L.; Pinto, Renata M. S.; Nikos, Koutsias; Owen, Price; Pereira, Jose M. C.

    2014-05-01

    information about the major spatial corridors through which fires spread, and their relative importance in the full fire event. These major fire paths are then used to extract relevant descriptors, such as the distribution of fire spread direction, rate of spread and fire intensity (i.e. energy emitted). The reconstruction of the fire spread is shown for some case studies for Portugal and is also compared with fire progressions obtained by air-borne sensors for SE Australia. The approach shows solid results, providing a valuable tool for the reconstruction of individual fire events, understand their complex spread patterns and their main drivers of fire propagation. The major fire pathsand the spatio-temporal distribution of active fires are being currently combined with fire spread simulations within the scope oftheFIRE-MODSATproject, to provideuseful information to support and improve fire suppression strategies.

  17. An automated data exploitation system for airborne sensors

    Science.gov (United States)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  18. Investigating the Impacts of Wildfires on Air Quality in the Western US

    Science.gov (United States)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Ambrosia, V. G.; Clements, C. B.; Gore, W.; Lareau, N.; Quayle, B.; Ryoo, J. M.; Schroeder, W.; Tanaka, T.

    2015-12-01

    Wildfire emissions are an important source of a wide range of trace gases and particles that can impact local, regional and global air quality, climate forcing, biogeochemical cycles and human health. In the western US, wildfires dominate over prescribed fires. However, limited sampling of wildfire emissions means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. Further, interactions of wildfire emissions with urban pollution, commonly the case with California wildfires, are complex and poorly understood. The Alpha Jet Atmospheric eXperiment (AJAX) sampled a variety of Californian wildfire plumes during 2013 and 2014. In addition to wildfire plumes, flights sample upwind, background conditions allowing for an assessment of enhancement ratios of trace gas species (carbon dioxide, methane and ozone). This paper presents airborne measurements of multiple trace constituents downwind of a variety of Californian wildfires, with a focus on the exceptionally large Yosemite Rim wildfire during summer 2013. During its intense burning phases, the Rim wildfire was sampled by AJAX on 29 August as well as by the NASA DC-8, as part of its SEAC4RS mission, on 26 and 27 August. AJAX revisited the wildfire on 10 September when it had reached its smoldering phase. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of the AJAX payload (e. g. carbon monoxide). The emission ratios (ER), emission factors (EF) and combustion efficiency are compared with previous wildfire studies. Integration of AJAX data with other available datasets, such as SEAC4RS, Lidar data from the California State University Mobile Atmospheric Profiling System (CSU-MAPS), MODIS/VIIRS Fire Radiative Power (FRP) and surface ozone and meteorology measurements is explored to assess the impacts of wildfires on downwind air quality including the densely populated California central

  19. Airborne In-Situ Trace Gas Measurements of Multiple Wildfires in California (2013-2014)

    Science.gov (United States)

    Iraci, L. T.; Yates, E. L.; Tanaka, T.; Roby, M.; Gore, W.; Clements, C. B.; Lareau, N.; Ambrosia, V. G.; Quayle, B.; Schroeder, W.

    2014-12-01

    Biomass burning emissions are an important source of a wide range of trace gases and particles that can impact local, regional and global air quality, climate forcing, biogeochemical cycles and human health. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. We report here in-situ measurements of carbon dioxide, methane, ozone and water vapor from the plumes of a variety of wildfires sampled in California in the fire seasons of 2013 and 2014. Included in the analysis are the Rim Fire (August - October 2013, near Yosemite National Park), the Morgan Fire (September 2013, near Clayton, CA), and the El Portal Fire (July - August 2014, in Yosemite National Park), among others. When possible, fires were sampled on multiple days. Emission ratios and estimated emission factors will be presented and discussed in the context of fuel composition, plume structure, and fire phase. Correlations of plume chemical composition to MODIS/VIIRS Fire Radiative Power (FRP) and other remote sensing information will be explored. Furthermore, the role of plumes in delivery of enhanced ozone concentrations to downwind municipalities will be discussed.

  20. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    Science.gov (United States)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  1. An Ultralow Power Fast-Response Nano-TCD CH4 sensor for UAV Airborne Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project, KWJ proposes to develop a low power, fast response, lightweight miniature CH4 measurement system based on KWJ nano-TCD sensor for airborne...

  2. Wildfire air pollution hazard during the 21st century

    Science.gov (United States)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  3. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications

    Science.gov (United States)

    Liu, Xiaoxi; Huey, L. Gregory; Yokelson, Robert J.; Selimovic, Vanessa; Simpson, Isobel J.; Müller, Markus; Jimenez, Jose L.; Campuzano-Jost, Pedro; Beyersdorf, Andreas J.; Blake, Donald R.; Butterfield, Zachary; Choi, Yonghoon; Crounse, John D.; Day, Douglas A.; Diskin, Glenn S.; Dubey, Manvendra K.; Fortner, Edward; Hanisco, Thomas F.; Hu, Weiwei; King, Laura E.; Kleinman, Lawrence; Meinardi, Simone; Mikoviny, Tomas; Onasch, Timothy B.; Palm, Brett B.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Sachse, Glen W.; Sedlacek, Arthur J.; Shilling, John E.; Springston, Stephen; St. Clair, Jason M.; Tanner, David J.; Teng, Alexander P.; Wennberg, Paul O.; Wisthaler, Armin; Wolfe, Glenn M.

    2017-06-01

    Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 ± 570 Gg yr-1) is over 3 times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.

  4. INNOVATIV AIRBORNE SENSORS FOR DISASTER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M. O. Altan

    2016-06-01

    Lidar supports Disaster management by analyzing changes in the DSM before and after the “event”. Advantage of Lidar is that beside rain and clouds, no other weather conditions limit their use. As an active sensor, missions in the nighttime are possible. The new mid-format cameras that make use CMOS sensors (e.g. Phase One IXU1000 can capture data also under poor and difficult light conditions and might will be the first choice for remotely sensed data acquisition in aircrafts and UAVs. UAVs will surely be more and more part of the disaster management on the detailed level. Today equipped with video live cams using RGB and Thermal IR, they assist in looking inside buildings and behind. Thus, they can continue with the aerial survey where airborne anomalies have been detected.

  5. Innovativ Airborne Sensors for Disaster Management

    Science.gov (United States)

    Altan, M. O.; Kemper, G.

    2016-06-01

    Disaster management by analyzing changes in the DSM before and after the "event". Advantage of Lidar is that beside rain and clouds, no other weather conditions limit their use. As an active sensor, missions in the nighttime are possible. The new mid-format cameras that make use CMOS sensors (e.g. Phase One IXU1000) can capture data also under poor and difficult light conditions and might will be the first choice for remotely sensed data acquisition in aircrafts and UAVs. UAVs will surely be more and more part of the disaster management on the detailed level. Today equipped with video live cams using RGB and Thermal IR, they assist in looking inside buildings and behind. Thus, they can continue with the aerial survey where airborne anomalies have been detected.

  6. Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne measurements

    Directory of Open Access Journals (Sweden)

    P. Ciais

    2009-12-01

    Full Text Available We present airborne measurements of carbon dioxide (CO2, carbon monoxide (CO, ozone (O3, equivalent black carbon (EBC and ultra fine particles over North-Eastern Siberia in July 2008 performed during the YAK-AEROSIB/POLARCAT experiment. During a "golden day" (11 July 2008 a number of biomass burning plumes were encountered with CO mixing ratio enhancements of up to 500 ppb relative to a background of 90 ppb. Number concentrations of aerosols in the size range 3.5–200 nm peaked at 4000 cm−3 and the EBC content reached 1.4 μg m−3. These high concentrations were caused by forest fires in the vicinity of the landing airport in Yakutsk where measurements in fresh smoke could be made during the descent. We estimate a combustion efficiency of 90 ± 3% based on CO and CO2 measurements and a CO emission factor of 65.5 ± 10.8 g CO per kilogram of dry matter burned. This suggests a potential increase in the average northern hemispheric CO mixing ratio of 3.0–7.2 ppb per million hectares of Siberian forest burned. For BC, we estimate an emission factor of 0.52 ± 0.07 g BC kg−1, comparable to values reported in the literature. The emission ratio of ultra-fine particles (3.5–200 nm was 26 cm−3 (ppb CO−1, consistent with other airborne studies.

    The transport of identified biomass burning plumes was investigated using the FLEXPART Lagrangian model. Based on sampling of wildfire plumes from the same source but with different atmospheric ages derived from FLEXPART, we estimate that the e-folding lifetimes of EBC and ultra fine particles (between 3.5 and 200 nm in size against removal and growth processes are 5.1 and 5.5 days respectively, supporting lifetime estimates used in various modelling studies.

  7. Wildfire air pollution hazard during the 21st century

    Directory of Open Access Journals (Sweden)

    W. Knorr

    2017-07-01

    Full Text Available Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5, combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  8. Sensor-triggered sampling to determine instantaneous airborne vapor exposure concentrations.

    Science.gov (United States)

    Smith, Philip A; Simmons, Michael K; Toone, Phillip

    2018-06-01

    It is difficult to measure transient airborne exposure peaks by means of integrated sampling for organic chemical vapors, even with very short-duration sampling. Selection of an appropriate time to measure an exposure peak through integrated sampling is problematic, and short-duration time-weighted average (TWA) values obtained with integrated sampling are not likely to accurately determine actual peak concentrations attained when concentrations fluctuate rapidly. Laboratory analysis for integrated exposure samples is preferred from a certainty standpoint over results derived in the field from a sensor, as a sensor user typically must overcome specificity issues and a number of potential interfering factors to obtain similarly reliable data. However, sensors are currently needed to measure intra-exposure period concentration variations (i.e., exposure peaks). In this article, the digitized signal from a photoionization detector (PID) sensor triggered collection of whole-air samples when toluene or trichloroethylene vapors attained pre-determined levels in a laboratory atmosphere generation system. Analysis by gas chromatography-mass spectrometry of whole-air samples (with both 37 and 80% relative humidity) collected using the triggering mechanism with rapidly increasing vapor concentrations showed good agreement with the triggering set point values. Whole-air samples (80% relative humidity) in canisters demonstrated acceptable 17-day storage recoveries, and acceptable precision and bias were obtained. The ability to determine exceedance of a ceiling or peak exposure standard by laboratory analysis of an instantaneously collected sample, and to simultaneously provide a calibration point to verify the correct operation of a sensor was demonstrated. This latter detail may increase the confidence in reliability of sensor data obtained across an entire exposure period.

  9. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    Science.gov (United States)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  10. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  11. Integrating wildfire plume rises within atmospheric transport models

    Science.gov (United States)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  12. QoS and energy aware cooperative routing protocol for wildfire monitoring wireless sensor networks.

    Science.gov (United States)

    Maalej, Mohamed; Cherif, Sofiane; Besbes, Hichem

    2013-01-01

    Wireless sensor networks (WSN) are presented as proper solution for wildfire monitoring. However, this application requires a design of WSN taking into account the network lifetime and the shadowing effect generated by the trees in the forest environment. Cooperative communication is a promising solution for WSN which uses, at each hop, the resources of multiple nodes to transmit its data. Thus, by sharing resources between nodes, the transmission quality is enhanced. In this paper, we use the technique of reinforcement learning by opponent modeling, optimizing a cooperative communication protocol based on RSSI and node energy consumption in a competitive context (RSSI/energy-CC), that is, an energy and quality-of-service aware-based cooperative communication routing protocol. Simulation results show that the proposed algorithm performs well in terms of network lifetime, packet delay, and energy consumption.

  13. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.

    Science.gov (United States)

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M

    2017-07-01

    There is a public perception that large high-severity wildfires decrease biodiversity and increase fire hazard by homogenizing vegetation composition and increasing the cover of mid-story vegetation. But a growing literature suggests that vegetation responses are nuanced. LiDAR technology provides a promising remote sensing tool to test hypotheses about post-fire vegetation regrowth because vegetation cover can be quantified within different height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions (10 × 10 m, 30 × 30 m, 50 × 50 m, 100 × 100 m cell size) and investigate the effect of fire severity on regrowth amount and spatial pattern following a mixed severity wildfire in Warrumbungle National Park, Australia. We predicted that recovery would be more vigorous in areas of high fire severity, because park managers observed dense post-fire regrowth in these areas. Moderate to strong positive associations were observed between LiDAR and field surveys of mid-story vegetation cover between 0.5-3.0 m. Thus our LiDAR survey was an apt representation of on-ground vegetation cover. LiDAR-derived mid-story vegetation cover was 22-40% lower in areas of low and moderate than high fire severity. Linear mixed-effects models showed that fire severity was among the strongest biophysical predictors of mid-story vegetation cover irrespective of spatial resolution. However much of the variance associated with these models was unexplained, presumably because soil seed banks varied at finer scales than our LiDAR maps. Dense patches of mid-story vegetation regrowth were small (median size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity, demonstrating that high-severity fires do not homogenize vegetation cover. Our results are relevant for ecosystem conservation and fire management because they: indicate

  14. Airborne MSS data processing for multichannel SWIR sensor

    Energy Technology Data Exchange (ETDEWEB)

    Urai, Minoru; Yamaguchi, Yasushi

    1988-05-17

    This paper describes the specification of an airborne multi-channel spectrum scanner (MSS) and data processing. MSS has 13 channels of frequencies in the visible - heat infrared region. The channels 1 - 3 correspond to a visible image, the channels 4, 5 to the absorption bands of iron oxides, the channels 6 - 9 (2.2 (m)m band) to the absorption bands of O-H group and carbonates, and the channels 10 - 13 to absorption bands in the heat infrared region. By the least squares residual (LSR) method, a mineral having an absorption band of 2.2 (m)m was further examined. As a result, the LSR image displayed an orange-colored portion. This portion was identified to correspond to epidote. Silica, which has an absorption band of 8 - 10 (m)m in the heat infrared region, was displayed in blue color. A high frequency resolution sensor has a great potential for discrimination and identification of minerals. (2 figs, 2 tabs, 2 refs)

  15. WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires

    Science.gov (United States)

    Altintas, I.; Block, J.; Braun, H.; de Callafon, R. A.; Gollner, M. J.; Smarr, L.; Trouve, A.

    2013-12-01

    Recent studies confirm that climate change will cause wildfires to increase in frequency and severity in the coming decades especially for California and in much of the North American West. The most critical sustainability issue in the midst of these ever-changing dynamics is how to achieve a new social-ecological equilibrium of this fire ecology. Wildfire wind speeds and directions change in an instant, and first responders can only be effective when they take action as quickly as the conditions change. To deliver information needed for sustainable policy and management in this dynamically changing fire regime, we must capture these details to understand the environmental processes. We are building an end-to-end cyberinfrastructure (CI), called WIFIRE, for real-time and data-driven simulation, prediction and visualization of wildfire behavior. The WIFIRE integrated CI system supports social-ecological resilience to the changing fire ecology regime in the face of urban dynamics and climate change. Networked observations, e.g., heterogeneous satellite data and real-time remote sensor data is integrated with computational techniques in signal processing, visualization, modeling and data assimilation to provide a scalable, technological, and educational solution to monitor weather patterns to predict a wildfire's Rate of Spread. Our collaborative WIFIRE team of scientists, engineers, technologists, government policy managers, private industry, and firefighters architects implement CI pathways that enable joint innovation for wildfire management. Scientific workflows are used as an integrative distributed programming model and simplify the implementation of engineering modules for data-driven simulation, prediction and visualization while allowing integration with large-scale computing facilities. WIFIRE will be scalable to users with different skill-levels via specialized web interfaces and user-specified alerts for environmental events broadcasted to receivers before

  16. Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study

    Science.gov (United States)

    S. Urbanski; V. Kovalev; W. M. Hao; C. Wold; A. Petkov

    2010-01-01

    A ground-based scanning lidar was utilized with a set of airborne instruments to acquire measurements of smoke plume dynamics, smoke aerosol distribution and chemical composition in the vicinity of active wildfires in the western U.S. A new retrieval technique was used for processing lidar multiangle measurements. The technique determines the location of...

  17. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers

    International Nuclear Information System (INIS)

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-01-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr_3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. - Highlights: • A small-sized UAV airborne sensor system was developed. • Three radioactive models were chosen to simulate the Fukushima accident. • Both the air and ground radiation were considered in the models. • The efficiency calculations and MDAC values were given. • The sensor system is able to monitor in serious nuclear accidents.

  18. Assessing influences on social vulnerability to wildfire using surveys, spatial data and wildfire simulations.

    Science.gov (United States)

    Paveglio, Travis B; Edgeley, Catrin M; Stasiewicz, Amanda M

    2018-05-01

    A growing body of research focuses on identifying patterns among human populations most at risk from hazards such as wildfire and the factors that help explain performance of mitigations that can help reduce that risk. Emerging policy surrounding wildfire management emphasizes the need to better understand such social vulnerability-or human populations' potential exposure to and sensitivity from wildfire-related impacts, including their ability to reduce negative impacts from the hazard. Studies of social vulnerability to wildfire often pair secondary demographic data with a variety of vegetation and wildfire simulation models to map potential risk. However, many of the assumptions made by those researchers about the demographic, spatial or perceptual factors that influence social vulnerability to wildfire have not been fully evaluated or tested against objective measures of potential wildfire risk. The research presented here utilizes self-reported surveys, GIS data, and wildfire simulations to test the relationships between select perceptual, demographic, and property characteristics of property owners against empirically simulated metrics for potential wildfire related damages or exposure. We also evaluate how those characteristics relate to property owners' performance of mitigations or support for fire management. Our results suggest that parcel characteristics provide the most significant explanation of variability in wildfire exposure, sensitivity and overall wildfire risk, while the positive relationship between income or property values and components of social vulnerability stands in contrast to typical assumptions from existing literature. Respondents' views about agency or government management helped explain a significant amount of variance in wildfire sensitivity, while the importance of wildfire risk in selecting a residence was an important influence on mitigation action. We use these and other results from our effort to discuss updated

  19. SGA-WZ: A New Strapdown Airborne Gravimeter

    DEFF Research Database (Denmark)

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance......, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter...... and discussion of the airborne field test results are also given....

  20. Detection in Urban Scenario Using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The

  1. Detection in Urban Scenario using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The

  2. Airborne Sensor Thermal Management Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  3. RADIOMETRIC NORMALIZATION OF LARGE AIRBORNE IMAGE DATA SETS ACQUIRED BY DIFFERENT SENSOR TYPES

    Directory of Open Access Journals (Sweden)

    S. Gehrke

    2016-06-01

    Full Text Available Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere and temporally (unstable atmo-spheric properties and even changes in land coverage. We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor’s properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling – with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images – allows for adaptation to each sensor’s geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image’s histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in

  4. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

    Directory of Open Access Journals (Sweden)

    Klaus I. Itten

    2008-03-01

    Full Text Available This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer and compared to the available measuring sensitivity of the sensor (NE ΔLλsensor. This is done for multiple signal-to-noise ratios (SNR and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  5. SGA-WZ: A New Strapdown Airborne Gravimeter

    Directory of Open Access Journals (Sweden)

    Kaidong Zhang

    2012-07-01

    Full Text Available Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  6. An Airborne Wireless Sensor System for Near-Real Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Orestis EVANGELATOS

    2015-06-01

    Full Text Available Over the last decades with the rapid growth of industrial zones, manufacturing plants and the substantial urbanization, environmental pollution has become a crucial health, environmental and safety concern. In particular, due to the increased emissions of various pollutants caused mainly by human sources, the air pollution problem is elevated in such extent where significant measures need to be taken. Towards the identification and the qualification of that problem, we present in this paper an airborne wireless sensor network system for automated monitoring and measuring of the ambient air pollution. Our proposed system is comprised of a pollution-aware wireless sensor network and unmanned aerial vehicles (UAVs. It is designed for monitoring the pollutants and gases of the ambient air in three-dimensional spaces without the human intervention. In regards to the general architecture of our system, we came up with two schemes and algorithms for an autonomous monitoring of a three-dimensional area of interest. To demonstrate our solution, we deployed the system and we conducted experiments in a real environment measuring air pollutants such as: NH3, CH4, CO2, O2 along with temperature, relative humidity and atmospheric pressure. Lastly, we experimentally evaluated and analyzed the two proposed schemes.

  7. Towards Data-Driven Simulations of Wildfire Spread using Ensemble-based Data Assimilation

    Science.gov (United States)

    Rochoux, M. C.; Bart, J.; Ricci, S. M.; Cuenot, B.; Trouvé, A.; Duchaine, F.; Morel, T.

    2012-12-01

    Real-time predictions of a propagating wildfire remain a challenging task because the problem involves both multi-physics and multi-scales. The propagation speed of wildfires, also called the rate of spread (ROS), is indeed determined by complex interactions between pyrolysis, combustion and flow dynamics, atmospheric dynamics occurring at vegetation, topographical and meteorological scales. Current operational fire spread models are mainly based on a semi-empirical parameterization of the ROS in terms of vegetation, topographical and meteorological properties. For the fire spread simulation to be predictive and compatible with operational applications, the uncertainty on the ROS model should be reduced. As recent progress made in remote sensing technology provides new ways to monitor the fire front position, a promising approach to overcome the difficulties found in wildfire spread simulations is to integrate fire modeling and fire sensing technologies using data assimilation (DA). For this purpose we have developed a prototype data-driven wildfire spread simulator in order to provide optimal estimates of poorly known model parameters [*]. The data-driven simulation capability is adapted for more realistic wildfire spread : it considers a regional-scale fire spread model that is informed by observations of the fire front location. An Ensemble Kalman Filter algorithm (EnKF) based on a parallel computing platform (OpenPALM) was implemented in order to perform a multi-parameter sequential estimation where wind magnitude and direction are in addition to vegetation properties (see attached figure). The EnKF algorithm shows its good ability to track a small-scale grassland fire experiment and ensures a good accounting for the sensitivity of the simulation outcomes to the control parameters. As a conclusion, it was shown that data assimilation is a promising approach to more accurately forecast time-varying wildfire spread conditions as new airborne-like observations of

  8. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  9. Remote sensing of soil moisture using airborne hyperspectral data

    Science.gov (United States)

    The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...

  10. Multispectral Terrain Background Simulation Techniques For Use In Airborne Sensor Evaluation

    Science.gov (United States)

    Weinberg, Michael; Wohlers, Ronald; Conant, John; Powers, Edward

    1988-08-01

    A background simulation code developed at Aerodyne Research, Inc., called AERIE is designed to reflect the major sources of clutter that are of concern to staring and scanning sensors of the type being considered for various airborne threat warning (both aircraft and missiles) sensors. The code is a first principles model that could be used to produce a consistent image of the terrain for various spectral bands, i.e., provide the proper scene correlation both spectrally and spatially. The code utilizes both topographic and cultural features to model terrain, typically from DMA data, with a statistical overlay of the critical underlying surface properties (reflectance, emittance, and thermal factors) to simulate the resulting texture in the scene. Strong solar scattering from water surfaces is included with allowance for wind driven surface roughness. Clouds can be superimposed on the scene using physical cloud models and an analytical representation of the reflectivity obtained from scattering off spherical particles. The scene generator is augmented by collateral codes that allow for the generation of images at finer resolution. These codes provide interpolation of the basic DMA databases using fractal procedures that preserve the high frequency power spectral density behavior of the original scene. Scenes are presented illustrating variations in altitude, radiance, resolution, material, thermal factors, and emissivities. The basic models utilized for simulation of the various scene components and various "engineering level" approximations are incorporated to reduce the computational complexity of the simulation.

  11. Risk preferences in strategic wildfire decision making: a choice experiment with U.S. wildfire managers.

    Science.gov (United States)

    Wibbenmeyer, Matthew J; Hand, Michael S; Calkin, David E; Venn, Tyron J; Thompson, Matthew P

    2013-06-01

    Federal policy has embraced risa management as an appropriate paradigm for wildfire management. Economic theory suggests that over repeated wildfire events, potential economic costs and risas of ecological damage are optimally balanced when management decisions are free from biases, risa aversion, and risa seeking. Of primary concern in this article is how managers respond to wildfire risa, including the potential effect of wildfires (on ecological values, structures, and safety) and the likelihood of different fire outcomes. We use responses to a choice experiment questionnaire of U.S. federal wildfire managers to measure attitudes toward several components of wildfire risa and to test whether observed risa attitudes are consistent with the efficient allocation of wildfire suppression resources. Our results indicate that fire managers' decisions are consistent with nonexpected utility theories of decisions under risa. Managers may overallocate firefighting resources when the likelihood or potential magnitude of damage from fires is low, and sensitivity to changes in the probability of fire outcomes depends on whether probabilities are close to one or zero and the magnitude of the potential harm. © 2012 Society for Risk Analysis.

  12. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  13. Impact of wildfires on size-resolved aerosol composition at a coastal California site

    Science.gov (United States)

    Maudlin, L. C.; Wang, Z.; Jonsson, H. H.; Sorooshian, A.

    2015-10-01

    Size-resolved aerosol composition measurements were conducted at a coastal site in central California during the Nucleation in California Experiment (NiCE) between July and August of 2013. The site is just east of ship and marine emission sources and is also influenced by continental pollution and wildfires, such as those near the California-Oregon border which occurred near the end of NiCE. Two micro-orifice uniform deposit impactors (MOUDIs) were used, and water-soluble and elemental compositions were measured. The five most abundant water-soluble species (in decreasing order) were chloride, sodium, non-sea salt (nss) sulfate, ammonium, and nitrate. During wildfire periods, nss K mass concentrations were not enhanced as strongly as other species in the sub-micrometer stages and even decreased in the super-micrometer stages; species other than nss K are more reliable tracers for biomass burning in this region. Chloride levels were reduced in the fire sets likely due to chloride depletion by inorganic and organic acids that exhibited elevated levels in transported plumes. During wildfire periods, the mass size distribution of most dicarboxylic acids changed from unimodal to bimodal with peaks in the 0.32 μm and 1.0-1.8 μm stages. Furthermore, sulfate's peak concentration shifted from the 0.32 μm to 0.56 μm stage, and nitrate also shifted to larger sizes (1.0 μm to 1.8-3.2 μm stages). Mass concentrations of numerous soil tracer species (e.g., Si, Fe) were strongly enhanced in samples influenced by wildfires, especially in the sub-micrometer range. Airborne cloud water data confirm that soil species were associated with fire plumes transported south along the coast. In the absence of biomass burning, cloud condensation nuclei (CCN) composition is dominated by nss sulfate and ammonium, and the water-soluble organic fraction is dominated by methanesulfonate, whereas for the samples influenced by wildfires, ammonium becomes the dominant overall species, and

  14. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    Science.gov (United States)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  15. Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping

    Directory of Open Access Journals (Sweden)

    Valerie Ussyshkin

    2011-02-01

    Full Text Available Conventional discrete return airborne lidar systems, used in the commercial sector for efficient generation of high quality spatial data, have been considered for the past decade to be an ideal choice for various mapping applications. Unlike two-dimensional aerial imagery, the elevation component of airborne lidar data provides the ability to represent vertical structure details with very high precision, which is an advantage for many lidar applications focusing on the analysis of elevated features such as 3D vegetation mapping. However, the use of conventional airborne discrete return lidar systems for some of these applications has often been limited, mostly due to relatively coarse vertical resolution and insufficient number of multiple measurements in vertical domain. For this reason, full waveform airborne sensors providing more detailed representation of target vertical structure have often been considered as a preferable choice in some areas of 3D vegetation mapping application, such as forestry research. This paper presents an overview of the specific features of airborne lidar technology concerning 3D mapping applications, particularly vegetation mapping. Certain key performance characteristics of lidar sensors important for the quality of vegetation mapping are discussed and illustrated by the advanced capabilities of the ALTM-Orion, a new discrete return sensor manufactured by Optech Incorporated. It is demonstrated that advanced discrete return sensors with enhanced 3D mapping capabilities can produce data of enhanced quality, which can represent complex structures of vegetation targets at the level of details equivalent in some aspects to the content of full waveform data. It is also shown that recent advances in conventional airborne lidar technology bear the potential to create a new application niche, where high quality dense point clouds, enhanced by fully recorded intensity for multiple returns, may provide sufficient

  16. Living with wildfire in Colorado

    Science.gov (United States)

    Patricia A. Champ; Nicholas Flores; Hannah Brenkert-Smith

    2010-01-01

    In this presentation, we describe results of a survey to homeowners living in wildfire-prone areas of two counties along the Front Range of the Rocky Mountains in Colorado. The survey was designed to elicit information on homeowners' experience with wildfire, perceptions of wildfire risk on their property and neighboring properties, mitigation efforts undertaken...

  17. Cyberinfrastructure for Airborne Sensor Webs

    Science.gov (United States)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  18. Reconfigurable Weather Radar for Airborne Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc (IAI) and its university partner, University of Oklahoma (OU), Norman, propose a forward-looking airborne environment sensor based on...

  19. Planning a radar system for protection from the airborne threat

    International Nuclear Information System (INIS)

    Greneker, E.F.; McGee, M.C.

    1986-01-01

    A planning methodology for developing a radar system to protect nuclear materials facilities from the airborne threat is presented. Planning for physical security to counter the airborne threat is becoming even more important because hostile acts by terrorists are increasing and airborne platforms that can be used to bypass physical barriers are readily available. The comprehensive system planning process includes threat and facility surveys, defense hardening, analysis of detection and early warning requirements, optimization of sensor mix and placement, and system implementation considerations

  20. Detection Range of Airborne Magnetometers in Magnetic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Chengjing Li

    2015-11-01

    Full Text Available Airborne magnetometers are utilized for the small-range search, precise positioning, and identification of the ferromagnetic properties of underwater targets. As an important performance parameter of sensors, the detection range of airborne magnetometers is commonly set as a fixed value in references regardless of the influences of environment noise, target magnetic properties, and platform features in a classical model to detect airborne magnetic anomalies. As a consequence, deviation in detection ability analysis is observed. In this study, a novel detection range model is proposed on the basis of classic detection range models of airborne magnetometers. In this model, probability distribution is applied, and the magnetic properties of targets and the environment noise properties of a moving submarine are considered. The detection range model is also constructed by considering the distribution of the moving submarine during detection. A cell-averaging greatest-of-constant false alarm rate test method is also used to calculate the detection range of the model at a desired false alarm rate. The detection range model is then used to establish typical submarine search probabilistic models. Results show that the model can be used to evaluate not only the effects of ambient magnetic noise but also the moving and geomagnetic features of the target and airborne detection platform. The model can also be utilized to display the actual operating range of sensor systems.

  1. Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour

    Science.gov (United States)

    Lampert, Astrid; Hartmann, Jörg; Pätzold, Falk; Lobitz, Lennart; Hecker, Peter; Kohnert, Katrin; Larmanou, Eric; Serafimovich, Andrei; Sachs, Torsten

    2018-05-01

    To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.

  2. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  3. Rebuilding and new housing development after wildfire

    Science.gov (United States)

    Patricia M. Alexandre; Miranda H. Mockrin; Susan I. Stewart; Roger B. Hammer; Volker C. Radeloff

    2015-01-01

    The number of wildland-urban interface communities affected by wildfire is increasing, and both wildfire suppression and losses are costly. However, little is known about post-wildfire response by homeowners and communities after buildings are lost. Our goal was to characterise rebuilding and new development after wildfires across the conterminous United States. We...

  4. Mitigation of wildfire risk by homeowners

    Science.gov (United States)

    Hannah Brenkert; Patricia Champ; Nicholas Flores

    2005-01-01

    In-depth interviews conducted with homeowners in Larimer County's Wildland-Urban Interface revealed that homeowners face difficult decisions regarding the implementation of wildfire mitigation measures. Perceptions of wildfire mitigation options may be as important as perceptions of wildfire risk in determining likelihood of implementation. These mitigation...

  5. MM wave SAR sensor design: Concept for an airborne low level reconnaissance system

    Science.gov (United States)

    Boesswetter, C.

    1986-07-01

    The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.

  6. Post-wildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires

    Science.gov (United States)

    Heath, J. T.; Chafer, C. J.; van Ogtrop, F. F.; Bishop, T. F. A.

    2014-11-01

    Wildfire is a recurring event which has been acknowledged by the literature to impact the hydrological cycle of a catchment. Hence, wildfire may have a significant impact on water yield levels within a catchment. In Australia, studies of the effect of fire on water yield have been limited to obligate seeder vegetation communities. These communities regenerate from seed banks in the ground or within woody fruits and are generally activated by fire. In contrast, the Sydney Basin is dominated by obligate resprouter communities. These communities regenerate from fire resistant buds found on the plant and are generally found in regions where wildfire is a regular occurrence. The 2001/2002 wildfires in the Sydney Basin provided an opportunity to investigate the impacts of wildfire on water yield in a number of catchments dominated by obligate resprouting communities. The overall aim of this study was to investigate whether there was a difference in water yield post-wildfire. Four burnt subcatchments and 3 control subcatchments were assessed. A general additive model was calibrated using pre-wildfire data and then used to predict post-wildfire water yield using post-wildfire data. The model errors were analysed and it was found that the errors for all subcatchments showed similar trends for the post-wildfire period. This finding demonstrates that wildfires within the Sydney Basin have no significant medium-term impact on water yield.

  7. Utilização Do Sensor Airdas (Airborne Infrared Disaster Assessment System) no monitoramento de desflorestamentos no norte do estado do mato grosso - Brasil

    Science.gov (United States)

    Geraldo José Lucatelli Dória de Araújo; João Antônio Raposo Pereira; Tânia Maria Vieira da Silva; Helvécio Mafra; James A. Brass; Robert N. Lockwood; Robert G. Higgins; Philip J. Riggan

    2008-01-01

    This study has as objective to assess AIRDAS (Airborne Infrared Disaster Assessment System) sensor for the monitoring of deforestation in the northern area of Mato Grosso State, between the latitudes 10° and 12° south and longitudes 54° and 56° west, within the area known as deforestation arch. The results show that the main advantage of...

  8. Geophex Airborne Unmanned Survey System

    International Nuclear Information System (INIS)

    Won, I.L.; Keiswetter, D.

    1995-01-01

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results

  9. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  10. Airborne Systems Technology Application to the Windshear Threat

    Science.gov (United States)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  11. Wildfires in Siberian Mountain Forest

    Science.gov (United States)

    Kharuk, V.; Ponomarev, E. I.; Antamoshkina, O.

    2017-12-01

    The annual burned area in Russia was estimated as 0.55 to 20 Mha with >70% occurred in Siberia. We analyzed Siberian wildfires distribution with respect to elevation, slope steepness and exposure. In addition, wildfires temporal dynamic and latitudinal range were analyzed. We used daily thermal anomalies derived from NOAA/AVHRR and Terra/MODIS satellites (1990-2016). Fire return intervals were (FRI) calculated based on the dendrochronology analysis of samples taken from trees with burn marks. Spatial distribution of wildfires dependent on topo features: relative burned area increase with elevation increase (ca. 1100 m), switching to following decrease. The wildfires frequency exponentially decreased within lowlands - highlands transition. Burned area is increasing with slope steepness increase (up to 5-10°). Fire return intervals (FRI) on the southfacing slopes are about 30% longer than on the north facing. Wildfire re-occurrence is decreasing exponentially: 90% of burns were caused by single fires, 8.5% by double fires, 1% burned three times, and on about 0.05% territory wildfires occurred four times (observed period: 75 yr.). Wildfires area and number, as well as FRI, also dependent on latitude: relative burned area increasing exponentially in norward direction, whereas relative fire number is exponentially decreasing. FRI increases in the northward direction: from 80 years at 62°N to 200 years at the Arctic Circle, and to 300 years at the northern limit of closed forests ( 71+°N). Fire frequency, fire danger period and FRI are strongly correlated with incoming solar radiation (r = 0.81 - 0.95). In 21-s century, a positive trend of wildfires number and area observed in mountain areas in all Siberia. Thus, burned area and number of fires in Siberia are significantly increased since 1990th (R2 =0.47, R2 =0.69, respectively), and that increase correlated with air temperatures and climate aridity increases. However, wildfires are essential for supporting fire

  12. A flight test of the strapdown airborne gravimeter SGA-WZ in Greenland

    DEFF Research Database (Denmark)

    Zhao, Lei; Forsberg, René; Wu, Meiping

    2015-01-01

    -WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse...

  13. Economic optimisation of wildfire intervention activities

    Science.gov (United States)

    David T. Butry; Jeffrey P. Prestemon; Karen L. Abt; Ronda Sutphen

    2010-01-01

    We describe how two important tools of wildfire management, wildfire prevention education and prescribed fire for fuels management, can be coordinated to minimise the combination of management costs and expected societal losses resulting from wildland fire. We present a long-run model that accounts for the dynamics of wildfire, the effects of fuels management on...

  14. Airborne Deployment of and Recent Improvements to the Viper Counter Sniper System

    National Research Council Canada - National Science Library

    Moroz, S

    1999-01-01

    .... These experiments indicate that automatic detection of muzzle flash from an airborne platform is possible, and techniques that were developed for background estimation and false alarm reduction with a stationary sensor can apply with modifications to a moving sensor.

  15. Wildfire risk and home purchase decisions.

    Science.gov (United States)

    Patricia Champ; Geoffrey Donovan; Christopher Barth

    2008-01-01

    In the last 20 years, wildfire damages and the costs of wildfire suppression have risen dramatically. This trend has been attributed to three main factors: climate change, increased fuel loads from a century of wildfire suppression, and increased housing development in fire-prone areas., There is little that fire managers can do about climate change, and current fuel...

  16. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  17. Wildfire Smoke Health Watch

    Centers for Disease Control (CDC) Podcasts

    2012-07-23

    Smoke from wildfires can be dangerous to your health. In this podcast, you will learn the health threats of wildfire smoke and steps you can take to minimize these effects.  Created: 7/23/2012 by Office of Public Health Preparedness and Response (PHPR).   Date Released: 7/23/2012.

  18. Detecting Airborne Mercury by Use of Palladium Chloride

    Science.gov (United States)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  19. Wildfire Detection and Tracking over Greece Using MSG‑SEVIRI Satellite Data

    Directory of Open Access Journals (Sweden)

    Nicolaos I. Sifakis

    2011-03-01

    Full Text Available Greece is a high risk Mediterranean country with respect to wildfires. This risk has been increasing under the impact of climate change, and in summer 2007 approximately 200,000 ha of vegetated land were burnt. The SEVIRI sensor, on board the Meteosat Second Generation (MSG geostationary satellite, is the only spaceborne sensor providing five and 15-minute observations of Europe in 12 spectral channels, including a short-wave infrared band sensitive to fire radiative temperature. In August 2007, when the bulk of the destructive wildfires started in Greece, the receiving station, operated by the Institute for Space Applications and Remote Sensing, provided us with a time series of MSG-SEVIRI images. These images were processed in order to test the reliability of a real‑time detection and tracking system and its complementarity to conventional means provided by the Fire Brigade. EUMETSAT’s Active Fire Monitoring (FIR image processing algorithm for fire detection and monitoring was applied to SEVIRI data, then fine-tuned according to Greek conditions, and evaluated. Alarm announcements from the Fire Brigade’s archives were used as ground truthing data in order to assess detection reliability and system performance. During the examined period, MSG-SEVIRI data successfully detected 82% of the fire events in Greek territory with less than 1% false alarms.

  20. Airborne monitoring system

    International Nuclear Information System (INIS)

    Kadmon, Y.; Gabovitch, A.; Tirosh, D.; Ellenbogen, M.; Mazor, T.; Barak, D.

    1997-01-01

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  1. Urban planning and agriculture. Methodology for assessing rooftop greenhouse potential of non-residential areas using airborne sensors.

    Science.gov (United States)

    Nadal, Ana; Alamús, Ramón; Pipia, Luca; Ruiz, Antonio; Corbera, Jordi; Cuerva, Eva; Rieradevall, Joan; Josa, Alejandro

    2017-12-01

    The integration of rooftop greenhouses (RTGs) in urban buildings is a practice that is becoming increasingly important in the world for their contribution to food security and sustainable development. However, the supply of tools and procedures to facilitate their implementation at the city scale is limited and laborious. This work aims to develop a specific and automated methodology for identifying the feasibility of implementation of rooftop greenhouses in non-residential urban areas, using airborne sensors. The use of Light Detection and Ranging (LIDAR) and Long Wave Infrared (LWIR) data and the Leica ALS50-II and TASI-600 sensors allow for the identification of some building roof parameters (area, slope, materials, and solar radiation) to determine the potential for constructing a RTG. This development represents an improvement in time and accuracy with respect to previous methodology, where all the relevant information must be acquired manually. The methodology has been applied and validated in a case study corresponding to a non-residential urban area in the industrial municipality of Rubí, Barcelona (Spain). Based on this practical application, an area of 36,312m 2 out of a total area of 1,243,540m 2 of roofs with ideal characteristics for the construction of RTGs was identified. This area can produce approximately 600tons of tomatoes per year, which represents the average yearly consumption for about 50% of Rubí total population. The use of this methodology also facilitates the decision making process in urban agriculture, allowing a quick identification of optimal surfaces for the future implementation of urban agriculture in housing. It also opens new avenues for the use of airborne technology in environmental topics in cities. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Before, During, and After a Wildfire

    Centers for Disease Control (CDC) Podcasts

    More and more people are making their homes in woodland settings – in or near forests, rural areas, or remote mountain sites - areas in which wildfires are more likely to occur. Wildfires often begin unnoticed. They spread quickly, igniting brush, trees, and homes. CDC recommends taking steps before, during, and after local wildfires to reduce the effect they have on your life.

  3. Laboratory sensor design for fiber-optic detection of 85Kr

    International Nuclear Information System (INIS)

    Geelhood, B.D.; Knopf, M.A.

    1994-06-01

    The goal of the fiber-optic detection of 85 Kr project is to produce a sensor to detect 85 Kr in real-time from either an airborne or ground-based platform. The 85 Kr gas is a fission product which is released in large quantities during fuel reprocessing and in minor quantities during nuclear reactor operations. Thus an airborne plume of 85 Kr is a radioactive signature of proliferation. Since 85 Kr has a 10.72 year half life, it is difficult for a proliferator to contain the gas for several half lives to avoid releasing the radioactive signature of proliferation. The long half life also results in a plume that can extend several kilometers from the source, which allows initial proliferation monitoring from large distances. The sensor can be used to make stand-alone, real-time measurements of 85 Kr that can be used as direct evidence for proliferation and/or as a screening sensor to determine when to collect air samples for further laboratory analysis. This report provides a summary of the 85 Kr beta sensor design that PNL will use in the laboratory to: (1) demonstrate the measurement technique, (2) establish minimum detection limits, and (3) optimize the sensor design for the final airborne sensor package. The goal of the final airborne sensor package will be to measure 85 Kr at activity levels as low as or as close to ambient background levels as possible with a reasonably sized sensor

  4. Modeling Wildfire Hazard in the Western Hindu Kush-Himalayas

    Science.gov (United States)

    Bylow, D.

    2012-12-01

    Wildfire regimes are a leading driver of global environmental change affecting a diverse array of global ecosystems. Particulates and aerosols produced by wildfires are a primary source of air pollution making the early detection and monitoring of wildfires crucial. The objectives of this study were to model regional wildfire potential and identify environmental, topological, and sociological factors that contribute to the ignition of wildfire events in the Western Hindu Kush-Himalayas of South Asia. The environmental, topological, and sociological factors were used to model regional wildfire potential through multi-criteria evaluation using a method of weighted linear combination. Moderate Resolution Imaging Spectroradiometer (MODIS) and geographic information systems (GIS) data were integrated to analyze regional wildfires and construct the model. Model validation was performed using a holdout cross validation method. The study produced a significant model of wildfire potential in the Western Hindu Kush-Himalayas.; Western Hindu Kush-Himalayas ; Western Hindu Kush-Himalayas Wildfire Potential

  5. Distribution of trace gases and aerosols in the Siberian air shed during wildfires of summer 2012

    Science.gov (United States)

    Belan, Boris D.; Paris, Jean-Daiel; Nedelec, Philippe; Antokhin, Pavel N.; Arshinova, Victoriya; Arshinov, Mikhail Yu.; Belan, Sergey B.; Davydov, Denis K.; Ivlev, Georgii A.; Fofonov, Alexandre V.; Kozlov, Artem V.; Rasskazchikova, Tatyana M.; Savkin, Denis E.; Simonenkov, Denis V.; Sklyadneva, Tatyana K.; Tolmachev, Gennadii N.

    2017-04-01

    During the last two decades, three strong biomass burning events have been observed in Russia: two of them in 2002 and 2010 in the European part of Russia, and another one in 2012 in West and East Siberia. In this paper we present results of the extensive airborne study of the vertical distribution of trace gases and aerosols carried out during strong wildfire event happened in summer 2012 in Siberia. For this purpose, the Optik TU-134 aircraft laboratory was used as a research platform. A large-scale airborne campaign has been undertaken along the route Novosibirsk-Mirny-Yakutsk-Bratsk-Novosibirsk on 31st of July and 1st of August, 2012. Flight pattern consisted of a number of ascents and descents between close to the ground and 8 km altitude that enabled 20 vertical profiles to be obtained. Campaign was conducted under the weather conditions of low-gradient baric field that determined the low speed transport of air masses, as well as the accumulation of biomass burning emissions in the region under study. Highest concentrations of CO2, CH4 and CO over wildfire spots reached 432 ppm, 2367 ppb, and 4036 ppb, correspondingly. If we exclude from the analysis the data obtained when crossing smoke plumes, we can find a difference between background concentrations measured in the atmosphere over regions affected by biomass burning and clean areas. Enhancement of CO2 over the wildfire areas changed with altitude. On average, it was 10.5 ppm in the atmospheric boundary layer (ABL) and 5-6 ppm in the free troposphere. Maximum CO2 enhancements reached 27 ppm and 24 ppm, correspondingly. The averaged CH4 enhancement varied from 75 ppb in the boundary layer to 30 ppb in the upper troposphere, and a little bit lower than 30 ppb in the middle troposphere. Maximum CH4 enhancements reached 202 ppb, 108 ppb, and 50-60 ppb, correspondingly. The averaged and maximum enhancements of CO differed by an order of magnitude. Thus, in the ABL the maximum difference in concentration between

  6. Net benefits of wildfire prevention education efforts

    Science.gov (United States)

    Jeffrey P. Prestemon; David T. Butry; Karen L. Abt; Ronda Sutphen

    2010-01-01

    Wildfire prevention education efforts involve a variety of methods, including airing public service announcements, distributing brochures, and making presentations, which are intended to reduce the occurrence of certain kinds of wildfires. A Poisson model of preventable Florida wildfires from 2002 to 2007 by fire management region was developed. Controlling for...

  7. The economic benefits of wildfire prevention education

    Science.gov (United States)

    L.A. Hermansen-Baez; J.P. Prestemon; D.T. Butry; K.L. Abt; R. Sutphen

    2011-01-01

    While there are many activities that can limit damages from wildfires, such as firefighting efforts and prescribed burning, wildfire prevention education programs can be particularly beneficial. This was confirmed through a study conducted by the Southern Research Station and the National Institute of Standards and Technology that demonstrated that wildfire prevention...

  8. Development of Signal Processing Algorithms for High Resolution Airborne Millimeter Wave FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    For airborne earth observation applications, there is a special interest in lightweight, cost effective, imaging sensors of high resolution. The combination of Frequency Modulated Continuous Wave (FMCW) technology and Synthetic Aperture Radar (SAR) techniques can lead to such a sensor. In this

  9. Towards Improved Airborne Fire Detection Systems Using Beetle Inspired Infrared Detection and Fire Searching Strategies

    Directory of Open Access Journals (Sweden)

    Herbert Bousack

    2015-06-01

    Full Text Available Every year forest fires cause severe financial losses in many countries of the world. Additionally, lives of humans as well as of countless animals are often lost. Due to global warming, the problem of wildfires is getting out of control; hence, the burning of thousands of hectares is obviously increasing. Most important, therefore, is the early detection of an emerging fire before its intensity becomes too high. More than ever, a need for early warning systems capable of detecting small fires from distances as large as possible exists. A look to nature shows that pyrophilous “fire beetles” of the genus Melanophila can be regarded as natural airborne fire detection systems because their larvae can only develop in the wood of fire-killed trees. There is evidence that Melanophila beetles can detect large fires from distances of more than 100 km by visual and infrared cues. In a biomimetic approach, a concept has been developed to use the surveying strategy of the “fire beetles” for the reliable detection of a smoke plume of a fire from large distances by means of a basal infrared emission zone. Future infrared sensors necessary for this ability are also inspired by the natural infrared receptors of Melanophila beetles.

  10. Assessing the hydrologic response to wildfires in mountainous regions

    Science.gov (United States)

    Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak

    2018-04-01

    This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post-wildfire

  11. Understanding change: Wildfire in Larimer County, Colorado

    Science.gov (United States)

    Hannah Brenkert-Smith; Patricia A. Champ

    2013-01-01

    Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...

  12. Understanding change: Wildfire in Boulder County, Colorado

    Science.gov (United States)

    Hannah Brenkert-Smith; Patricia A. Champ; Amy L. Telligman

    2013-01-01

    Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...

  13. Before, During, and After a Wildfire

    Centers for Disease Control (CDC) Podcasts

    2007-11-01

    More and more people are making their homes in woodland settings – in or near forests, rural areas, or remote mountain sites - areas in which wildfires are more likely to occur. Wildfires often begin unnoticed. They spread quickly, igniting brush, trees, and homes. CDC recommends taking steps before, during, and after local wildfires to reduce the effect they have on your life.  Created: 11/1/2007 by Emergency Communications System.   Date Released: 11/1/2007.

  14. Wildfire Risk Management: Challenges and Opportunities

    Science.gov (United States)

    Thompson, M.; Calkin, D. E.; Hand, M. S.; Kreitler, J.

    2014-12-01

    In this presentation we address federal wildfire risk management largely through the lens of economics, targeting questions related to costs, effectiveness, efficiency, and tradeoffs. Beyond risks to resources and assets such as wildlife habitat, watersheds, and homes, wildfires present financial risk and budgetary instability for federal wildfire management agencies due to highly variable annual suppression costs. Despite its variability, the costs of wildfire management have continued to escalate and account for an ever-growing share of overall agency budgets, compromising abilities to attain other objectives related to forest health, recreation, timber management, etc. Trends associated with a changing climate and human expansion into fire-prone areas could lead to additional suppression costs in the future, only further highlighting the need for an ability to evaluate economic tradeoffs in investments across the wildfire management spectrum. Critically, these economic analyses need to accurately capture the complex spatial and stochastic aspects of wildfire, the inherent uncertainty associated with monetizing environmental impacts of wildfire, the costs and effectiveness of alternative management policies, and linkages between pre-fire investments and active incident management. Investing in hazardous fuels reduction and forest restoration in particular is a major policy lever for pre-fire risk mitigation, and will be a primary focus of our presentation. Evaluating alternative fuel management and suppression policies could provide opportunities for significant efficiency improvements in the development of risk-informed management fire management strategies. Better understanding tradeoffs of fire impacts and costs can help inform policy questions such as how much of the landscape to treat and how to balance investments in treating new areas versus maintaining previous investments. We will summarize current data needs, knowledge gaps, and other factors

  15. Computer-controlled sampling system for airborne particulates

    International Nuclear Information System (INIS)

    Hall, C.F.; Anspaugh, L.R.; Koval, J.S.; Phelps, P.L.; Steinhaus, R.J.

    1975-01-01

    A self-contained, mobile, computer-controlled air-sampling system has been designed and fabricated that also collects and records the data from eight meteorological sensors. The air-samplers are activated automatically when the collected meteorological data meet the criteria specified at the beginning of the data-collection run. The filters from the samplers are intended to collect airborne 239 Pu for later radionuclide analysis and correlation with the meteorological data for the study of resuspended airborne radioactivity and for the development of a predictive model. This paper describes the system hardware, discusses the system and software concepts, and outlines the operational procedures for the system

  16. Modeling and Prediction of Wildfire Hazard in Southern California, Integration of Models with Imaging Spectrometry

    Science.gov (United States)

    Roberts, Dar A.; Church, Richard; Ustin, Susan L.; Brass, James A. (Technical Monitor)

    2001-01-01

    Large urban wildfires throughout southern California have caused billions of dollars of damage and significant loss of life over the last few decades. Rapid urban growth along the wildland interface, high fuel loads and a potential increase in the frequency of large fires due to climatic change suggest that the problem will worsen in the future. Improved fire spread prediction and reduced uncertainty in assessing fire hazard would be significant, both economically and socially. Current problems in the modeling of fire spread include the role of plant community differences, spatial heterogeneity in fuels and spatio-temporal changes in fuels. In this research, we evaluated the potential of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data for providing improved maps of wildfire fuel properties. Analysis concentrated in two areas of Southern California, the Santa Monica Mountains and Santa Barbara Front Range. Wildfire fuel information can be divided into four basic categories: fuel type, fuel load (live green and woody biomass), fuel moisture and fuel condition (live vs senesced fuels). To map fuel type, AVIRIS data were used to map vegetation species using Multiple Endmember Spectral Mixture Analysis (MESMA) and Binary Decision Trees. Green live biomass and canopy moisture were mapped using AVIRIS through analysis of the 980 nm liquid water absorption feature and compared to alternate measures of moisture and field measurements. Woody biomass was mapped using L and P band cross polarimetric data acquired in 1998 and 1999. Fuel condition was mapped using spectral mixture analysis to map green vegetation (green leaves), nonphotosynthetic vegetation (NPV; stems, wood and litter), shade and soil. Summaries describing the potential of hyperspectral and SAR data for fuel mapping are provided by Roberts et al. and Dennison et al. To utilize remotely sensed data to assess fire hazard, fuel-type maps were translated

  17. On the use of airborne gravimetry in gravity field modelling: Experiences from the AGMASCO project

    DEFF Research Database (Denmark)

    Bastos, L.; Cunha, S.; Forsberg, René

    2000-01-01

    of the vertical accelerations acting on the airborne platform from the natural gravity signal. With the advances in DGPS techniques new prospects arise for gravity field recovery which are of great importance for geodesy, geophysics oceanography and satellite navigation. Furthermore, airborne gravimetric...... and the methods validated. Recovery of the gravity values directly from measurements with the Lacoste & Romberg air/sea gravimeter and from measurements with the inertial sensors was analysed. The potential of these sensors to recover gravity and the experience gained within this project are reported here....

  18. WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.

    2012-10-10

    This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

  19. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  20. Risk preferences in strategic wildfire decision making: A choice experiment with U.S. wildfire managers

    Science.gov (United States)

    Matthew J. Wibbenmeyer; Michael S. Hand; David E. Calkin; Tyron J. Venn; Matthew P. Thompson

    2013-01-01

    Federal policy has embraced risk management as an appropriate paradigm for wildfire management. Economic theory suggests that over repeated wildfire events, potential economic costs and risks of ecological damage are optimally balanced when management decisions are free from biases, risk aversion, and risk seeking. Of primary concern in this article is how managers...

  1. Airborne Multisensor Pod System (AMPS) data management overview

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  2. Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System

    Directory of Open Access Journals (Sweden)

    Abhishek Joshi

    2017-01-01

    Full Text Available Wireless Sensor Network consists of large number of nodes densely deployed in ad hoc manner. Usually, most of the application areas of WSNs require two-dimensional (2D topology. Various emerging application areas such as airborne networks and underwater wireless sensor networks are usually deployed using three-dimensional (3D network topology. In this paper, a static 3D cluster-based network topology has been proposed for airborne networks. A network protocol stack consisting of various protocols such as TDMA MAC and dynamic routing along with services such as time synchronization, Cluster Head rotation, and power level management has been proposed for this airborne network. The proposed protocol stack has been implemented on the hardware platform consisting of number of TelosB nodes. This 3D airborne network architecture can be used to measure Air Quality Index (AQI in an area. Various parameters of network such as energy consumption, Cluster Head rotation, time synchronization, and Packet Delivery Ratio (PDR have been analyzed. Detailed description of the implementation of the protocol stack along with results of implementation has been provided in this paper.

  3. Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability

    International Nuclear Information System (INIS)

    Beard, L.P.; Nyquist, J.E.

    1998-01-01

    Where the magnetic permeability of rock or soil exceeds that of free space, the effect on airborne electromagnetic systems is to produce a frequency-independent shift in the in-phase response of the system while altering the quadrature response only slightly. The magnitude of the in-phase shift increases as (1) the relative magnetic permeability is increased, (2) the amount of magnetic material is increased, and (3) the airborne sensor gets nearer the earth's surface. Over resistive, magnetic ground, the shift may be evinced by negative in-phase measurements at low frequencies; but over more conductive ground, the same shift may go unnoticed because of the large positive in-phase response. If the airborne sensor is flown at low levels, the magnitude of the shift may be large enough to affect automatic inversion routines that do not take this shift into account, producing inaccurate estimated resistivities, usually overestimates. However, layered-earth inversion algorithms that incorporate magnetic permeability as an additional inversion parameter may improve the resistivity estimates. The authors demonstrate this improvement using data collected over hazardous waste sites near Oak Ridge, Tennessee, USA. Using resistivity inversion without magnetic permeability, the waste sites are almost invisible to the sensors. When magnetic permeability is included as an inversion parameter, the sites are detected, both by improved resistivity estimates and by estimated magnetic permeability

  4. Wildfire risk as a socioecological pathology

    Science.gov (United States)

    Fischer, A. Paige; Spies, Thomas A; Steelman, Toddi A; Moseley, Cassandra; Johnson, Bart R.; Bailey, John D.; Ager, Alan A; Bourgeron, Patrick S.; Charnley, Susan; Collins, Brandon M.; Kline, Jeffrey D; Leahy, Jessica E; Littell, Jeremy; Millington, James D. A.; Nielsen-Pincus, Max; Olsen, Christine S; Paveglio, Travis B; Roos, Christopher I.; Steen-Adams, Michelle M; Stevens, Forrest R; Vukomanovic, Jelena; White, Eric M; Bowman, David M J S

    2016-01-01

    Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological “pathology”: that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales. Assessments of wildfire risk could benefit from recognizing and accounting for these interactions in terms of socioecological systems, also known as coupled natural and human systems (CNHS). We characterize the primary social and ecological dimensions of the wildfire risk pathology, paying particular attention to the governance system around wildfire risk, and suggest strategies to mitigate the pathology through innovative planning approaches, analytical tools, and policies. We caution that even with a clear understanding of the problem and possible solutions, the system by which human actors govern fire-prone forests may evolve incrementally in imperfect ways and can be expected to resist change even as we learn better ways to manage CNHS.

  5. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    Science.gov (United States)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  6. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    Science.gov (United States)

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  7. The hidden cost of wildfires: Economic valuation of health effects of wildfire smoke exposure in Southern California

    Science.gov (United States)

    Richardson, L.A.; Champ, P.A.; Loomis, J.B.

    2012-01-01

    There is a growing concern that human health impacts from exposure to wildfire smoke are ignored in estimates of monetized damages from wildfires. Current research highlights the need for better data collection and analysis of these impacts. Using unique primary data, this paper quantifies the economic cost of health effects from the largest wildfire in Los Angeles County's modern history. A cost of illness estimate is $9.50 per exposed person per day. However, theory and empirical research consistently find that this measure largely underestimates the true economic cost of health effects from exposure to a pollutant in that it ignores the cost of defensive actions taken as well as disutility. For the first time, the defensive behavior method is applied to calculate the willingness to pay for a reduction in one wildfire smoke induced symptom day, which is estimated to be $84.42 per exposed person per day. ?? 2011.

  8. EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest

    Directory of Open Access Journals (Sweden)

    Z. Su

    2009-06-01

    Full Text Available EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006. However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland. As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and

  9. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Directory of Open Access Journals (Sweden)

    S. P. Urbanski

    2013-07-01

    Full Text Available In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE, and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg−1, 135 g kg−1, 7.30 g kg−1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO

  10. Coupling the Biophysical and Social Dimensions of Wildfire Risk to Improve Wildfire Mitigation Planning.

    Science.gov (United States)

    Ager, Alan A; Kline, Jeffrey D; Fischer, A Paige

    2015-08-01

    We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social science to improve understanding of community-wide risk perceptions and to predict property owners' capacities and willingness to mitigate risk by treating hazardous fuels and reducing the susceptibility of dwellings. In particular, we identify spatial scale mismatches in wildfire mitigation planning and their potential adverse impact on risk mitigation goals. Studies in other fire-prone regions suggest that these scale mismatches are widespread and contribute to continued wildfire dwelling losses. We discuss how risk perceptions and behavior contribute to scale mismatches and how they can be minimized through integrated analyses of landscape wildfire transmission and social factors that describe the potential for collaboration among landowners and land management agencies. These concepts are then used to outline an integrated socioecological planning framework to identify optimal strategies for local community risk mitigation and improve landscape-scale prioritization of fuel management investments by government entities. © 2015 Society for Risk Analysis.

  11. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  12. Optimal timing of wildfire prevention education

    Science.gov (United States)

    D. T. Butry; J. P. Prestemon; K. L. Abt

    2010-01-01

    Public outreach and wildfire education activities have been shown to limit the number of unintentional human-caused ignitions (i.e., 'accidental' wildfires). Such activities include the airing of public service announcements, visiting with homeowners in at-risk areas, distributing informative brochures and flyers, hosting of public forums (with presentations...

  13. Atmospheric Infrasound during a Large Wildfire

    Science.gov (United States)

    Vance, Alexis; Elbing, Brian

    2017-11-01

    Numerous natural and manmade sources generate infrasound, including tornado producing storms, human heart, hurricanes, and volcanoes. Infrasound is currently being studied as part of Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP), which is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. To support this effort a fixed infrasonic microphone located in Stillwater, Oklahoma has been monitoring atmospheric emissions since September of 2016. While severe storm systems is the primary focus of this work, the system also captures a wide range of infrasonic sources from distances in excess of 300 miles due to an acoustic ceiling and weak atmospheric absorption. The current presentation will focus on atmospheric infrasound observations during a large wildfire on the Kansas-Oklahoma border that occurred between March 6-22, 2017. This work was supported by NSF Grant 1539070.

  14. LANDFIRE 2010 - updated data to support wildfire and ecological management

    Science.gov (United States)

    Nelson, Kurtis J.; Connot, Joel A.; Peterson, Birgit E.; Picotte, Joshua J.

    2013-01-01

    Wildfire is a global phenomenon that affects human populations and ecosystems. Wildfire effects occur at local to global scales impacting many people in different ways (Figure 1). Ecological concerns due to land use, fragmentation, and climate change impact natural resource use, allocation, and conservation. Access to consistent and current environmental data is a constant challenge, yet necessary for understanding the complexities of wildfire and ecological management. Data products and tools from the LANDFIRE Program help decision-makers to clarify problems and identify possible solutions when managing fires and natural resources. LANDFIRE supports the reduction of risk from wildfire to human lives and property, monitoring of fire danger, prediction of fire behavior on active incidents, and assessment of fire severity and impacts on natural systems [1] [2] [3]. LANDFIRE products are unique in that they are nationally consistent and provide the only complete geospatial dataset describing vegetation and wildland fuel information for the entire U.S. As such, LANDFIRE data are useful for many ecological applications [3]. For example, LANDFIRE data were recently integrated into a decision-support system for resource management and conservation decision-making along the Appalachian Trail. LANDFIRE is a joint effort between the U.S. Department of the Interior Office of Wildland Fire, U.S. Department of Agriculture Forest Service Fire & Aviation Management, and The Nature Conservancy. To date, seven versions of LANDFIRE data have been released, with each successive version improving the quality of the data, adding additional features, and/or updating the time period represented by the data. The latest version, LANDFIRE 2010 (LF 2010), released mid-2013, represents circa 2010 landscape conditions and succeeds LANDFIRE 2008 (LF 2008), which represented circa 2008 landscape conditions. LF 2010 used many of the same processes developed for the LF 2008 effort [3]. Ongoing

  15. Multisensor Network System for Wildfire Detection Using Infrared Image Processing

    Directory of Open Access Journals (Sweden)

    I. Bosch

    2013-01-01

    Full Text Available This paper presents the next step in the evolution of multi-sensor wireless network systems in the early automatic detection of forest fires. This network allows remote monitoring of each of the locations as well as communication between each of the sensors and with the control stations. The result is an increased coverage area, with quicker and safer responses. To determine the presence of a forest wildfire, the system employs decision fusion in thermal imaging, which can exploit various expected characteristics of a real fire, including short-term persistence and long-term increases over time. Results from testing in the laboratory and in a real environment are presented to authenticate and verify the accuracy of the operation of the proposed system. The system performance is gauged by the number of alarms and the time to the first alarm (corresponding to a real fire, for different probability of false alarm (PFA. The necessity of including decision fusion is thereby demonstrated.

  16. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    Science.gov (United States)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  17. Oil spill sensing in marine and coastal environments using laser-based sensors

    International Nuclear Information System (INIS)

    Brown, C. E.; Fingas, M. F.

    1998-01-01

    A prototype laser environmental airborne fluorosensor (LEAF) under development by the Environmental Protection Service of Environment Canada, which has the ability to detect and classify oil on water, land and conditions of snow and ice, real-time from an airborne platform, was described. Also under development are a scanning laser environmental airborne fluorosensor (SLEAF) to detect and map oil in complex marine and shoreline environments where other nonspecific sensors are not effective, and a laser ultrasonic remote sensing of oil thickness (LURSOT) sensor, which is expected to provide a measurement of oil thickness from an airborne platform. Details of each of these remote sensing technologies are provided, along with a discussion of expected benefits to the oil spill response community. 12 refs

  18. Advanced Sensors for Airborne Magnetic Measurements

    National Research Council Canada - National Science Library

    Bobb, L

    2001-01-01

    Numerous ground tests and platform tests were conducted to evaluate platform integration issues and the performance of the POLATOMIC 2000 magnetometer, a laser-pumped helium-4 total magnetic field sensor...

  19. Geospatial Analysis Application to Forecast Wildfire Occurrences in South Carolina

    Directory of Open Access Journals (Sweden)

    Stephen L. Sperry

    2012-05-01

    Full Text Available Wildfire occurrence and intensity have increased over the last few decades and, at times, have been national news. Wildfire occurrence is somewhat predictable based on physical factors like meteorological conditions, fuel loads, and vegetation dynamics. Socioeconomic factors have been not been widely used in wildfire occurrence models. We used a geospatial (or geographical information system analysis approach to identify socioeconomic variables that contribute to wildfire occurrence. Key variables considered were population change, population density, poverty rate, educational level, geographic mobility, and road density (transportation network. Hot spot analysis was the primary research tool. Wildfire occurrence seemed to be positively related to low population densities, low levels of population change, high poverty rate, low educational attainment level, and low road density. Obviously, some of these variables are correlated and this is a complex problem. However, socioeconomic variables appeared to contribute to wildfire occurrence and should be considered in development of wildfire occurrence forecasting models.

  20. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer

    2014-01-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of

  1. Analyzing wildfire exposure on Sardinia, Italy

    Science.gov (United States)

    Salis, Michele; Ager, Alan A.; Arca, Bachisio; Finney, Mark A.; Alcasena, Fermin; Bacciu, Valentina; Duce, Pierpaolo; Munoz Lozano, Olga; Spano, Donatella

    2014-05-01

    We used simulation modeling based on the minimum travel time algorithm (MTT) to analyze wildfire exposure of key ecological, social and economic features on Sardinia, Italy. Sardinia is the second largest island of the Mediterranean Basin, and in the last fifty years experienced large and dramatic wildfires, which caused losses and threatened urban interfaces, forests and natural areas, and agricultural productions. Historical fires and environmental data for the period 1995-2009 were used as input to estimate fine scale burn probability, conditional flame length, and potential fire size in the study area. With this purpose, we simulated 100,000 wildfire events within the study area, randomly drawing from the observed frequency distribution of burn periods and wind directions for each fire. Estimates of burn probability, excluding non-burnable fuels, ranged from 0 to 1.92x10-3, with a mean value of 6.48x10-5. Overall, the outputs provided a quantitative assessment of wildfire exposure at the landscape scale and captured landscape properties of wildfire exposure. We then examined how the exposure profiles varied among and within selected features and assets located on the island. Spatial variation in modeled outputs resulted in a strong effect of fuel models, coupled with slope and weather. In particular, the combined effect of Mediterranean maquis, woodland areas and complex topography on flame length was relevant, mainly in north-east Sardinia, whereas areas with herbaceous fuels and flat areas were in general characterized by lower fire intensity but higher burn probability. The simulation modeling proposed in this work provides a quantitative approach to inform wildfire risk management activities, and represents one of the first applications of burn probability modeling to capture fire risk and exposure profiles in the Mediterranean basin.

  2. A tale of two fires: The relative effectiveness of past wildfires in mitigating wildfire behavior and effects

    Science.gov (United States)

    Robert W. Gray; Susan J. Prichard

    2015-01-01

    The incidence of large, costly landscape-scale fires in western North America is increasing. To combat these fires, researchers and managers have expressed increased interest in investigating the effectiveness of past, stand-replacing wildfires as bottom-up controls on fire spread and severity. Specifically, how effective are past wildfires in mitigating the behavior...

  3. Examining Atmospheric and Ecological Drivers of Wildfires, Modeling Wildfire Occurrence in the Southwest United States, and Using Atmospheric Sounding Observations to Verify National Weather Service Spot Forecasts

    Science.gov (United States)

    Nauslar, Nicholas J.

    This dissertation is comprised of three different papers that all pertain to wildland fire applications. The first paper performs a verification analysis on mixing height, transport winds, and Haines Index from National Weather Service spot forecasts across the United States. The final two papers, which are closely related, examine atmospheric and ecological drivers of wildfire for the Southwest Area (SWA) (Arizona, New Mexico, west Texas, and Oklahoma panhandle) to better equip operational fire meteorologists and managers to make informed decisions on wildfire potential in this region. The verification analysis here utilizes NWS spot forecasts of mixing height, transport winds and Haines Index from 2009-2013 issued for a location within 50 km of an upper sounding location and valid for the day of the fire event. Mixing height was calculated from the 0000 UTC sounding via the Stull, Holzworth, and Richardson methods. Transport wind speeds were determined by averaging the wind speed through the boundary layer as determined by the three mixing height methods from the 0000 UTC sounding. Haines Index was calculated at low, mid, and high elevation based on the elevation of the sounding and spot forecast locations. Mixing height forecasts exhibited large mean absolute errors and biased towards over forecasting. Forecasts of transport wind speeds and Haines Index outperformed mixing height forecasts with smaller errors relative to their respective means. The rainfall and lightning associated with the North American Monsoon (NAM) can vary greatly intra- and inter-annually and has a large impact on wildfire activity across the SWA by igniting or suppressing wildfires. NAM onset thresholds and subsequent dates are determined for the SWA and each Predictive Service Area (PSA), which are sub-regions used by operational fire meteorologists to predict wildfire potential within the SWA, April through September from 1995-2013. Various wildfire activity thresholds using the number

  4. Wildfires and tourist behaviors in Florida

    Science.gov (United States)

    Brijesh Thapa; Ignatius Cahyanto; Stephen M. Holland; James D. Absher

    2013-01-01

    The impacts of wildfires on tourism have largely been examined with emphasis on economic losses and recovery strategies. Given the limited research from a demand perspective, this study examined tourist risk perceptions and reactionary behaviors toward wildfires in Florida. Data (N ¼ 771) was collected among a U.S. sample of non-resident overnight leisure travelers...

  5. Harvesting morels after wildfire in Alaska.

    Science.gov (United States)

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  6. Chemistry, toxicology, and persistence of particulates during and after the 2016 Fort McMurray Wildfires in Alberta, Canada

    Science.gov (United States)

    Kohl, L.; Chan, A. W. H.; Cooke, C. A.; Hustins, S.; Jackson, B.; Wang, S.; Jing, X.; Meng, M.

    2017-12-01

    The Horse River Fire in May 2016 forced the evacuation of 88,000 Fort McMurray residents, and led to the destruction of over 2000 houses. After re-entry to homes, there is significant concern about exposures to residual fire-derived contaminants in residential houses. Wildfire research, however, provides little guidance on how long ashes and pollutants persist in household dust after major fires. The FACET project studies the chemistry and toxicology of samples of urban and forest ashes and airborne particles collected during the fire, as well as over 500 house dust samples collected in July 2017 (14 months after the fire). Here we present results on the chemical composition of the urban and forest ash samples collected during the fire along with initial results from house dust samples. Wildfire ashes contained elevated concentrations of polycyclic aromatic hydrocarbons (PAH), heavy metals, and dioxin like compounds (DLC). Relative to EPA reference doses, As and Sb constitute the greatest non-carcinogenic health hazard, whereas PAHs Benzo(a)pyrene and Indeno(1,2,3-cd)pyrene are the most relevant carcinogens. Ashes from urban locations contained higher concentrations of heavy metals and DLC than samples collected from forested areas outside of the City of Fort McMurray. Urban samples furthermore had a greater potential for generating oxidative stress than rural samples, as determined by dithiothreitol (DTT) consumption assays. The oxidative potential was positively correlated to Al, Cu, As, and V concentrations. Airborne particulate matter samples from the smoke plume contained consistent concentrations of levoglucosan (99 ± 5 mg g-1), along with other tracers for biomass burning (free lignin monomers, retene). Together these results will serve as proxies for understanding the contribution and the persistence of fire-derived pollutants in house dust in Fort McMurray homes.

  7. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    Science.gov (United States)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  8. Probabilistic assessment of wildfire hazard and municipal watershed exposure

    Science.gov (United States)

    Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille

    2012-01-01

    The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...

  9. MULTI SENSOR AND PLATFORMS SETUPS FOR VARIOUS AIRBORNE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  10. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    Science.gov (United States)

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.

  11. Carbon recovery rates following different wildfire risk mitigation treatments

    Science.gov (United States)

    M. Hurteau; M. North

    2010-01-01

    Sequestered forest carbon can provide a climate change mitigation benefit, but in dry temperate forests, wildfire poses a reversal risk to carbon offset projects. Reducing wildfire risk requires a reduction in and redistribution of carbon stocks, the benefit of which is only realized when wildfire occurs. To estimate the time needed to recover carbon removed and...

  12. Wildfire communication and climate risk mitigation

    Science.gov (United States)

    Robyn S. Wilson; Sarah M. McCaffrey; Eric. Toman

    2017-01-01

    Throughout the late 19th century and most of the 20th century, risks associated with wildfire were addressed by suppressing fires as quickly as possible. However, by the 1960s, it became clear that fire exclusion policies were having adverse effects on ecological health, as well as contributing to larger and more damaging wildfires over time. Although federal fire...

  13. Mapping Spatial Patterns of Posidonia oceanica Meadows by Means of Daedalus ATM Airborne Sensor in the Coastal Area of Civitavecchia (Central Tyrrhenian Sea, Italy

    Directory of Open Access Journals (Sweden)

    Marco Marcelli

    2013-10-01

    Full Text Available The spatial distribution of sea bed covers and seagrass in coastal waters is of key importance in monitoring and managing Mediterranean shallow water environments often subject to both increasing anthropogenic impacts and climate change effects. In this context we present a methodology for effective monitoring and mapping of Posidonia oceanica (PO meadows in turbid waters using remote sensing techniques tested by means of LAI (Leaf Area Index point sea truth measurements. Preliminary results using Daedalus airborne sensor are reported referring to the PO meadows at Civitavecchia site (central Tyrrhenian sea where vessel traffic due to presence of important harbors and huge power plant represent strong impact factors. This coastal area, 100 km far from Rome (Central Italy, is characterized also by significant hydrodynamic variations and other anthropogenic factors that affect the health of seagrass meadows with frequent turbidity and suspended sediments in the water column. During 2011–2012 years point measurements of several parameters related to PO meadows phenology were acquired on various stations distributed along 20 km of coast between the Civitavecchia and S. Marinella sites. The Daedalus airborne sensor multispectral data were preprocessed with the support of satellite (MERIS derived water quality parameters to obtain here improved thematic maps of the local PO distribution. Their thematic accuracy was then evaluated as agreement (R2 with the point sea truth measurements and regressive modeling using an on purpose developd method.

  14. Aerodigitalni senzori - LH Systems ADS 40 / Airborne digital sensors: LH Systems ADS 40

    Directory of Open Access Journals (Sweden)

    Marko Pejić

    2004-01-01

    Full Text Available U radu su prezentovane osnove prikupljanja prostornih podataka metodom daljinske detekcije i klasičnim fotogrametrijskim metodom. Ukazano je na kompromis između dva metoda koji nudi digitalna aerokamera. Kompanija LH Systems proizvela je digitalnu aerokameru ADS 40 koja nudi sasvim nov koncept prikupljanja prostornih podataka. Sistem kamere obezbeđuje panhromatske i trodimenzionalne informacije koristeći tri CCD linije i opciono još pet linija iz multispektralnog opsega. Kamera skenira teren sa prostornom rezolucijom od 25 cm, površine od 300 kvadratnih kilometara, uz vreme trajanja leta koje je nešto kraće od jednog sata. / This paper presents basics of collecting spatial data with remote sensing and the classical photogrammetric method. A compromise between two methods, offered by a digital aero camera, is also suggested. The LH Systems has produced a new camera concept called Airborne Digital Sensor (ADS 40 which uses a new way of collecting spatial data. The camera system provides panchromatic and stereo information using three CCD lines and up to five more lines for multispectral imagery. The performance of the camera allows a three dimensional and multispectral image with a ground sample distance of 25 cm for an area of 300 square miles within a flight time shorter than one hour.

  15. Quality assessment and comparison of smartphone, airborne and leica c10 laser scanner based point clouds

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.; Wang, J.

    2016-01-01

    3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as

  16. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    Science.gov (United States)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  17. Sensors and sensor integration; Proceedings of the Meeting, Orlando, FL, Apr. 4, 1991

    Science.gov (United States)

    Dean, Peter D.

    Consideration is given to adaptive control of propellant slosh for launch vehicles, a lidar for expendable launch vehicles, a high-resolution airborne multisensor system, an optical velocity sensor for air data applications, and use of absorption spectroscopy for refined petroleum product discrimination. Attention is also given to edge effects in silicon photodiode arrays, sensing and environment perception for a mobile vehicle, distributed-effect optical fiber sensors for trusses and plates, and instrumentation concepts for multiplexed Bragg grating sensors. (For individual items see A93-21962 to A93-21972)

  18. Enhanced intelligence through optimized TCPED concepts for airborne ISR

    Science.gov (United States)

    Spitzer, M.; Kappes, E.; Böker, D.

    2012-06-01

    Current multinational operations show an increased demand for high quality actionable intelligence for different operational levels and users. In order to achieve sufficient availability, quality and reliability of information, various ISR assets are orchestrated within operational theatres. Especially airborne Intelligence, Surveillance and Reconnaissance (ISR) assets provide - due to their endurance, non-intrusiveness, robustness, wide spectrum of sensors and flexibility to mission changes - significant intelligence coverage of areas of interest. An efficient and balanced utilization of airborne ISR assets calls for advanced concepts for the entire ISR process framework including the Tasking, Collection, Processing, Exploitation and Dissemination (TCPED). Beyond this, the employment of current visualization concepts, shared information bases and information customer profiles, as well as an adequate combination of ISR sensors with different information age and dynamic (online) retasking process elements provides the optimization of interlinked TCPED processes towards higher process robustness, shorter process duration, more flexibility between ISR missions and, finally, adequate "entry points" for information requirements by operational users and commands. In addition, relevant Trade-offs of distributed and dynamic TCPED processes are examined and future trends are depicted.

  19. Characterizing the solar reflection from wildfire smoke plumes using airborne multiangle measurements

    Science.gov (United States)

    Gatebe, C. K.; Varnai, T.; Gautam, R.; Poudyal, R.; Singh, M. K.

    2016-12-01

    To help better understand forest fire smoke plumes, this study examines sunlight reflected from plumes that were observed over Canada during the ARCTAS campaign in summer 2008. In particular, the study analyzes multiangle and multispectral measurements of smoke scattering by the airborne Cloud Absorption Radiometer (CAR). In combination with other in-situ and remote sensing information and radiation modeling, CAR data is used for characterizing the radiative properties and radiative impact of smoke particles—which inherently depend on smoke particle properties that influence air quality. In addition to estimating the amount of reflected and absorbed sunlight, the work includes using CAR data to create spectral and broadband top-of-atmosphere angular distribution models (ADMs) of solar radiation reflected by smoke plumes, and examining the sensitivity of such angular models to scene parameters. Overall, the results help better understand the radiative properties and radiative effects of smoke particles, and are anticipated to help better interpret satellite data on smoke plumes.

  20. Airborne detection and mapping of oil spills, Grand Bahamas, February 1973

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, J N

    1973-09-01

    An airborne exercise is described employing various sensors to investigate their ability to detect and map Louisiana crude and naphtha oil spills, both by day and by night. It is shown that photographic, infrared scanning, and low light level television all have some ability to detect Louisiana crude, but only infrared scanning detected naphtha. None of these sensors could identify the anomalies as oil. A laser fluorosensor showed promise in detecting oil at night. (Author) (GRA)

  1. Geophex airborne unmanned survey system

    International Nuclear Information System (INIS)

    Won, I.J.; Taylor, D.W.A.

    1995-01-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide open-quotes stand-offclose quotes capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected

  2. Risk preferences, probability weighting, and strategy tradeoffs in wildfire management

    Science.gov (United States)

    Michael S. Hand; Matthew J. Wibbenmeyer; Dave Calkin; Matthew P. Thompson

    2015-01-01

    Wildfires present a complex applied risk management environment, but relatively little attention has been paid to behavioral and cognitive responses to risk among public agency wildfire managers. This study investigates responses to risk, including probability weighting and risk aversion, in a wildfire management context using a survey-based experiment administered to...

  3. Mapping the Relationship Between Wildfire and Poverty

    Science.gov (United States)

    Kathy Lynn; Wendy Gerlitz

    2006-01-01

    Wildfires and related government roles and responsibilities for federal wildland management are prominent in our national consciousness because of the increased severity in the last decade of fires on and around public lands. In recent years, laws, strategies, and implementation documents have been issued to direct federal efforts for wildfire prevention, firefighting...

  4. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    Science.gov (United States)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  5. In ecoregions across western USA streamflow increases during post-wildfire recovery

    Science.gov (United States)

    Wine, Michael L.; Cadol, Daniel; Makhnin, Oleg

    2018-01-01

    Continued growth of the human population on Earth will increase pressure on already stressed terrestrial water resources required for drinking water, agriculture, and industry. This stress demands improved understanding of critical controls on water resource availability, particularly in water-limited regions. Mechanistic predictions of future water resource availability are needed because non-stationary conditions exist in the form of changing climatic conditions, land management paradigms, and ecological disturbance regimes. While historically ecological disturbances have been small and could be neglected relative to climatic effects, evidence is accumulating that ecological disturbances, particularly wildfire, can increase regional water availability. However, wildfire hydrologic impacts are typically estimated locally and at small spatial scales, via disparate measurement methods and analysis techniques, and outside the context of climate change projections. Consequently, the relative importance of climate change driven versus wildfire driven impacts on streamflow remains unknown across the western USA. Here we show that considering wildfire in modeling streamflow significantly improves model predictions. Mixed effects modeling attributed 2%-14% of long-term annual streamflow to wildfire effects. The importance of this wildfire-linked streamflow relative to predicted climate change-induced streamflow reductions ranged from 20%-370% of the streamflow decrease predicted to occur by 2050. The rate of post-wildfire vegetation recovery and the proportion of watershed area burned controlled the wildfire effect. Our results demonstrate that in large areas of the western USA affected by wildfire, regional predictions of future water availability are subject to greater structural uncertainty than previously thought. These results suggest that future streamflows may be underestimated in areas affected by increased prevalence of hydrologically relevant ecological

  6. Estimating wildfire response costs in Alaska's changing climate

    Science.gov (United States)

    Climate change is altering wildfire activity across Alaska, with increased area burned projected for the future. Changes in wildfire are expected to affect the need for management and suppression resources, however the potential economic implications of these needs have not been ...

  7. Spreading like wildfire

    Science.gov (United States)

    2017-11-01

    The 2017 wildfire season has seen unusually high fire levels in many parts of the world, with extensive and severe fires occurring in Chile, the Mediterranean, Russia, the US, Canada and even Greenland. Is this a sign of things to come?

  8. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy.

    Science.gov (United States)

    Salis, Michele; Ager, Alan A; Alcasena, Fermin J; Arca, Bachisio; Finney, Mark A; Pellizzaro, Grazia; Spano, Donatella

    2015-01-01

    In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.

  9. Wind erosion of soils burned by wildfire

    Science.gov (United States)

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud

    2011-01-01

    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  10. Is Managed Wildfire Protecting Yosemite National Park from Drought?

    Science.gov (United States)

    Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Kelly, M.; Tague, N.

    2016-12-01

    Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the Western US. This project explores the potential of managed wildfire - a forest management strategy in which fires caused by lightning are allowed to burn naturally as long as certain safety parameters are met - to reverse the effects of fire suppression. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover and increasing meadow and shrubland areas. We have collected evidence from field measurements and remote sensing which suggest that managed wildfire increases landscape and hydrologic heterogeneity, and likely improves resilience to disturbances such as fire and drought. Vegetation maps created from aerial photos show an increase in landscape heterogeneity following the introduction of managed wildfire. Soil moisture observations during the drought years of 2013-2016 suggest that transitions from dense forest to shrublands or meadows can increase summer soil moisture. In the winter of 2015-2016, snow depth measurements showed deeper spring snowpacks in burned areas compared to dense forests. Our study provides a unique view of relatively long-term effects of managed wildfire on vegetation change, ecohydrology, and drought resistance. Understanding these effects is increasingly important as the use of managed wildfire becomes more widely accepted, and as the likelihood of both drought and wildfire increases.

  11. Wildfire: distributed, Grid-enabled workflow construction and execution

    Directory of Open Access Journals (Sweden)

    Issac Praveen

    2005-03-01

    Full Text Available Abstract Background We observe two trends in bioinformatics: (i analyses are increasing in complexity, often requiring several applications to be run as a workflow; and (ii multiple CPU clusters and Grids are available to more scientists. The traditional solution to the problem of running workflows across multiple CPUs required programming, often in a scripting language such as perl. Programming places such solutions beyond the reach of many bioinformatics consumers. Results We present Wildfire, a graphical user interface for constructing and running workflows. Wildfire borrows user interface features from Jemboss and adds a drag-and-drop interface allowing the user to compose EMBOSS (and other programs into workflows. For execution, Wildfire uses GEL, the underlying workflow execution engine, which can exploit available parallelism on multiple CPU machines including Beowulf-class clusters and Grids. Conclusion Wildfire simplifies the tasks of constructing and executing bioinformatics workflows.

  12. The Impact of CO2-Driven Vegetation Changes on Wildfire Risk

    Science.gov (United States)

    Skinner, C. B.; Poulsen, C. J.

    2017-12-01

    While wildfires are a key component of natural ecological restoration and succession, they also pose tremendous risks to human life, health, and property. Wildfire frequency is expected to increase in many regions as the radiative effects of elevated CO2 drive warmer surface air temperatures, earlier spring snow melt, and more frequent meteorological drought. However, high CO2 concentrations will also directly impact vegetation growth and physiology, potentially altering wildfire characteristics through changes in fuel amount and surface hydrology. Depending on the biome and time of year, these vegetation-driven responses may mitigate or enhance radiative-driven wildfire changes. In this study, we use a suite of earth system models from the Coupled Model Intercomparison Project 5 with active biogeophysics and biogeochemistry to understand how the vegetation response to high CO2 (CO2 quadrupling) contributes to future changes in wildfire risk across the globe. Across the models, projected CO2 fertilization enhances aboveground biomass (about a 30% leaf area index (LAI) increase averaged across the globe) during the spring and summer months, increasing the availability of wildfire fuel across all biomes. Despite greater LAI, models robustly project widespread reductions in summer season transpiration (about -15% averaged across the globe) in response to reduced stomatal conductance from CO2 physiological forcing. Reduced transpiration warms summer season near surface temperatures and lowers relative humidity across vegetated regions of the mid-to-high latitudes, heightening the risk of wildfire occurrence. However, as transpiration goes down in response to greater plant water use efficiency, a larger fraction of soil water remains in the soil, potentially halting the spread of wildfires in some regions. Given the myriad ways in which the vegetation response to CO2 may alter wildfire risk, and the robustness of the responses across models, an explicit simulation of

  13. Real-time estimation of wildfire perimeters from curated crowdsourcing

    Science.gov (United States)

    Zhong, Xu; Duckham, Matt; Chong, Derek; Tolhurst, Kevin

    2016-04-01

    Real-time information about the spatial extents of evolving natural disasters, such as wildfire or flood perimeters, can assist both emergency responders and the general public during an emergency. However, authoritative information sources can suffer from bottlenecks and delays, while user-generated social media data usually lacks the necessary structure and trustworthiness for reliable automated processing. This paper describes and evaluates an automated technique for real-time tracking of wildfire perimeters based on publicly available “curated” crowdsourced data about telephone calls to the emergency services. Our technique is based on established data mining tools, and can be adjusted using a small number of intuitive parameters. Experiments using data from the devastating Black Saturday wildfires (2009) in Victoria, Australia, demonstrate the potential for the technique to detect and track wildfire perimeters automatically, in real time, and with moderate accuracy. Accuracy can be further increased through combination with other authoritative demographic and environmental information, such as population density and dynamic wind fields. These results are also independently validated against data from the more recent 2014 Mickleham-Dalrymple wildfires.

  14. Technology and the study of wildfire: Middle school students study the impacts of wildfire

    Science.gov (United States)

    Fox-Gliessman, D.; Kerski, J.J.

    2005-01-01

    Various technologies that can assist students in exploring the human and environmental impacts of wildfire and in communicating their findings are discussed. Wildfires occur in many parts of the world, and provide an excellent opportunity for students to study local and global interdisciplinary issues using technology. Prior to the beginning of the field study, students take instructions in both their math and science classes about the distinction and appropriate uses of quantitative and qualitative data. Use of computer programs such as Excel spreadsheets which can contain data, and interaction of research and technology group with students, can help them collect best of the information and in making an accurate report.

  15. An airborne interferometric SAR system for high-performance 3D mapping

    Science.gov (United States)

    Lange, Martin; Gill, Paul

    2009-05-01

    With a vertical accuracy better than 1 m and collection rates up to 7000 km2/h, airborne interferometric synthetic aperture radars (InSAR) bridge the gap between space borne radar sensors and airborne optical LIDARs. This paper presents the latest generation of X-band InSAR sensors, developed by Intermap TechnologiesTM, which are operated on our four aircrafts. The sensors collect data for the NEXTMap(R) program - a digital elevation model (DEM) with 1 m vertical accuracy for the contiguous U.S., Hawaii, and most of Western Europe. For a successful operation, challenges like reduction of multipath reflections, very high interferometric phase stability, and a precise system calibration had to be mastered. Recent advances in sensor design, comprehensive system automation and diagnostics have increased the sensor reliability to a level where no radar operator is required onboard. Advanced flight planning significantly improved aircraft utilization and acquisition throughput, while reducing operational costs. Highly efficient data acquisition with straight flight lines up to 1200 km is daily routine meanwhile. The collected data pass though our automated processing cluster and finally are edited to our terrain model products. Extensive and rigorous quality control at every step of the workflow are key to maintain stable vertical accuracies of 1 m and horizontal accuracies of 2 m for our 3D maps. The combination of technical and operational advances presented in this paper enabled Intermap to survey two continents, producing 11 million km2 of uniform and accurate 3D terrain data.

  16. Federal Wildfire Activities. Current Strategy and Issues Needing Attention

    National Research Council Canada - National Science Library

    1999-01-01

    Concerned about the rising costs of preparing for and controlling wildfires, you asked us to provide information on how the Forest Service and the Bureau of Land Management manage their wildfire programs...

  17. Advanced Integrated Multi-Sensor Surveillance (AIMS. Operator Machine Interface (OMI) Definition Study

    National Research Council Canada - National Science Library

    Baker, Kevin; Youngson, Gord

    2007-01-01

    To enhance the capability of airborne search and rescue (SAR) and surveillance, particularly at night and in poor weather, a multi sensor electro optical imaging system, the Advanced Integrated Multi sensor Surveillance (AIMS...

  18. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    Science.gov (United States)

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  19. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  20. Wildfire, wildlands, and people: understanding and preparing for wildfire in the wildland-urban interface - a Forests on the Edge report

    Science.gov (United States)

    S. M. Stein; J. Menakis; M. A. Carr; S. J. Comas; S. I. Stewart; H. Cleveland; L. Bramwell; V. C. Radeloff

    2013-01-01

    Fire has historically played a fundamental ecological role in many of America's wildland areas. However, the rising number of homes in the wildland-urban interface (WUI), associated impacts on lives and property from wildfire, and escalating costs of wildfire management have led to an urgent need for communities to become "fire-adapted." We present maps...

  1. Comparing resource values at risk from wildfires with Forest Service fire suppression expenditures: Examples from 2003 western Montana wildfire season

    Science.gov (United States)

    David Calkin; Kevin Hyde; Krista Gebert; Greg Jones

    2005-01-01

    Determining the economic effectiveness of wildfire suppression activities is complicated by difficulties in identifying the area that would have burned and the associated resource value changes had suppression resources not been employed. We developed a case study using break-even analysis for two large wildfires from the 2003 fire season in western Montana -- the...

  2. Geophex airborne unmanned survey system

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  3. Measuring the efficacy of a wildfire education program in Colorado Springs.

    Science.gov (United States)

    G.H. Donovan; P.A. Champ; D.T. Butry

    2007-01-01

    We examine an innovative wildfire risk education program in Colorado Springs, which rated the wildfire risk of 35,000 homes in the city's wildland urban interface. Evidence from home sales before and after the program's implementation suggests that the program was successful at changing homebuyers' attitudes toward wildfire risk, particularly preferences...

  4. National database for calculating fuel available to wildfires

    Science.gov (United States)

    Donald McKenzie; Nancy H.F. French; Roger D. Ottmar

    2012-01-01

    Wildfires are increasingly emerging as an important component of Earth system models, particularly those that involve emissions from fires and their effects on climate. Currently, there are few resources available for estimating emissions from wildfires in real time, at subcontinental scales, in a spatially consistent manner. Developing subcontinental-scale databases...

  5. The evolution of Smokey Bear: Environmental education about wildfire for youth

    Science.gov (United States)

    Heidi L. Ballard; Emily Evans; Victoria E. Sturtevant; Pamela. Jakes

    2012-01-01

    Many environmental education programs in the United States educate youth about the prevention of wildfire and its role in ecosystems.We reviewed 50 wildfire education programs for youth (WEY) in the U.S. through an Internet search and interviews with program providers. We investigated whether they reflect current wildfire science, environmental education (EE)...

  6. Wildfire exposure analysis on the national forests in the Pacific Northwest, USA.

    Science.gov (United States)

    Ager, Alan A; Buonopane, Michelle; Reger, Allison; Finney, Mark A

    2013-06-01

    We analyzed wildfire exposure for key social and ecological features on the national forests in Oregon and Washington. The forests contain numerous urban interfaces, old growth forests, recreational sites, and habitat for rare and endangered species. Many of these resources are threatened by wildfire, especially in the east Cascade Mountains fire-prone forests. The study illustrates the application of wildfire simulation for risk assessment where the major threat is from large and rare naturally ignited fires, versus many previous studies that have focused on risk driven by frequent and small fires from anthropogenic ignitions. Wildfire simulation modeling was used to characterize potential wildfire behavior in terms of annual burn probability and flame length. Spatial data on selected social and ecological features were obtained from Forest Service GIS databases and elsewhere. The potential wildfire behavior was then summarized for each spatial location of each resource. The analysis suggested strong spatial variation in both burn probability and conditional flame length for many of the features examined, including biodiversity, urban interfaces, and infrastructure. We propose that the spatial patterns in modeled wildfire behavior could be used to improve existing prioritization of fuel management and wildfire preparedness activities within the Pacific Northwest region. © 2012 Society for Risk Analysis.

  7. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  8. Efficient and Equitable Design of Wildfire Mitigation Programs

    Science.gov (United States)

    Thomas P. Holmes; Karen L. Abt; Robert Huggett; Jeffrey P. Prestemon

    2007-01-01

    Natural resource economists have addresssed the economic effienciency of expenditures on wildfire mitigation for nearly a century (Gope and Gorte 1979). Beginning with the work of Sparhawk (1925), the theory of efficent wildfire mitigation developed alolng conceptual lines drawn form neoclassical economics. The objective of the traditional least-cost-plus-loss model...

  9. Rapid increases and time-lagged declines in amphibian occupancy after wildfire.

    Science.gov (United States)

    Hossack, Blake R; Lowe, Winsor H; Corn, Paul Stephen

    2013-02-01

    Climate change is expected to increase the frequency and severity of drought and wildfire. Aquatic and moisture-sensitive species, such as amphibians, may be particularly vulnerable to these modified disturbance regimes because large wildfires often occur during extended droughts and thus may compound environmental threats. However, understanding of the effects of wildfires on amphibians in forests with long fire-return intervals is limited. Numerous stand-replacing wildfires have occurred since 1988 in Glacier National Park (Montana, U.S.A.), where we have conducted long-term monitoring of amphibians. We measured responses of 3 amphibian species to fires of different sizes, severity, and age in a small geographic area with uniform management. We used data from wetlands associated with 6 wildfires that burned between 1988 and 2003 to evaluate whether burn extent and severity and interactions between wildfire and wetland isolation affected the distribution of breeding populations. We measured responses with models that accounted for imperfect detection to estimate occupancy during prefire (0-4 years) and different postfire recovery periods. For the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), occupancy was not affected for 6 years after wildfire. But 7-21 years after wildfire, occupancy for both species decreased ≥ 25% in areas where >50% of the forest within 500 m of wetlands burned. In contrast, occupancy of the boreal toad (Anaxyrus boreas) tripled in the 3 years after low-elevation forests burned. This increase in occupancy was followed by a gradual decline. Our results show that accounting for magnitude of change and time lags is critical to understanding population dynamics of amphibians after large disturbances. Our results also inform understanding of the potential threat of increases in wildfire frequency or severity to amphibians in the region. ©2012 Society for Conservation Biology.

  10. Pathology of wildfire risk: A characterization of social and ecological dimensions

    Science.gov (United States)

    A. Paige Fischer; Thomas A Spies; Toddi A Steelman; Cassandra Moseley; Bart R Johnson; John D Bailey; Alan A Ager; Patrick Bourgeron; Susan Charnley; Brandon M Collins; Jeffrey D Kline; Jessica E Leahy; Jeremy S Littell; James DA Millington; Max Nielsen-Pincus; Christine S Olsen; Travis B Paveglio; Christopher I Roos; Michelle M Steen-Adams; Forrest R Stevens; Jelena Vukomanovic; Eric M White; David M. J. S. Bowman

    2016-01-01

    Despite dramatic increases in suppression spending, the risk of life and property loss associated with wildfire has continued to rise in recent decades. Economic losses from wildfires have doubled in the United States and suppression expenses have tripled between 2002 and 2012 compared to the decade prior. Loss of property to wildfire has outpaced efforts to reduce...

  11. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  12. On the effects of wildfires on precipitation in Southern Africa

    Science.gov (United States)

    De Sales, Fernando; Okin, Gregory S.; Xue, Yongkang; Dintwe, Kebonye

    2018-03-01

    This study investigates the impact of wildfire on the climate of Southern Africa. Moderate resolution imaging spectroradiometer derived burned area fraction data was implemented in a set of simulations to assess primarily the role of wildfire-induced surface changes on monthly precipitation. Two post-fire scenarios are examined namely non-recovering and recovering vegetation scenarios. In the former, burned vegetation fraction remains burned until the end of the simulations, whereas in the latter it is allowed to regrow following a recovery period. Control simulations revealed that the model can dependably capture the monthly precipitation and surface temperature averages in Southern Africa thus providing a reasonable basis against which to assess the impacts of wildfire. In general, both wildfire scenarios have a negative impact on springtime precipitation. September and October were the only months with statistically significant precipitation changes. During these months, precipitation in the region decreases by approximately 13 and 9% in the non-recovering vegetation scenario, and by about 10 and 6% in the recovering vegetation wildfire scenario, respectively. The primary cause of precipitation deficit is the decrease in evapotranspiration resulting from a reduction in surface net radiation. Areas impacted by the precipitation reduction includes the Luanda, Kinshasa, and Brazzaville metropolitan areas, The Angolan Highlands, which are the source of the Okavango Rive, and the Okavango Delta region. This study suggests that a probable intensification in wildfire frequency and extent resulting from projected population increase and global warming in Southern Africa could potentially exacerbate the impacts of wildfires in the region's seasonal precipitation.

  13. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2014-05-01

    Full Text Available In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs, which are measured by the integrated positioning and orientation system (POS of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  14. Particulate Air Pollution from Wildfires in the Western US under Climate Change.

    Science.gov (United States)

    Liu, Jia Coco; Mickley, Loretta J; Sulprizio, Melissa P; Dominici, Francesca; Yue, Xu; Ebisu, Keita; Anderson, Georgiana Brooke; Khan, Rafi F A; Bravo, Mercedes A; Bell, Michelle L

    2016-10-01

    Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM 2.5 ) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term "Smoke Wave," defined as ≥2 consecutive days with high wildfire-specific PM 2.5 , to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM 2.5 standards, wildfires contributed an average of 71.3% of total PM 2.5 . Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health.

  15. Adapt to more wildfire in western North American forests as climate changes.

    Science.gov (United States)

    Schoennagel, Tania; Balch, Jennifer K; Brenkert-Smith, Hannah; Dennison, Philip E; Harvey, Brian J; Krawchuk, Meg A; Mietkiewicz, Nathan; Morgan, Penelope; Moritz, Max A; Rasker, Ray; Turner, Monica G; Whitlock, Cathy

    2017-05-02

    Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland-urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are ( i ) recognizing that fuels reduction cannot alter regional wildfire trends; ( ii ) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; ( iii ) actively managing more wild and prescribed fires with a range of severities; and ( iv ) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland-urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.

  16. Assessing wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, S.; Garcia-Gonzalo, J.; Botequim, B.; Ricardo, A.; Borges, J. G.; Tome, M.; Oliveira, M. M.

    2012-11-01

    Maritime pine (Pinus pinaster Ait.) is an important conifer from the western Mediterranean Basin extending over 22% of the forest area in Portugal. In the last three decades nearly 4% of Maritime pine area has been burned by wildfires. Yet no wildfire occurrence probability models are available and forest and fire management planning activities are thus carried out mostly independently of each other. This paper presents research to address this gap. Specifically, it presents a model to assess wildfire occurrence probability in regular and pure Maritime pine stands in Portugal. Emphasis was in developing a model based on easily available inventory data so that it might be useful to forest managers. For that purpose, data from the last two Portuguese National Forest Inventories (NFI) and data from wildfire perimeters in the years from 1998 to 2004 and from 2006 to 2007 were used. A binary logistic regression model was build using biometrics data from the NFI. Biometric data included indicators that might be changed by operations prescribed in forest planning. Results showed that the probability of wildfire occurrence in a stand increases in stand located at steeper slopes and with high shrubs load while it decreases with precipitation and with stand basal area. These results are instrumental for assessing the impact of forest management options on wildfire probability thus helping forest managers to reduce the risk of wildfires. (Author) 57 refs.

  17. Airborne Measurements and Air Quality Impacts of the 2016 California Soberanes Wildfire

    Science.gov (United States)

    Marrero, J. E.; Asher, E. C. C.; Yates, E. L.; St Clair, J. M.; Ryoo, J. M.; McNamara, M.; Hanisco, T. F.; Gore, W.; Faloona, I. C.; Iraci, L. T.

    2017-12-01

    Emissions from biomass burning are an important source of a multitude of trace gases and particles that contribute to local and regional air quality, climate forcing, and have human health impacts. Among the compounds emitted are greenhouse gases including carbon dioxide (CO2) and methane (CH4), organics such as formaldehyde (HCHO), and other harmful species including carbon monoxide (CO) and particulate matter (PM). In addition, biomass burning is a primary source of volatile organic compounds (VOCs) and nitrogen oxides (NOx = NO + NO2), contributing to formation of tropospheric ozone (O3) and reduced regional air quality. Emissions of the various ozone precursors in a fire differ based on vegetation (fuel) type, fire intensity, and age of the plume, complicating the prediction of O3 formation. The Soberanes Fire began from an illegal campfire on 22 July 2016 in the Garrapata State Park in Monterey County, California (36.460 °N, -121.900 °W). Over the following three months the fire burned a total of 132,127 acres. Presented here are aircraft measurements of CO2, CH4, O3, and HCHO from five flights near and downwind of the Soberanes wildfire, collected as part of the Alpha Jet Atmospheric eXperiment (AJAX). In situ data are used to determine emission ratios (ERs), or excess mixing ratio relative to CO2. In addition, measurements of NOx and O3 from a coastal mountaintop site are presented, and are used to estimate O3 production rates during the Soberanes Fire burning period. Lastly, the extent of ozone enhancement and air quality impacts downwind of the fire will be addressed using ground-based monitoring data, the NOAA Hazard Mapping System (HMS) smoke product and HYSPLIT trajectory model.

  18. Mapping of Ice in the Odden by Satellite and Airborne Remote Sensing

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Hansen, K.Q.; Valeur, H.

    1999-01-01

    A detailed analysis of the ice conditions in the Odden area of the Greenland Sea was carried out using data from active and passive microwave sensors, supplemented by airborne data. The study focuses on the 1992-1993 winter season, the only winter during the period 1993-1995 in which an Odden...

  19. Strapdown Airborne Gravimetry Using a Combination of Commercial Software and Stable-Platform Gravity Estimates

    DEFF Research Database (Denmark)

    Jensen, Tim E.; Nielsen, J. Emil; Olesen, Arne V.

    2017-01-01

    into the long-wavelengths of the gravity estimates. This has made the stable-platform approach the preferred method for geodetic applications. In the summer of 2016, during a large airborne survey in Malaysia, a SIMU system was flown alongside a traditional LaCoste&Romberg (LCR) gravimeter. The SIMU......For the past two decades, airborne gravimetry using a Strapdown Inertial Measurement Unit (SIMU) has been producing gravity estimates comparable to the traditional stable-platform single-axis gravimeters. The challenge has been to control the long term drift of the IMU sensors, propagating...

  20. Effects of wildfire on soil nutrients in Mediterranean ecosystem

    NARCIS (Netherlands)

    Caon, L.; Vallejo, V.R.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    High-intensity and fast-spreading wildfires are natural in the Mediterranean basin. However, since 1960, wildfire occurrence has increased because of changes in land use, which resulted in extensive land abandonment, increases in the fuel load and continuity in the landscape. The level of soil

  1. Post-wildfire soil erosion in the Mediterranean: Review and future research directions

    Science.gov (United States)

    Shakesby, R. A.

    2011-04-01

    Wildfires increased dramatically in frequency and extent in the European Mediterranean region from the 1960s, aided by a general warming and drying trend, but driven primarily by socio-economic changes, including rural depopulation, land abandonment and afforestation with flammable species. Published research into post-wildfire hydrology and soil erosion, beginning during the 1980s in Spain, has been followed by studies in other European Mediterranean countries together with Israel and has now attained a sufficiently large critical mass to warrant a major review. Although variations in climate, vegetation, soil, topography and fire severity cause differences in Mediterranean post-wildfire erosion, the long history of human landscape impact up to the present day is responsible for some its distinctive characteristics. This paper highlights these characteristics in reviewing wildfire impacts on hydrology, soil properties and soil erosion by water. The 'mosaic' nature of many Mediterranean landscapes (e.g. an intricate land-use pattern, abandoned terraces and tracks interrupting slopes) may explain sometimes conflicting post-fire hydrological and erosional responses at different sites and spatial scales. First-year post-wildfire soil losses at point- (average, 45-56 t ha - 1 ) and plot-scales (many Aspect is important, with more erosion reported for south- than north-facing slopes, which is attributed to greater fire frequency, slower vegetation recovery on the former and with soil characteristics more prone to erosion (e.g. lower aggregate stability). Post-fire wind erosion is a potentially important but largely neglected process. Gauging the degradational significance of wildfires has relied on comparison with unburnt land, but the focus for comparison should be switched to other agents of soil disturbance and/or currently poorly understood soil renewal rates. Human impact on land use and vegetation may alter expected effects (increased fire activity and post-wildfire

  2. Predicting wildfires

    Science.gov (United States)

    Patricia Andrews; Mark Finney; Mark Fischetti

    2007-01-01

    The number of catastrophic wildfires in the U.S. has been steadily rising. The nation has spent more than $1 billion annually to suppress such fires in eight of the past 10 years. In 2005 a record 8.7 million acres burned, only to be succeeded by 9.9 million acres in 2006. And this year is off to a furious start. To a great extent, the increase in fires stems from a...

  3. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...

  4. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well......-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys...

  5. Future respiratory hospital admissions from wildfire smoke under climate change in the Western US

    Science.gov (United States)

    Coco Liu, Jia; Mickley, Loretta J.; Sulprizio, Melissa P.; Yue, Xu; Peng, Roger D.; Dominici, Francesca; Bell, Michelle L.

    2016-12-01

    Background. Wildfires are anticipated to be more frequent and intense under climate change. As a result, wildfires may emit more air pollutants that can harm health in communities in the future. The health impacts of wildfire smoke under climate change are largely unknown. Methods. We linked projections of future levels of fine particulate matter (PM2.5) specifically from wildfire smoke under the A1B climate change scenario using the GEOS-Chem model for 2046-2051, present-day estimates of hospital admission impacts from wildfire smoke, and future population projections to estimate the change in respiratory hospital admissions for persons ≥65 years by county (n = 561) from wildfire PM2.5 under climate change in the Western US. Results. The increase in intense wildfire smoke days from climate change would result in an estimated 178 (95% confidence interval: 6.2, 361) additional respiratory hospital admissions in the Western US, accounting for estimated future increase in the elderly population. Climate change is estimated to impose an additional 4990 high-pollution smoke days. Central Colorado, Washington and southern California are estimated to experience the highest percentage increase in respiratory admissions from wildfire smoke under climate change. Conclusion. Although the increase in number of respiratory admissions from wildfire smoke seems modest, these results provide important scientific evidence of an often-ignored aspect of wildfire impact, and information on their anticipated spatial distribution. Wildfires can cause serious social burdens such as property damage and suppression cost, but can also raise health problems. The results provide information that can be incorporated into development of environmental and health policies in response to climate change. Climate change adaptation policies could incorporate scientific evidence on health risks from natural disasters such as wildfires.

  6. Synoptic patterns associated with wildfires caused by lightning in Castile and Leon, Spain

    Directory of Open Access Journals (Sweden)

    E. García-Ortega

    2011-03-01

    Full Text Available The Iberian Peninsula presents the highest number of wildfires in Europe. In the NW of Spain in particular, wildfires are the natural risk with the greatest economic impact in this region. Wildfires caused by lightning are closely related to the triggering of convective phenomena. The prediction of thunderstorms is a very complex task because these weather events have a local character and are highly dependent on mesoscale atmospheric conditions. The development of convective storms is directly linked to the existence of a synoptic environment favoring convection. The aim of this study is to classify the atmospheric patterns that provide favorable environments for the occurrence of wildfires caused by lightning in the region of Castile and Leon, Spain. The database used for the study contains 376 wildfire days from the period 1987–2006. NCEP data reanalysis has been used. The atmospheric fields used to characterise each day were: geopotential heights and temperatures at 500 hPa and 850 hPa, relative humidity and the horizontal wind at 850 hPa. A Principal Component Analysis in T-mode followed by a Cluster Analysis resulted in a classification of wildfire days into five clusters. The characteristics of these clusters were analysed and described, focusing particularly on the study of those wildfire days in which more than one wildfire was detected. In these cases the main feature observed was the intensification of the disturbance typical of the cluster to which the wildfire belongs.

  7. Provision of a wildfire risk map: informing residents in the wildland urban interface.

    Science.gov (United States)

    Mozumder, Pallab; Helton, Ryan; Berrens, Robert P

    2009-11-01

    Wildfires in the wildland urban interface (WUI) are an increasing concern throughout the western United States and elsewhere. WUI communities continue to grow and thus increase the wildfire risk to human lives and property. Information such as a wildfire risk map can inform WUI residents of potential risks and may help to efficiently sort mitigation efforts. This study uses the survey-based contingent valuation (CV) method to examine annual household willingness to pay (WTP) for the provision of a wildfire risk map. Data were collected through a mail survey of the East Mountain WUI area in the State of New Mexico (USA). The integrated empirical approach includes a system of equations that involves joint estimation of WTP values, along with measures of a respondent's risk perception and risk mitigation behavior. The median estimated WTP is around U.S. $12 for the annual wildfire risk map, which covers at least the costs of producing and distributing available risk information. Further, providing a wildfire risk map can help address policy goals emphasizing information gathering and sharing among stakeholders to mitigate the effects of wildfires.

  8. Assessing exposure of human and ecological values to wildfire in Sardinia, Italy

    Science.gov (United States)

    Michele Salis; Alan A. Ager; Bachisio Arca; Mark A. Finney; Valentina Bacciu; Pierpaolo Duce; Donatella. Spano

    2012-01-01

    We used simulation modelling to analyze spatial variation in wildfire exposure relative to key social and economic features on the island of Sardinia, Italy. Sardinia contains a high density of urban interfaces, recreational values and highly valued agricultural areas that are increasingly being threatened by severe wildfires. Historical fire data and wildfire...

  9. Airborne Observations of Ozone and Other Trace Gases Upwind of National Parks in California and Nevada

    Science.gov (United States)

    Iraci, Laura T.

    2016-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approximately 8 km to near surface), boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. Our largest data collection includes 55 vertical profiles at Railroad Valley, NV, approximately 100 miles southwest of Great Basin National Park, and many of those flights include comparisons to surface monitors in the Nevada Rural Ozone Initiative network. We have also collected a smaller set of measurements northwest of Joshua Tree National Park, and are looking to develop partnerships that can put this data to use to assess or improve air quality in nearby Parks. AJAX also studies the plumes emitted by wildfires in California, as most emissions inventories are based on prescribed fires. We have sampled a dozen fires, and results will be presented from several, including the Rim (2013), Soberanes and Cedar (2016) Fires.

  10. Current research issues related to post-wildfire runoff and erosion processes

    Science.gov (United States)

    Moody, John A.; Shakesby, Richard A.; Robichaud, Peter R.; Cannon, Susan H.; Martin, Deborah A.

    2013-01-01

    Research into post-wildfire effects began in the United States more than 70 years ago and only later extended to other parts of the world. Post-wildfire responses are typically transient, episodic, variable in space and time, dependent on thresholds, and involve multiple processes measured by different methods. These characteristics tend to hinder research progress, but the large empirical knowledge base amassed in different regions of the world suggests that it should now be possible to synthesize the data and make a substantial improvement in the understanding of post-wildfire runoff and erosion response. Thus, it is important to identify and prioritize the research issues related to post-wildfire runoff and erosion. Priority research issues are the need to: (1) organize and synthesize similarities and differences in post-wildfire responses between different fire-prone regions of the world in order to determine common patterns and generalities that can explain cause and effect relations; (2) identify and quantify functional relations between metrics of fire effects and soil hydraulic properties that will better represent the dynamic and transient conditions after a wildfire; (3) determine the interaction between burned landscapes and temporally and spatially variable meso-scale precipitation, which is often the primary driver of post-wildfire runoff and erosion responses; (4) determine functional relations between precipitation, basin morphology, runoff connectivity, contributing area, surface roughness, depression storage, and soil characteristics required to predict the timing, magnitudes, and duration of floods and debris flows from ungaged burned basins; and (5) develop standard measurement methods that will ensure the collection of uniform and comparable runoff and erosion data. Resolution of these issues will help to improve conceptual and computer models of post-wildfire runoff and erosion processes.

  11. Unmanned airborne system in real-time radiological monitoring

    International Nuclear Information System (INIS)

    Zafrir, H.; Pernick, A.; Yaffe, U.; Grushka, A.

    1993-01-01

    The unmanned airborne vehicle (UAV) platform, equipped with an appropriate payload and capable of carrying a variety of modular sensors, is an effective tool for real-time control of environmental disasters of different types (e.g. nuclear or chemical accidents). The suggested payloads consist of a miniaturised self-collimating nuclear spectrometry sensor and electro-optical sensors for day and night imagery. The system provides means of both real-time field data acquisition in an endangered environment and on-line hazard assessment computation from the down link raw data. All the processing, including flight planning using an expert system, is performed by a dedicated microcomputer located in a Mobile Ground Control Station (MGCS) situated outside the hazardous area. The UAV equipment is part of a system designed especially for the critically important early phase of emergency response. Decisions by the Emergency Response Manager (ERM) are also based on the ability to estimate the potential dose to individuals and the mitigation of dose when protection measures are implemented. (author)

  12. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    Science.gov (United States)

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  13. The Effect of Prescribed Burns and Wildfire on Vegetation in Bastrop State Park, TX

    Science.gov (United States)

    Justice, C. J.

    2014-12-01

    In 2011, central Texas had its worst drought since the 1950's. This, in conjunction with the strong winds produced by Tropical Storm Lee created conditions that made possible the Bastrop County Complex Fire in September 2011. These record-breaking wildfires burned over 95% of the 6,565-acre Bastrop State Park (BSP). Since 2003, BSP had been using prescribed burns as a management practice to reduce fuel load and prevent high severity wildfires. Although these prescribed fires did not prevent the 2011 wildfires they may have mitigated their effects. This study considered the effect of prescribed burn history and wildfire burn severity on vegetation recovery in BSP since the 2011 wildfire. The hypotheses of this study are that prescribed burn history and wildfire burn severity separately and jointly have affected post wildfire vegetation. To test these hypotheses, data were collected in 2013 from 46 plots across BSP using the Fire Effects Monitoring and Inventory (FIREMON) protocol to determine herbaceous plant density, shrub density, overstory density, and midstory tree density. Data were analyzed using analyses of variance (ANOVA) to determine the effects of prescribed fire and wildfire severity on these vegetation measurements. It was found that more severely burned plots had more herbaceous plants, fewer midstory trees, and lower shrub densities than less severely burned plots. Contrary to an initial hypotheses, there were few relationships between prescribed burn history and wildfire effects. The only significant effect detected for prescribed burning was the positive effect of prescribed fire on midstory tree density, but only for plots that were not severely burned in the wildfire. In this system, burn severity had a greater effect on post-wildfire vegetation than prescribed burns.

  14. Incorporating fine-scale drought information into an eastern US wildfire hazard model

    Science.gov (United States)

    Matthew P. Peters; Louis R. Iverson

    2017-01-01

    Wildfires in the eastern United States are generally caused by humans in locations where human development and natural vegetation intermingle, e.g. the wildland–urban interface (WUI). Knowing where wildfire hazards are elevated across the forested landscape may help land managers and property owners plan or allocate resources for potential wildfire threats. In an...

  15. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    Science.gov (United States)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on

  16. Overlapping Bark Beetle Outbreaks, Salvage Logging and Wildfire Restructure a Lodgepole Pine Ecosystem

    Directory of Open Access Journals (Sweden)

    Charles C. Rhoades

    2018-02-01

    Full Text Available The 2010 Church’s Park Fire burned beetle-killed lodgepole pine stands in Colorado, including recently salvage-logged areas, creating a fortuitous opportunity to compare the effects of salvage logging, wildfire and the combination of logging followed by wildfire. Here, we examine tree regeneration, surface fuels, understory plants, inorganic soil nitrogen and water infiltration in uncut and logged stands, outside and inside the fire perimeter. Subalpine fir recruitment was abundant in uncut, unburned, beetle-killed stands, whereas lodgepole pine recruitment was abundant in cut stands. Logging roughly doubled woody fuel cover and halved forb and shrub cover. Wildfire consumed all conifer seedlings in uncut and cut stands and did not stimulate new conifer regeneration within four years of the fire. Aspen regeneration, in contrast, was relatively unaffected by logging or burning, alone or combined. Wildfire also drastically reduced cover of soil organic horizons, fine woody fuels, graminoids and shrubs relative to unburned, uncut areas; moreover, the compound effect of logging and wildfire was generally similar to wildfire alone. This case study documents scarce conifer regeneration but ample aspen regeneration after a wildfire that occurred in the later stage of a severe beetle outbreak. Salvage logging had mixed effects on tree regeneration, understory plant and surface cover and soil nitrogen, but neither exacerbated nor ameliorated wildfire effects on those resources.

  17. Wildfire Dynamics and Occasional Precipitation during Active Fire Season in Tropical Lowland of Nepal

    Directory of Open Access Journals (Sweden)

    Krishna Bahadur Bhujel

    2017-10-01

    Full Text Available Occasional precipitation plays a vital role in reducing the effect of wildfire. This precipitation is especially important for countries like Nepal, where wildfires are a common seasonal event. Approximately 0.1 million hectare of forest area is affected annually due to wildfires in active fire season. The study on the relation of these forms of occasional precipitation with wildfire incidence is still lacking. This research was objectively carried out to examine the correlation of occasional precipitation with wildfire incidence and burnt area. The Moderate Resolution Imaging Spector-Radiometer (MODIS satellite images and precipitation records for 15 years gathered from Department of Hydrology and Metrology were used as input data for this study. The images were analyzed by using ArcGIS function while the precipitation records were analyzed by using Statistical Package for the Social Science (SPSS program. The linear regression model was applied to find correlation of occasional precipitation with wildfire incidence and burnt area. Analysis revealed decreasing trend of precipitation in study area. We found significant correlation (p<0.05 of precipitation with wildfire incidence and burnt area. Findings will be useful for policy makers, implementers and researchers to manage wildfire in sustainable basis.

  18. Remote sensing for non-renewable resources - Satellite and airborne multiband scanners for mineral exploration

    Science.gov (United States)

    Goetz, Alexander F. H.

    1986-01-01

    The application of remote sensing techniques to mineral exploration involves the use of both spatial (morphological) as well as spectral information. This paper is directed toward a discussion of the uses of spectral image information and emphasizes the newest airborne and spaceborne sensor developments involving imaging spectrometers.

  19. A simulator for airborne laser swath mapping via photon counting

    Science.gov (United States)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  20. Public Response to Wildfire: Is the Australian "Stay and Defend or Leave Early" Approach an Option for Wildfire Management in the United States?

    Science.gov (United States)

    Sarah M. McCaffrey; Alan Rhodes

    2009-01-01

    In the United States, the increasing costs and negative impacts of wildfires are causing fire managers and policymakers to reexamine traditional approaches to fire management including whether mass evacuation of populations threatened by wildfire is always the most appropriate option. This article examines the Australian "stay and defend or leave early" (SDLE...

  1. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue.

    Science.gov (United States)

    Black, Carolyn; Tesfaigzi, Yohannes; Bassein, Jed A; Miller, Lisa A

    2017-10-01

    Understanding the effect of wildfire smoke exposure on human health represents a unique interdisciplinary challenge to the scientific community. Population health studies indicate that wildfire smoke is a risk to human health and increases the healthcare burden of smoke-impacted areas. However, wildfire smoke composition is complex and dynamic, making characterization and modeling difficult. Furthermore, current efforts to study the effect of wildfire smoke are limited by availability of air quality measures and inconsistent air quality reporting among researchers. To help address these issues, we conducted a substantive review of wildfire smoke effects on population health, wildfire smoke exposure in occupational health, and experimental wood smoke exposure. Our goal was to evaluate the current literature on wildfire smoke and highlight important gaps in research. In particular we emphasize long-term health effects of wildfire smoke, recovery following wildfire smoke exposure, and health consequences of exposure in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Wildfires Tracked by Minnesota DNR

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the locations of wildfires for which the DNR was the primary responding agency. These include fires not only on state lands, but also rural private...

  3. Wildfire Mitigation and Private Lands: Managing Long-Term Vulnerabilities

    Science.gov (United States)

    Brian Muller; Stacey Schulte

    2006-01-01

    Long-term management of wildfire vulnerability requires strategies that address complex interactions between fire ecology and human settlement. In this paper, we examine the integration of wildfire mitigation and land use planning in county governments in the western U.S. This research relies on data from two sources. First, we conducted a survey of land use...

  4. Hyperspectral target detection analysis of a cluttered scene from a virtual airborne sensor platform using MuSES

    Science.gov (United States)

    Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.

    2017-10-01

    The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been

  5. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Science.gov (United States)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  6. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel

    Science.gov (United States)

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  7. Wireless Sensor Networks - Node Localization for Various Industry Problems

    International Nuclear Information System (INIS)

    Derr, Kurt; Manic, Milos

    2015-01-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothing (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications

  8. Impact of wildfires on ozone exceptional events in the Western u.s.

    Science.gov (United States)

    Jaffe, Daniel A; Wigder, Nicole; Downey, Nicole; Pfister, Gabriele; Boynard, Anne; Reid, Stephen B

    2013-10-01

    Wildfires generate substantial emissions of nitrogen oxides (NOx) and volatile organic compounds (VOCs). As such, wildfires contribute to elevated ozone (O3) in the atmosphere. However, there is a large amount of variability in the emissions of O3 precursors and the amount of O3 produced between fires. There is also significant interannual variability as seen in median O3, organic carbon and satellite derived carbon monoxide mixing ratios in the western U.S. To better understand O3 produced from wildfires, we developed a statistical model that estimates the maximum daily 8 h average (MDA8) O3 as a function of several meteorological and temporal variables for three urban areas in the western U.S.: Salt Lake City, UT; Boise, ID; and Reno, NV. The model is developed using data from June-September 2000-2012. For these three locations, the statistical model can explain 60, 52, and 27% of the variability in daily MDA8. The Statistical Model Residual (SMR) can give information on additional sources of O3 that are not explained by the usual meteorological pattern. Several possible O3 sources can explain high SMR values on any given day. We examine several cases with high SMR that are due to wildfire influence. The first case considered is for Reno in June 2008 when the MDA8 reached 82 ppbv. The wildfire influence for this episode is supported by PM concentrations, the known location of wildfires at the time and simulations with the Weather and Research Forecasting Model with Chemistry (WRF-Chem) which indicates transport to Reno from large fires burning in California. The contribution to the MDA8 in Reno from the California wildfires is estimated to be 26 ppbv, based on the SMR, and 60 ppbv, based on WRF-Chem. The WRF-Chem model also indicates an important role for peroxyacetyl nitrate (PAN) in producing O3 during transport from the California wildfires. We hypothesize that enhancements in PAN due to wildfire emissions may lead to regional enhancements in O3 during high

  9. ALGORITMA ESTIMASI KANDUNGAN KLOROFIL TANAMAN PADI DENGAN DATA AIRBORNE HYPERSPECTRAL

    Directory of Open Access Journals (Sweden)

    Abdi Sukmono

    2015-02-01

    Full Text Available Klorofil merupakan pigmen yang paling penting dalam proses fotosintesis. Tanaman sehat yang mampu tumbuh maksimum umumnya  memiliki jumlah klorofil yang lebih besar daripada tanaman yang tidak sehat. Dalam Estimasi kandungan klorofil tanaman padi dengan airborne hyperspectral dibutuhkan algoritma khusus untuk mendaaptkan akurasi yang baik. Objek dari penelitian ini mengembangkan reflektan in situ menjadi model algoritma   estimasi kandungan klorofil tanaman padi untuk airborne hyperspectral.  Dalam penelitian ini beberapa indeks vegetasi seperti normalized difference vegetation index (NDVI, modified simple ratio (MSR  , modified/transformed chlorophyll absorption ratio index (MCARI, TCARI dan bentuk integrasi (MCARI/OSAVI and TCARI/OSAVI digunakan untuk membentuk model estimasi dengan metode regresi linear. Selain itu juga digunakan  Blue/Green/Yellow/Red Edge Absorption Clhorophyll Index. Dari proses regresi di dapatkan tiga ground model yang mempunyai korelasi kuat (R2≥0.5 terhadap klorofil tanaman padi. Ketiga model tersebut yaitu MSR (705,750 dengan R2 sebesar 0.51, TCARI/OSAVI (705, 750 dengan R2 sebesar 0.52 dan REACL 2 dengan R2 sebesar 0.57. Dari ketiga tersebut dipilih groun model terbaik REACL 2 untuk di upscalling ke model algoritma airborne hyperspectral.  Pembentukan algoritma dengan data airborne hyperspectral sensor Hymap dan REACL 2 menghasilkan model algoritma ( Klorofil (SPAD unit = 3.031((B22-B18/(B18-B13 + 31.596 dengan R2 sebesar 0.78

  10. Places where wildfire potential and social vulnerability coincide in the coterminous United States

    Science.gov (United States)

    Gabriel Wigtil; Roger B. Hammer; Jeffrey D. Kline; Miranda H. Mockrin; Susan I. Stewart; Daniel Roper; Volker C. Radeloff

    2016-01-01

    The hazards-of-place model posits that vulnerability to environmental hazards depends on both biophysical and social factors. Biophysical factors determine where wildfire potential is elevated, whereas social factors determine where and how people are affected by wildfire. We evaluated place vulnerability to wildfire hazards in the coterminous US. We developed...

  11. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States

    Science.gov (United States)

    Kooistra, C.; Hall, T. E.; Paveglio, T.; Pickering, M.

    2018-01-01

    Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.

  12. Smoke Ready Toolbox for Wildfires

    Science.gov (United States)

    This site provides an online Smoke Ready Toolbox for Wildfires, which lists resources and tools that provide information on health impacts from smoke exposure, current fire conditions and forecasts and strategies to reduce exposure to smoke.

  13. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    Science.gov (United States)

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  14. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    Science.gov (United States)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  15. IMPROVED TOPOGRAPHIC MODELS VIA CONCURRENT AIRBORNE LIDAR AND DENSE IMAGE MATCHING

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2017-09-01

    Full Text Available Modern airborne sensors integrate laser scanners and digital cameras for capturing topographic data at high spatial resolution. The capability of penetrating vegetation through small openings in the foliage and the high ranging precision in the cm range have made airborne LiDAR the prime terrain acquisition technique. In the recent years dense image matching evolved rapidly and outperforms laser scanning meanwhile in terms of the achievable spatial resolution of the derived surface models. In our contribution we analyze the inherent properties and review the typical processing chains of both acquisition techniques. In addition, we present potential synergies of jointly processing image and laser data with emphasis on sensor orientation and point cloud fusion for digital surface model derivation. Test data were concurrently acquired with the RIEGL LMS-Q1560 sensor over the city of Melk, Austria, in January 2016 and served as basis for testing innovative processing strategies. We demonstrate that (i systematic effects in the resulting scanned and matched 3D point clouds can be minimized based on a hybrid orientation procedure, (ii systematic differences of the individual point clouds are observable at penetrable, vegetated surfaces due to the different measurement principles, and (iii improved digital surface models can be derived combining the higher density of the matching point cloud and the higher reliability of LiDAR point clouds, especially in the narrow alleys and courtyards of the study site, a medieval city.

  16. TA-54 (Area G) Risk Assessment from Extreme Wildfire Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Linn, Rodman Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koo, Eunmo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Honig, Kristen Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Judith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-10

    Los Alamos National Laboratory (LANL) and surrounding areas have been exposed to at least four significant wildfires since 1977 and there have been numerous others within 50 miles of LANL. Based on this history, wildfires are considered a risk to LANL facilities and their contents. While many LANL facilities are at risk to wildfire to some degree, they are found in a wide variety of conditions, thus they have varying sensitivities to wildfires. Additionally, LANL facilities have various functions and different assets, so they have a wide range of values or consequences if compromised. Therefore, determining the risks and precautions that are warranted to mitigate these risks must be done on a case-by-case basis. In an effort to assess possible wildfire risks to sensitive materials stored in a Perma-Con® in dome TA-54-0375, a conventional fire risk analysis was performed. This conventional risk analysis is documented in Engineering Evaluation Form AP-FIRE-001-FM1, which is dated 9/28/2015 and was titled ‘Wildland Fire Exposure Evaluation for Building TA-54-0375’ (Hall 2015). This analysis acknowledged that there was significant chance of wildfire in the vicinity of TA-54-0375, but the amount of combustible material surrounding the building was deemed low. The wildland fuels that were closest to the building were largely fine fuels and were not expected to have significant duration of heat release. The prevailing winds at this location are from the south and southwest and the nearest significant upwind fuels (tree crowns or unmown grasses) are at least 300 feet away. Based on these factors the conventional wildland fire risk to TA-54-0375 was deemed minimal, “Acceptable As Is, No Action Required.” This risk evaluation was based on a combined assessment of low probability of wildfires arriving at the site from other directions (where higher fuel loadings might be present) as well as the effective setback of fuels in the direction that fire is

  17. The selectable hyperspectral airborne remote sensing kit (SHARK) as an enabler for precision agriculture

    Science.gov (United States)

    Holasek, Rick; Nakanishi, Keith; Ziph-Schatzberg, Leah; Santman, Jeff; Woodman, Patrick; Zacaroli, Richard; Wiggins, Richard

    2017-04-01

    Hyperspectral imaging (HSI) has been used for over two decades in laboratory research, academic, environmental and defense applications. In more recent time, HSI has started to be adopted for commercial applications in machine vision, conservation, resource exploration, and precision agriculture, to name just a few of the economically viable uses for the technology. Corning Incorporated (Corning) has been developing and manufacturing HSI sensors, sensor systems, and sensor optical engines, as well as HSI sensor components such as gratings and slits for over a decade and a half. This depth of experience and technological breadth has allowed Corning to design and develop unique HSI spectrometers with an unprecedented combination of high performance, low cost and low Size, Weight, and Power (SWaP). These sensors and sensor systems are offered with wavelength coverage ranges from the visible to the Long Wave Infrared (LWIR). The extremely low SWaP of Corning's HSI sensors and sensor systems enables their deployment using limited payload platforms such as small unmanned aerial vehicles (UAVs). This paper discusses use of the Corning patented monolithic design Offner spectrometer, the microHSI™, to build a highly compact 400-1000 nm HSI sensor in combination with a small Inertial Navigation System (INS) and micro-computer to make a complete turn-key airborne remote sensing payload. This Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) has industry leading SWaP (1.5 lbs) at a disruptively low price due, in large part, to Corning's ability to manufacture the monolithic spectrometer out of polymers (i.e. plastic) and therefore reduce manufacturing costs considerably. The other factor in lowering costs is Corning's well established in house manufacturing capability in optical components and sensors that further enable cost-effective fabrication. The competitive SWaP and low cost of the microHSI™ sensor is approaching, and in some cases less than the price

  18. APEX - the Hyperspectral ESA Airborne Prism Experiment

    Directory of Open Access Journals (Sweden)

    Koen Meuleman

    2008-10-01

    Full Text Available The airborne ESA-APEX (Airborne Prism Experiment hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB by using the Control Test Master (CTM, the In-Flight Calibration facility (IFC, quality flagging (QF and specific processing in a dedicated Processing and Archiving Facility (PAF, and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function issues are discussed and the spectral database SPECCHIO (Spectral Input/Output introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a satisfying the needs of several research communities and (b helping the understanding of the Earth’s complex mechanisms.

  19. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  20. Incentives for Ex Ante wildfire risk mitigation in the wildland-urban interface: The relationship between contingent wildfire insurance and fuel management subsidies

    OpenAIRE

    Lankoande, Mariam D.; Yoder, Jonathan K.; Wandschneider, Philip R.

    2006-01-01

    Contingent wildfire insurance and fuel management cost-sharing programs are becoming more prevalent in western states. This paper develops a model to examine the incentive effects of these two mechanisms for private investment in wildfire risk mitigation. The model shows that contingent insurance contracts strengthen incentives for risk mitigation relative to pooled contracts and subsidies induce more risk mitigation effort by reducing margin private costs of mitigation. With pooled insurance...

  1. Evaluating Alternative Prescribed Burning Policies to Reduce Net Economic Damages from Wildfire

    OpenAIRE

    D. Evan Mercer; Jeffrey P. Prestemon; David T. Butry; John M. Pye

    2007-01-01

    We estimate a wildfire risk model with a new measure of wildfire output, intensity-weighted risk and use it in Monte Carlo simulations to estimate welfare changes from alternative prescribed burning policies. Using Volusia County, Florida as a case study, an annual prescribed burning rate of 13% of all forest lands maximizes net welfare; ignoring the effects on wildfire intensity may underestimate optimal rates of prescribed burning. Our estimated supply function for prescribed fire services ...

  2. Fire spread estimation on forest wildfire using ensemble kalman filter

    Science.gov (United States)

    Syarifah, Wardatus; Apriliani, Erna

    2018-04-01

    Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.

  3. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  4. Water Mapping Using Multispectral Airborne LIDAR Data

    Science.gov (United States)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  5. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest

    Science.gov (United States)

    Ryan B. Walker; Jonathan D. Coop; Sean A. Parks; Laura Trader

    2018-01-01

    Extensive high-severity wildfires have driven major losses of ponderosa pine and mixed-conifer forests in the southwestern United States, in some settings catalyzing enduring conversions to nonforested vegetation types. Management interventions to reduce the probability of stand-replacing wildfire have included mechanical fuel treatments, prescribed fire, and wildfire...

  6. Airborne and satellite remote sensors for precision agriculture

    Science.gov (United States)

    Remote sensing provides an important source of information to characterize soil and crop variability for both within-season and after-season management despite the availability of numerous ground-based soil and crop sensors. Remote sensing applications in precision agriculture have been steadily inc...

  7. Catching fire? Social interactions, beliefs, and wildfire risk mitigation behaviors

    Science.gov (United States)

    Katherine Dickinson; Hannah Brenkert-Smith; Patricia Champ; Nicholas Flores

    2015-01-01

    Social interactions are widely recognized as a potential influence on risk-related behaviors. We present a mediation model in which social interactions (classified as formal/informal and generic-fire-specific) are associated with beliefs about wildfire risk and mitigation options, which in turn shape wildfire mitigation behaviors. We test this model using survey data...

  8. Difference in information needs for wildfire evacuees and non-evacuees

    Science.gov (United States)

    Sarah M. McCaffrey; Anne-Lise Knox Velez; Jason Alexander. Briefel

    2013-01-01

    This paper examines whether evacuees from two wildfires displayed different information seeking behavior than non-evacuees. Findings are the results of a mail survey sent to residents affected by wildfires outside Flagstaff, Arizona and Boulder, Colorado in 2010. We found evacuees sought information more actively than non-evacuees and placed a greater emphasis on use...

  9. Application of wildfire simulation models for risk analysis

    Science.gov (United States)

    Ager, A.; Finney, M.

    2009-04-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of fires and generate burn probability and intensity maps over large areas (10,000 - 2,000,000 ha). The MTT algorithm is parallelized for multi-threaded processing and is imbedded in a number of research and applied fire modeling applications. High performance computers (e.g., 32-way 64 bit SMP) are typically used for MTT simulations, although the algorithm is also implemented in the 32 bit desktop FlamMap3 program (www.fire.org). Extensive testing has shown that this algorithm can replicate large fire boundaries in the heterogeneous landscapes that typify much of the wildlands in the western U.S. In this paper, we describe the application of the MTT algorithm to understand spatial patterns of burn probability (BP), and to analyze wildfire risk to key human and ecological values. The work is focused on a federally-managed 2,000,000 ha landscape in the central interior region of Oregon State, USA. The fire-prone study area encompasses a wide array of topography and fuel types and a number of highly valued resources that are susceptible to fire. We quantitatively defined risk as the product of the probability of a fire and the resulting consequence. Burn probabilities at specific intensity classes were estimated for each 100 x 100 m pixel by simulating 100,000 wildfires under burn conditions that replicated recent severe wildfire events that occurred under conditions where fire suppression was generally ineffective (97th percentile, August weather). We repeated the simulation under milder weather (70th percentile, August weather) to replicate a "wildland fire use scenario" where suppression is minimized to

  10. Wildfire spread, hazard and exposure metric raster grids for central Catalonia

    Directory of Open Access Journals (Sweden)

    Fermín J. Alcasena

    2018-04-01

    Full Text Available We provide 40 m resolution wildfire spread, hazard and exposure metric raster grids for the 0.13 million ha fire-prone Bages County in central Catalonia (northeastern Spain corresponding to node influence grid (NIG, crown fraction burned (CFB and fire transmission to residential houses (TR. Fire spread and behavior data (NIG, CFB and fire perimeters were generated with fire simulation modeling considering wildfire season extreme fire weather conditions (97th percentile. Moreover, CFB was also generated for prescribed fire (Rx mild weather conditions. The TR smoothed grid was obtained with a geospatial analysis considering large fire perimeters and individual residential structures located within the study area. We made these raster grids available to assist in the optimization of wildfire risk management plans within the study area and to help mitigate potential losses from catastrophic events. Keywords: Catalonia, Wildfire exposure, Fire transmission, Crown fire activity, Prescribed fires

  11. Avian relationships with wildfire at two dry forest locations with different historical fire regimes

    Science.gov (United States)

    Quresh Latif; Jamie Sanderlin; Vicki Saab; William Block; Jonathan Dudley

    2016-01-01

    Wildfire is a key factor influencing bird community composition in western North American forests. We need to understand species and community responses to wildfire and how responses vary regionally to effectively manage dry conifer forests for maintaining biodiversity. We compared avian relationships with wildfire burn severity between two dry forest...

  12. Airborne remote sensors applied to engineering geology and civil works design investigations

    Science.gov (United States)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  13. Israel wildfires: future trends, impacts and mitigation strategies

    Science.gov (United States)

    Wittenberg, Lea

    2017-04-01

    Forest fires in the Euro-Mediterranean region burn about 450,000 ha each year. In Israel, the frequency and extent of wildfires have been steadily increasing over the past decades, culminating in several large and costly fires in 2010, 2012 and 2016. The extensive development of forest areas since the 1950's and the accumulation of fuel in the forests, has led to increased occurrences of high intensity fires. Land-use changes and human population growth are the most prevailing and common determinant of wildfire occurrence and impacts. Climate extremes, possibly already a sign of regional climate change, are another frequent determinant of increasing wildfire risk. Therefore, the combination of extreme dry spells, high fuel loads and increased anthropogenic pressure on the open spaces result in an overall amplified wildfire risk. These fires not only cause loss of life and damage to properties but also carry serious environmental repercussions. Combustion of standing vegetation and the leaf litter leave the soil bare and vulnerable to runoff and erosion, thereby increasing risks of flooding. Today, all of Israel's open spaces, forests, natural parks, major metropolitan centers, towns and villages are embedded within the wildland urban interface (WUI). Typically, wildfires near or in the WUI occur on uplands and runoff generated from the burned area poses flooding risks in urban and agricultural zones located downstream. Post-fire management aims at reducing associated hazards as collapsing trees and erosion risk. Often the time interval between a major fire and the definition of priority sites is in the order of days-to-weeks since administrative procedures, financial estimates and implementation of post-fire salvage logging operations require time. Defining the magnitude of the burn scar and estimating its potential impact on runoff and erosion must therefore be done quickly. A post-fire burn severity, runoff and erosion model is a useful tool in estimating

  14. Wildfire and aspect effects on hydrologic states after the 2010 Fourmile Canyon Fire

    Science.gov (United States)

    Ebel, Brian A.

    2013-01-01

    Wildfire can change how soils take in, store, and release water. This study examined differences in how burned and unburned plots on north versus south-facing slope aspects respond to rainfall. The largest wildfire impacts were litter/duff combustion on burned north-facing slopes versus soil-water retention reduction on burned south-facing slopes.Wildfire is one of the most significant disturbances in mountainous landscapes, affecting water supply and ecologic function and setting the stage for natural hazards such as flash floods. The impacts of wildfire can affect the entire hydrologic cycle. Measurements of soil-water content and matric potential in the near surface (top 30 cm) captured the hydrologic state in both burned and unburned hillslopes during the first spring through fall period (1 June–1 Oct. 2011) after the 2010 Fourmile Canyon Fire near Boulder, CO. This time span included different hydrologic periods characterized by cyclonic frontal storms (low-intensity, long duration), convective storms (high-intensity, short duration), and dry periods. In mountainous environments, aspect can also control hydrologic states, so north- vs. south-facing slopes were compared. Wildfire tended to homogenize soil-water contents across aspects and with depth in the soil, yet it also may have introduced an aspect control on matric potential that was not observed in unburned soils. Post-wildfire changes in hydrologic state were observed in south-facing soils, probably reflecting decreased soil-water retention after wildfire. North-facing soils were impacted the most, in terms of hydrologic state, by the loss of water storage in the combusted litter–duff layer and forest canopy, which had provided a large “hydrologic buffering” capacity when unburned. Unsaturated zone measurements showed increased variability in hydrologic states and more rapid state transitions in wildfire-impacted soils. A simple, qualitative analysis suggested that the range of unsaturated

  15. Smoke consequences of new wildfire regimes driven by climate change

    Science.gov (United States)

    Donald McKenzie; Uma Shankar; Robert E. Keane; E. Natasha Stavros; Warren E. Heilman; Douglas G. Fox; Allen C. Riebau

    2014-01-01

    Smoke from wildfires has adverse biological and social consequences, and various lines of evidence suggest that smoke from wildfires in the future may be more intense and widespread, demanding that methods be developed to address its effects on people, ecosystems, and the atmosphere. In this paper, we present the essential ingredients of a modeling system for...

  16. Transboundary Collaborations to Enhance Wildfire Suppression in Protected Areas of the Black Sea Region

    Directory of Open Access Journals (Sweden)

    G. N. Zaimes

    2016-05-01

    Full Text Available For the most effective and efficient management of certain natural resources (e.g. protected areas and disasters (e.g. wildfires transboundary approaches are needed. In addition in the management of protected areas, the role of wildfire should be incorporated, something that was ignored in the past and led to catastrophic wildfires. The Black Sea is a region that wildfires in the protected areas are expected to increase. This has to do with the abandonment of rural areas and the higher temperatures, especially during summer, due to climate change. Interesting is also the fact that some countries of the region have extensive experience while other do not have neither the experience nor the necessary infrastructures to face large wildfires. A transboundary collaboration would be very beneficial to the countries with limited experiences and capacities to suppress wildfires. The objective of this study is to be proactive by developing innovative tools to help suppress wildfires and enhancing the knowledge on wildfires and protected areas. The innovative tools included 4 different research activities and products. Firstly, an online Digital Geodatabase for the six pilot areas was developed. Next forest fire fuels and maps were developed while a forest fire behavior model was run to create the overall fire risk maps for the pilot areas. To estimate water resources and watershed streamflows the hydrologic model SWAT was validated and calibrated for the pilot areas. The final activities included a multi-criteria decision analysis to select the optimal location of the water reservoirs and the use of spatial analyst to provide the optimal routes to reach reservoirs by the fire vehicles. To enhance the responsible agency personnel along with stakeholders knowledge of the region, a Neighborhood Network with regular quarterly meetings was established. Participants for all six project countries were present in the meetings. Overall, new tool that will enhance

  17. The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska

    Directory of Open Access Journals (Sweden)

    J. M. Creamean

    2018-01-01

    Full Text Available The Arctic is warming at an alarming rate, yet the processes that contribute to the enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget, both directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativeness of these datasets aloft. Here, we report on airborne observations from the US Department of Energy Atmospheric Radiation Measurement (ARM program's Fifth Airborne Carbon Measurements (ACME-V field campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015's central Alaskan wildfires, and, to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.

  18. Investigation of the decline in reported smoking-caused wildfires in the USA from 2000 to 2011

    Science.gov (United States)

    David T. Butry; Jeffrey P. Prestemon; Douglas S. Thomas

    2014-01-01

    The number of smoking-caused wildfires has been falling nationwide. In national forests in 2011, smoking-caused wildfires represented only 10% of their 1980 level. No other cause of wildfire has experienced this level of decline. For 12 states, we evaluate the rate of smoking-caused wildfires and find it is a function of weather, other ignitions, the number of adult...

  19. The 2002 Rodeo-Chediski Wildfire's impacts on southwestern ponderosa pine ecosystems, hydrology, and fuels

    Science.gov (United States)

    Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2011-01-01

    The Rodeo-Chediski Wildfire burned nearly 462,600 acres in north-central Arizona in the summer of 2002. The wildfire damaged or destroyed ecosystem resources and disrupted the hydrologic functioning within the impacted ponderosa pine (Pinus ponderosa) forests in a largely mosaic pattern. Impacts of the wildfire on ecosystem resources, factors important to hydrologic...

  20. Re-envisioning community-wildfire relations in the U.S. West as adaptive governance

    Directory of Open Access Journals (Sweden)

    Jesse B. Abrams

    2015-09-01

    Full Text Available Prompted by a series of increasingly destructive, expensive, and highly visible wildfire crises in human communities across the globe, a robust body of scholarship has emerged to theorize, conceptualize, and measure community-level resilience to wildfires. To date, however, insufficient consideration has been given to wildfire resilience as a process of adaptive governance mediated by institutions at multiple scales. Here we explore the possibilities for addressing this gap through an analysis of wildfire resilience among wildland-urban interface communities in the western region of the United States. We re-engage important but overlooked components of social-ecological system resilience by situating rural communities within their state- to national-level institutional contexts; we then analyze two communities in Nevada and New Mexico in terms of their institutional settings and responses to recent wildfire events. We frame our analysis around the concepts of scale matching, linking within and across scales, and institutional flexibility.

  1. Rapid growth of the US wildland-urban interface raises wildfire risk.

    Science.gov (United States)

    Radeloff, Volker C; Helmers, David P; Kramer, H Anu; Mockrin, Miranda H; Alexandre, Patricia M; Bar-Massada, Avi; Butsic, Van; Hawbaker, Todd J; Martinuzzi, Sebastián; Syphard, Alexandra D; Stewart, Susan I

    2018-03-27

    The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km 2 ; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.

  2. Low Cost and Flexible UAV Deployment of Sensors

    DEFF Research Database (Denmark)

    Sørensen, Lars Yndal; Jacobsen, Lars Toft; Hansen, John Paulin

    2017-01-01

    -collection needs. The main contribution is the extensible architecture for modularized airborne sensor deployment and real-time data visualisation. Our open-source Android application provides data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The flexibility...

  3. Impacts of Wildfires on Land Surface Phenology of Western US Forests

    Science.gov (United States)

    Wang, J.; Zhang, X.

    2017-12-01

    Land surface phenology (LSP) characterizes seasonal dynamics of vegetation communities within a satellite pixel. The temporal variation of LSP has been widely associated with recent global climate change. However, few studies have focused on the influence of land disturbance, such as wildfire, on LSP variations, which is particularly true at a continental scale. Wildfire has increased in size and severity in the western United States (US) during last few decades. To explore wildfire impacts on LSP in the western US forest, we analyzed the start of growing season (SOS) integrated from the entire forest area, the burned area, and the unburned area, respectively. Specifically, SOS was derived from time series of daily MODIS surface reflectance product at 250 m using a hybrid piecewise logistic detection model. The annual burn perimeters during 2000-2014 were obtained from Monitoring Trends in Burn Severity maps to study the wildfire effect on the SOS in the subsequent years (2001-2015). The wildfire effect was analyzed at three levels: the entire western US, Environmental Protection Agency's Level III ecoregions, and states. Results show that wildfires basically advance SOS but have diverse effects with different regions and years. Comparing SOS in the burned areas with that in surrounding unburned areas from 2001-2015, it was found that the SOS shift was -3.4 days (-: earlier; +: later) on average in the western US forests, and varied from -16.1 to 13.1 days across ecoregions and from -11.4 to 4.3 days across states. Because of the small proportion of annual burned areas (SOS shift in the burned areas had limited influences on the overall SOS, which caused shifts of -0.06 days over the entire western US, from -0.2 to 0.2 days across ecoregions, and -0.06 to 0.13 days across states. Overall, this study demonstrates that wildfires strongly impact SOS at local areas although the effect in the large region is relatively limited.

  4. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Welty, Justin L.

    2012-01-01

    We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30-m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in untreated areas and significantly lower than the potential wildfire severity of the treated areas had treatments not been implemented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the summer and supported greater vegetation volume. We found considerable evidence that prescribed fires have landscape-level influences within treatment boundaries; most notable was an interaction between distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to 66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinuity of fuels following treatment may influence wildfire severity and explain how even low severity treatments can be effective management tools in fire-prone landscapes.

  5. Living in a tinderbox: wildfire risk perceptions and mitigating behaviours

    Science.gov (United States)

    Patricia A. Champ; Geoffrey H. Donovan; Christopher M. Barth

    2013-01-01

    The loss of homes to wildfires is an important issue in the USA and other countries. Yet many homeowners living in fire-prone areas do not undertake mitigating actions, such as clearing vegetation, to decrease the risk of losing their home. To better understand the complexity of wildfire risk-mitigation decisions and the role of perceived risk, we conducted a survey of...

  6. Airborne Compositae dermatitis

    DEFF Research Database (Denmark)

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted f...... for airborne Compositae dermatitis. Potential allergens were found among the emitted monoterpenes and their importance in airborne Compositae dermatitis is discussed....

  7. Levoglucosan Levels in Alaskan Ice Cores as a Record of Past Wildfires

    Science.gov (United States)

    Dunham, M. E.; Osterberg, E. C.; Kehrwald, N. M.; Kennedy, J.; Ferris, D. G.

    2017-12-01

    Glaciers in southeast Alaska are significant contributors to global sea-level rise, and therefore understanding the mechanisms driving their recent mass loss is crucial for predicting future sea-level change. Fire activity in Alaska has increased dramatically during the last decade, adding a potential new source of light-absorbing organic material (soot) to the Juneau Icefield that can reduce albedo and enhance surface melt rates. The goal of this project is to create an accurate record of Alaskan wildfires to understand how Alaskan glacial mass balance is affected by the deposition of organic aerosols from wildfires. Previously, oxalate, ammonia, and potassium ion levels have been used as proxies for past wildfire activity, but these ions all have broader emission sources in addition to wildfires. Here we develop a record of past Alaskan fire events and climate from: (1) levels of a biomass burning indicator, levoglucosan, which only forms when cellulose is burned over 300 °C, (2) major ions including oxalate, ammonia, and potassium; (3) the number and size distribution of particles to quantify trace amounts of soot from wildfires; and (4) stable water isotope ratios as a proxy for past temperature in ice cores. We utilize a total of four shallow ice cores, ranging from 7 to 9 m in length, that were collected by a biogeochemistry team during the Juneau Icefield Research Program (JIRP) in 2016. Complications include our limited understanding of the conservation and degradation of levoglucosan over time or during the firnification process. We hypothesize that particle counts will be correlated with levoglucosan peaks, co-varying with wildfire frequency and temperatures over time. Based on previous work, we also expect to find correlations between levoglucosan and oxalate ion concentrations, even though oxalate ions have sources in addition to wildfire activity.

  8. MERGING AIRBORNE LIDAR DATA AND SATELLITE SAR DATA FOR BUILDING CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    2015-05-01

    Full Text Available A frequent map revision is required in GIS applications, such as disaster prevention and urban planning. In general, airborne photogrammetry and LIDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, attribute data acquisition and classification depend on manual editing works including ground surveys. In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, these approaches classify geometrical attributes. Moreover, ground survey and manual editing works are finally required in attribute data classification. On the other hand, although geometrical data extraction is difficult, SAR data have a possibility to automate the attribute data acquisition and classification. The SAR data represent microwave reflections on various surfaces of ground and buildings. There are many researches related to monitoring activities of disaster, vegetation, and urban. Moreover, we have an opportunity to acquire higher resolution data in urban areas with new sensors, such as ALOS2 PALSAR2. Therefore, in this study, we focus on an integration of airborne LIDAR data and satellite SAR data for building extraction and classification.

  9. Epidemic cholera spreads like wildfire

    Science.gov (United States)

    Roy, Manojit; Zinck, Richard D.; Bouma, Menno J.; Pascual, Mercedes

    2014-01-01

    Cholera is on the rise globally, especially epidemic cholera which is characterized by intermittent and unpredictable outbreaks that punctuate periods of regional disease fade-out. These epidemic dynamics remain however poorly understood. Here we examine records for epidemic cholera over both contemporary and historical timelines, from Africa (1990-2006) and former British India (1882-1939). We find that the frequency distribution of outbreak size is fat-tailed, scaling approximately as a power-law. This pattern which shows strong parallels with wildfires is incompatible with existing cholera models developed for endemic regions, as it implies a fundamental role for stochastic transmission and local depletion of susceptible hosts. Application of a recently developed forest-fire model indicates that epidemic cholera dynamics are located above a critical phase transition and propagate in similar ways to aggressive wildfires. These findings have implications for the effectiveness of control measures and the mechanisms that ultimately limit the size of outbreaks.

  10. Wildfire Risk Assessment in a Typical Mediterranean Wildland-Urban Interface of Greece

    Science.gov (United States)

    Mitsopoulos, Ioannis; Mallinis, Giorgos; Arianoutsou, Margarita

    2015-04-01

    The purpose of this study was to assess spatial wildfire risk in a typical Mediterranean wildland-urban interface (WUI) in Greece and the potential effect of three different burning condition scenarios on the following four major wildfire risk components: burn probability, conditional flame length, fire size, and source-sink ratio. We applied the Minimum Travel Time fire simulation algorithm using the FlamMap and ArcFuels tools to characterize the potential response of the wildfire risk to a range of different burning scenarios. We created site-specific fuel models of the study area by measuring the field fuel parameters in representative natural fuel complexes, and we determined the spatial extent of the different fuel types and residential structures in the study area using photointerpretation procedures of large scale natural color orthophotographs. The results included simulated spatially explicit fire risk components along with wildfire risk exposure analysis and the expected net value change. Statistical significance differences in simulation outputs between the scenarios were obtained using Tukey's significance test. The results of this study provide valuable information for decision support systems for short-term predictions of wildfire risk potential and inform wildland fire management of typical WUI areas in Greece.

  11. Wildfire risk assessment in a typical Mediterranean wildland-urban interface of Greece.

    Science.gov (United States)

    Mitsopoulos, Ioannis; Mallinis, Giorgos; Arianoutsou, Margarita

    2015-04-01

    The purpose of this study was to assess spatial wildfire risk in a typical Mediterranean wildland-urban interface (WUI) in Greece and the potential effect of three different burning condition scenarios on the following four major wildfire risk components: burn probability, conditional flame length, fire size, and source-sink ratio. We applied the Minimum Travel Time fire simulation algorithm using the FlamMap and ArcFuels tools to characterize the potential response of the wildfire risk to a range of different burning scenarios. We created site-specific fuel models of the study area by measuring the field fuel parameters in representative natural fuel complexes, and we determined the spatial extent of the different fuel types and residential structures in the study area using photointerpretation procedures of large scale natural color orthophotographs. The results included simulated spatially explicit fire risk components along with wildfire risk exposure analysis and the expected net value change. Statistical significance differences in simulation outputs between the scenarios were obtained using Tukey's significance test. The results of this study provide valuable information for decision support systems for short-term predictions of wildfire risk potential and inform wildland fire management of typical WUI areas in Greece.

  12. Amplification of wildfire area burnt by hydrological drought in the humid tropics

    Science.gov (United States)

    Taufik, Muh; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Jones, Philip D.; Murdiyarso, Daniel; van Lanen, Henny A. J.

    2017-06-01

    Borneo's diverse ecosystems, which are typical humid tropical conditions, are deteriorating rapidly, as the area is experiencing recurrent large-scale wildfires, affecting atmospheric composition and influencing regional climate processes. Studies suggest that climate-driven drought regulates wildfires, but these overlook subsurface processes leading to hydrological drought, an important driver. Here, we show that models which include hydrological processes better predict area burnt than those solely based on climate data. We report that the Borneo landscape has experienced a substantial hydrological drying trend since the early twentieth century, leading to progressive tree mortality, more severe than in other tropical regions. This has caused massive wildfires in lowland Borneo during the past two decades, which we show are clustered in years with large areas of hydrological drought coinciding with strong El Niño events. Statistical modelling evidence shows amplifying wildfires and greater area burnt in response to El Niño/Southern Oscillation (ENSO) strength, when hydrology is considered. These results highlight the importance of considering hydrological drought for wildfire prediction, and we recommend that hydrology should be considered in future studies of the impact of projected ENSO strength, including effects on tropical ecosystems, and biodiversity conservation.

  13. A conceptual framework for coupling the biophysical and social dimensions of wildfire to improve fireshed planning and risk mitigation

    Science.gov (United States)

    Jeff Kline; Alan A. Ager; Paige Fischer

    2015-01-01

    The need for improved methods for managing wildfire risk is becoming apparent as uncharacteristically large wildfires in the western US and elsewhere exceed government capacities for their control and suppression. We propose a coupled biophysical-social framework to managing wildfire risk that relies on wildfire simulation to identify spatial patterns of wildfire risk...

  14. Risk Preferences, Probability Weighting, and Strategy Tradeoffs in Wildfire Management.

    Science.gov (United States)

    Hand, Michael S; Wibbenmeyer, Matthew J; Calkin, David E; Thompson, Matthew P

    2015-10-01

    Wildfires present a complex applied risk management environment, but relatively little attention has been paid to behavioral and cognitive responses to risk among public agency wildfire managers. This study investigates responses to risk, including probability weighting and risk aversion, in a wildfire management context using a survey-based experiment administered to federal wildfire managers. Respondents were presented with a multiattribute lottery-choice experiment where each lottery is defined by three outcome attributes: expenditures for fire suppression, damage to private property, and exposure of firefighters to the risk of aviation-related fatalities. Respondents choose one of two strategies, each of which includes "good" (low cost/low damage) and "bad" (high cost/high damage) outcomes that occur with varying probabilities. The choice task also incorporates an information framing experiment to test whether information about fatality risk to firefighters alters managers' responses to risk. Results suggest that managers exhibit risk aversion and nonlinear probability weighting, which can result in choices that do not minimize expected expenditures, property damage, or firefighter exposure. Information framing tends to result in choices that reduce the risk of aviation fatalities, but exacerbates nonlinear probability weighting. © 2015 Society for Risk Analysis.

  15. Decentralized Control of Unmanned Aerial Robots for Wireless Airborne Communication Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2010-09-01

    Full Text Available This paper presents a cooperative control strategy for a team of aerial robotic vehicles to establish wireless airborne communication networks between distributed heterogeneous vehicles. Each aerial robot serves as a flying mobile sensor performing a reconfigurable communication relay node which enabls communication networks with static or slow-moving nodes on gorund or ocean. For distributed optimal deployment of the aerial vehicles for communication networks, an adaptive hill-climbing type decentralized control algorithm is developed to seek out local extremum for optimal localization of the vehicles. The sensor networks estabilished by the decentralized cooperative control approach can adopt its configuraiton in response to signal strength as the function of the relative distance between the autonomous aerial robots and distributed sensor nodes in the sensed environment. Simulation studies are conducted to evaluate the effectiveness of the proposed decentralized cooperative control technique for robust communication networks.

  16. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    Science.gov (United States)

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  17. Air Quality Deterioration of Urban Areas Caused by Wildfires in a Natural Reservoir Forest of Mexico

    Directory of Open Access Journals (Sweden)

    Noel Carbajal

    2015-01-01

    Full Text Available Many regions of the world suffer loss of vegetation and reduced air quality due to wildfires. Studies on aerosol emissions by wildfires often discuss the negative effects of atmospheric contaminants from a regional or mesoscale perspective. The occurrence of wildfires reveals that a high percentage takes place close to large urban areas. Very high concentration of pollutants and PM10 particulate matter reach urban zones and millions of inhabitants. These events of high pollutant concentrations are seasonally recurrent. There are many large urban areas in the world that often undergo severe air deterioration due to wildfires smoke. We document the extreme impact of wildfire that occurs in the Protected Area of Flora and Fauna La Primavera located in neighborhood of Guadalajara, a large urban zone in Mexico. The simultaneous emissions of aerosols by 60 wildfires were simulated and compared with observed data. The plume generated by the wildfires reached large areas of the central part of Mexico. The principal characteristics of smog emissions (CO, NO2, and PM10 over the urban area were acceptably reproduced. Observed and modeled CO, PM10, and NO2 data indicated that aerosol plumes generated by the wildfires increased notably the concentrations over the metropolitan zone of Guadalajara.

  18. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    Science.gov (United States)

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even

  19. Effects of wildfires on ash Carbon, Nitrogen and C/N ratio in Mediterranean forests

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Carbon (C) and Nitrogen(N) are key nutrients in ecosystems health and the more affected by fire temperatures, because of their low temperatures of volatilization. After a wildfire, due higher temperatures reached, a great amount of C and N can be evacuated from the ecosystems and the percentage of C and N not vaporized is concentrated in ashes. Hence, the study of ash C and N is of major importance because will be linked with the capacity of ecosystem recuperation. The aim of this work is study the C, and C/N of three wildfires occurred in Mediterranean forests dominated by Quercus suber and Pinus pinea in Portugal. In the first wildfire, named "Quinta do Conde", we collected 30 samples, in the second, "Quinta da Areia", 32 samples and the third, "Casal do Sapo" 40 samples To estimate the consequences of wildfires in the parameters in study, we collected several samples of unburned litter near burned areas, composed by the same vegetation. The results showed that wildfires induced in % of Total Carbon (%TC) ashes content a non significantly reduction in Quinta do Conde plot (at a pPinus pinaster samples decreasing thereafter especially after the 400°C. In %TN we identified a rise in both species reducing abruptly at 450°C. C/N ratio decrease importantly after the 150°C. Theses results showed us that wildfires can have different effects C and N litter resources, depending on the severity and temperature reached. Crossing the results obtained in laboratory simulations with the samples collected in wildfires we will have an idea about the severity and temperature occurred in each wildfire. Overall, the lower severity were observed in Quinta do Conde plot and the higher in Casal do Sapo plot, being Quinta da Areia in a middle position. The C and N levels after a wildfire will determine the capacity of landscape recuperation and according the data obtained this will be higher in Quinta do Conde plot and lesser in Casal do Sapo plot. These hypothesis will be confirmed

  20. Using and improving social capital to increase community preparedness for wildfire

    Science.gov (United States)

    Shruti Agrawal; Martha C. Monroe

    2006-01-01

    Communities with more social capital are better able to work together to cope with problems such as a wildfire threat. This study found a positive relationship between perceiving greater social capital and participating in wildfire preparedness educational programs. Results suggest that managers can take advantage of existing social capital in communities to improve...

  1. Coupling the biophysical and social dimensions of wildfire risk to improve wildfire mitigation planning

    Science.gov (United States)

    Alan A. Ager; Jeffrey D. Kline; A. Paige Fisher

    2015-01-01

    We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social...

  2. The application of prototype point processes for the summary and description of California wildfires

    Science.gov (United States)

    Nichols, K.; Schoenberg, F.P.; Keeley, J.E.; Bray, A.; Diez, D.

    2011-01-01

    A method for summarizing repeated realizations of a space-time marked point process, known as prototyping, is discussed and applied to catalogues of wildfires in California. Prototype summaries are constructed for varying time intervals using California wildfire data from 1990 to 2006. Previous work on prototypes for temporal and space-time point processes is extended here to include methods for computing prototypes with marks and the incorporation of prototype summaries into hierarchical clustering algorithms, the latter of which is used to delineate fire seasons in California. Other results include summaries of patterns in the spatial-temporal distribution of wildfires within each wildfire season. ?? 2011 Blackwell Publishing Ltd.

  3. Creation a Geo Big Data Outreach and Training Collaboratory for Wildfire Community

    Science.gov (United States)

    Altintas, I.; Sale, J.; Block, J.; Cowart, C.; Crawl, D.

    2015-12-01

    A major challenge for the geoscience community is the training and education of current and next generation big data geoscientists. In wildfire research, there are an increasing number of tools, middleware and techniques to use for data science related to wildfires. The necessary computing infrastructures are often within reach and most of the software tools for big data are freely available. But what has been lacking is a transparent platform and training program to produce data science experts who can use these integrated tools effectively. Scientists well versed to take advantage of big data technologies in geoscience applications is of critical importance to the future of research and knowledge advancement. To address this critical need, we are developing learning modules to teach process-based thinking to capture the value of end-to-end systems of reusable blocks of knowledge and integrate the tools and technologies used in big data analysis in an intuitive manner. WIFIRE is an end-to-end cyberinfrastructure for dynamic data-driven simulation, prediction and visualization of wildfire behavior.To this end, we are openly extending an environment we have built for "big data training" (biobigdata.ucsd.edu) to similar MOOC-based approaches to the wildfire community. We are building an environment that includes training modules for distributed platforms and systems, Big Data concepts, and scalable workflow tools, along with other basics of data science including data management, reproducibility and sharing of results. We also plan to provide teaching modules with analytical and dynamic data-driven wildfire behavior modeling case studies which address the needs not only of standards-based K-12 science education but also the needs of a well-educated and informed citizenry.Another part our outreach mission is to educate our community on all aspects of wildfire research. One of the most successful ways of accomplishing this is through high school and undergraduate

  4. Airborne Video Surveillance

    National Research Council Canada - National Science Library

    Blask, Steven

    2002-01-01

    The DARPA Airborne Video Surveillance (AVS) program was established to develop and promote technologies to make airborne video more useful, providing capabilities that achieve a UAV force multiplier...

  5. A Monte Carlo Approach to Modeling Wildfire Risk on Changing Landscapes

    Science.gov (United States)

    Burzynski, A. M.; Beavers, A.

    2016-12-01

    The U.S. Department of Defense (DoD) maintains approximately 28 million acres of land across 420 of their largest installations. These sites harbored 425 federally listed Threatened and Endangered species as of 2013, representing a density of rare species that is several times greater than any other land management agency in the U.S. This is a major driver of DoD natural resources policy and many of these species are affected by wildland fire, both positively and negatively. Military installations collectively experience thousands of wildfires per year, and the majority of ignitions are caused by mission and training activities that can be planned to accommodate fire risk. Motivated by the need for accurately modeled wildfire under the unique land-use conditions of military installations and the assessment of risk exposure at installations throughout the U.S., we developed custom, FARSITE-based scientific software that applies a Monte Carlo approach to wildfire risk analysis. This simulation accounts for the dynamics of vegetation and weather over time, as well as the spatial and temporal distribution of wildfire ignitions, and can be applied to landscapes up to several million acres in size. The data-driven simulation provides insight that feeds directly into mitigation decision-making and can be used to assess future risk scenarios, both real and hypothetical. We highlight an example of a future scenario comparing wildfire behavior between unmitigated fuels and one in which a prescribed burn program is implemented. The same process can be used for a variety of scenarios including changes in vegetation (e.g. new or altered grazing regimes, extreme weather, or drought) and changes in spatiotemporal ignition probability. The modeling capabilities that we apply to predicting wildfire risk on military lands are also relevant to the greater scientific community for modeling wildland fire in the context of environmental change, historical ecology, or climate change.

  6. Does personal experience affect choice-based preferences for wildfire protection programs?

    Science.gov (United States)

    Armando González-Cabán; Thomas P. Holmes; John B. Loomis; José J. Sánchez

    2013-01-01

    In this paper, we investigate homeowner preferences and willingness to pay for wildfire protection programs using a choice experiment with three attributes: risk, loss, and cost. A phone-mail-phone survey was used to collect data from homeowners predominantly living in medium and high wildfire risk communities in Florida. We tested three hypotheses: (1) homeowner...

  7. Current research issues related to post-wildfire runoff and erosion processes

    Science.gov (United States)

    John A. Moody; Richard A. Shakesby; Peter R. Robichaud; Susan H. Cannon; Deborah A. Martin

    2013-01-01

    Research into post-wildfire effects began in the United Statesmore than 70 years ago and only later extended to other parts of the world. Post-wildfire responses are typically transient, episodic, variable in space and time, dependent on thresholds, and involve multiple processes measured by different methods. These characteristics tend to hinder research progress, but...

  8. Regional variation in fire weather controls the reported occurrence of Scottish wildfires

    Directory of Open Access Journals (Sweden)

    G. Matt Davies

    2016-11-01

    Full Text Available Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  9. Regional variation in fire weather controls the reported occurrence of Scottish wildfires.

    Science.gov (United States)

    Davies, G Matt; Legg, Colin J

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  10. Amphibian responses to wildfire in the western united states: Emerging patterns from short-term studies

    Science.gov (United States)

    Hossack, B.R.; Pilliod, D.S.

    2011-01-01

    The increased frequency and severity of large wildfires in the western United States is an important ecological and management issue with direct relevance to amphibian conservation. Although the knowledge of fire effects on amphibians in the region is still limited relative to most other vertebrate species, we reviewed the current literature to determine if there are evident patterns that might be informative for conservation or management strategies. Of the seven studies that compared pre- and post-wildfire data on a variety of metrics, ranging from amphibian occupancy to body condition, two reported positive responses and five detected negative responses by at least one species. Another seven studies used a retrospective approach to compare effects of wildfire on populations: two studies reported positive effects, three reported negative effects from wildfire, and two reported no effects. All four studies that included plethodontid salamanders reported negative effects on populations or individuals; these effects were greater in forests where fire had been suppressed and in areas that burned with high severity. Species that breed in streams are also vulnerable to post-wildfire changes in habitat, especially in the Southwest. Wildfire is also important for maintaining suitable habitat for diverse amphibian communities, although those results may not be evident immediately after an area burns. We expect that wildfire will extirpate few healthy amphibian populations, but it is still unclear how populations will respond to wildfire in the context of land management (including pre- and post-fire timber harvest) and fragmentation. Wildfire may also increase the risk of decline or extirpation for small, isolated, or stressed (e.g., from drought or disease) populations. Improved understanding of how these effects vary according to changes in fire frequency and severity are critical to form more effective conservation strategies for amphibians in the western United States.

  11. Oxidative aging and secondary organic aerosol formation from simulated wildfire emissions

    Science.gov (United States)

    C. J. Hennigan; M. A. Miracolo; G. J. Engelhart; A. A. May; Cyle Wold; WeiMin Hao; T. Lee; A. P. Sullivan; J. B. Gilman; W. C. Kuster; J. A. de Gouw; J. L. Collett; S. M. Kreidenweis; A. L. Robinson

    2010-01-01

    Wildfires are a significant fraction of global biomass burning and a major source of trace gas and particle emissions in the atmosphere. Understanding the air quality and climate implications of wildfires is difficult since the emissions undergo complex transformations due to aging processes during transport away from the source. As part of the third Fire Lab at...

  12. Smoke exposure at western wildfires.

    Science.gov (United States)

    Timothy E. Reinhardt; Roger D. Ottmar

    2000-01-01

    Smoke exposure measurements among firefighters at wildfires in the Western United States between 1992 and 1995 showed that altogether most exposures were not significant, between 3 and 5 percent of the shift-average exposures exceeded occupational exposure limits for carbon monoxide and respiratory irritants. Exposure to benzene and total suspended particulate was not...

  13. Distribution, Transport, and Accumulation of Pyrogenic Black Carbon in Post-Wildfire Watersheds

    Science.gov (United States)

    Galanter, A.; Cadol, D. D.; Frey, B.; Lohse, K. A.

    2014-12-01

    Large, high severity wildfires greatly alter forest structure, water quality, and soil development/erosion. With increased frequency of such wildfires also follows heavy post-wildfire debris flows and flooding which deliver high loads of sediment and pyrogenic black carbon (PyC) to downstream waterways. The accumulation of PyC is a multi-faceted and dynamic issue in the critical zone. Generated by incomplete combustion of organic matter, PyC (in the form of soot and char) impacts turbidity, biological and chemical oxygen demand, and pH. In addition, PyC has the potential to sequester contaminants and can store carbon over short and long timescales. The impacts of two recent wildfires in Northern New Mexico are studied with the goal of understanding the fluxes and residence times of PyC in post-wildfire, mountainous watersheds. Employing burn severity maps and geospatial data, we selected three sites to collect soil and water samples to characterize PyC: a control, an area impacted by a large, severe burn (2011), and an area impacted by a smaller, less severe burn (2013). By collaborating with researchers at the Jemez Critical Zone Observatory, soil samples are being analyzed and will provide pre-wildfire PyC concentrations for the 2013 burn area. In this study, PyC is treated as both a particulate and a solute that is transported throughout the watershed as well as degraded in soils, surface water and groundwater. We used two black carbon quantification methods: the chemo-thermal oxidation (CTO-375) method to distinguish between soil soot and char, and the benzene polycarboxylic acids (BPCA) method to quantify the total concentrations of PyC in soil and water samples. Preliminary soil data from the CTO-375 method show comparable soot concentrations in the control, 2011, and 2013 burn indicating that the soot is more recalcitrant than char and remains in the watershed long after a wildfire. This data also suggests that the fluxes of black carbon over short time

  14. Forecasting European Wildfires Today and in the Future

    Science.gov (United States)

    Navarro Abellan, Maria; Porras Alegre, Ignasi; María Sole, Josep; Gálvez, Pedro; Bielski, Conrad; Nurmi, Pertti

    2017-04-01

    Society as a whole is increasingly exposed and vulnerable to natural disasters due to extreme weather events exacerbated by climate change. The increased frequency of wildfires is not only a result of a changing climate, but wildfires themselves also produce a significant amount of greenhouse gases that, in-turn, further contribute to global warming. I-REACT (Improving Resilience to Emergencies through Advanced Cyber Technologies) is an innovation project funded by the European Commission , which aims to use social media, smartphones and wearables to improve natural disaster management by integrating existing services, both local and European, into a platform that supports the entire emergency management cycle. In order to assess the impact of climate change on wildfire hazards, METEOSIM designed two different System Processes (SP) that will be integrated into the I-REACT service that can provide information on a variety of time scales. SP1 - Climate Change Impact The climate change impact on climate variables related to fires is calculated by building an ensemble based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) and CORDEX data. A validation and an Empirical-Statistical Downscaling (ESD) calibration are done to assess the changes in the past of the climatic variables related to wildfires (temperature, precipitation, wind, relative humidity and Fire Weather Index). Calculations in the trend and the frequency of extreme events of those variables are done for three time scales: near-term (2011-2040), mid-term (2041-2070) and long term (2071-2100). SP2 - Operational daily forecast of the Canadian Forest Fire Weather Index (FWI) Using ensemble data from the ECMWF and from the GLAMEPS (multi-model ensemble) models, both supplied by the Finnish Meteorological Institute (FMI), the Fire Weather Index (FWI) and its index components are produced for each ensemble member within a wide forecast time range, from a few hours up to 10 days resulting in a

  15. Is timber insurable? A study of wildfire Risks in the U.S. forest sector using spatio-temporal models.

    Science.gov (United States)

    Xuan Chen; Barry K. Goodwin; Jeffrey P. Prestemon

    2014-01-01

    In the U.S. forest products industry, wildfire is one of the leading causes of damage and economic losses. While individual wildfire behavior is well studied, new literature is emerging on broad-scale (e.g., county-level) wildfire risks. Our paper studies wildfire risks using crucial informational vari­ ables across both spatio units and time periods....

  16. Miniature infrared hyperspectral imaging sensor for airborne applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-05-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each

  17. Assessing Landscape Scale Wildfire Exposure for Highly Valued Resources in a Mediterranean Area

    Science.gov (United States)

    Alcasena, Fermín J.; Salis, Michele; Ager, Alan A.; Arca, Bachisio; Molina, Domingo; Spano, Donatella

    2015-05-01

    We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km2 located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.

  18. Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area.

    Science.gov (United States)

    Alcasena, Fermín J; Salis, Michele; Ager, Alan A; Arca, Bachisio; Molina, Domingo; Spano, Donatella

    2015-05-01

    We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km(2) located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.

  19. Sensor Placement Optimization using Chama

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geotechnology and Engineering Dept.; Nicholson, Bethany L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Discrete Math and Optimization Dept.; Laird, Carl Damon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Discrete Math and Optimization Dept.

    2017-10-01

    Continuous or regularly scheduled monitoring has the potential to quickly identify changes in the environment. However, even with low - cost sensors, only a limited number of sensors can be deployed. The physical placement of these sensors, along with the sensor technology and operating conditions, can have a large impact on the performance of a monitoring strategy. Chama is an open source Python package which includes mixed - integer, stochastic programming formulations to determine sensor locations and technology that maximize monitoring effectiveness. The methods in Chama are general and can be applied to a wide range of applications. Chama is currently being used to design sensor networks to monitor airborne pollutants and to monitor water quality in water distribution systems. The following documentation includes installation instructions and examples, description of software features, and software license. The software is intended to be used by regulatory agencies, industry, and the research community. It is assumed that the reader is familiar with the Python Programming Language. References are included for addit ional background on software components. Online documentation, hosted at http://chama.readthedocs.io/, will be updated as new features are added. The online version includes API documentation .

  20. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  1. A Mixed Logit Model of Homeowner Preferences for Wildfire Hazard Reduction

    Science.gov (United States)

    Thomas P. Holmes; John Loomis; Armando Gonzalez-Caban

    2010-01-01

    People living in the wildland-urban interface (WUI) are at greater risk of suffering major losses of property and life from wildfires. Over the past several decades the prevailing view has been that wildfire risk in rural areas was exogenous to the activities of homeowners. In response to catastrophic fires in the WUI over the past few years, recent approaches to fire...

  2. Economic analysis of prescribed burning for wildfire management in Western Australia

    Science.gov (United States)

    Veronique Florec; David Pannell; Michael Burton; Joel Kelso; Drew Mellor; George Milne

    2013-01-01

    Wildfires can cause significant damage to ecosystems, life and property, and wildfire events that do not involve people and property are becoming rare. With the expansion of the rural– urban interface in Western Australia and elsewhere, objectives of life and property protection become more difficult to achieve. We applied the cost plus net value change (C+NVC) model...

  3. The Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    Directory of Open Access Journals (Sweden)

    Wolfram Mauser

    2007-09-01

    Full Text Available The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system’ssecond generation, AVIS-2, which is currently being operated. The processing of the datais described and examples of remote sensing reflectance data are presented.

  4. A Wildfire-relevant climatology of the convective environment of the United States

    Science.gov (United States)

    Brian E. Potter; Matthew A. Anaya

    2015-01-01

    Convective instability can influence the behaviour of large wildfires. Because wildfires modify the temperature and moisture of air in their plumes, instability calculations using ambient conditions may not accurately represent convective potential for some fire plumes. This study used the North American Regional Reanalysis to develop a climatology of the convective...

  5. Development and application of a geospatial wildfire exposure and risk calculation tool

    Science.gov (United States)

    Matthew P. Thompson; Jessica R. Haas; Julie W. Gilbertson-Day; Joe H. Scott; Paul Langowski; Elise Bowne; David E. Calkin

    2015-01-01

    Applying wildfire risk assessment models can inform investments in loss mitigation and landscape restoration, and can be used to monitor spatiotemporal trends in risk. Assessing wildfire risk entails the integration of fire modeling outputs, maps of highly valued resources and assets (HVRAs), characterization of fire effects, and articulation of relative importance...

  6. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Science.gov (United States)

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  7. Protection from erosion following wildfire

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  8. Understanding ecological transitions under recurrent wildfire

    NARCIS (Netherlands)

    Devisscher, Tahia; Malhi, Yadvinder; Rojas Landívar, Víctor Diego; Oliveras Menor, Imma

    2016-01-01

    Wildfires in tropical forests are likely to become a more dominant disturbance due to future increasing feedbacks between rapid frontier expansion and more frequent droughts. This study evaluates the effects of fire recurrence on seasonally dry tropical forests of the Chiquitania region, located

  9. Earth, wind, and fire: Wildfire risk perceptions in a hurricane-prone environment

    Science.gov (United States)

    Soren M. Newman; Matthew S. Carroll; Pamela J. Jakes; Daniel R. Williams; Lorie L. Higgins

    2014-01-01

    Wildfire is one of several potential disturbances that could have extraordinary impacts on individuals and communities in fire-prone areas. In this article we describe disturbance risk perceptions from interviews with residents in three Florida communities that face significant wildfire and hurricane risk. Although they live in areas characterized by emergency managers...

  10. Fire and Fish: Using Radiocarbon And Stratigraphy To Discern The Impact Of Wildfire On Fish Metapopulations

    Science.gov (United States)

    Schaffrath, K. R.; Finch, C.; Belmont, P.; Budy, P.

    2015-12-01

    Wildfires have profound and variable impacts on erosion, channel morphology, and aquatic habitat. Previous research has quantified post-fire geomorphic response on event and millennial timescales. While these studies have informed our understanding of post-fire geomorphic response during the Holocene, we have yet to fully understand the variability of post-wildfire geomorphic response and how it might change in response to changing climate. Response of aquatic biota is just as variable as post-wildfire response yet we know very little about effects on metapopulations and how management decisions affect aquatic populations. Barriers to movement are installed to isolate native fish populations and prescribed fire and thinning are used to try to reduce future wildfire severity and extent. In order to improve understanding of the implications of management decisions, we evaluated geomorphic response and synchronicity of wildfires over the Holocene relative to the impact to the metapopulation of Bonneville cutthroat trout from a recent wildfire. The Twitchell Canyon fire burned 45,000 acres near Beaver, UT in July 2010. Over 30% of the area burned at high severity, which included two major headwater streams that sustained a trout population. In summer 2011, monsoonal thunderstorms caused massive debris flows and sheetflow erosion that altered channel morphology and aquatic habitat in the burned area. A previously robust, non-native trout fishery was nearly extirpated as a result of the geomorphic response to the wildfire. We used radiocarbon dating of burned material to determine how often headwater streams burned synchronously over the Holocene. Radiocarbon dates are associated with field observations of stratigraphy in order to infer geomorphic response to historic wildfires. Thirty samples were collected from sediment layers in 10 alluvial fans distributed among three watersheds (two burned and one unburned in the 2010 fire). Preliminary results suggest that we

  11. Computational Modeling of Large Wildfires: A Roadmap

    KAUST Repository

    Coen, Janice L.; Douglas, Craig C.

    2010-01-01

    Wildland fire behavior, particularly that of large, uncontrolled wildfires, has not been well understood or predicted. Our methodology to simulate this phenomenon uses high-resolution dynamic models made of numerical weather prediction (NWP) models

  12. Diversity in forest management to reduce wildfire losses: implications for resilience

    Directory of Open Access Journals (Sweden)

    Susan Charnley

    2017-03-01

    Full Text Available This study investigates how federal, state, and private corporate forest owners in a fire-prone landscape of southcentral Oregon manage their forests to reduce wildfire hazard and loss to high-severity wildfire. We evaluate the implications of our findings for concepts of social-ecological resilience. Using interview data, we found a high degree of "response diversity" (variation in forest management decisions and behaviors to reduce wildfire losses between and within actor groups. This response diversity contributed to heterogeneous forest conditions across the landscape and was driven mainly by forest management legacies, economics, and attitudes toward wildfire (fortress protection vs. living with fire. We then used an agent-based landscape model to evaluate trends in forest structure and fire metrics by ownership. Modeling results indicated that, in general, U.S. Forest Service management had the most favorable outcomes for forest resilience to wildfire, and private corporate management the least. However, some state and private corporate forest ownerships have the building blocks for developing fire-resilient forests. Heterogeneity in social-ecological systems is often thought to favor social-ecological resilience. We found that despite high social and ecological heterogeneity in our study area, most forest ownerships do not exhibit characteristics that make them resilient to high-severity fire currently or in the future under current management. Thus, simple theories about resilience based on heterogeneity must be informed by knowledge of the environmental and social conditions that comprise that heterogeneity. Our coupled human and natural systems (CHANS approach enabled us to understand connections among the social, economic, and ecological components of a multiownership, fire-prone ecosystem, and to identify how social-ecological resilience to wildfire might improve through interventions to address key constraints in the system. Our

  13. A New User Interface for On-Demand Customizable Data Products for Sensors in a SensorWeb

    Science.gov (United States)

    Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Sullivan, Don

    2011-01-01

    A SensorWeb is a set of sensors, which can consist of ground, airborne and space-based sensors interoperating in an automated or autonomous collaborative manner. The NASA SensorWeb toolbox, developed at NASA/GSFC in collaboration with NASA/JPL, NASA/Ames and other partners, is a set of software and standards that (1) enables users to create virtual private networks of sensors over open networks; (2) provides the capability to orchestrate their actions; (3) provides the capability to customize the output data products and (4) enables automated delivery of the data products to the users desktop. A recent addition to the SensorWeb Toolbox is a new user interface, together with web services co-resident with the sensors, to enable rapid creation, loading and execution of new algorithms for processing sensor data. The web service along with the user interface follows the Open Geospatial Consortium (OGC) standard called Web Coverage Processing Service (WCPS). This presentation will detail the prototype that was built and how the WCPS was tested against a HyspIRI flight testbed and an elastic computation cloud on the ground with EO-1 data. HyspIRI is a future NASA decadal mission. The elastic computation cloud stores EO-1 data and runs software similar to Amazon online shopping.

  14. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    Science.gov (United States)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  15. Mercury from wildfires: Global emission inventories and sensitivity to 2000-2050 global change

    Science.gov (United States)

    Kumar, Aditya; Wu, Shiliang; Huang, Yaoxian; Liao, Hong; Kaplan, Jed O.

    2018-01-01

    We estimate the global Hg wildfire emissions for the 2000s and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally and regionally by 18% for South America, 14% for Africa and 13% for Eurasia. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions globally (+28%) and regionally (+19% North America, +20% South America, +24% Africa, +41% Eurasia). Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.

  16. Deep Learning of Post-Wildfire Vegetation Loss using Bitemporal Synthetic Aperture Radar Images

    Science.gov (United States)

    Chen, Z.; Glasscoe, M. T.; Parker, J. W.

    2017-12-01

    Wildfire events followed by heavy precipitation have been proven causally related to breakouts of mudflow or debris flow, which, can demand rapid evacuation and threaten residential communities and civil infrastructure. For example, in the case of the city of Glendora, California, it was first afflicted by a severe wildfire in 1968 and then the flooding caused mudslides and debris flow in 1969 killed 34 people. Therefore, burn area or vegetation loss mapping due to wildfire is critical to agencies for preparing for secondary hazards, particularly flooding and flooding induced mudflow. However, rapid post-wildfire mapping of vegetation loss mapping is not readily obtained by regular remote sensing methods, e.g. various optical methods, due to the presence of smoke, haze, and rainy/cloudy conditions that often follow a wildfire event. In this paper, we will introduce and develop a deep learning-based framework that uses Synthetic Aperture Radar images collected prior to and after a wildfire event. A convolutional neural network (CNN) approach will be used that replaces traditional principle component analysis (PCA) based differencing for non-supervised change feature extraction. Using a small sample of human-labeled burned vegetation, normal vegetation, and urban built-up pixels, we will compare the performance of deep learning and PCA-based feature extraction. The 2014 Coby Fire event, which affected the downstream city of Glendora, was used to evaluate the proposed framework. The NASA's UAVSAR data (https://uavsar.jpl.nasa.gov/) will be utilized for mapping the vegetation damage due to the Coby Fire event.

  17. Effects of Wildfire on Fluvial Sediment Regime through Perturbations in Dry-Ravel

    Science.gov (United States)

    Florsheim, J. L.; Chin, A.; Kinoshita, A. M.; Nourbakhshbeidokhti, S.; Storesund, R.; Keller, E. A.

    2015-12-01

    In steep chaparral ecosystems with Mediterranean climate, dry ravel is a natural process resulting from wildfire disturbance that supplies sediment to fluvial systems. When dense chaparral vegetation burns, sediment accumulated on steep hillslopes is released for dry-season transport (dry ravel) down steep hillslopes during or soon after the wildfire. Results of a field study in southern California's Transverse Ranges illustrate the effect of wildfire on fluvial sediment regime in an unregulated chaparral system. Big Sycamore Canyon in the steep Santa Monica Mountains burned during the May 2013 Springs Fire and experienced one small sediment-transporting stormflow during the following winter. We conducted pre- and post-storm field campaigns during the fall and winter following the fire to quantify the effect of wildfire on the fluvial sediment regime. We utilized a sediment mass balance approach in which: 1) sediment supply, consisting primarily of dry ravel-derived deposits composed of relatively fine grained-sediment, was measured in the upstream basin and in the hillslope-channel margin adjacent to the study reach; 2) changes in storage in the study reach were quantified by analyzing the difference between pre- and post-storm channel topography derived from Terrestrial LiDAR Scanning (TLS) and field surveys; and 3) transport from the study reach was estimated as the difference between supply and change in storage where uncertainty is estimated using calculated sediment transport as a comparison. Results demonstrate channel deposition caused by changes in the short-term post-wildfire sediment regime. The increased sediment supply and storage are associated with significant changes in morphology, channel bed-material characteristics, and ecology. These results suggest that dry-ravel processes are an important factor to consider in post-wildfire sediment management.

  18. Extreme Wildfire Spread and Behaviour: Case Studies from North Sardinia, Italy

    Science.gov (United States)

    Salis, M.; Arca, B.; Ager, A.; Fois, C.; Bacciu, V.; Duce, P.; Spano, D.

    2012-04-01

    Worldwide, fire seasons are usually characterized by the occurrence of one or more days with extreme environmental conditions, such as heat waves associated with strong winds. On these days, fires can quickly get out of hand originating large and severe wildfires. In these cases, containment and extinguishment phases are critical, considering that the imperative goal is to keep fire crews, people and animals safe. In this work we will present a set of large and severe wildfires occurred with extreme environmental conditions in the northern area of Sardinia. The most recent wildfire we will describe was ignited on July 13, 2011 in the Oschiri municipality (40°43' N; 9°06' E), and burned about 2,500 ha of wooded and herbaceous pastures and oakwoods in few hours. The second wildfire we will present was ignited on July 23, 2009 in the Bonorva municipality (40°25' N; 8° 46' E), and was responsible for the death of two people and several damages to houses, animals and farms. This wildfire lasted on July 25, and burned about 10,000 ha of wooded and herbaceous pastures; the most of the area was burned during the first day. The last wildfire we will describe was ignited on July 23, 2007 in the Oniferi municipality (40°16' N; 9° 16' E) and burned about 9,000 ha of wooded and herbaceous pastures and oakwoods; about 8,000 ha were burned after 11 hours of propagation. All these wildfires were ignited in days characterized by very hot temperatures associated to the effect of air masses moving from inland North Africa to the Mediterranean Basin, and strong winds from west-south west. This is one of the typical weather pattern associated with large and severe wildfires in North Sardinia, and is well documented in the last years. Weather conditions, fuels and topography factors related to each case study will be accurately analyzed. Moreover, a detailed overview of observed fire spread and behavior and post-fire vegetation recovery will be presented. The fire spread and

  19. Economics of wildfire management: The development and application of suppression expenditure models

    Science.gov (United States)

    Michael S. Hand; Krista M. Gebert; Jingjing Liang; David E. Calkin; Matthew P. Thompson; Mo Zhou

    2014-01-01

    In the United States, increased wildland fire activity over the last 15 years has resulted in increased pressure to balance the cost, benefits, and risks of wildfire management. Amid increased public scrutiny and a highly variable wildland fire environment, a substantial body of research has developed to study factors affecting the cost-effectiveness of wildfire...

  20. Integrated national-scale assessment of wildfire risk to human and ecological values

    Science.gov (United States)

    Matthew P. Thompson; David E. Calkin; Mark A. Finney; Alan A. Ager; Julie W. Gilbertson-Day

    2011-01-01

    The spatial, temporal, and social dimensions of wildfire risk are challenging U.S. federal land management agencies to meet societal needs while maintaining the health of the lands they manage. In this paper we present a quantitative, geospatial wildfire risk assessment tool, developed in response to demands for improved risk-based decision frameworks. The methodology...

  1. Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, G M; Sanford, N M [eds.

    1995-01-01

    This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.

  2. AEGIS: a wildfire prevention and management information system

    Science.gov (United States)

    Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos

    2016-03-01

    We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also

  3. Patos Lagoon Outflow Within the Rio de la Plata Plume Using an Airborne Salinity Mapper: Observing an Embedded Plume

    Science.gov (United States)

    2008-01-01

    19 February 2004. Meteorological observations were also re- depths of several meters. In spite of the apparent inaccuracy, we corded manually from the...Brigada de Mantenimiento , Servicio Application of data from near-coincident airborne and in-situ de Sensores Remotos y Aeroespaciales, and Escuadr6n

  4. The Sensor Management for Applied Research Technologies (SMART) Project

    Science.gov (United States)

    Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil; hide

    2007-01-01

    NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.

  5. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.

    Science.gov (United States)

    Homann, Peter S; Darbyshire, Robyn L; Bormann, Bernard T; Morrissette, Brett A

    2015-11-03

    Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cut) in Douglas-fir dominated forest of southwestern Oregon. In the absence of wildfire, O-horizon Hg decreased by 60% during the 14 years after clearcutting, possibly the result of decreased atmospheric deposition due to the smaller-stature vegetative canopy; in contrast, no change was observed in mature unthinned and thinned forest. Wildfire decreased O-horizon Hg by >88% across all forest structures and decreased mineral-soil (0 to 66 mm depth) Hg by 50% in thinned forest and clear-cut. The wildfire-associated soil Hg loss was positively related to the amount of surface fine wood that burned during the fire, the proportion of area that burned at >700 °C, fire severity as indicated by tree mortality, and soil C loss. Loss of soil Hg due to the 200,000 ha wildfire was more than four times the annual atmospheric Hg emissions from human activities in Oregon.

  6. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    Science.gov (United States)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2011-06-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3-5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights

  7. Wildfire Emissions and Their Interaction with Urban and Rural Pollution: Data and Simulations

    Science.gov (United States)

    Singh, H. B.

    2014-01-01

    In recent years NASA has conducted a series of airborne campaigns (e. g. SEAC4RS*, ARCTAS, INTEX-A/B) over North America using an instrumented DC-8 aircraft equipped to measure a very large number of gaseous and aerosol constituents including several unique tracers. In these campaigns wild fires were extensively sampled near source as well as downwind after aging. The data provided detailed information on the composition and chemistry of fire emissions under a variety of atmospheric conditions as well as their interactions with rural and urban air pollution. Major fires studied including the California Rim fire in 2013 (SEAC4RS), the 2008 California wildfires (ARCTAS), and the Alaskan fires downwind over eastern US (INTEX-A). Although some fire plumes contained virtually no O3 enhancement, others showed significant ozone formation. Over Los Angeles, the highest O3 mixing ratios were observed in fire influenced urban air masses. Attempts to simulate these interactions using state of the art models were only minimally successful and indicated several shortcomings in simulating fire emission influences on urban smog formation. A variety of secondary oxidation products (e. g. O3, PAN, HCHO) were substantially underestimated. We will discuss the data collected in fire influenced air masses and their potential air quality implications.

  8. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    Science.gov (United States)

    2013-03-01

    resolution SIFT grids in metric-topological SLAM ,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. [4] M. Bosse and R...single camera SLAM ,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007. [7] D. Nister, O. Naroditsky, and J. Bergen...segmentation with ground-based and airborne LIDAR range data,” in Proceedings of the Fourth International Symposium on 3D Data Processing

  9. Effects of wildfire on stream temperatures in the Bitterroot River basin, Montana

    Science.gov (United States)

    Shad K. Mahlum; Lisa A. Eby; Michael K. Young; Chris G. Clancy; Mike Jakober

    2011-01-01

    Wildfire is a common natural disturbance that can influence stream ecosystems. Of particular concern are increases in water temperature during and following fires, but studies of these phenomena are uncommon. We examined effects of wildfires in 2000 on maximum water temperature for a suite of second- to fourth-order streams with a range of burn severities in the...

  10. Assessing Lebanon's wildfire potential in association with current and future climatic conditions

    Science.gov (United States)

    George H. Mitri; Mireille G. Jazi; David McWethy

    2015-01-01

    The increasing occurrence and extent of large-scale wildfires in the Mediterranean have been linked to extended periods of warm and dry weather. We set out to assess Lebanon's wildfire potential in association with current and future climatic conditions. The Keetch-Byram Drought Index (KBDI) was the primary climate variable used in our evaluation of climate/fire...

  11. Evaluating alternative prescribed burning policies to reduce net economic damages from wildfire

    Science.gov (United States)

    D. Evan Mercer; Jeffrey P. Prestemon; David T. Butry; John M. Pye

    2007-01-01

    We estimate a wildfire risk model with a new measure of wildfire output, intensity-weighted risk and use it in Monte Carlo simulations to estimate welfare changes from alternative prescribed burning policies. Using Volusia County, Florida as a case study, an annual prescribed burning rate of 13% of all forest lands maximizes net welfare; ignoring the effects on...

  12. Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response

    Science.gov (United States)

    Richard A. Shakesby; John A. Moody; Deborah A. Martin; Pete Robichaud

    2016-01-01

    Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including...

  13. Nesting ecology of grassland birds following a wildfire in the southern Great Plains

    Science.gov (United States)

    Roberts, Anthony J.; Boal, Clint W.; Whitlaw, Heather A.

    2017-01-01

    We studied the response of nesting grassland birds occupying short-grass and mixed-grass prairie sites 2 and 3 y following two, large-scale wildfires that burned ≥360,000 ha in the Texas Panhandle in March 2006. Nest success was greater on burned plots compared to unburned plots, though this varied by species and year. Woody vegetation cover was greater around nests on unburned plots compared to burned plots for Cassin's sparrow (Peucaea cassinii) and lark sparrow (Chondestes grammacus). Cassin's sparrows and lark sparrows nested in more-woody vegetation than did grasshopper sparrows (Ammodramus savannarum), and woody vegetation was reduced following the wildfires. The wildfires appear to have had few if any negative influences on the avian community 3 years postfire. This may be due to grassland breeding birds being adapted to landscapes in which, historically, periodic disturbance (e.g., wildfire, intensive grazing by bison [Bison bison]) resulted in vegetation heterogeneity.

  14. The potential of agent-based modelling for verification of people trajectories based on smartphone sensor data

    International Nuclear Information System (INIS)

    Hillen, F; Ehlers, M; Höfle, B; Reinartz, P

    2014-01-01

    In this paper the potential of smartphone sensor data for verification of people trajectories derived from airborne remote sensing data are investigated and discussed based on simulated test recordings in the city of Osnabrueck, Germany. For this purpose, the airborne imagery is simulated by images taken from a high building with a typical single lens reflex camera. The smartphone data required for the analysis of the potential is simultaneously recorded by test persons on the ground. In a second step, the quality of the smartphone sensor data is evaluated regarding the integration into simulation and modelling approaches. In this context we studied the potential of the agent-based modelling technique concerning the verification of people trajectories

  15. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain

    Directory of Open Access Journals (Sweden)

    Jesús Barreal

    2015-08-01

    Full Text Available Aim of study: The goal of this paper is to analyse the importance of the main contributing factors to the occurrence of wildfires. Area of study: We employ data from the region of Galicia during 2001-2010; although the similarities shared between this area and other rural areas may allow extrapolation of the present results. Material and Methods: The spatial dependence is analysed by using the Moran’s I and LISA statistics. We also conduct an econometric analysis modelling both, the number of fires and the relative size of afflicted woodland area as dependent variables, which depend on the climatic, land cover variables, and socio-economic characteristics of the affected areas. Fixed effects and random effect models are estimated in order to control for the heterogeneity between the Forest Districts in Galicia. Main results: Moran’s I and LISA statistics show that there is spatial dependence in the occurrence of Galician wildfires. Econometrics models show that climatology, socioeconomic variables, and temporal trends are also important to study both, the number of wildfires and the burned-forest ratio. Research highlights: We conclude that in addition to direct forest actions, other agricultural or social public plans, can help to reduce wildfires in rural areas or wildland-urban areas. Based on these conclusions, a number of guidelines are provided that may foster the development of better forest management policies in order to reduce the occurrence of wildfires.

  16. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with

  17. Coupled Weather and Wildfire Behavior Modeling at Los Alamos: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, James E.; Harlow, Francis H.; Linn, Rodman R.; Reisner, Jon M.; White, Andrew B.; Winterkamp, Judith L.

    1997-12-31

    Over the past two years, researchers at Los Alamos National Laboratory (LANL) have been engaged in coupled weather/wildfire modeling as part of a broader initiative to predict the unfolding of crisis events. Wildfire prediction was chosen for the following reasons: (1) few physics-based wild-fire prediction models presently exist; (2) LANL has expertise in the fields required to develop such a capability; and (3) the development of this predictive capability would be enhanced by LANL`s strength in high performance computing. Wildfire behavior models have historically been used to predict fire spread and heat release for a prescribed set of fuel, slope, and wind conditions (Andrews 1986). In the vicinity of a fire, however, atmospheric conditions are constantly changing due to non-local weather influences and the intense heat of the fire itself. This non- linear process underscores the need for physics-based models that treat the atmosphere-fire feedback. Actual wildfire prediction with full-physics models is both time-critical and computationally demanding, since it must include regional- to local-scale weather forecasting together with the capability to accurately simulate both intense gradients across a fireline, and atmosphere/fire/fuel interactions. Los Alamos has recently (January 1997) acquired a number of SGI/Cray Origin 2000 machines, each presently having 32 to 64 processors. These high performance computing systems are part of the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). While offering impressive performance now, upgrades to the system promise to deliver over 1 Teraflop (10(12) floating point operations per second) at peak performance before the turn of the century.

  18. Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling

    Science.gov (United States)

    Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.

    2013-01-01

    Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.

  19. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    Science.gov (United States)

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  20. The Spotting Distribution of Wildfires

    Directory of Open Access Journals (Sweden)

    Jonathan Martin

    2016-06-01

    Full Text Available In wildfire science, spotting refers to non-local creation of new fires, due to downwind ignition of brands launched from a primary fire. Spotting is often mentioned as being one of the most difficult problems for wildfire management, because of its unpredictable nature. Since spotting is a stochastic process, it makes sense to talk about a probability distribution for spotting, which we call the spotting distribution. Given a location ahead of the fire front, we would like to know how likely is it to observe a spot fire at that location in the next few minutes. The aim of this paper is to introduce a detailed procedure to find the spotting distribution. Most prior modelling has focused on the maximum spotting distance, or on physical subprocesses. We will use mathematical modelling, which is based on detailed physical processes, to derive a spotting distribution. We discuss the use and measurement of this spotting distribution in fire spread, fire management and fire breaching. The appendix of this paper contains a comprehensive review of the relevant underlying physical sub-processes of fire plumes, launching fire brands, wind transport, falling and terminal velocity, combustion during transport, and ignition upon landing.

  1. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    Science.gov (United States)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  2. Socio-geographic analysis of wild land fires: causes of the 2006's wildfires in Galicia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Balsa-Barreiro, J.; Hermosilla, T.

    2013-07-01

    Aim of study: To propose a methodology to establish motivations underlying wildland fire episodes by analyzing both the socioeconomics of the affected territory and the geographical distribution of the wildfire. Area of study: The wildfires occurred during 2006 in Galicia, in the NW of Spain, were analyzed and compared regard to the previous years. Material and methods: The proposed methodology in this study is divided into four steps: (a) definition of the forest context, (b) fire episode and socioeconomic data collection, (c) geospatial representation through map production, and (d) joint analysis and data interpretation. A combined analysis of the spatial and temporal coincidence of wildfire and the socioeconomic activities is performed. Main results: A combined analysis of the spatial and temporal coincidence of wildfire dynamics and the socioeconomic activities allow us to assess and to interpret wildfire causes and motivations of socioeconomic groups. In our area study, a broad analysis indicates that wildfire recurrence within this region is related to an accelerated rural flight process which exacerbates the conflict between rural and urban models. Research highlights: The socio-geographical analysis of a territory's wildfire dynamics enables us to establish possible causes and motivations of their origins. Providing the specific contextual and socioeconomic information, this methodology has potential applicability across varied study locations. (Author)

  3. Analyzing Responses of Chemical Sensor Arrays

    Science.gov (United States)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  4. Wildfire potential mapping over the state of Mississippi: A land surface modeling approach

    Science.gov (United States)

    William H. Cooke; Georgy V. Mostovoy; Valentine G. Anantharaj; W. Matt Jolly

    2012-01-01

    A relationship between the likelihood of wildfires and various drought metrics (soil moisture-based fire potential indices) were examined over the southern part of Mississippi. The following three indices were tested and used to simulate spatial and temporal wildfire probability changes: (1) the accumulated difference between daily precipitation and potential...

  5. The effect of personal experience on choice-based preferences for wildfire protection programs

    Science.gov (United States)

    Tom Holmes; Armando Gonzalez-Caban; John Loomis; Jose Sanchez

    2013-01-01

    In this paper, we investigate homeowner preferences and willingness to pay for wildfire protection programs using a choice experiment with three attributes: risk, loss and cost. Preference heterogeneity among survey respondents was examined using three econometric models and risk preferences were evaluated by comparing willingness to pay for wildfire protection...

  6. Impact of drought on wildfires in Iberia

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia M.; DaCamara, Carlos; Sousa, Pedro; Trigo, Ricardo M.

    2015-04-01

    Southern European countries, and the Iberian Peninsula (IP) in particular, have been vastly affected by summer wildfires (Trigo et al., 2013). This condition is hampered by the frequent warm and dry meteorological conditions found in summer which play a significant role in the triggering and spreading of wildfires. These meteorological conditions are also particularly important for the onset and end of drought periods, a phenomenon that has recurrently affected the IP (Gouveia et al., 2012). Moreover, the IP corresponds to one of the most sensitive areas to current and future climate change, and recent and future trends towards a dryer and warmer Mediterranean climate (Sousa et al., 2014) will tend to exacerbate these problems. The main scope of this study was to investigate the impact of drought on wildfires' burned areas in the IP. The objective was to examine the correlation between drought, as expressed by both the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), and wildfire burned areas. The SPI and SPEI were both calculated for 4 large regions (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes were shown to be related with constraining factors such as topography, vegetation cover and climate conditions (Trigo et al., 2013). In this study, the drought indices were determined for the time scales of 3 and 6 months for August and for 12 months in September, thus representing the summer and annual drought. The correlation between drought and burned areas during July and August was particularly significant for the 3 months SPEI and SPI relatively to the 6 and 12 time scales, which indicates that drought and fires relation is a small-size scale process. Moreover, the correlation between drought and burned areas during July and August was particularly significant for the Northern and Southwestern regions both for SPEI for 3 and 6

  7. Forecasting wind-driven wildfires using an inverse modelling approach

    Directory of Open Access Journals (Sweden)

    O. Rios

    2014-06-01

    Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.

  8. The influence of incident management teams on the deployment of wildfire suppression resources

    Science.gov (United States)

    Michael Hand; Hari Katuwal; David E. Calkin; Matthew P. Thompson

    2017-01-01

    Despite large commitments of personnel and equipment to wildfire suppression, relatively little is known about the factors that affect how many resources are ordered and assigned to wildfire incidents and the variation in resources across incident management teams (IMTs). Using detailed data on suppression resource assignments for IMTs managing the highest complexity...

  9. Social media approaches to modeling wildfire smoke dispersion: spatiotemporal and social scientific investigations

    Science.gov (United States)

    Sonya Sachdeva; Sarah M. McCaffrey; Dexter Locke

    2016-01-01

    Wildfires have significant effects on human populations, economically, environmentally, and in terms of their general wellbeing. Smoke pollution, in particular, from either prescribed burns or uncontrolled wildfires, can have significant health impacts. Some estimates suggest that smoke dispersion from fire events may affect the health of one in three residents in the...

  10. Carnivore distributions across chaparral habitats exposed to wildfire and rural housing in southern California

    Science.gov (United States)

    Schuette, P.A.; Diffendorfer, J.E.; Deutschman, D.H.; Tremor, S.; Spencer, W.

    2014-01-01

    Chaparral and coastal sage scrub habitats in southern California support biologically diverse plant and animal communities. However, native plant and animal species within these shrubland systems are increasingly exposed to human-caused wildfires and an expansion of the human–wildland interface. Few data exist to evaluate the effects of fire and anthropogenic pressures on plant and animal communities found in these environments. This is particularly true for carnivore communities. To address this knowledge gap, we collected detection–non-detection data with motion-sensor cameras and track plots to measure carnivore occupancy patterns following a large, human-caused wildfire (1134 km2) in eastern San Diego County, California, USA, in 2003. Our focal species set included coyote (Canis latrans), gray fox (Urocyon cinereoargenteus), bobcat (Lynx rufus) and striped skunk (Mephitis mephitis). We evaluated the influence on species occupancies of the burned environment (burn edge, burn interior and unburned areas), proximity of rural homes, distance to riparian area and elevation. Gray fox occupancies were the highest overall, followed by striped skunk, coyote and bobcat. The three species considered as habitat and foraging generalists (gray fox, coyote, striped skunk) were common in all conditions. Occupancy patterns were consistent through time for all species except coyote, whose occupancies increased through time. In addition, environmental and anthropogenic variables had weak effects on all four species, and these responses were species-specific. Our results helped to describe a carnivore community exposed to frequent fire and rural human residences, and provide baseline data to inform fire management policy and wildlife management strategies in similar fire-prone ecosystems.

  11. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    Science.gov (United States)

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  12. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  13. Synoptic backgrounds of the widest wildfire in Mazandaran Province of Iran during December 11-13, 2010

    Science.gov (United States)

    Ghavidel, Yousef; Farajzadeh, Manuchehr; Khaleghi Babaei, Meysam

    2016-12-01

    In this paper, atmospheric origins of the widest wildfire in Mazandaran province on 11-13th of December, 2010 have been investigated. Data sets of this research include maximum daily temperature (MDT), minimum relative humidity (MRH) of terrestrial stations, dynamic and thermodynamic features of the atmosphere, Gridded data sets of Self-Calibrated Palmer drought severity index (SCPDSI) and global drought dataset standardized precipitation-evapotranspiration index (SPEI) and data related to the time and the extent of the wildfire. The ``environmental to circulation'' approach to synoptic classification has been used to investigate relationships between local-scale surface environment (wildfire) and the synoptic-scale atmospheric circulation conditions. Results of study show that during the 3-day wide wildfire, the average of MDT and the MRH was significantly different from the long-term average. During the aforementioned wildfire, the average of MDT in Mazandaran province was 26 °C and the average of MRH was reported 35 %. The long-term average of MDT and the MRH in Mazandaran province during 3 days of wildfire was 12.3 °C and 68 %, respectively. Therefore, the MDT has a positive abnormality of 13.7 °C and the MRH has a negative abnormality of 33 %. In addition, monthly SCPDSI and SPEI indicated severe drought conditions at December 2010 in Mazandaran. Analysis of SLP maps shows that during the 3-day fire, a pressure center of 1110 hPa on Persian Gulf and a very low-pressure center on Turkey and Asia Minor were created. Normally, this event has caused the pressure gradient and warm and dry air advection from Arabian Peninsula to higher longitudes, particularly Mazandaran province. Consequently, the MDT increased and the wildfire of Mazandaran forest took place in an area of 220 ha. Zonal wind maps signify the weakness of Zonal wind and meridional wind maps show the southern direction of meridional wind flow during the wide wildfire. Moreover, Omega maps prove

  14. Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses

    Science.gov (United States)

    Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.

    2017-12-01

    Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of

  15. Sensor Pods: Multi-Resolution Surveys from a Light Aircraft

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2017-02-01

    Full Text Available Airborne remote sensing, whether performed from conventional aerial survey platforms such as light aircraft or the more recent Remotely Piloted Airborne Systems (RPAS has the ability to compliment mapping generated using earth-orbiting satellites, particularly for areas that may experience prolonged cloud cover. Traditional aerial platforms are costly but capture spectral resolution imagery over large areas. RPAS are relatively low-cost, and provide very-high resolution imagery but this is limited to small areas. We believe that we are the first group to retrofit these new, low-cost, lightweight sensors in a traditional aircraft. Unlike RPAS surveys which have a limited payload, this is the first time that a method has been designed to operate four distinct RPAS sensors simultaneously—hyperspectral, thermal, hyper, RGB, video. This means that imagery covering a broad range of the spectrum captured during a single survey, through different imaging capture techniques (frame, pushbroom, video can be applied to investigate different multiple aspects of the surrounding environment such as, soil moisture, vegetation vitality, topography or drainage, etc. In this paper, we present the initial results validating our innovative hybrid system adapting dedicated RPAS sensors for a light aircraft sensor pod, thereby providing the benefits of both methodologies. Simultaneous image capture with a Nikon D800E SLR and a series of dedicated RPAS sensors, including a FLIR thermal imager, a four-band multispectral camera and a 100-band hyperspectral imager was enabled by integration in a single sensor pod operating from a Cessna c172. However, to enable accurate sensor fusion for image analysis, each sensor must first be combined in a common vehicle coordinate system and a method for triggering, time-stamping and calculating the position/pose of each sensor at the time of image capture devised. Initial tests were carried out over agricultural regions with

  16. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  17. Interactive effects of wildfire, forest management, and isolation on amphibian and parasite abundance

    Science.gov (United States)

    Hossack, Blake R.; Corn, P. Stephen; Winsor H. Lowe,; R. Kenneth Honeycutt,; Sean A. Parks,

    2013-01-01

    Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host–parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could result in additive or synergistic effects. Furthermore, parasites represent a large component of biodiversity and can affect host fitness and population dynamics, yet they are rarely included in studies of how vertebrate hosts respond to disturbance. To determine how wildfire affects amphibians and their parasites, and whether effects differ between protected and managed landscapes, we compared abundance of two amphibians and two nematodes relative to wildfire extent and severity around wetlands in neighboring protected and managed forests (Montana, USA). Population sizes of adult, male long-toed salamanders (Ambystoma macrodactylum) decreased with increased burn severity, with stronger negative effects on isolated populations and in managed forests. In contrast, breeding population sizes of Columbia spotted frogs (Rana luteiventris) increased with burn extent in both protected and managed protected forests. Path analysis showed that the effects of wildfire on the two species of nematodes were consistent with differences in their life history and transmission strategies and the responses of their hosts. Burn severity indirectly reduced abundance of soil-transmitted Cosmocercoides variabilis through reductions in salamander abundance. Burn severity also directly reduced C. variabilis abundance, possibly though changes in soil conditions. For the aquatically transmitted nematode Gyrinicola batrachiensis, the positive effect of burn extent on density of Columbia spotted frog larvae indirectly increased parasite abundance. Our results show that effects of wildfire on amphibians depend upon burn extent

  18. Race and wildfire risk perceptions among rural forestland owners in north-central Florida

    Science.gov (United States)

    Miriam Wyman; Sparkle Malone; Taylor Stein; Cassandra Johnson

    2012-01-01

    The southern United States is susceptible to wildfire, from its climate, growing seasons, lightning frequency, and decades of fire suppression. With much known about wildfire’s biophysical risks, less is understood about sociodemographic obstacles, including race, income, and education. Blacks in the rural southeastern United States are typically among the most...

  19. The economic cost of adverse health effects from wildfire-smoke exposure: A review

    Science.gov (United States)

    Ikuho Kochi; Geoffrey H. Donovan; Patricia A. Champ; John B. Loomis

    2010-01-01

    The economic costs of adverse health effects associated with exposure to wildfire smoke should be given serious consideration in determining the optimal wildfire management policy. Unfortunately, the literature in this research area is thin. In an effort to better understand the nature of these economic costs, we review and synthesise the relevant literature in three...

  20. Airborne relay-based regional positioning system.

    Science.gov (United States)

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  1. Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America

    Science.gov (United States)

    Remy, Cécile C.; Hély, Christelle; Blarquez, Olivier; Magnan, Gabriel; Bergeron, Yves; Lavoie, Martin; Ali, Adam A.

    2017-03-01

    Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.

  2. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  3. Airborne hyperspectral remote sensing in Italy

    Science.gov (United States)

    Bianchi, Remo; Marino, Carlo M.; Pignatti, Stefano

    1994-12-01

    The Italian National Research Council (CNR) in the framework of its `Strategic Project for Climate and Environment in Southern Italy' established a new laboratory for airborne hyperspectral imaging devoted to environmental problems. Since the end of June 1994, the LARA (Laboratorio Aereo per Ricerche Ambientali -- Airborne Laboratory for Environmental Studies) Project is fully operative to provide hyperspectral data to the national and international scientific community by means of deployments of its CASA-212 aircraft carrying the Daedalus AA5000 MIVIS (multispectral infrared and visible imaging spectrometer) system. MIVIS is a modular instrument consisting of 102 spectral channels that use independent optical sensors simultaneously sampled and recorded onto a compact computer compatible magnetic tape medium with a data capacity of 10.2 Gbytes. To support the preprocessing and production pipeline of the large hyperspectral data sets CNR housed in Pomezia, a town close to Rome, a ground based computer system with a software designed to handle MIVIS data. The software (MIDAS-Multispectral Interactive Data Analysis System), besides the data production management, gives to users a powerful and highly extensible hyperspectral analysis system. The Pomezia's ground station is designed to maintain and check the MIVIS instrument performance through the evaluation of data quality (like spectral accuracy, signal to noise performance, signal variations, etc.), and to produce, archive, and diffuse MIVIS data in the form of geometrically and radiometrically corrected data sets on low cost and easy access CC media.

  4. Social amplification of wildfire risk: The role of social interactions and information sources

    Science.gov (United States)

    Hannah Brenkert-Smith; Katherine L. Dickinson; Patricia A. Champ; Nicholas Flores

    2013-01-01

    Wildfire is a persistent and growing threat across much of the western United States. Understanding how people living in fire-prone areas perceive this threat is essential to the design of effective risk management policies. Drawing on the social amplification of risk framework, we develop a conceptual model of wildfire risk perceptions that incorporates the social...

  5. Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes

    2010-01-01

    Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...

  6. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean

    Science.gov (United States)

    Ruffault, Julien; Curt, Thomas; Martin-StPaul, Nicolas K.; Moron, Vincent; Trigo, Ricardo M.

    2018-03-01

    Increasing drought conditions under global warming are expected to alter the frequency and distribution of large and high-intensity wildfires. However, our understanding of the impact of increasing drought on extreme wildfires events remains incomplete. Here, we analyzed the weather conditions associated with the extreme wildfires events that occurred in Mediterranean France during the exceptionally dry summers of 2003 and 2016. We identified that these fires were related to two distinct shifts in the fire weather space towards fire weather conditions that had not been explored before and resulting from specific interactions between different types of drought and different fire weather types. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heat wave with a press drought intensified heat-induced fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and lead to a higher frequency of extremes wildfires events.

  7. Enhancing Pre- and Post-Wildfire Vegetation Recovery and Understanding Feedbacks of Cheatgrass invasion Using NASA Earth Observations

    Science.gov (United States)

    Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.

    2017-12-01

    Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.

  8. Fish and fire: Post-wildfire sediment dynamics and implications for the viability of trout populations

    Science.gov (United States)

    Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.

    2017-12-01

    Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the

  9. Application of an Original Wildfire Smoke Health Cost Benefits Transfer Protocol to the Western US, 2005-2015

    Science.gov (United States)

    Jones, Benjamin A.; Berrens, Robert P.

    2017-11-01

    Recent growth in the frequency and severity of US wildfires has led to more wildfire smoke and increased public exposure to harmful air pollutants. Populations exposed to wildfire smoke experience a variety of negative health impacts, imposing economic costs on society. However, few estimates of smoke health costs exist and none for the entire Western US, in particular, which experiences some of the largest and most intense wildfires in the US. The lack of cost estimates is troublesome because smoke health impacts are an important consideration of the overall costs of wildfire. To address this gap, this study provides the first time series estimates of PM2.5 smoke costs across mortality and several morbidity measures for the Western US over 2005-2015. This time period includes smoke from several megafires and includes years of record-breaking acres burned. Smoke costs are estimated using a benefits transfer protocol developed for contexts when original health data are not available. The novelty of our protocol is that it synthesizes the literature on choices faced by researchers when conducting a smoke cost benefit transfer. On average, wildfire smoke in the Western US creates 165 million in annual morbidity and mortality health costs.

  10. Estimation of Total Yearly CO2 Emissions by Wildfires in Mexico during the Period 1999–2010

    Directory of Open Access Journals (Sweden)

    Flor Bautista Vicente

    2014-01-01

    Full Text Available The phenomenon of wildfires became a global environmental problem which demands estimations of their CO2 emissions. Wildfires have deteriorated the air quality increasingly. Using available information on documented wildfires and a data set of satellite detected hot spots, total yearly emissions of CO2 in Mexico were estimated for the period 1999–2010. A map of the main vegetation groups was used to calculate total areas for every vegetation type. The yearly number of hot spots per vegetation type was calculated. Estimates of emitted CO2 in a wildfire were then accomplished by considering parameters such as: forest fuel load, vegetation type, burning efficiency, and mean burned area. The number of wildfires and total affected areas showed an annual variability. The yearly mean of affected area by a single wildfire varied between 0.2 and 0.3 km2. The total affected area during the period 1999 to 2010 was 86800 km2 which corresponds to 4.3% of the Mexican territory. Total CO2 emissions were approximately 112 Tg. The most affected vegetation types were forest and rainforest.

  11. Does Place Attachment Predict Wildfire Mitigation and Preparedness? A Comparison of Wildland-Urban Interface and Rural Communities.

    Science.gov (United States)

    Anton, Charis E; Lawrence, Carmen

    2016-01-01

    Wildfires are a common occurrence in many countries and are predicted to increase as we experience the effects of climate change. As more people are expected to be affected by fires, it is important to increase people's wildfire mitigation and preparation. Place attachment has been theorized to be related to mitigation and preparation. The present study examined place attachment and wildfire mitigation and preparation in two Australian samples, one rural and one on the wildland-urban interface. The study consisted of 300 participants who responded to questionnaires about their place attachment to their homes and local areas, as well as describing their socio-demographic characteristics and wildfire mitigation and preparedness. Hierarchical regression showed that place attachment to homes predicted wildfire mitigation and preparedness in the rural sample but not in the wildland-urban interface sample. The results suggest that place attachment is a motivator for mitigation and preparation only for people living rurally. Reminding rural residents of their attachment to home at the beginning of wildfire season may result in greater mitigation and preparedness. Further research focusing on why attachment does not predict mitigation and preparedness in the wildland-urban interface is needed.

  12. Assessing increasing susceptibility to wildfire at the wildland-urban fringe in the western United States

    Science.gov (United States)

    Kinoshita, A. M.; Hogue, T. S.

    2013-05-01

    Much of the western U.S. is increasingly susceptible to wildfire activity due to drier conditions, elevated fuel loads, and expanding urbanization. As population increases, development pushes the urban boundary further into wildlands, creating more potential for human interaction at the wildland-urban interface (WUI), primarily from human ignitions and fire suppression policies. The immediate impacts of wildfires include vulnerability to debris flows, flooding, and impaired water quality. Fires also alter longer-term hydrological and ecosystem behavior. The current study utilizes geospatial datasets to investigate historical wildfire size and frequency relative to the WUI for a range of cities across western North America. California, the most populous state in the U.S., has an extensive fire history. The decennial population and acres burned for four major counties (Los Angeles, San Bernardino, San Diego, and Shasta) in California show that increasing wildfire size and frequency follow urbanization trends, with high correlation between the last decade of burned area, urban-fringe proximity, and increasing population. Ultimately, results will provide information on urban fringe communities that are most vulnerable to the risks associated with wildfire and post-fire impacts. In light of evolving land use policies (i.e. forest management and treatment, development at the urban-fringe) and climate change, it is critical to advance our knowledge of the implications that these conditions pose to urban centers, communicate risks to the public, and ultimately provide guidance for wildfire management.

  13. Situating Hazard Vulnerability: People's Negotiations with Wildfire Environments in the U.S. Southwest

    Science.gov (United States)

    Collins, Timothy W.; Bolin, Bob

    2009-09-01

    This article is based on a multimethod study designed to clarify influences on wildfire hazard vulnerability in Arizona’s White Mountains, USA. Findings reveal that multiple factors operating across scales generate socially unequal wildfire risks. At the household scale, conflicting environmental values, reliance on fire insurance and firefighting institutions, a lack of place dependency, and social vulnerability (e.g., a lack of financial, physical, and/or legal capacity to reduce risks) were found to be important influences on wildfire risk. At the regional-scale, the shift from a resource extraction to environmental amenity-based economy has transformed ecological communities, produced unequal social distributions of risks and resources, and shaped people’s social and environmental interactions in everyday life. While working-class locals are more socially vulnerable than amenity migrants to wildfire hazards, they have also been more active in attempting to reduce risks in the aftermath of the disastrous 2002 Rodeo-Chediski fire. Social tensions between locals and amenity migrants temporarily dissolved immediately following the disaster, only to be exacerbated by the heightened perception of risk and the differential commitment to hazard mitigation displayed by these groups over a 2-year study period. Findings suggest that to enhance wildfire safety, environmental managers should acknowledge the environmental benefits associated with hazardous landscapes, the incentives created by risk management programs, and the specific constraints to action for relevant social groups in changing human-environmental context.

  14. Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada

    Directory of Open Access Journals (Sweden)

    Scott E. Nielsen

    2016-11-01

    Full Text Available Large lakes can act as firebreaks resulting in distinct patterns in the forest mosaic. Although this is well acknowledged, much less is known about how wildfire is affected by different landscape measures of water and their interactions. Here we examine how these factors relate to historic patterns of wildfire over a 35-year period (1980–2014 for the boreal forest of Saskatchewan, Canada. This includes the amount of water in different-sized neighborhoods, the presence of islands, and the direction, distance, and shape of nearest lake of different sizes. All individual factors affected wildfire presence, with lake sizes ≥5000 ha and amount of water within a 1000-ha surrounding area the most supported spatial scales. Overall, wildfires were two-times less likely on islands, more likely further from lakes that were circular in shape, and in areas with less surrounding water. Interactive effects were common, including the effect of direction to lake as a function of distance from lakeshore and amount of surrounding water. Our results point to a strong, but complex, bottom-up control of local wildfire activity based on the configuration of natural firebreaks. In fact, fire rotation periods predicted for one area varied more than 15-fold (<47 to >700 years depending on local patterns in lakes. Old-growth forests within this fire-prone ecosystem are therefore likely to depend on the surrounding configuration of larger lakes.

  15. Global pyrogeography: the current and future distribution of wildfire.

    Directory of Open Access Journals (Sweden)

    Meg A Krawchuk

    Full Text Available Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade. We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research

  16. Global pyrogeography: the current and future distribution of wildfire.

    Science.gov (United States)

    Krawchuk, Meg A; Moritz, Max A; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global

  17. Deforestation as a result of wildfire incidence in the Worobong Forest Reserve in the Eastern Region of Ghana

    Science.gov (United States)

    Danquah, S.

    2009-04-01

    This submission captures report on the perennial occurrence of wildfires and their accompanying effects on the inhabitants and the fringe forest communities in the Worobong Forest Reserve within the Eastern part of Ghana. Wildfire continues to be the single serious threat to the sustainable development and management of forest and wildlife resources in Ghana, thus depriving indigenous fringe forest communities of enormous socio-economic benefit of the forest. Locally, fire is used in the preparation of farm lands, tapping of palm-wine, charcoal production, honey harvesting, etc. This paper identifies some of the effects of wildfires on the indigenous communities and various interventions made to address the wildfire menace in the area of study over the years. Keywords: Wildfire, Fringe Forest Communities, Sustainable Development Resources, Socio-Economic Benefits

  18. Effect of wildfires on physicochemical changes of watershed dissolved organic matter.

    Science.gov (United States)

    Revchuk, Alex D; Suffet, I H

    2014-04-01

    Physicochemical characterization of dissolved organic carbon (DOC) provides essential data to describe watershed characteristics after drastic changes caused by wildfires. Post-fire watershed behavior is important for water source selection, management, and drinking water treatment optimization. Using ash and other burned vegetation fragments, a leaching procedure was implemented to describe physicochemical changes to watershed DOC caused by wildfires. Samples were collected after the 2007 and 2009 wildfires near Santa Barbara, California. Substantial differences in size distribution (measured by ultrafiltration), polarity (measured by polarity rapid assessment method), and the origin of leached DOC (measured by fluorescence) were observed between burned and unburned sites. Recently burned ash had 10 times the DOC leaching potential, and was dominated by large size fragments, compared to weathered 2-year-old ash. Charged DOC fractions were found to positively correlate with DOC size, whereas hydrophobic and hydrophilic DOC fractions were not. Proteins were only observed in recently burned ash and were indicative of recent post-fire biological activity.

  19. Application of wildfire risk assessment results to wildfire response planning in the southern Sierra Nevada, California, USA

    Science.gov (United States)

    Matthew P. Thompson; Phil Bowden; April Brough; Joe H. Scott; Julie Gilbertson-Day; Alan Taylor; Jennifer Anderson; Jessica Haas

    2016-01-01

    How wildfires are managed is a key determinant of long-term socioecological resiliency and the ability to live with fire. Safe and effective response to fire requires effective pre-fire planning, which is the main focus of this paper. We review general principles of effective federal fire management planning in the U.S., and introduce a framework for incident...

  20. Airborne Tactical Crossload Planner

    Science.gov (United States)

    2017-12-01

    Regiment AGL above ground level AO area of operation APA American psychological association ASOP airborne standard operating procedure A/C aircraft...awarded a research contract to develop a tactical crossload tool. [C]omputer assisted Airborne Planning Application ( APA ) that provides a

  1. Airborne LiDAR for the Detection of Archaeological Vegetation Marks Using Biomass as a Proxy

    Directory of Open Access Journals (Sweden)

    David Stott

    2015-02-01

    Full Text Available In arable landscapes, the airborne detection of archaeological features is often reliant on using the properties of the vegetation cover as a proxy for sub-surface features in the soil. Under the right conditions, the formation of vegetation marks allows archaeologists to identify and interpret archaeological features. Using airborne Laser Scanning, based on the principles of Light Detection and Ranging (LiDAR to detect these marks is challenging, particularly given the difficulties of resolving subtle changes in a low and homogeneous crop with these sensors. In this paper, an experimental approach is adopted to explore how these marks could be detected as variations in canopy biomass using both range and full waveform LiDAR data. Although some detection was achieved using metrics of the full waveform data, it is the novel multi-temporal method of using discrete return data to detect and characterise archaeological vegetation marks that is offered for further consideration. This method was demonstrated to be applicable over a range of capture conditions, including soils deemed as difficult (i.e., clays and other heavy soils, and should increase the certainty of detection when employed in the increasingly multi-sensor approaches to heritage prospection and management.

  2. The Effect of Pitch, Roll, and Yaw on Airborne Gravity Observations of the NOAA GRAV-D Project

    Science.gov (United States)

    Childers, V. A.; Kanney, J.; Youngman, M.

    2017-12-01

    Aircraft turbulence can wreak havoc on the gravity measurementby beam-style gravimeters. Prior studies have confirmed the correlation of poor quality airborne gravity data collection to amplified aircraft motion. Motion in the aircraft is the combined effect of the airframe design, the autopilot and its performance, and the weather/wind regime. NOAA's National Geodetic Survey has launched the Gravity for the Redefinition of the American Vertical Datum project (GRAV-D) to provide the foundation for a new national vertical datum by 2022. This project requires collecting airborne gravity data covering the entire country and its holdings. The motion of the aircraft employed in this project is of prime importance because we use a beam-style gravimeter mounted on a gyro-stabilized platform to align the sensor to a time-averaged local vertical. Aircraft turbulence will tend to drive the platform off-level, allowing horizontal forces to map into the vertical gravity measurement. Recently, the GRAV-D project has experimented with two new factors in airborne gravity data collection. The first aspect is the use of the Aurora optionally piloted Centaur aircraft. This aircraft can be flown either with or without a pilot, but the autopilot is specifically designed to be very accurate. Incorporated into the much smaller frame of this aircraft is a new gravimeter developed by Micro-g LaCoste, called the Turnkey Airborne Gravimeter System 7 (TAGS7). This smaller, lighter instrument also has a new design whereby the beam is held fixed in an electromagnetic force field. The result of this new configuration is notably improved data quality in wind conditions higher than can be tolerated by our current system. So, which caused the improvement, the aircraft motion or the new meter? This study will start to tease apart these two effects with recently collected survey data. Specifically, we will compare the motion profile of the Centaur aircraft with other aircraft in the GRAV-D portfolio

  3. Status of vegetation cover after 25 years since the last wildfire (Río Verde, Spain)

    Science.gov (United States)

    Martinez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2016-04-01

    Climatic conditions play an important role in the post-fire vegetation recovery as well as other factors like topography, soil, and pre and post-fire land use (Shakesby, 2011; Robichaud et al., 2013). This study deals with the characterization of the vegetation cover status in an area affected by a wildfire 25 years ago. Namely, the objectives are to: i) compare the current and previous vegetation cover to wildfire; and ii) evaluate whether the current vegetation has recovered the previous cover to wildfire. The study area is mainly located in the Rio Verde watershed (Sierra de las Nieves, South of Spain). It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8,156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1700 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. The Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover maps were obtained by means of object-oriented classifications. Also, NDVI index were calculated and mapped for both years in order to compare the status of vegetation cover. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that

  4. Cost shared wildfire risk mitigation in Log Hill Mesa, Colorado: Survey evidence on participation and willingness to pay

    Science.gov (United States)

    James R. Meldrum; Patricia A. Champ; Travis Warziniack; Hannah Brenkert-Smith; Christopher M. Barth; Lilia C. Falk

    2014-01-01

    Wildland-urban interface (WUI) homeowners who do not mitigate the wildfire risk on their properties impose a negative externality on society. To reduce the social costs of wildfire and incentivise homeowners to take action, cost sharing programs seek to reduce the barriers that impede wildfire risk mitigation. Using survey data from a WUI community in western Colorado...

  5. On regulation of radioactive airborne discharge

    International Nuclear Information System (INIS)

    Stroganov, A.A.; Kuryndin, A.V.; Shapovalov, A.S.; Orlov, M.Yu.

    2013-01-01

    Authors present the Russian regulatory basis of radioactive airborne discharges which was updated after enactment of the Methodology for airborne discharge limits development. Criteria for establishing of airborne discharge limits, scope and other features of methodology are also considered in the article [ru

  6. Estimating mercury emissions resulting from wildfire in forests of the Western United States

    Science.gov (United States)

    Webster, Jackson; Kane, Tyler J.; Obrist, Daniel; Ryan, Joseph N.; Aiken, George R.

    2016-01-01

    Understanding the emissions of mercury (Hg) from wildfires is important for quantifying the global atmospheric Hg sources. Emissions of Hg from soils resulting from wildfires in the Western United States was estimated for the 2000 to 2013 period, and the potential emission of Hg from forest soils was assessed as a function of forest type and soil-heating. Wildfire released an annual average of 3100 ± 1900 kg-Hg y− 1 for the years spanning 2000–2013 in the 11 states within the study area. This estimate is nearly 5-fold lower than previous estimates for the study region. Lower emission estimates are attributed to an inclusion of fire severity within burn perimeters. Within reported wildfire perimeters, the average distribution of low, moderate, and high severity burns was 52, 29, and 19% of the total area, respectively. Review of literature data suggests that that low severity burning does not result in soil heating, moderate severity fire results in shallow soil heating, and high severity fire results in relatively deep soil heating ( wood > foliage > litter > branches.

  7. White-headed woodpecker nesting ecology after wildfire

    Science.gov (United States)

    Catherine S. Wightman; Victoria A. Saab; Chris Forristal; Kim Mellen-Mclean; Amy Markus

    2010-01-01

    Within forests susceptible to wildfire and insect infestations, land managers need to balance dead tree removal and habitat requirements for wildlife species associated with snags. We used Mahalanobis distance methods to develop predictive models of white-headed woodpecker (Picoides albolarvatus) nesting habitat in postfire ponderosa pine (Pinus ponderosa)-dominated...

  8. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  9. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  10. Clean enough for industry? An airborne geophysical case study

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Beard, L.P.

    1996-01-01

    Data from two airborne geophysical surveys of the Department of Energy's Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ''sensitive hydrologic setting.'' We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization

  11. Hyperspectral Sensors Final Report CRADA No. TC02173.0

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sauvageau, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-30

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments in LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.

  12. Feasibility study for airborne fluorescence/reflectivity lidar bathymetry

    Science.gov (United States)

    Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika

    2012-06-01

    There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.

  13. Preparatory research to develop an operational method to calibrate airborne sensor data using a network of ground calibration sites

    International Nuclear Information System (INIS)

    Milton, E.J.; Smith, G.M.; Lawless, K.P.

    1996-01-01

    The objective of the research is to develop an operational method to convert airborne spectral radiance data to reflectance using a number of well-characterized ground calibration sites located around the UK. The study is in three phases. First, a pilot study has been conducted at a disused airfield in southern England to test the feasibility of the open-quote empirical line close-quote method of sensor calibration. The second phase is developing methods to predict temporal changes in the bidirectional reflectance of ground calibration sites. The final phase of the project will look at methods to extend such calibrations spatially. This paper presents some results from the first phase of this study. The viability of the empirical line method of correction is shown to depend upon the use of ground targets whose in-band reflectance encompasses that of the targets of interest in the spectral band(s) concerned. The experimental design for the second phase of the study, in which methods to predict temporal trends in the bidirectional reflectance of these sites will be developed, is discussed. Finally, it is planned to develop an automated method of searching through Landsat TM data for the UK to identify a number of candidate ground calibration sites for which the model can be tested. 11 refs., 5 figs., 5 tabs

  14. Characterisation methods for the hyperspectral sensor HySpex at DLR's calibration home base

    Science.gov (United States)

    Baumgartner, Andreas; Gege, Peter; Köhler, Claas; Lenhard, Karim; Schwarzmaier, Thomas

    2012-09-01

    The German Aerospace Center's (DLR) Remote Sensing Technology Institute (IMF) operates a laboratory for the characterisation of imaging spectrometers. Originally designed as Calibration Home Base (CHB) for the imaging spectrometer APEX, the laboratory can be used to characterise nearly every airborne hyperspectral system. Characterisation methods will be demonstrated exemplarily with HySpex, an airborne imaging spectrometer system from Norsk Elektro Optikks A/S (NEO). Consisting of two separate devices (VNIR-1600 and SWIR-320me) the setup covers the spectral range from 400 nm to 2500 nm. Both airborne sensors have been characterised at NEO. This includes measurement of spectral and spatial resolution and misregistration, polarisation sensitivity, signal to noise ratios and the radiometric response. The same parameters have been examined at the CHB and were used to validate the NEO measurements. Additionally, the line spread functions (LSF) in across and along track direction and the spectral response functions (SRF) for certain detector pixels were measured. The high degree of lab automation allows the determination of the SRFs and LSFs for a large amount of sampling points. Despite this, the measurement of these functions for every detector element would be too time-consuming as typical detectors have 105 elements. But with enough sampling points it is possible to interpolate the attributes of the remaining pixels. The knowledge of these properties for every detector element allows the quantification of spectral and spatial misregistration (smile and keystone) and a better calibration of airborne data. Further laboratory measurements are used to validate the models for the spectral and spatial properties of the imaging spectrometers. Compared to the future German spaceborne hyperspectral Imager EnMAP, the HySpex sensors have the same or higher spectral and spatial resolution. Therefore, airborne data will be used to prepare for and validate the spaceborne system

  15. Post-wildfire seeding in forests of the western United States: An evidence-based review

    Science.gov (United States)

    Donna Peppin; Peter Z. Fule; Carolyn Hull Sieg; Jan L. Beyers; Molly E. Hunter

    2010-01-01

    Broadcast seeding is one of the most widely used post-wildfire emergency response treatments intended to reduce soil erosion, increase vegetative ground cover, and minimize establishment and spread of non-native plant species. We conducted an evidence-based review to examine the effectiveness and effects of post-wildfire seeding treatments on soil stabilization, non-...

  16. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  17. Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment.

    Science.gov (United States)

    Morrison, Katherine D; Kolden, Crystal A

    2015-03-15

    Wildfire is a common disturbance that can significantly alter vegetation in watersheds and affect the rate of sediment and nutrient transport to adjacent nearshore oceanic environments. Changes in runoff resulting from heterogeneous wildfire effects are not well-understood due to both limitations in the field measurement of runoff and temporally-limited spatial data available to parameterize runoff models. We apply replicable, scalable methods for modeling wildfire impacts on sediment and nonpoint source pollutant export into the nearshore environment, and assess relationships between wildfire severity and runoff. Nonpoint source pollutants were modeled using a GIS-based empirical deterministic model parameterized with multi-year land cover data to quantify fire-induced increases in transport to the nearshore environment. Results indicate post-fire concentration increases in phosphorus by 161 percent, sediments by 350 percent and total suspended solids (TSS) by 53 percent above pre-fire years. Higher wildfire severity was associated with the greater increase in exports of pollutants and sediment to the nearshore environment, primarily resulting from the conversion of forest and shrubland to grassland. This suggests that increasing wildfire severity with climate change will increase potential negative impacts to adjacent marine ecosystems. The approach used is replicable and can be utilized to assess the effects of other types of land cover change at landscape scales. It also provides a planning and prioritization framework for management activities associated with wildfire, including suppression, thinning, and post-fire rehabilitation, allowing for quantification of potential negative impacts to the nearshore environment in coastal basins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Spatiotemporal variability in wildfire patterns and analysis of the main drivers in Honduras using GIS and MODIS data

    Science.gov (United States)

    Valdez Vasquez, M. C.; Chen, C. F.

    2017-12-01

    Wildfires are unrestrained fires in an area of flammable vegetation and they are one of the most frequent disasters in Honduras during the dry season. During this period, anthropogenic activity combined with the harsh climatic conditions, dry vegetation and topographical variables, cause a large amount of wildfires. For this reason, there is a need to identify the drivers of wildfires and their susceptibility variations during the wildfire season. In this study, we combined the wildfire points during the 2010-2016 period every 8 days with a series of variables using the random forest (RF) algorithm. In addition to the wildfire points, we randomly generated a similar amount of background points that we use as pseudo-absence data. To represent the human imprint, we included proximity to different types of roads, trails, settlements and agriculture sites. Other variables included are the Moderate Resolution Imaging Spectra-radiometer (MODIS)-derived 8-day composites of land surface temperature (LST) and the normalized multi-band drought index (NMDI), derived from the MODIS surface reflectance data. We also included monthly average precipitation, solar radiation, and topographical variables. The exploratory analysis of the variables reveals that low precipitation combined with the low NMDI and accessibility to non-paved roads were the major drivers of wildfires during the early months of the dry season. During April, which is the peak of the dry season, the explanatory variables of relevance also included elevation and LST in addition to the proximity to paved and non-paved roads. During May, proximity to crops becomes relevant, in addition to the aforesaid variables. The average estimated area with high and very high wildfire susceptibility was 22% of the whole territory located mainly in the central and eastern regions, drifting towards the northeast areas during May. We validated the results using the area under the receiver operating characteristic (ROC) curve (AUC

  19. Economics of wildfire management the development and application of suppression expenditure models

    CERN Document Server

    Hand, Michael S; Liang, Jingjing; Thompson, Matthew P

    2014-01-01

    In this age of climatic and financial uncertainty, it becomes increasingly important to balance the cost, benefits and risk of wildfire management. In the United States, increased wildland fire activity over the last 15 years has resulted in drastic damage and loss of life. An associated rapid increase in fire management costs has consumed higher portions of budgets of public entities involved in wildfire management, challenging their ability to fulfill other responsibilities. Increased public scrutiny highlights the need to improve wildland fire management for cost effectiveness. This book closely examines the development of basic wildfire suppression cost models for the United States and their application to a wide range of settings from informing incident decision making to programmatic review. The book also explores emerging trends in suppression costs and introduces new spatially explicit cost models to account for characteristics of the burned landscape. Finally, it discusses how emerging risk assessmen...

  20. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology.

    Science.gov (United States)

    Paschalidou, A K; Kassomenos, P A

    2016-01-01

    Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    Directory of Open Access Journals (Sweden)

    W. R. Sessions

    2011-06-01

    Full Text Available The Weather Research and Forecasting Model (WRF is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia.

    One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3–5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE. Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors.

    When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3–5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less

  2. Examining pine spectral separability using hyperspectral data from an airborne sensor : an extension of field-based results

    CSIR Research Space (South Africa)

    Van Aardt, JAN

    2007-01-01

    Full Text Available -radiometer (400-2500nm) acquired above tree canopies. This study focused on whether these same species are also separable using hyperspectral data acquired using the airborne visible/infrared imaging spectrometer (AVIRIS). Stepwise discriminant techniques were...

  3. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  4. Field tests of a new, extractive, airborne 1.4 μm -TDLAS hygrometer (SEALDH-I) on a Learjet 35A

    Science.gov (United States)

    Buchholz, Bernhard; Ebert, Volker

    2013-04-01

    A highly accurate and precise quantification of atmospheric humidity is a prerequisite for cloud studies as well as for environmental models in order to get a deeper understanding of physical processes and effects. On the one hand numerous trace gases measurements in airborne "laboratories" have to be corrected for water vapor influence; on the other hand satellite measurements have to be validated by in-situ H2O measurements on aircrafts. The vast majority of the airborne hygrometers require a precise and frequent sensor calibration in order to ensure a sufficient performance. UT/LS sensors in particular are often calibrated before and after each individual flight. But even this might not be sufficient which explains why recently in-flight calibrations are becoming more common. Nevertheless all calibrated sensors completely depend on the performance of the water standard used for calibration. Therefore it remains an open question if in-flight calibrations are the way to go: They also might suffer from inflight disturbances and they would need validation during flight conditions. Water calibrations at low humidity are even more complicated due to the strong water adsorption and the resulting sampling problems. An abstention from calibration would avoid many of these problems. In addition, calibration free sensors are much easier to debug as they can hardly have errors which can be hidden by calibration parameters (such as leaks, etc.). Robust cal-free sensors should therefore perform more stable in flight when the sensors boundary conditions might change. The situation can be improved further with extractive cal-free sensors as the boundary condition in measurement volume (pressure, temperature, path length, flow pattern, etc.), i.e. in an extractive cell, are much better controlled than for an open path sensor. Further cal-free extractive sensors can be designed maintain its integrity when attaching and detaching it from the carrier (airplane). This makes it much

  5. The viability of prescribed fire for mitigating the soil degradational impacts of wildfire

    Science.gov (United States)

    Shakesby, R. A.; Bento, C. P. M.; Ferreira, C. S. S.; Ferreira, A. J. D.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.

    2012-04-01

    Prescribed (controlled) fire has become an important strategy primarily to limit the likelihood of more devastating wildfire. The considerable increase in wildfire activity in recent decades throughout the Mediterranean, and in Portugal in particular, has meant that this strategy has become increasingly popular despite inherent fears of people about fire of any sort. Despite many studies of the impact of wildfire on soil erosion and degradation, relatively little research has assessed impacts of prescribed fire on soil in Portugal or elsewhere in the Mediterranean. As part of the DESIRE research programme, this paper addresses this research gap by investigating hillslope-scale losses of soil, soil organic matter and selected nutrients before and after an experimental fire (representing a 'worst case-scenario' prescribed fire) in a shrub-vegetated catchment in central Portugal. Comparison is provided by post-fire monitoring of a nearby hillslope affected by a wildfire of moderate severity. Hillslope-scale measurements were carried out over c. 3 years using sediment fences with contributing areas of up to c. 0.5 ha. Eroded sediment was periodically removed from the fences both before and after the fire at intervals ranging from a few weeks to several months depending on rainfall characteristics and logistics. Erosion expressed as g/m2 and g/m2/mm of rainfall was determined. Figures for long-term (c. 10 years) erosion under unburnt conditions for this vegetation type were obtained from a small bounded plot and from sediment accumulating in a weir pool draining a sub-catchment within the prescribed-fire catchment. In addition, soil organic matter and selected nutrients, including K2O, P2O5 and Total N, were measured in the eroded sediment and in the pre-burn and post-burn in situ soil. The results indicate that both the wildfire and prescribed fire caused erosion that was orders of magnitude higher than for long-term plot-scale and hillslope-scale erosion recorded

  6. Wildfire and fuel treatment effects on forest carbon dynamics in the western United States

    Science.gov (United States)

    Joseph C. Restiano; David L. Peterson

    2013-01-01

    Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity arc expected to...

  7. Outreach programs, peer pressure, and common sense: What motivates homeowners to mitigate wildfire risk?

    Science.gov (United States)

    Sarah M. McCaffrey; Melanie Stidham; Eric Toman; Bruce. Shindler

    2011-01-01

    In recent years, altered forest conditions, climate change, and the increasing numbers of homes built in fire prone areas has meant that wildfires are affecting more people. An important part of minimizing the potential negative impacts of wildfire is engaging homeowners in mitigating the fire hazard on their land. It is therefore important to understand what makes...

  8. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  9. Preliminary results from a survey of U.S. Forest Service wildfire managers' attitudes toward aviation personnel exposure and risk

    Science.gov (United States)

    Matthew Wibbenmeyer; Michael Hand; David Calkin

    2012-01-01

    The U.S. Department of Agriculture, Forest Service (USFS) has, in recent years, increasingly emphasized the importance of safety to its employees, but wildfire management remains a risky endeavor. While wildfire management decisions affecting safety and exposure of firefighters to the wildland fire environment may be aided by decision support tools such the Wildfire...

  10. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  11. Using community archetypes to better understand differential community adaptation to wildfire risk.

    Science.gov (United States)

    Carroll, Matthew; Paveglio, Travis

    2016-06-05

    One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community 'adaptiveness' to deal with the risk and reality of fire in a variety of landscapes. The challenge in creating 'fire-adapted communities' (FACs) is the great diversity in character and make-up of populations at risk from wildfire. This paper outlines a recently developed categorization scheme for Wildland-Urban Interface (WUI) communities based on a larger conceptual approach for understanding how social diversity is likely to influence the creation of FACs. The WUI categorization scheme situates four community archetypes on a continuum that recognizes dynamic change in human community functioning. We use results from the WUI classification scheme to outline key characteristics associated with each archetype and results from recent case studies to demonstrate the diversity across WUI communities. Differences among key characteristics of local social context will likely result in the need for different adaptation strategies to wildfire. While the WUI archetypes described here may not be broadly applicable to other parts of the world, we argue that the conceptual approach and strategies for systematically documenting local influences on wildfire adaptation have potential for broad application.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  12. Rapid turn-around mapping of wildfires and disasters with airborne infrared imagery fro the new FireMapper® 2.0 and Oilmapper systems

    Science.gov (United States)

    James W. Hoffman; Lloyd L. Coulter; Philip J Riggan

    2005-01-01

    The new FireMapper® 2.0 and OilMapper airborne, infrared imaging systems operate in a "snapshot" mode. Both systems feature the real time display of single image frames, in any selected spectral band, on a daylight readable tablet PC. These single frames are displayed to the operator with full temperature calibration in color or grayscale renditions. A rapid...

  13. Advances in multi-sensor data fusion: algorithms and applications.

    Science.gov (United States)

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of "algorithm fusion" methods; (3) Establishment of an automatic quality assessment scheme.

  14. Are wildfire management resources in the United States efficiently allocated to protect resources at risk? A case study from Montana

    Science.gov (United States)

    Derek T. O' Donnell; Tyron J. Venna; David E. Calkin

    2014-01-01

    Federal wildfire management agencies in the United States are under substantial pressure to reduce and economically justify their expenditures. To support economically efficient management of wildfires, managers need better estimates of the resource benefits and avoided damage costs associated with alternative wildfire management strategies. This paper reports findings...

  15. Understanding the Socioeconomic Effects of Wildfires on Western U.S. Public Lands

    Science.gov (United States)

    Sanchez, J. J.; Srivastava, L.; Marcos-Martinez, R.

    2017-12-01

    Climate change has resulted in the increased severity and frequency of forest disturbances due to wildfires, droughts, pests and diseases that compromise the sustainable provision of forest ecosystem services (e.g., water quantity and quality, carbon sequestration, recreation). A better understanding of the environmental and socioeconomic consequences of forest disturbances (i.e., wildfires) could improve the management and protection of public lands. We used a single-site benefit transfer function and spatially explicit information for demographic, socioeconomic, and site-specific characteristics to estimate the monetized value of market and non-market ecosystem services provided by forests on Western US public lands. These estimates are then used to approximate the costs of forest disturbances caused by wildfires of varying frequency and intensity, and across sites with heterogeneous characteristics and protection and management strategies. Our analysis provides credible estimates of the benefits of the forest for land management by the United States Forest Service, thereby assisting forest managers in planning resourcing and budgeting priorities.

  16. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  17. Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA

    Science.gov (United States)

    Alan A. Ager; Michelle A. Day; Mark A. Finney; Ken Vance-Borland; Nicole M. Vaillant

    2014-01-01

    We develop the idea of risk transmission from large wildfires and apply network analyses to understand its importance on a 0.75 million ha US national forest. Wildfires in the western US frequently burn over long distances (e.g., 20–50 km) through highly fragmented landscapes with respect to ownership, fuels, management intensity, population density, and ecological...

  18. Biophysical Interactions within Step-Pool Mountain Streams Following Wildfire

    Science.gov (United States)

    Parker, A.; Chin, A.; O'Dowd, A. P.

    2014-12-01

    Recovery of riverine ecosystems following disturbance is driven by a variety of interacting processes. Wildfires pose increasing disturbances to riverine landscapes, with rising frequencies and magnitudes owing to warming climates and increased fuel loads. The effects of wildfire include loss of vegetation, elevated runoff and flash floods, erosion and deposition, and changing biological habitats and communities. Understanding process interactions in post-fire landscapes is increasingly urgent for successful management and restoration of affected ecosystems. In steep channels, steps and pools provide prominent habitats for organisms and structural integrity in high energy environments. Step-pools are typically stable, responding to extreme events with recurrence intervals often exceeding 50 years. Once wildfire occurs, however, intensification of post-fire flood events can potentially overpower the inherent stability of these systems, with significant consequences for aquatic life and human well-being downstream. This study examined the short-term response of step-pool streams following the 2012 Waldo Canyon Fire in Colorado. We explored interacting feedbacks among geomorphology, hydrology, and ecology in the post-fire environment. At selected sites with varying burn severity, we established baseline conditions immediately after the fire with channel surveys, biological assessment using benthic macroinvertebrates, sediment analysis including pebble counts, and precipitation gauging. Repeat measurements after major storm events over several years enabled analysis of the interacting feedbacks among post-fire processes. We found that channels able to retain the step-pool structure changed less and facilitated recovery more readily. Step habitats maintained higher percentages of sensitive macroinvertebrate taxa compared to pools through post-fire floods. Sites burned with high severity experienced greater reduction in the percentage of sensitive taxa. The decimation of

  19. Desertification and other ecological impacts produced by the historic Rodeo-Chediski Wildfire of 2000, Arizona, USA

    Science.gov (United States)

    Neary, D.; Ffolliott, P.; Stropki, C.

    2009-04-01

    The Rodeo-Chediski Wildfire - the largest in Arizona's history - damaged or destroyed ecosystem resources and disrupted ecosystem functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of this wildfire on tree overstories were studied on two watersheds in the area burned; one watershed burned by a high severity (stand-replacing) fire, while the other watershed burned by a low severity (stand-modifying) fire. The Rodeo-Chediski wildfire damaged or destroyed ecosystem resources and disrupted the ecological functioning on much of the 189,015 ha impacted by the burning. Intermingling chaparral shrub communities and pinyon-juniper woodlands at lower elevations and ponderosa pine forests at high elevations were located within the burned area. The wildfire was caused by two human ignitions that merged into one inferno. The Rodeo Fire was started by an arsonist on June 18, 2002, while the Chediski Fire was ignited as a signal fire by a stranded motorist on June 20th. The two fires merged on June 26, 2002, to become the Rodeo-Chediski Wildfire. The combined wildfires were contained on July 7th at a suppression (firefighting) cost of about €37.9 million (USA 50 million). However, the estimated costs associated with property losses; losses of ecosystem, anthropological, and cultural resources; and post-fire rehabilitation efforts increased the costs of the wildfire to over €114 million (USA 150 million). About one-half of the total area that was burned by the Rodeo-Chediski Wildfire experienced a high-severity fire, other areas burned at a low- to medium-severity fire, and still other areas were largely unburned according to a Burned Area Emergency Rehabilitation (BAER) report and fire severity map prepared shortly after containment of the wildfire. A mosaic of areas burned at varying fire severities within intermingling unburned areas resulted. Post-fire rehabilitation efforts, including establishment

  20. The Arctic Boreal Vulnerability Experiment (ABoVE) 2017 Airborne Campaign

    Science.gov (United States)

    Miller, C. E.; Goetz, S. J.; Griffith, P. C.; Hoy, E.; Larson, E. K.; Hodkinson, D. J.; Hansen, C.; Woods, J.; Kasischke, E. S.; Margolis, H. A.

    2017-12-01

    The 2017 ABoVE Airborne Campaign (AAC) was one of the largest airborne experiments ever conducted by NASA's Earth Science Division. It involved nine aircraft in 17 deployments - more than 100 flights - between April and October and sampled over 4 million km2in Alaska and northwestern Canada. Many of these flights were coordinated with detailed, same-day ground-based measurements to link field-based, process-level studies with geospatial data products derived from satellite remote sensing. A major goal of the 2017 AAC was to collect data that spanned the critical intermediate space and time scales that are essential for a comprehensive understanding of scaling issues across the ABoVE Study Domain and extrapolation to the pan-Arctic. Additionally, the 2017 AAC provided unique opportunities to validate satellite and airborne remote sensing data for northern high latitude ecosystems, develop and advance fundamental remote sensing science, and explore scientific insights from innovative sensor combinations. The 2017 AAC science strategy coupled domain-wide sampling with L-band and P-band synthetic aperture radar (SAR), imaging spectroscopy (AVIRIS-NG), full waveform lidar (LVIS) and atmospheric carbon dioxide and methane with more spatially and temporally focused studies using Ka-band SAR (Ka-SPAR) and solar induced chlorophyll fluorescence (CFIS). Additional measurements were coordinated with the NEON Airborne Observing Platform, the ASCENDS instrument development suite, and the ATOM EV-S2 investigation. Targets of interest included the array of field sites operated by the ABoVE Science Team as well as the intensive sites operated by the DOE NGEE-Arctic team on the Seward Peninsula and in Barrow, NSF's LTER sites at Toolik Lake (North Slope) and Bonanza Creek (Interior Alaska), the Canadian Cold Regions Hydrology sites in the Arctic tundra near Trail Valley Creek NT, the Government of the Northwest Territories Slave River/Slave Delta watershed time series and numerous

  1. The impact of wildfire on stream fishes in an Atlantic-Mediterranean climate: evidence from an 18-year chronosequence

    Directory of Open Access Journals (Sweden)

    Monaghan K.A.

    2016-01-01

    Full Text Available The predicted increase in wildfires associated with climate change poses a risk to freshwater biodiversity that may be exacerbated by river regulation. We studied the effects of wildfire and river management on the fish assemblages of Atlantic-Mediterranean streams in northern Portugal. Employing a chronosquence survey covering an 18-year gradient of impact-recovery from major fire events (ca. 100% catchment burnt, we assessed the ecological response with respect to time since wildfire, interpreting fish assemblages in the context of species traits and characteristics of the river habitat. Non-burnt sites (N = 18; surveyed 4 years previously were compared to burnt sites (N = 14, two of which were part of the non-burnt set, thus providing a Before-After Impact comparison (BAI; N = 2. Across burnt sites richness and abundance were not related to time since wildfire. BAI revealed a contrast in the response of different species that corresponded to descriptive evidence from the chronosequence of burnt sites. As resource specialists, Salmo trutta were negatively impacted by wildfire; Iberian endemic cyprinids, characterized by generalist traits, demonstrated resistance. Habitat structure was a key determinant of wildfire-impact, increasing with channel slope and the degree of channelization. The low abundance of migratory taxa (S. trutta and Anguilla anguilla at burnt sites suggested the importance of fish mobility to post-fire recovery. These data demonstrate that trait profiles and habitat descriptions provide pragmatic information for the management of rivers in fire-susceptible regions and suggest that the rehabilitation of these upland stream habitats might enhance ecological resistance and resilience to catchment wildfire.

  2. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    Science.gov (United States)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  3. Declines revisited: Long-term recovery and spatial population dynamics oftailed frog larvae after wildfire

    Science.gov (United States)

    Hossack, Blake R.; Honeycutt, Richard

    2017-01-01

    Drought has fueled an increased frequency and severity of large wildfires in many ecosystems. Despite an increase in research on wildfire effects on vertebrates, the vast majority of it has focused on short-term (effects and there is still little information on the time scale of population recovery for species that decline in abundance after fire. In 2003, a large wildfire in Montana (USA) burned the watersheds of four of eight streams that we sampled for larval Rocky Mountain tailed frogs (Ascaphus montanus) in 2001. Surveys during 2004–2005 revealed reduced abundance of larvae in burned streams relative to unburned streams, with greater declines associated with increased fire extent. Rocky Mountain tailed frogs have low vagility and have several unusual life-history traits that could slow population recovery, including an extended larval period (4 years), delayed sexual maturity (6–8 years), and low fecundity (negative effects of burn extent on larval abundance weakened> 58% within 12 years after the fire. We also found moderate synchrony among populations in unburned streams and negative spatial autocorrelation among populations in burned streams. We suspect negative spatial autocorrelation among spatially-clustered burned streams reflected increased post-fire patchiness in resources and different rates of local recovery. Our results add to a growing body of work that suggests populations in intact ecosystems tend to be resilient to habitat changes caused by wildfire. Our results also provide important insights into recovery times of populations that have been negatively affected by severe wildfire.

  4. Airborne Two-Micron Double-Pulse IPDA Lidar Validation for Carbon Dioxide Measurements Over Land

    Science.gov (United States)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2018-04-01

    An airborne double-pulse 2-μm Integrated Path Differential Absorption (IPDA) lidar has been developed at NASA LaRC for measuring atmospheric CO2. IPDA was validated using NASA B-200 aircraft over land and ocean under different conditions. IPDA evaluation for land vegetation returns, during full day background conditions, are presented. IPDA CO2 measurements compare well with model results driven from on-board insitu sensor data. These results also indicate that CO2 measurement bias is consistent with that from ocean surface returns.

  5. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Yihua, Xia [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  6. Monitoring and evaluation techniques for airborne contamination

    International Nuclear Information System (INIS)

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  7. Land use planning and wildfire: development policies influence future probability of housing loss

    Science.gov (United States)

    Syphard, Alexandra D.; Massada, Avi Bar; Butsic, Van; Keeley, Jon E.

    2013-01-01

    Increasing numbers of homes are being destroyed by wildfire in the wildland-urban interface. With projections of climate change and housing growth potentially exacerbating the threat of wildfire to homes and property, effective fire-risk reduction alternatives are needed as part of a comprehensive fire management plan. Land use planning represents a shift in traditional thinking from trying to eliminate wildfires, or even increasing resilience to them, toward avoiding exposure to them through the informed placement of new residential structures. For land use planning to be effective, it needs to be based on solid understanding of where and how to locate and arrange new homes. We simulated three scenarios of future residential development and projected landscape-level wildfire risk to residential structures in a rapidly urbanizing, fire-prone region in southern California. We based all future development on an econometric subdivision model, but we varied the emphasis of subdivision decision-making based on three broad and common growth types: infill, expansion, and leapfrog. Simulation results showed that decision-making based on these growth types, when applied locally for subdivision of individual parcels, produced substantial landscape-level differences in pattern, location, and extent of development. These differences in development, in turn, affected the area and proportion of structures at risk from burning in wildfires. Scenarios with lower housing density and larger numbers of small, isolated clusters of development, i.e., resulting from leapfrog development, were generally predicted to have the highest predicted fire risk to the largest proportion of structures in the study area, and infill development was predicted to have the lowest risk. These results suggest that land use planning should be considered an important component to fire risk management and that consistently applied policies based on residential pattern may provide substantial benefits for

  8. Aerosol Optical Properties and Trace Gas Emissions From Laboratory-Simulated Western US Wildfires

    Science.gov (United States)

    Selimovic, V.; Yokelson, R. J.; Warneke, C.; Roberts, J. M.; De Gouw, J. A.; Reardon, J.; Griffith, D. W. T.

    2017-12-01

    Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuels from various widespread coniferous and chaparral ecosystems were burned in combinations to represent relevant configurations in the field and as pure components to investigate the effects of individual fuels. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, g compound emitted per kg fuel burned) measurements in fresh smoke of a diverse suite of critically-important trace gases measured by open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF, single scattering albedo (SSA) and Ångström absorption exponent (AAE)) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAX) at 870 and 401 nm. A careful comparison with available field measurements of wildfires confirms that representative data can be extracted from the lab fire data. The OP-FTIR data show that ammonia (1.65 g kg-1), acetic acid (2.44 g kg-1), and other trace gases are significant emissions not previously measured for US wildfires. The PAX measurements show that brown carbon (BrC) absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. We confirm that about 86% of the aerosol absorption at 401 nm in typical fresh wildfire smoke is due to BrC.

  9. Perceptions of Post-Wildfire Landscape Change and Recovery

    Science.gov (United States)

    Kooistra, C. M.; Hall, T. E.; Paveglio, T.; Carroll, M.; Smith, A. M.

    2013-12-01

    Considering the dynamic nature of the earth and climate systems and the increasing potential for widespread forest disturbances, it is important to understand the implications of landscape changes, and perceptions of changes, on people's responses to forest disturbances. Understanding how people perceive landscape change over time following forest disturbances helps researchers, land managers, and community leaders identify important biophysical and social characteristics that influence the vulnerability of people who experience forest disturbances, as well as their responses to those disturbances. This poster describes people's perceptions of landscape change following a significant wildfire. The lightning ignited Dahl fire burned 12 miles southeast of Roundup, MT mostly on private land in the summer of June 2012. The fire burned approximately 22,000 acres and destroyed 73 residences. We conducted interviews in the summer of 2013 with more than 40 residents, land managers, emergency personnel, and other stakeholders. While interviews covered several topics, this poster focuses on responses to questions regarding perceptions of short- and long-term landscape change after the fire, including both social and biophysical perspectives. Interviews revealed that people's understanding of the role of wildfires as a natural ecosystem process, as well as their connections with the landscape (i.e., sense of place), were important factors that influenced their perceptions of landscape change after the fire. Many respondents discussed the landscape ';recovering' to pre-fire conditions in longer-term timeframes, such as ';multiple generations.' They often referenced previous wildfires, the Hawk Creek fire (1984) and the Majeras fire (2006), by explaining how parts of the landscape affected by the Dahl fire might compare to certain areas of the previous fires. Variations in recovery expectations were often based on perceptions of the severity of the fire (especially temperature

  10. Simulating wildfire spread behavior between two NASA Active Fire data timeframes

    Science.gov (United States)

    Adhikari, B.; Hodza, P.; Xu, C.; Minckley, T. A.

    2017-12-01

    Although NASA's Active Fire dataset is considered valuable in mapping the spatial distribution and extent of wildfires across the world, the data is only available at approximately 12-hour time intervals, creating uncertainties and risks associated with fire spread and behavior between the two Visible Infrared Imaging Radiometer Satellite (VIIRS) data collection timeframes. Our study seeks to close the information gap for the United States by using the latest Active Fire data collected for instance around 0130 hours as an ignition source and critical inputs to a wildfire model by uniquely incorporating forecasted and real-time weather conditions for predicting fire perimeter at the next 12 hour reporting time (i.e. around 1330 hours). The model ingests highly dynamic variables such as fuel moisture, temperature, relative humidity, wind among others, and prompts a Monte Carlo simulation exercise that uses a varying range of possible values for evaluating all possible wildfire behaviors. The Monte Carlo simulation implemented in this model provides a measure of the relative wildfire risk levels at various locations based on the number of times those sites are intersected by simulated fire perimeters. Model calibration is achieved using data at next reporting time (i.e. after 12 hours) to enhance the predictive quality at further time steps. While initial results indicate that the calibrated model can predict the overall geometry and direction of wildland fire spread, the model seems to over-predict the sizes of most fire perimeters possibly due to unaccounted fire suppression activities. Nonetheless, the results of this study show great promise in aiding wildland fire tracking, fighting and risk management.

  11. A global assessment of wildfire risks to human and environmental water security

    Science.gov (United States)

    Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.

    2017-04-01

    Extreme wildfire events extensively affect hydrosystem stability and generate an important threat to the reliability of the water supply for human and natural communities. While actively studied at the watershed scale, the development of a global vision of wildfire risk to water security has only been undertaken recently, pointing at potential water security concerns in an era of global changes. In order to address this concern, we propose a global-scale analysis of the wildfire risk to surface water supplies based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. Based on the literature, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. Each indicator was assigned a DPSIR category. Then, we collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the wildfire-water risk (WWR). For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, for analysis. Overall, our results show a distinct pattern of medium-to-high risk levels in areas where sizeable wildfire activity, water resources, and water consumption are concomitant, which mainly encompasses temperate and sub-tropical zones. A closer look at hydrobelts reveals differences in the factors driving the risk, with fire activity being the primary factor of risk in the circumboreal forest, and freshwater resource density being prevalent in tropical areas. We also identified major urban areas across the world whose source waters should be protected from extreme fire events, particularly when

  12. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    Directory of Open Access Journals (Sweden)

    Sébastien Angelliaume

    2017-08-01

    Full Text Available Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur, the airborne system developed by ONERA (the French Aerospace Lab, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on

  13. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    Science.gov (United States)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through

  14. Working with neighborhood organizations to promote wildfire preparedness

    Science.gov (United States)

    Holly Johnson Shiralipour; Martha C. Monroe; Michelle Payton

    2006-01-01

    Several government agencies and other natural resource managers have instituted outreach programs to promote wildfire preparedness in wildland-urban interface (WUI) neighborhoods that complement community-wide efforts. To help these programs become more effective, research was undertaken to gain a better understanding of the role that neighbors and neighborhood...

  15. Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts

    Directory of Open Access Journals (Sweden)

    G. Grell

    2011-06-01

    Full Text Available A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the vertical distribution of the emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5 and the resulting large numbers of Cloud Condensation Nuclei (CCN had a strong impact on clouds and cloud microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 h of the integration. During the afternoon, storms were of convective nature and appeared significantly stronger, probably as a result of both the interaction of aerosols with radiation (through an increase in CAPE as well as the interaction with cloud microphysics.

  16. Wildfire disturbance, erosion and sedimentation risks following the Waldo Canyon Fire in Colorado

    Science.gov (United States)

    Flint, K.; Kinoshita, A. M.; Chin, A.; Florsheim, J. L.; Nourbakhshbeidokhti, S.

    2016-12-01

    Wildfire is a landscape-scale disturbance that causes abrupt changes to hydrological responses and sediment flux during subsequent storms. Burning hillslope vegetation during wildfires induces changes to sediment supply and stream flow magnitude. Altered post-fire processes such as channel erosion and sedimentation or flooding enhance downstream hazards that may threaten human populations and physical aquatic habitat over various time scales. Using data from a small drainage basin (Williams Canyon, 4.7 km2) in the Colorado front range burned by the 2012 Waldo Fire as a case study, we investigate post-fire recovery and assess changes in fire-related risks to downstream areas. Our local ground-based precipitation, field measurements, terrestrial Light Detection and Ranging (LiDAR) scanning together with satellite-based remote sensing data (i.e. Landsat) provide a basis for time series analyses of reach-scale erosion and sedimentation response to rainfall patterns as vegetation patterns change following the wildfire. As a first step in quantifying the likelihood and consequences of specific risk scenarios, we examine changes in the combined probability of storm flows and post-fire erosion and sedimentation as vegetation recovers within the study watershed. We explore possible feedbacks and thresholds related to vegetation-hydrology-sediment interactions following wildfire under changing climate regimes. This information is needed to assist in post-fire management to promote sustainability of wildland fluvial systems.

  17. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data.

    Science.gov (United States)

    Luo, Laiping; Zhai, Qiuping; Su, Yanjun; Ma, Qin; Kelly, Maggi; Guo, Qinghua

    2018-05-14

    Crown base height (CBH) is an essential tree biophysical parameter for many applications in forest management, forest fuel treatment, wildfire modeling, ecosystem modeling and global climate change studies. Accurate and automatic estimation of CBH for individual trees is still a challenging task. Airborne light detection and ranging (LiDAR) provides reliable and promising data for estimating CBH. Various methods have been developed to calculate CBH indirectly using regression-based means from airborne LiDAR data and field measurements. However, little attention has been paid to directly calculate CBH at the individual tree scale in mixed-species forests without field measurements. In this study, we propose a new method for directly estimating individual-tree CBH from airborne LiDAR data. Our method involves two main strategies: 1) removing noise and understory vegetation for each tree; and 2) estimating CBH by generating percentile ranking profile for each tree and using a spline curve to identify its inflection points. These two strategies lend our method the advantages of no requirement of field measurements and being efficient and effective in mixed-species forests. The proposed method was applied to a mixed conifer forest in the Sierra Nevada, California and was validated by field measurements. The results showed that our method can directly estimate CBH at individual tree level with a root-mean-squared error of 1.62 m, a coefficient of determination of 0.88 and a relative bias of 3.36%. Furthermore, we systematically analyzed the accuracies among different height groups and tree species by comparing with field measurements. Our results implied that taller trees had relatively higher uncertainties than shorter trees. Our findings also show that the accuracy for CBH estimation was the highest for black oak trees, with an RMSE of 0.52 m. The conifer species results were also good with uniformly high R 2 ranging from 0.82 to 0.93. In general, our method has

  18. Active airborne contamination control using electrophoresis

    International Nuclear Information System (INIS)

    Veatch, B.D.

    1994-01-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ''cold,'' or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications

  19. The Global Geostationary Wildfire ABBA: Current Implementation and Future Plans

    Science.gov (United States)

    Prins, E.; Schmidt, C. C.; Hoffman, J.; Brunner, J.; Hyer, E. J.; Reid, J. S.

    2012-12-01

    The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational near real-time wildfire detection and characterization in the Western Hemisphere. The first phase of the global geostationary WF_ABBA was made operational at NOAA NESDIS in 2009 and currently includes diurnal active fire monitoring from GOES-East, GOES-South America, GOES-West, Meteosat-9 and MTSAT-1R/-2. This allows for near global active fire monitoring with coverage of Europe, Africa, Southeast Asia and the Western Pacific utilizing distinct geostationary sensors and a consistent algorithm. Version 6.5.006 of the WF_ABBA was specifically designed to address the capabilities and limitations of diverse geostationary sensors and requests from the global fire monitoring and user community. This presentation will provide an overview of version 6.5.006 of the global WF_ABBA fire product including the new fire and opaque cloud mask and associated metadata. We will demonstrate the WF_ABBA showing examples from around the globe with a focus on the capabilities and plans for integrating new geostationary platforms with coverage of Eastern Europe and Asia (INSAT-3D, Korean COMS, Russian GOMS Elektro-L MSU-GS). We are also preparing for future fire monitoring in the Western Hemisphere, Europe, and Africa utilizing the next generation GOES-R Imager and Meteosat Third Generation Flexible Combined Imager (MTG - FCI). The goal is to create a globally consistent long-term fire product utilizing the capabilities of each of these unique operational systems and a common fire detection algorithm. On an international level, development of a global geostationary fire monitoring system is supported by the IGOS GOFC/GOLD Fire Implementation Team. This work also generally supports Committee on Earth Observation Satellites (CEOS) activities and the Group on Earth Observations (GEO).

  20. ZPR-9 airborne plutonium monitoring system

    International Nuclear Information System (INIS)

    Rusch, G.K.; McDowell, W.P.; Knapp, W.G.

    1975-01-01

    An airborne plutonium monitoring system which is installed in the ZPR-9 (Zero Power Reactor No. 9) facility at Argonne National Laboratory is described. The design and operational experience are discussed. This monitoring system utilizes particle size and density discrimination, alpha particle energy discrimination, and a background-subtraction techique operating in cascade to separate airborne-plutonium activity from other, naturally occurring, airborne activity. Relatively high sensitivity and reliability are achieved

  1. New Airborne Sensors and Platforms for Solving Specific Tasks in Remote Sensing

    Science.gov (United States)

    Kemper, G.

    2012-07-01

    A huge number of small and medium sized sensors entered the market. Today's mid format sensors reach 80 MPix and allow to run projects of medium size, comparable with the first big format digital cameras about 6 years ago. New high quality lenses and new developments in the integration prepared the market for photogrammetric work. Companies as Phase One or Hasselblad and producers or integrators as Trimble, Optec, and others utilized these cameras for professional image production. In combination with small camera stabilizers they can be used also in small aircraft and make the equipment small and easy transportable e.g. for rapid assessment purposes. The combination of different camera sensors enables multi or hyper-spectral installations e.g. useful for agricultural or environmental projects. Arrays of oblique viewing cameras are in the market as well, in many cases these are small and medium format sensors combined as rotating or shifting devices or just as a fixed setup. Beside the proper camera installation and integration, also the software that controls the hardware and guides the pilot has to solve much more tasks than a normal FMS did in the past. Small and relatively cheap Laser Scanners (e.g. Riegl) are in the market and a proper combination with MS Cameras and an integrated planning and navigation is a challenge that has been solved by different softwares. Turnkey solutions are available e.g. for monitoring power line corridors where taking images is just a part of the job. Integration of thermal camera systems with laser scanner and video capturing must be combined with specific information of the objects stored in a database and linked when approaching the navigation point.

  2. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    Science.gov (United States)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  3. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Kadmon, Y.; Tirosh, D.; Elhanany, I.; Gabovitch, A.; Barak, D.

    1997-01-01

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  4. Putting the Scanning Laser Environmental Airborne Fluorosensor through its paces : initial test results

    International Nuclear Information System (INIS)

    Brown, C.E.; Fingas, M.F.; Mullin, J.V.; Dick, R.; Giroud, C.

    1998-01-01

    The development and construction of a remote sensing system used to detect and map oil and related petroleum products in complex marine and shoreline environments was reviewed. The Scanning Laser Environmental Airborne Fluorosensor (SLEAF) system will be integrated into Environment Canada's DC-3 aircraft and will be undergoing extensive testing to verify its functionality in an airborne environment. Laser fluorosensors are the only sensors that can successfully detect oil in most environments including snow and ice. One of the roles of SLEAF will be to confirm or reject suspected oil contamination sites that have been targeted by infrared or visible spectral cameras. The ability of the SLEAF system to detect, classify and estimate oil coverage has been tested using a total of twenty-one oils ranging from light refined crude through to heavy refined oils. The aromatic content of the oils varied between 13 and 52 per cent and the API gravities of the oils tested varied from 11.9 to 48.6. 10 refs., 2 tabs., 2 figs

  5. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems

    Science.gov (United States)

    Jensen, Daniel; Reager, John T.; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with the USDA Forest Service’s historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25 degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship’s utility for the future development of national-scale predictive capability.

  6. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  7. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2012-01-01

    A catastrophic wildfire in the foothills of the Rocky Mountains near Boulder, Colorado provided a unique opportunity to investigate soil conditions immediately after a wildfire and before alteration by rainfall. Measurements of near-surface (θ; and matric suction, ψ), rainfall, and wind velocity were started 8 days after the wildfire began. These measurements established that hyper-dryconditions (θ 3 cm-3; ψ > ~ 3 x 105 cm) existed and provided an in-situ retention curve for these conditions. These conditions exacerbate the effects of water repellency (natural and fire-induced) and limit the effectiveness of capillarity and gravity driven infiltration into fire-affected soils. The important consequence is that given hyper-dryconditions, the critical rewetting process before the first rain is restricted to the diffusion–adsorption of water-vapor. This process typically has a time scale of days to weeks (especially when the hydrologic effects of the ash layer are included) that is longer than the typical time scale (minutes to hours) of some rainstorms, such that under hyper-dryconditions essentially no rain infiltrates. The existence of hyper-dryconditions provides insight into why, frequently during the first rain storm after a wildfire, nearly all rainfall becomes runoff causing extremefloods and debris flows.

  8. A Five-Year CMAQ PM2.5 Model Performance for Wildfires and Prescribed Fires

    Science.gov (United States)

    Wilkins, J. L.; Pouliot, G.; Foley, K.; Rappold, A.; Pierce, T. E.

    2016-12-01

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. Two components of the biomass burning inventory, wildfires and prescribed fires are routinely estimated in the national emissions inventory. However, there is a large amount of uncertainty in the development of these emission inventory sectors. We have completed a 5 year set of CMAQ model simulations (2008-2012) in which we have simulated regional air quality with and without the wildfire and prescribed fire inventory. We will examine CMAQ model performance over regions with significant PM2.5 and Ozone contribution from prescribed fires and wildfires. We will also review plume rise to see how it affects model bias and compare CMAQ current fire emissions input to an hourly dataset from FLAMBE.

  9. Monitoring and modeling crop health and water use via in-situ, airborne and space-based platforms

    KAUST Repository

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  10. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    Science.gov (United States)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  11. Recent developments in airborne gamma ray surveying

    International Nuclear Information System (INIS)

    Grasty, Robert L.

    1999-01-01

    Standardized procedures have been developed for converting airborne gamma ray measurements to ground concentrations of potassium, uranium and thorium. These procedures make use of an airborne calibration range whose ground concentrations should be measured with a calibrated portable spectrometer rather than by taking geochemical samples. Airborne sensitivities and height attenuation coefficients are normally determined from flights over the calibration range but may not be applicable in mountainous areas. Mathematical techniques have been now developed to reduce statistical noise in the airborne measurements by utilizing up to 256 channels of spectral information. (author)

  12. Application of wildfire simulation methods to assess wildfire exposure in a Mediterranean fire-prone area (Sardinia, Italy)

    Science.gov (United States)

    Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.

    2012-12-01

    Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009

  13. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    Science.gov (United States)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations

  14. NEW AIRBORNE SENSORS AND PLATFORMS FOR SOLVING SPECIFIC TASKS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2012-07-01

    Full Text Available A huge number of small and medium sized sensors entered the market. Today's mid format sensors reach 80 MPix and allow to run projects of medium size, comparable with the first big format digital cameras about 6 years ago. New high quality lenses and new developments in the integration prepared the market for photogrammetric work. Companies as Phase One or Hasselblad and producers or integrators as Trimble, Optec, and others utilized these cameras for professional image production. In combination with small camera stabilizers they can be used also in small aircraft and make the equipment small and easy transportable e.g. for rapid assessment purposes. The combination of different camera sensors enables multi or hyper-spectral installations e.g. useful for agricultural or environmental projects. Arrays of oblique viewing cameras are in the market as well, in many cases these are small and medium format sensors combined as rotating or shifting devices or just as a fixed setup. Beside the proper camera installation and integration, also the software that controls the hardware and guides the pilot has to solve much more tasks than a normal FMS did in the past. Small and relatively cheap Laser Scanners (e.g. Riegl are in the market and a proper combination with MS Cameras and an integrated planning and navigation is a challenge that has been solved by different softwares. Turnkey solutions are available e.g. for monitoring power line corridors where taking images is just a part of the job. Integration of thermal camera systems with laser scanner and video capturing must be combined with specific information of the objects stored in a database and linked when approaching the navigation point.

  15. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians

    Science.gov (United States)

    Jason B. Dunham; Amanda E. Rosenberger; Charlie H. Luce; Bruce E. Rieman

    2007-01-01

    Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre­post fire comparison of temperatures between two sites (one...

  16. Airborne iodine-125 arising from surface contamination

    International Nuclear Information System (INIS)

    Kwok, C.S.; Hilditch, T.E.

    1982-01-01

    Measurements of airborne 125 I were made during the subdivision of 740 MBq stocks of 125 I iodide solution in a hospital dispensary. Within the fume cupboard the mean airborne 125 I concentration was 3.5 +- 2.9 kBqm -3 . No airborne concentration contamination was found outside the fume cupboard during these dispensing sessions. The airborne 125 I concentration arising from deliberate surface contamination (50 μl, 3.7-6.3 MBq) of the top of a lead pot was measured at a height simulating face level at an open work bench. There was a progressive fall in airborne concentration over seven days but even then the level was still significantly above background. Measurements made with the extraction system of the fume cupboard in operation were 2-3 times lower. (U.K.)

  17. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  18. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Rebecca L. Flitcroft; Jeffrey A. Falke; Gordon H. Reeves; Paul F. Hessburg; Kris M. McNyset; Lee E. Benda

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed...

  19. Measuring the consequences of wildfires in a Bayesian network with vulnerability and exposure indicators

    Science.gov (United States)

    Papakosta, Panagiota; Botzler, Sebastian; Krug, Kai; Straub, Daniel

    2013-04-01

    Mediterranean climate type areas have always been experiencing fire events. However, population growth and expansion of urban centers into wildland areas during the 20th century (expansion of wildland-urban interface) has increased the threat to humans and their activities. Life and property losses, damage on infrastructure and crops, and forest degradation are some of the damages caused by wildfires. Although fires repeatedly occur along the Mediterranean basin, not all areas have experienced severe consequences. The extent of damage by wildfires is influenced by several factors, such as population density, vegetation type, topography, weather conditions and social preparedness [1]. Wildfire consequence estimation by means of vulnerability and exposure indicators is an essential part of wildfire risk analysis. Vulnerability indicators express the conditions that increase the susceptibility of a site to the impact of wildfires and exposure indicators describe the elements at risk [2],[3]. Appropriate indicators to measure wildfire vulnerability and exposure can vary with scale and site. The consequences can be classified into economic, social, environmental and safety, and they can be tangible (human life losses, buildings damaged) or intangible (damage of cultural heritage site). As a consequence, a variety of approaches exist and there is a lack of generalized unified easy-to-implement methodologies. In this study we present a methodology for measuring consequences of wildfires in a Mediterranean area in the mesoscale (1 km² spatial resolution). Vulnerability and exposure indicators covering all consequence levels are identified and their interrelations are stressed. Variables such as building materials, roofing type, and average building values are included in the economic vulnerability level. Safety exposure is expressed by population density, demographic structure, street density and distance to closest fire station. Environmental vulnerability of protected

  20. Lichens, wildfire, and caribou on the taiga ecosystem of northcentral Canada

    Directory of Open Access Journals (Sweden)

    Don Miller

    2000-04-01

    Full Text Available Terrestrial lichens are unique organisms that are pioneers on bare sand and rock, survive desiccation and reproduce both sexually and asexually. They compete poorly with dense, aggressive vascular flora. Wildfires require organic matter as fuels, are the driving force in perpetuation of the Taiga Ecosystem in a heterogeneous environment and, if left alone, are self controlling. Caribou wintering on the Taiga are dependent on: (1 a terricolous lichen forage supply for most of the winter, (2 a heterogeneous environment to cope with predators and the changing nival environment, and (3 natural wildfires to supply these needs. Wildlife control on the Taiga winter range is not recommended as a management tool for barren-ground caribou.

  1. Effects of a Wildfire on Selected Physical, Chemical and Biochemical Soil Properties in a Pinus massoniana Forest in South China

    Directory of Open Access Journals (Sweden)

    Li Xue

    2014-11-01

    Full Text Available Pinus massoniana forests bordering South China are often affected by wildfires. Fires cause major changes in soil properties in many forest types but little is known about the effects of fire on soil properties in these P. massoniana forests. Such knowledge is important for providing a comprehensive understanding of wildfire effects on soil patterns and for planning appropriate long-term forest management in these forests. Changes in soil physical properties, carbon, nutrients, and enzymes were investigated in a P. massoniana forest along a wildfire-induced time span consisting of an unburned soil, and soils 0, one, four, and seven years post-fire. Soil (0–10 cm was collected from burned and unburned sites immediately and one, four, and seven years after a wildfire. The wildfire effects on soil physical and chemical properties and enzyme activities were significantly different among treatment variation, time variation, and treatment-by-time interaction. Significant short-term effects on soil physical, chemical, and biological properties were found, which resulted in a deterioration of soil physical properties by increasing soil bulk density and decreasing macropores and capillary moisture. Soil pH increased significantly in the soil one-year post-fire. Carbon, total nitrogen (N and phosphorus (P, and available N and P increased significantly immediately and one year after the wildfire and decreased progressively to concentrations lower than in the unburned soil. Total potassium (K and exchangeable K increased immediately after the wildfire and then continuously decreased along the burned time-span. Urease, acid phosphatase, and catalase activities significantly decreased compared to those in the unburned soil. In fire-prone P. massoniana forests, wildfires may significantly influence soil physical properties, carbon, nutrients, and enzyme activity.

  2. Aerial wildfire fighting: history, current situation, problems and perspectives

    Directory of Open Access Journals (Sweden)

    A. V. Bryukhanov

    2017-10-01

    Full Text Available Nowadays aviation is among the most effective ways of early detection and suppression of wildfires. At the moment for the aerial wildfire fighting a few dozen models of aircraft are used worldwide, which are regularly modernized and renewed. In this article, authors give information about the history of fighting wildfires from the air, as well as analyze the current state of the issue with the use of aircraft and helicopter airtankers for firefighting, both at international level and in the territory of the Russian Federation. It is revealed that the most popular in the world still are the ground-based firefighting aircraft (regardless of the class of the carrying capacity. Amphibious firefighting aircraft now exist only in light (carrying capacity up to 5 tons and in medium type (capacity up to 15 tons. Among the helicopter aviation, heavy firefighting helicopters are mostly widely spread, as well as medium multipurpose helicopters, which are, apart from suppression, involved into delivery of people and goods to forest fire sites. The article is devoted to the main directions, according to which the development of aircraft tanker equipment abroad and in Russia occurs. The attention is directed to the most promising developments, and specific recommendations on how to increase the effectiveness of the fire aviation usage in Russia are given. Based on the studies carried out, a conclusion is drawn that for different countries there can be promising different types of firefighting aircraft, considering their landing field infrastructure, characteristics of forests and hydro systems, as well as the total area of the forest fund.

  3. Response of lizards to high-severity wildfires in a southern United States mixed pine/hardwood forest

    Science.gov (United States)

    Adam ​Duarte; Donald J. Brown; Michael R. J. Forstner

    2017-01-01

    High-severity forest fires are increasing in large areas of the southern and western United States as the climate becomes warmer and drier. Natural resource managers need a better understanding of the short- and long-term effects of wildfires on lizard populations, but there is a paucity of studies focused on lizard-wildfire relationships. We used a before-after,...

  4. Post-fire burn severity and vegetation response following eight large wildfires across the Western United States

    Science.gov (United States)

    Leigh B. Lentile; Penelope Morgan; Andrew T. Hudak; Michael J. Bobbitt; Sarah A. Lewis; Alistair M. S. Smith; Peter R. Robichaud

    2007-01-01

    Vegetation response and burn severity were examined following eight large wildfires that burned in 2003 and 2004: two wildfires in California chaparral, two each in dry and moist mixed-conifer forests in Montana, and two in boreal forests in interior Alaska. Our research objectives were: 1) to characterize one year post-fire vegetation recovery relative to initial fire...

  5. Accommodating non-market values in evaluation of wildfire management in the United States: Challenges and opportunities

    Science.gov (United States)

    Tyron J. Venn; David E. Calkin

    2011-01-01

    Forests in the United States generate many non-market benefits for society that can be enhanced and diminished by wildfire and wildfire management. The Federal Wildland Fire Management Policy (1995, updated 2001), and subsequent Guidance to the Implementation of that policy provided in 2009, require fire management priorities be set on the basis of values to be...

  6. Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity

    Science.gov (United States)

    1. Wildfire is an ecological and economic risk for many semi-arid rangelands across the globe. This coupled with extreme wildfire seasons and mega-fires over the last decade have resulted in a call for more pre-suppression management actions. Dormant season grazing has been suggested as a treatment...

  7. Estimation of wildfire size and risk changes due to fuels treatments

    Science.gov (United States)

    Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.

    2012-01-01

    Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.

  8. AEGIS: a wildfire prevention and management information system

    Science.gov (United States)

    Kostas Kalabokidis; Alan Ager; Mark Finney; Nikos Athanasis; Palaiologos Palaiologou; Christos Vasilakos

    2016-01-01

    We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to...

  9. Predicting mortality for five California conifers following wildfire

    Science.gov (United States)

    Sharon M. Hood; Sheri L. Smith; Daniel R. Cluck

    2010-01-01

    Fire injury was characterized and survival monitored for 5677 trees >25cm DBH from five wildfires in California that occurred between 2000 and 2004. Logistic regression models for predicting the probability of mortality 5-years after fire were developed for incense cedar (Calocedrus decurrens (Torr.) Florin), white fir (Abies concolor (Gord. & Glend.) Lindl. ex...

  10. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner

    2015-01-01

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...

  11. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires

    Science.gov (United States)

    Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

    2005-01-01

    [1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

  12. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    Science.gov (United States)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and

  13. Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona

    Science.gov (United States)

    Stephens, Scott L.; Boerner, Ralph E.J.; Maghaddas, Jason J.; Maghaddas, Emily E.Y.; Collins, Brandon M.; Dow, Christopher B.; Edminster, Carl; Fiedler, Carl E.; Fry, Danny L.; Hartsough, Bruce R.; Keeley, Jon E.; Knapp, Eric E.; McIver, James D.; Skinner, Carl N.; Youngblood, Andrew P.

    2012-01-01

    Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we predict the median forest product life spans and uses of materials removed during mechanical treatments. Carbon loss from modeled wildfire-induced tree mortality was lowest in the mechanical plus prescribed fire treatments, followed by the prescribed fire-only treatments. Wildfire emissions varied from 10–80 Mg/ha and were lowest in the prescribed fire and mechanical followed by prescribed fire treatments at most sites. Mean biomass removals per site ranged from approximately 30–60 dry Mg/ha; the median lives of products in first use varied considerably (from 50 years). Our research suggests most of the benefits of increased fire resistance can be achieved with relatively small reductions in current carbon stocks. Retaining or growing larger trees also reduced the vulnerability of carbon loss from wildfire. In addition, modeled vulnerabilities to carbon losses and median forest product life spans varied considerably across our study sites, which could be used to help prioritize treatment implementation.

  14. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand K.; Riris, Haris; Allan, Graham R.; Sun, Xiaoli; Hasselbrack, William E.; Mao, Jianping; Wu, Stewart; Chen, Jeffrey; Numata, Kenji; Kawa, Stephan R.; Yang, Mei Ying Melissa; DiGangi, Joshua

    2018-04-01

    Here we report on measurements made with an improved CO2 Sounder lidar during the ASCENDS 2014 and 2016 airborne campaigns. The changes made to the 2011 version of the lidar included incorporating a rapidly wavelength-tunable, step-locked seed laser in the transmitter, using a much more sensitive HgCdTe APD detector and using an analog digitizer with faster readout time in the receiver. We also improved the lidar's calibration approach and the XCO2 retrieval algorithm. The 2014 and 2016 flights were made over several types of topographic surfaces from 3 to 12 km aircraft altitudes in the continental US. The results are compared to the XCO2 values computed from an airborne in situ sensor during spiral-down maneuvers. The 2014 results show significantly better performance and include measurement of horizontal gradients in XCO2 made over the Midwestern US that agree with chemistry transport models. The results from the 2016 airborne lidar retrievals show precisions of ˜ 0.7 parts per million (ppm) with 1 s averaging over desert surfaces, which is an improvement of about 8 times compared to similar measurements made in 2011. Measurements in 2016 were also made over fresh snow surfaces that have lower surface reflectance at the laser wavelengths. The results from both campaigns showed that the mean values of XCO2 retrieved from the lidar consistently agreed with those based on the in situ sensor to within 1 ppm. The improved precision and accuracy demonstrated in the 2014 and 2016 flights should benefit future airborne science campaigns and advance the technique's readiness for a space-based instrument.

  15. Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin

    Science.gov (United States)

    Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Doherty, Kevin E.; Brooks, Matthew L.; Casazza, Michael L.

    2015-09-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across broad spatial scales and long time periods. To help inform a threat assessment within the Great Basin for listing sage-grouse in 2015 under the ESA, we conducted an extensive analysis of wildfire and climatic effects on sage-grouse population growth derived from 30 years of lek-count data collected across the hydrographic Great Basin of Western North America. Annual (1984–2013) patterns of wildfire were derived from an extensive dataset of remotely sensed 30-meter imagery and precipitation derived from locally downscaled spatially explicit data. In the sagebrush ecosystem, underlying soil conditions also contribute strongly to variation in resilience to disturbance and resistance to plant community changes (R&R). Thus, we developed predictions from models of post-wildfire recovery and chronic effects of wildfire based on three spatially explicit R&R classes derived from soil moisture and temperature regimes. We found evidence of an interaction between the effects of wildfire (chronically affected burned area within 5 kilometers of a lek) and climatic conditions (spring through fall precipitation) after accounting for a consistent density-dependent effect. Specifically, burned areas near leks nullifies population growth that normally follows years with relatively high precipitation. In models, this effect results in long-term population declines for sage-grouse despite cyclic

  16. Assessing Lightning and Wildfire Hazard by Land Properties and Cloud to Ground Lightning Data with Association Rule Mining in Alberta, Canada.

    Science.gov (United States)

    Cha, DongHwan; Wang, Xin; Kim, Jeong Woo

    2017-10-23

    Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with high frequency Cloud to Ground (CG) lightning strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual lightning occurred during warm months (June to August) and the daily lightning frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG lightning patterns, which were verified by similarity measurement to check the patterns' consistency. The similarity coefficient values indicated that there were high correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that lightning and wildfires occur in two distinct areas: frequent wildfire regions with a high frequency of lightning, and frequent wild-fire regions with a low frequency of lightning. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG lightning hazard map and specific land use types.

  17. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  18. Airborne gravimetry for geoid and GOCE

    DEFF Research Database (Denmark)

    Forsberg, R.; Olesen, A. V.; Nielsen, E.

    2014-01-01

    DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability and redun......DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability...... in Antarctica and Tanzania based on DTU-Space aerogravity and GOCE. In both cases the airborne data validate GOCE to very high degrees, and confirms the synergy of airborne gravity and GOCE. For Antarctica, the deep interior Antarctic survey (continued in 2013 from a remote field camp), shows...... that it is possible efficiently to cover even the most remote regions on the planet with good aerogravity. With the recent termination of the GOCE mission, it is therefore timely to initiate a coordinated, preferably international, airborne gravity effort to cover the polar gap south of 83° S; such a survey can...

  19. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    Science.gov (United States)

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  20. Using an Optionally Piloted Aircraft for Airborne Gravity Observations with the NOAA GRAV-D Project

    Science.gov (United States)

    Youngman, M.; Johnson, J. A.; van Westrum, D.; Damiani, T.

    2017-12-01

    The U.S. National Geodetic Survey's (NGS) Gravity for the Redefintion of the American Vertical Datum (GRAV-D) project is collecting airborne gravity data to support a 1 cm geoid. Started in 2008, this project will collect airborne gravity data over the entire U.S. and territories by 2022. As of June 30, 2017, the project was almost 62% complete. With recent technological developments, NGS has been exploring using unmanned aircraft for airborne gravity measurements. This presentation will focus on results from two surveys over the U.S. Appalachian and Rocky Mountains using the Aurora Centaur Optionally Piloted Aircraft and the Micro-g Lacoste Turnkey Airborne Gravimeter System 7 (TAGS7). Collecting high quality data as well as dealing with remote locations has been a challenge for the GRAV-D project and the field of airborne gravity in general. Unmanned aircraft could potentially improve data quality, handle hard to reach locations, and reduce pilot fatigue. The optionally piloted Centaur aircraft is an attractive option because it is not restricted in U.S. airspace and delivers high quality gravity data. Specifically, the Centaur meets U.S. Federal Aviation Administration regulations for Unmanned Aircraft Systems (UAS) by using a safety pilot on board to maintain line of sight and the ability to take control in the event of an emergency. Even though this is a sizeable UAS, most traditional gravimeters are too large and heavy for the platform. With a smaller and lighter design, the TAGS7 was used for its ability to conform to the aircraft's size restrictions, with the added benefit of upgraded performance capabilities. Two surveys were performed with this aircraft and gravimeter, one in April and one in August to September of 2017. Initial results indicate that the high-gain, fast response of the Centaur autopilot (optimized for flights without passengers), coupled with the full-force feedback sensor of the TAGS7, provides superior performance in all conditions, and

  1. Flow Webs: Mechanism and Architecture for the Implementation of Sensor Webs

    Science.gov (United States)

    Gorlick, M. M.; Peng, G. S.; Gasster, S. D.; McAtee, M. D.

    2006-12-01

    -time demands. Flows are the connective tissue of flow webs—massive computational engines organized as directed graphs whose nodes are semi-autonomous components and whose edges are flows. The individual components of a flow web may themselves be encapsulated flow webs. In other words, a flow web subgraph may be presented to a yet larger flow web as a single, seamless component. Flow webs, at all levels, may be edited and modified while still executing. Within a flow web individual components may be added, removed, started, paused, halted, reparameterized, or inspected. The topology of a flow web may be changed at will. Thus, flow webs exhibit an extraordinary degree of adaptivity and robustness as they are explicitly designed to be modified on the fly, an attribute well suited for dynamic model interactions in sensor webs. We describe our concept for a sensor web, implemented as a flow web, in the context of a wildfire disaster management system for the southern California region. Comprehensive wildfire management requires cooperation among multiple agencies. Flow webs allow agencies to share resources in exactly the manner they choose. We will explain how to employ flow webs and agents to integrate satellite remote sensing data, models, in-situ sensors, UAVs and other resources into a sensor web that interconnects organizations and their disaster management tools in a manner that simultaneously preserves their independence and builds upon the individual strengths of agency-specific models and data sources.

  2. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire?

    Science.gov (United States)

    Wilkinson, S. L.; Moore, P. A.; Flannigan, M. D.; Wotton, B. M.; Waddington, J. M.

    2018-01-01

    Climate change mediated drying of boreal peatlands is expected to enhance peatland afforestation and wildfire vulnerability. The water table depth-afforestation feedback represents a positive feedback that can enhance peat drying and consolidation and thereby increase peat burn severity; exacerbating the challenges and costs of wildfire suppression efforts and potentially shifting the peatland to a persistent source of atmospheric carbon. To address this wildfire management challenge, we examined burn severity across a gradient of drying in a black spruce dominated peatland that was partially drained in 1975-1980 and burned in the 2016 Fort McMurray Horse River wildfire. We found that post-drainage black spruce annual ring width increased substantially with intense drainage. Average (±SD) basal diameter was 2.6 ± 1.2 cm, 3.2 ± 2.0 cm and 7.9 ± 4.7 cm in undrained (UD), moderately drained (MD) and heavily drained (HD) treatments, respectively. Depth of burn was significantly different between treatments (p threshold will aid in developing effective adaptive management techniques and protecting boreal peatland carbon stocks.

  3. Multiple Victims of Carbon Monoxide Poisoning in the Aftermath of a Wildfire: A Case Series

    Directory of Open Access Journals (Sweden)

    Luís Ramos dos Santos

    2018-03-01

    Conclusion: Use of hyperbaric oxygen appears to have reduced the incidence of the syndrome. This seems to be the first Portuguese series reporting use of hyperbaric oxygen in carbon monoxide poisoning due to wildfires. The authors intend to alert to the importance of referral of these patients because the indications and benefits of this treatment are well documented. This is especially important given the ever-growing issue of wildfires in Portugal.

  4. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China

    Science.gov (United States)

    Li, Bei; Deng, Jun; Xiao, Yang; Zhai, Xiaowei; Shu, Chi-Min; Gao, Wei

    2018-06-01

    Coalfield wildfires are serious catastrophes associated with mining activities. Generally, the coal wildfire areas have tremendous heat accumulation regions. Eliminating the internal heat is an effective method for coal wildfire control. In this study, high thermal conductivity component of a heat pipe (HP) was used for enhancing the heat dissipation efficiency and impeding heat accumulation. An experimental system was set up to analyze the thermal resistance network of the coal-HP system. A coal-HP heat removal model was also established for studying the heat transfer performance of HP on the coal pile. The HP exhibited outstanding cooling performance in the initial period, resulting in the highest temperature difference between the coal pile and ambient temperature. However, the effect of the HP on the distribution temperature of coal piles decreased with increasing distance. The largest decline in the coal temperature occurred in a 20-mm radius of the HP; the temperature decreased from 84.3 to 50.9 °C, a decline of 39.6%. The amount of energy transfer by the HP after 80 h was 1.0865, 2.1680, and 3.3649 MJ under the initial heat source temperatures of 100, 150, and 200 °C, respectively. The coal was governed below 80 °C with the HP under the experimental conditions. It revealed that the HP had a substantial effect on thermal removal and inhibited spontaneous coal combustion. In addition, this paper puts forward the technological path of HP to control typical coalfield wildfire. [Figure not available: see fulltext.

  5. Historical land-use influences the long-term stream turbidity response to a wildfire.

    Science.gov (United States)

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  6. Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    Directory of Open Access Journals (Sweden)

    Perry Melissa J

    2010-11-01

    Full Text Available Abstract Background A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC generated during the tasks were measured using a direct reading instrument (DRI with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred

  7. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    Science.gov (United States)

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  8. Airborne Lidar Surface Topography (LIST) Simulator

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  9. Digital airborne camera introduction and technology

    CERN Document Server

    Sandau, Rainer

    2014-01-01

    The last decade has seen great innovations on the airborne camera. This book is the first ever written on the topic and describes all components of a digital airborne camera ranging from the object to be imaged to the mass memory device.

  10. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks

    Science.gov (United States)

    Nesmith, C.B.; Caprio, Anthony C.; Pfaff, Anne H.; McGinnis, Thomas W.; Keeley, Jon E.

    2011-01-01

    Current goals for prescription burning are focused on measures of fuel consumption and changes in forest density. These benchmarks, however, do not address the extent to which prescription burning meets perceived ecosystem needs of heterogeneity in burning, both for overstory trees and understory herbs and shrubs. There are still questions about how closely prescribed fires mimic these patterns compared to natural wildfires. This study compared burn patterns of prescribed fires and managed unplanned wildfires to understand how the differing burning regimes affect ecosystem properties. Measures of forest structure and fire severity were sampled in three recent prescribed fires and three wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Fine scale patterns of fire severity and heterogeneity were compared between fire types using ground-based measures of fire effects on fuels and overstory and understory vegetation. Prescribed fires and wildfires managed for resource objectives displayed similar patterns of overstory and understory fire severity, heterogeneity, and seedling and sapling survival. Variation among plots within the same fire was always greater than between fire types. Prescribed fires can provide burned landscapes that approximate natural fires in many ways. It is recognized that constraints placed on when wildfires managed for resource objectives are allowed to burn freely may bias the range of conditions that might have been experienced under more natural conditions. Therefore they may not exactly mimic natural wildfires. Overall, the similarity in fire effects that we observed between prescribed fires and managed wildfires indicate that despite the restrictions that are often placed on prescribed fires, they appear to be creating post-fire conditions that approximate natural fires when assessed on a fine spatial scale.

  11. Combining ungrouped and grouped wildfire data to estimate fire risk

    KAUST Repository

    Hernandez-Magallanes, I.

    2013-01-01

    particular year. The probability model is based on the wildfire point process. Assuming a smooth intensity function, a locally weighted likelihood fit is used, which incorporates the group effect. A logit model is used under the assumption of the existence

  12. Based on airborne multi-array butting for IRFPA staring imagery

    Science.gov (United States)

    Mao, Minjun; Xiao, Gonghai; Lin, Yancheng; Xie, Feng; Shu, Rong

    2010-10-01

    Because infrared system detects the radiation energy of the target, it has the ability to work all day that the visible-light detection system cannot achieve, at the same time, infrared system is a passive detection system, does not need active detection technology such as radar, which requires large radiation power or a larger expandable antenna. It is more suitable for airborne applications, therefore, infrared imaging based on the aircraft and aerostat platform, has been an important means of monitoring the ground. However, due to detector limitations, the spatial resolution of current infrared cameras or spectrographs and the total field coverage of view are generally not satisfied the customer's requirements. This paper proposes an airborne infrared camera imaging method based on multi-planar arrays, using frame-type imaging array. In order to provide large ground coverage together with good spatial resolution, the mirror is drove to scan rapidly by the galvanometer. The scanning mirror works at staring imagery mode. During multi-planar detectors exposure and imaging, the mirror moves to the staring position. There is more than 10 % overlapping sensor foot prints between two adjacent frames, and the functions of image matching algorithms are used to ensure the seamless butting. This imaging method improves the system integration time, and effectively improves the sensitivity of infrared systems; frame-type imaging solves the serious image distortion caused by the platform attitude.

  13. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    Science.gov (United States)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with

  14. Wildfires in Chile: A review

    Science.gov (United States)

    Úbeda, Xavier; Sarricolea, Pablo

    2016-11-01

    This paper reviews the literature examining the wildfire phenomenon in Chile. Since ancient times, Chile's wildfires have shaped the country's landscape, but today, as in many other parts of the world, the fire regime - pattern, frequency and intensity - has grown at an alarming rate. In 2014, > 8000 fires were responsible for burning c. 130,000 ha, making it the worst year in Chile's recent history. The reasons for this increase appear to be the increment in the area planted with flammable species; the rejection of these landscape modifications on the part of local communities that target these plantations in arson attacks; and, the adoption of intensive forest management practices resulting in the accumulation of a high fuel load. These trends have left many native species in a precarious situation and forest plantation companies under considerable financial pressure. An additional problem is posed by fires at the wildland urban interface (WUI), threatening those inhabitants that live in Chile's most heavily populated cities. The prevalence of natural fires in Chile; the relationship between certain plant species and fire in terms of seed germination strategies and plant adaptation; the relationship between fire and invasive species; and, the need for fire prevention systems and territorial plans that include fire risk assessments are some of the key aspects discussed in this article. Several of the questions raised will require further research, including just how fire-dependent the ecosystems in Chile are, how the forest at the WUI can be better managed to prevent human and material damage, and how best to address the social controversy that pits the Mapuche population against the timber companies.

  15. Nonmarket benefits of reducing environmental effects of potential wildfires in beetle-killed trees: A contingent valuation study

    Science.gov (United States)

    Maryam Tabatabaei; John B. Loomis; Daniel W. McCollum

    2015-01-01

    We estimated Colorado households’ nonmarket values for two forest management options for reducing intensity of future wildfires and associated nonmarket environmental effects wildfires. The first policy is the traditional harvesting of pine beetle-killed trees and burning of the slash piles of residual materials on-site. The second involves harvesting but moving the...

  16. Southern Annular Mode drives multicentury wildfire activity in southern South America.

    Science.gov (United States)

    Holz, Andrés; Paritsis, Juan; Mundo, Ignacio A; Veblen, Thomas T; Kitzberger, Thomas; Williamson, Grant J; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E; Grau, H Ricardo; Quezada, Juan M

    2017-09-05

    The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.

  17. Comparison of ultraviolet absorbance and NO-chemiluminescence for ozone measurement in wildfire plumes at the Mount Bachelor Observatory

    Science.gov (United States)

    Gao, Honglian; Jaffe, Daniel A.

    2017-10-01

    The goal of this paper is to evaluate the accuracy of the commonly used ozone (O3) instrument (the ultraviolet (UV) photometer) against a Federal Reference Method (Nitric Oxide -chemiluminescence) for ozone measurement in wildfire smoke plumes. We carried out simultaneous ozone measurement with two UV O3 photometers and one nitric oxide-chemiluminescence (NO-CL) ozone detectors during wildfire season (Aug. 1-Sept. 30) in 2015 at the Mount Bachelor Observatory (MBO, 2763 m above mean sea level, Oregon, USA). The UV O3 shows good agreement and excellent correlation to NO-CL O3, with linear regression slopes close to unity and R2 of 0.92 for 1-h average data and R2 of 0.93 for O3 daily maximum 8-h average (MDA8). During this two-month period we identified 35 wildfire events. Ozone enhancements in those wildfire plumes measured by NO-CL O3 and UV O3 monitors also show good agreement and excellent linear correlation, with a slope and R2 of 1.03 and 0.86 for O3 enhancements (ΔO3) and 1.00 and 0.98 for carbon monoxide (CO)-normalized ozone enhancement ratios (ΔO3/ΔCO), respectively. Overall, the UV O3 was found to have a positive bias of 4.7 ± 2.8 ppbv compared to the NO-CL O3. The O3 bias between NO-CL O3 and UV O3 is independent of wildfire plume tracers such as CO, particulate matter (PM1), aerosol scattering, and ultrafine particles. The results demonstrate that the UV O3 absorbance method is reliable, even in highly concentrated wildfire plumes.

  18. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    Science.gov (United States)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  19. Characterizing Early Succession Following Wildfires at Different Severities in Boreal Bog and Fen Peatlands

    Science.gov (United States)

    Ernst, E. J.; Bourgeau-Chavez, L. L.; Kane, E. S.; Wagenbrenner, J. W.; Endres, S.

    2016-12-01

    The Arctic-boreal region is experiencing changes in climate, trending toward warmer summers, resulting in a greater occurrence of wildfires with longer burning periods and higher intensities. Drought-like conditions have dried surface fuels, leading to a higher probability of ignition, even in lowland peatlands. Previous work has been done to characterize post-fire succession rates in Arctic-boreal upland sites, but much less is known of fire effects and early successional dynamics in lowlands. Wildland fires are the number one disturbance in Canada's Northwest Territories (NWT), which characteristically burn at high intensities with large flame fronts, and result in some of the biggest wildfires in the world. Areas surrounding the Great Slave Lake, NWT—including parts of the Taiga Plains, Taiga Shield, and Boreal Plains ecozones—experienced exceptional wildfire activity in 2014 and 2015. We characterized burn severity of the bog and fen peat surface and canopy layers at several burned sites. To determine if the severe ground or crown wildfires were stand-replacing events, we characterized post-fire vegetation in peatlands in 2015 and 2016 based on seedling regeneration. We stratified sites according to estimated water residence times across the three ecozones and made comparisons between data collected at the same sites across years. This work adds much needed context for post-fire succession in boreal peatland ecosystems, as the susceptibility of these systems to burning will continue to increase with a warming climate.

  20. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar

    Science.gov (United States)

    Rengers, Francis K.; Tucker, G.E.; Moody, J.A.; Ebel, Brian

    2016-01-01

    Erosion following a wildfire is much greater than background erosion in forests because of wildfire-induced changes to soil erodibility and water infiltration. While many previous studies have documented post-wildfire erosion with point and small plot-scale measurements, the spatial distribution of post-fire erosion patterns at the watershed scale remains largely unexplored. In this study lidar surveys were collected periodically in a small, first-order drainage basin over a period of 2 years following a wildfire. The study site was relatively steep with slopes ranging from 17° to > 30°. During the study period, several different types of rain storms occurred on the site including low-intensity frontal storms (2.4 mm h−1) and high-intensity convective thunderstorms (79 mm h−1). These storms were the dominant drivers of erosion. Erosion resulting from dry ravel and debris flows was notably absent at the site. Successive lidar surveys were subtracted from one another to obtain digital maps of topographic change between surveys. The results show an evolution in geomorphic response, such that the erosional response after rain storms was strongly influenced by the previous erosional events and pre-fire site morphology. Hillslope and channel roughness increased over time, and the watershed armored as coarse cobbles and boulders were exposed. The erosional response was spatially nonuniform; shallow erosion from hillslopes (87% of the study area) contributed 3 times more sediment volume than erosion from convergent areas (13% of the study area). However, the total normalized erosion depth (volume/area) was highest in convergent areas. From a detailed understanding of the spatial locations of erosion, we made inferences regarding the processes driving erosion. It appears that hillslope erosion is controlled by rain splash (for detachment) and overland flow (for transport and quasi-channelized erosion), with the sites of highest erosion corresponding to locations

  1. Acacia shrubs respond positively to high severity wildfire: Implications for conservation and fuel hazard management.

    Science.gov (United States)

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M; Denham, Andrew J

    2017-01-01

    High severity wildfires pose threats to human assets, but are also perceived to impact vegetation communities because a small number of species may become dominant immediately after fire. However there are considerable gaps in our knowledge about species-specific responses of plants to different fire severities, and how this influences fuel hazard in the short and long-term. Here we conduct a floristic survey at sites before and two years after a wildfire of unprecedented size and severity in the Warrumbungle National Park (Australia) to explore relationships between post-fire growth of a fire responsive shrub genera (Acacia), total mid-story vegetation cover, fire severity and fuel hazard. We then survey 129 plots surrounding the park to assess relationships between mid-story vegetation cover and time-since-fire. Acacia species richness and cover were 2.3 and 4.3 times greater at plots after than before the fire. However the same common dominant species were present throughout the study. Mid-story vegetation cover was 1.5 times greater after than before the wildfire, and Acacia species contribution to mid-story cover increased from 10 to 40%. Acacia species richness was not affected by fire severity, however strong positive associations were observed between Acacia and total mid-story vegetation cover and severity. Our analysis of mid-story vegetation recovery showed that cover was similarly high between 2 and 30years post-fire, then decreased until 52years. Collectively, our results suggest that Acacia species are extremely resilient to high severity wildfire and drive short to mid-term increases in fuel hazard. Our results are discussed in relation to fire regime management from the twin perspectives of conserving biodiversity and mitigating human losses due to wildfire. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst.

    Science.gov (United States)

    Neubauer, N; Kasper, G

    2015-01-01

    A previously described method for detecting catalyst particles in workplace air((1,2)) was applied to airborne carbon nanotubes (CNT). It infers the CNT concentration indirectly from the catalytic activity of metallic nanoparticles embedded as part of the CNT production process. Essentially, one samples airborne CNT onto a filter enclosed in a tiny chemical reactor and then initiates a gas-phase catalytic reaction on the sample. The change in concentration of one of the reactants is then determined by an IR sensor as measure of activity. The method requires a one-point calibration with a CNT sample of known mass. The suitability of the method was tested with nickel containing (25 or 38% by weight), well-characterized multi-walled CNT aerosols generated freshly in the lab for each experiment. Two chemical reactions were investigated, of which the oxidation of CO to CO2 at 470°C was found to be more effective, because nearly 100% of the nickel was exposed at that temperature by burning off the carbon, giving a linear relationship between CO conversion and nickel mass. Based on the investigated aerosols, a lower detection limit of 1 μg of sampled nickel was estimated. This translates into sampling times ranging from minutes to about one working day, depending on airborne CNT concentration and catalyst content, as well as sampling flow rate. The time for the subsequent chemical analysis is on the order of minutes, regardless of the time required to accumulate the sample and can be done on site.

  3. Application of Wildfire Risk Assessment Results to Wildfire Response Planning in the Southern Sierra Nevada, California, USA

    Directory of Open Access Journals (Sweden)

    Matthew P. Thompson

    2016-03-01

    Full Text Available How wildfires are managed is a key determinant of long-term socioecological resiliency and the ability to live with fire. Safe and effective response to fire requires effective pre-fire planning, which is the main focus of this paper. We review general principles of effective federal fire management planning in the U.S., and introduce a framework for incident response planning consistent with these principles. We contextualize this framework in relation to a wildland fire management continuum based on federal fire management policy in the U.S. The framework leverages recent advancements in spatial wildfire risk assessment—notably the joint concepts of in situ risk and source risk—and integrates assessment results with additional geospatial information to develop and map strategic response zones. We operationalize this framework in a geographic information system (GIS environment based on landscape attributes relevant to fire operations, and define Potential wildland fire Operational Delineations (PODs as the spatial unit of analysis for strategic response. Using results from a recent risk assessment performed on several National Forests in the Southern Sierra Nevada area of California, USA, we illustrate how POD-level summaries of risk metrics can reduce uncertainty surrounding potential losses and benefits given large fire occurrence, and lend themselves naturally to design of fire and fuel management strategies. To conclude we identify gaps, limitations, and uncertainties, and prioritize future work to support safe and effective incident response.

  4. NASA Wrangler: Automated Cloud-Based Data Assembly in the RECOVER Wildfire Decision Support System

    Science.gov (United States)

    Schnase, John; Carroll, Mark; Gill, Roger; Wooten, Margaret; Weber, Keith; Blair, Kindra; May, Jeffrey; Toombs, William

    2017-01-01

    NASA Wrangler is a loosely-coupled, event driven, highly parallel data aggregation service designed to take advantageof the elastic resource capabilities of cloud computing. Wrangler automatically collects Earth observational data, climate model outputs, derived remote sensing data products, and historic biophysical data for pre-, active-, and post-wildfire decision making. It is a core service of the RECOVER decision support system, which is providing rapid-response GIS analytic capabilities to state and local government agencies. Wrangler reduces to minutes the time needed to assemble and deliver crucial wildfire-related data.

  5. Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    Science.gov (United States)

    Lee, Huikyo; Jeong, Su-Jong; Kalashnikova, Olga; Tosca, Mika; Kim, Sang-Woo; Kug, Jong-Seong

    2018-03-01

    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.

  6. Mitigation of emissions from wildfires in Australia: potential for use of managed prescribed fire in eucalypt dominated vegetation, present and future. (Invited)

    Science.gov (United States)

    Bradstock, R.; Price, O.; Williams, D.; Hutley, L.

    2010-12-01

    Species of Eucalyptus and other closely related genera dominate woodlands and forests in the moist regions of tropical and temperate Australia. Respectively, these savanna woodlands and open forests are highly fire prone, though fire regimes are fundamentally different due to inherent influences of weather, fuels, ignitions and terrain. Fuel reduction via prescribed burning is commonly used in both savanna woodlands and temperate, open forests with the intention of reducing the incidence, extent and intensity of wildfires and subsequent risk to human and environmental assets. The prospect of mitigation of greenhouse gas emissions from wildfires provides further impetus for extensive use of prescribed fire. This potential is dependent on a number of key factors, namely the efficacy of this fuel reduction technique and the relative difference in the intensity of prescribed fires and wildfires. We present a conceptual model of the potential for prescribed fire to mitigate emissions based on these key factors. Prescribed burning requires an outlay of emissions in return for a saving through a reduction in area burned and intensity of subsequent wildfires. If the reduction in area burned by wildfires, achieved through prescribed burning, is relatively small then the reduction in intensity of wildfires must be relatively large in order to achieve a net reduction in emissions. This is not the case if prescribed burning has a strong effect in reducing the size of wildfires. Contemporary data indicate that the effect of prescribed burning in reducing area burned by wildfires is high in savanna woodlands but relatively low in forests. Corresponding potential for mitigation of emissions is therefore high and low respectively. We tested this prediction for forests by estimating fire intensity and fuel consumption using a range of fuel accumulation models for south eastern Australian forests. The results indicate that at the level of effectiveness of prescribed fire achieved

  7. Airborne radioactive contamination following aerosol ventilation studies

    International Nuclear Information System (INIS)

    Mackie, A.; Hart, G.C.; Ibbett, D.A.; Whitehead, R.J.S.

    1994-01-01

    Lung aerosol ventilation studies may be accompanied by airborne contamination, with subsequent surface contamination. Airborne contamination has been measured prior to, during and following 59 consecutive 99 Tc m -diethylenetriamine pentaacetate (DTPA) aerosol studies using a personal air sampler. Airborne contamination ranging between 0 and 20 330 kBq m -3 has been measured. Airborne contamination increases with degree of patient breathing difficulty. The effective dose equivalent (EDE) to staff from ingested activity has been calculated to be 0.3 μSv per study. This figure is supported by data from gamma camera images of a contaminated staff member. However, surface contamination measurements reveal that 60% of studies exceed maximum permissible contamination limits for the hands; 16% of studies exceed limits for controlled area surfaces. (author)

  8. Discrete Anisotropic Radiative Transfer (DART 5 for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Gastellu-Etchegorry

    2015-02-01

    Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.

  9. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires

    Science.gov (United States)

    McCluskey, Christina S.

    Insufficient knowledge regarding the sources and number concentrations of atmospheric ice nucleating particles (INP) leads to large uncertainties in understanding the interaction of aerosols with cloud processes, such as cloud life time and precipitation rates. This study utilizes measurements of INP from a diverse set of biomass burning events to better understand INP associated with biomass burning in the U.S. Prescribed burns in Georgia and Colorado, two Colorado wildfires and two laboratory burns were monitored for INP number concentrations. The relationship between nINP and total particle number concentrations, evident within prescribed burning plumes, was degraded within aged smoke plumes from the wildfires, limiting the utility of this relationship for comparing laboratory and field data. Larger particles, represented by n500nm, are less vulnerable to plume processing and have previously been evaluated for their relation to nINP. Our measurements indicated that for a given n500nm, nINP associated with the wildfires were nearly an order of magnitude higher than nINP found in prescribed fire emissions. Reasons for the differences between INP characteristics in these emissions were explored, including variations in combustion efficiency, fuel type, transport time and environmental conditions. Combustion efficiency and fuel type were eliminated as controlling factors by comparing samples with contrasting combustion efficiencies and fuel types. Transport time was eliminated because the expected impact would be to reduce n500nm, thus resulting in the opposite effect from the observed change. Bulk aerosol chemical composition analyses support the potential role of elevated soil dust particle concentrations during the fires, contributing to the population of INP, but the bulk analyses do not target INP composition directly. It is hypothesized that both hardwood burning and soil lofting are responsible for the elevated production of INP in the Colorado wildfires in

  10. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  11. Surface Albedo Darkening from wildfires in Northern Sub-Saharan Africa

    Science.gov (United States)

    Gatebe, C. K.; Ichoku, C. M.; Poudal, R.; Roman, M. O.; Wilcox, E.

    2014-01-01

    Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and a major source of atmospheric trace gases and aerosols. They are known to produce changes in landscape patterns and lead to changes in surface albedo that can persist for long periods. Here, we estimate the darkening of surface albedo due to wildfires in different land cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires over most land cover types (e.g. woody savannas: (-0.00352 0.00003) and savannas: (- 0.003910.00003), which together accounted for >86% of the total MODIS fire count between 2003 and 2011). Grasslands had a higher value (-0.00454 0.00003) than the savannas, but accounted for only about 5% of the total fire count. A few other land cover types (e.g. Deciduous broad leaf: (0.00062 0.00015), and barren: 0.00027 0.00019), showed an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo change due to wildfires is more important during the fire season (October-February). The albedo recovery progresses rapidly during the first year after fires, where savannas show the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wetlands and barren lands show the least one-year recovery (56%). The persistence of surface albedo darkening in most land cover types is limited to about six to seven years, after which at least 98% of the burnt pixels recover to their pre-fire albedo.

  12. Does historical wildfire activity alter metal fluxes to northern lakes?

    Science.gov (United States)

    Pelletier, N.; Chetelat, J.; Vermaire, J. C.; Palmer, M.; Black, J.; Pellisey, J.; Tracz, B.; van der Wielen, S.

    2017-12-01

    Current drought conditions in northwestern Canada are conducive to more frequent and severe wildfires that may mobilize mercury and other metals accumulated in soil and biomass. There is evidence that wildfires can remobilize and transport mercury within and outside catchments by atmospheric volatilization, particulate emissions and catchment soil erosion. However, the effect of fires on mercury fluxes to nearby lake sediments remains unclear. In this study, we use a combination of 10 dated lake sediment cores and four nearby ombrotrophic peatland cores to investigate the effects of wildfires on mercury fluxes to lake sediments. Lakes varying in catchment size and distance from recent fire events were sampled. Mercury concentrations in the environmental archives were measured, and macroscopic charcoal particles (>100 um) were counted at high resolution in the sediments to observe the co-variation of the local fire history and mercury fluxes. Mercury flux recorded in ombrotrophic peat cores provided an estimate of the historical atmospheric mercury flux from local and regional atmospheric deposition. The mercury flux recorded in lake sediments corresponds to the sum of direct atmospheric deposition and catchment transport. In combination, these archives will allow for the partitioning of mercury loading attributable to catchment transport from direct atmospheric deposition. After correcting the fluxes for particle focusing and terragenic elements input, flux from different lakes will be compared based on their catchment size and their temporal and spatial proximity known fire events. Altogether, our preliminary results using these paleolimnological methods will provide new insights on mercury transport processes that are predicted to become more important under a changing climate.

  13. Muted response of fine-grained sediment to a wildfire in British Columbia: the role of landscape disturbances and driving forces

    Science.gov (United States)

    Owens, P. N.; Giles, T. R.; Blake, W. H.; Petticrew, E. L.; Bol, R.

    2012-04-01

    In August 2003 a severe wildfire burnt the majority of Fishtrap Creek, a 170 km2 watershed near the city of Kamloops in central British Columbia. The objective of this study was to determine the influence of the wildfire on the amount and composition of fine sediment delivery and transport in the system and to see if the wildfire altered the main sources of sediment. In addition, the findings are compared with that of a nearby watershed, Jamieson Creek, with similar characteristics that was unburnt. In both watersheds, suspended sediment concentrations and fluxes were determined using ISCO automatic water samplers. Changes in sediment sources were determined by collecting bulk sediment and source material samples, and by analysing these samples for a range of properties, including environmental radionuclides and C and N isotopes. Results suggest that following the wildfire there was no major response in fine sediment delivery and transport in Fishtrap Creek, when compared to Jamieson Creek, although there were noticeable differences in the composition of the fine sediment transported and stored in the channel bed. This muted response may be due to the fairly low rainfall amounts in the period immediately following the wildfire. Environmental fallout radionuclides (caesium-137 and unsupported lead-210) showed that there was limited increase (bank) sources of sediment. Recent changes in sediment fluxes and sediment sources relate more to bank erosion processes, probably due to loss of root strength and cohesion. The results suggest that in some situations wildfire may not produce the dramatic increases in hillslope erosion and sediment transport often documented in other watersheds. In Fishtrap Creek, channel bank erosion appears to be important in supplying fine material to the channel and this suggests that attention should be directed at managing the riparian zone in watersheds affected by wildfires.

  14. Using field data to assess model predictions of surface and ground fuel consumption by wildfire in coniferous forests of California

    Science.gov (United States)

    Lydersen, Jamie M.; Collins, Brandon M.; Ewell, Carol M.; Reiner, Alicia L.; Fites, Jo Ann; Dow, Christopher B.; Gonzalez, Patrick; Saah, David S.; Battles, John J.

    2014-03-01

    Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire emissions however can be difficult due to inherent variability in fuel loads and consumption and a lack of field data of fuel consumption by wildfire. We compare a unique set of fuel data collected immediately before and after six wildfires in coniferous forests of California to fuel consumption predictions of the first-order fire effects model (FOFEM), based on two different available fuel characterizations. We found strong regional differences in the performance of different fuel characterizations, with FOFEM overestimating the fuel consumption to a greater extent in the Klamath Mountains than in the Sierra Nevada. Inaccurate fuel load inputs caused the largest differences between predicted and observed fuel consumption. Fuel classifications tended to overestimate duff load and underestimate litter load, leading to differences in predicted emissions for some pollutants. When considering total ground and surface fuels, modeled consumption was fairly accurate on average, although the range of error in estimates of plot level consumption was very large. These results highlight the importance of fuel load input to the accuracy of modeled fuel consumption and GHG emissions from wildfires in coniferous forests.

  15. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  16. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    Energy Technology Data Exchange (ETDEWEB)

    Mietz, D.; Archuleta, B.; Archuleta, J. [and others

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  17. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America

    Science.gov (United States)

    Yue, X.; Strada, S.; Unger, N.

    2017-12-01

    Biomass burning is an important source of tropospheric ozone (O3) and aerosols, which can affect vegetation photosynthesis through stomatal uptake (for O3) and light scattering and meteorological variations (for aerosols). Climate change will significantly increase wildfire activity in boreal North America by the midcentury, while little is known about the impacts of enhanced emissions on the terrestrial carbon budget. Here, combining site-level and satellite observations and a carbon-chemistry-climate model, we estimate the impacts of fire emitted O3 and aerosols on net primary productivity (NPP) over boreal North America. Fire emissions are calculated based on an ensemble projection from 13 climate models. In the present day, wildfire enhances surface O3 by 2 ppbv (7%) and aerosol optical depth (AOD) at 550 nm by 0.03 (26%) in the summer. By midcentury, boreal area burned is predicted to increase by 66%, contributing more O3 (13%) and aerosols (37%). Fire O3 causes negligible impacts on NPP because ambient O3 concentration is far below the damaging thresholds. Fire aerosols reduce surface solar radiation but enhance atmospheric absorption, resulting in enhanced air stability and intensified regional drought. The domain of this drying is confined to the North in the present day, but extends southward by 2050 due to increased fire emissions. Consequently, wildfire aerosols enhance NPP by 72 Tg C yr-1 in the present day but decrease NPP by 118 Tg C yr-1 in the future, mainly because of the soil moisture perturbations. Our results suggest that future wildfire may accelerate boreal carbon loss, not only through direct emissions, but also through the biophysical impacts of fire aerosols.

  19. Weather types and the regime of wildfires in Portugal

    Science.gov (United States)

    Pereira, M. G.; Trigo, R. M.; Dacamara, C. C.

    2009-04-01

    An objective classification scheme, as developed by Trigo and DaCamara (2000), was applied to classify the daily atmospheric circulation affecting Portugal between 1980 and 2007 into a set of 10 basic weather types (WTs). The classification scheme relies on a set of atmospheric circulation indices, namely southerly flow (SF), westerly flow (WF), total flow (F), southerly shear vorticity (ZS), westerly shear vorticity (ZW) and total vorticity (Z). The weather-typing approach, together with surfacemeteorological variables (e.g. intensity and direction of geostrophic wind, maximum and minimum temperature and precipitation) were then associated to wildfire events as recorded in the official Portuguese fire database consisting of information on each fire occurred in the 18 districts of Continental Portugal within the same period (>450.000 events). The objective of this study is to explore the dependence of wildfire activity on weather and climate and then evaluate the potential of WTs to discriminate among recorded wildfires on what respects to their occurrence and development. Results show that days characterised by surface flow with an eastern component (i.e. NE, E and SE) account for a high percentage of daily burnt area, as opposed to surface westerly flow (NW, W and SW), which represents about a quarter of the total number of days but only accounts for a very low percentage of active fires and of burnt area. Meteorological variables such as minimum and maximum temperatures, that are closely associated to surface wind intensity and direction, also present a good ability to discriminate between the different types of fire events.. Trigo R.M., DaCamara C. (2000) "Circulation Weather Types and their impact on the precipitation regime in Portugal". Int J of Climatology, 20, 1559-1581.

  20. Air pollution increases forest susceptibility to wildfires: a case study for the San Bernardino Mountains in southern California

    Science.gov (United States)

    N.E. Grulke; R.A. Minnich; T. Paine; P. Riggan

    2010-01-01

    Many factors increase susceptibility of forests to wildfire. Among them are increases in human population, changes in land use, fire suppression, and frequent droughts. These factors have been exacerbating forest susceptibility to wildfires over the last century in southern California. Here we report on the significant role that air pollution has on increasing forest...